

Integrating PHP with
Windows®

Arno Hollosi

Published with the authorization of Microsoft Corporation by:
O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, California 95472

Copyright © 2011 by O’Reilly Verlag GmbH

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form
or by any means without the written permission of the publisher.

ISBN: 978-0-7356-4791-6

1 2 3 4 5 6 7 8 9 M 6 5 4 3 2 1

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support
related to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us
what you think of this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/
IntellectualProperty/Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies.
All other marks are property of their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people,
places, and events depicted herein are fictitious. No association with any real company, organization,
product, domain name, email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided
without any express, statutory, or implied warranties. Neither the authors, O’Reilly Media, Inc., Microsoft
Corporation, nor its resellers, or distributors will be held liable for any damages caused or alleged to
be caused either directly or indirectly by this book.

Acquisitions and Developmental Editor: Russell Jones
Production Editor: Holly Bauer
Editorial Production: Octal Publishing, Inc.
Technical Reviewer: Lars Dekenno
Copyeditor: Bob Russell
Indexer: Julie Hawks
Cover Design: Twist Creative • Seattle
Cover Composition: Karen Montgomery
Illustrator: Robert Romano
Author Photo: FH CAMPUS 02/Peter Melbinger

 iii

Contents at a Glance

Part I Internet Information Services (IIS)
1 Setting Up the Work Environment . 3
2 IIS Architecture . 19
3 Configuring IIS . 41
4 Configuring PHP . 61
5 Security . 85
6 Caching . 117
7 URL Rewrite . 137
8 Error Messages and Error Search . 185

Part II SQL Server
9 Setting Up SQL Server . 201
10 Databases and Tables . 225
11 Working with SQL Server . 253
12 PHP and SQL Server . 279
13 Advanced Database Functions . 319
14 Users and Permissions . 343

Part III Active Directory
15 Setting Up Active Directory . 365
16 LDAP Basics . 389
17 Searching in Active Directory . 413
18 Writing in Active Directory . 451

iv Contents at a Glance

Part IV Exchange Server
19 Setting Up Exchange Server . 479
20 Exchange Web Services . 491
21 Email and Exchange Web Services Basics 509
22 Contacts and Search . 539
23 Calendar and Impersonation . 559

 v

Table of Contents
Introduction .xxi

Part I Internet Information Services (IIS)
1 Setting Up the Work Environment . 3

Setting Up IIS . 4
Installing IIS by Using the Server Manager . 4
Installing from the Command Line . 6

Setting Up PHP . 6
Installing PHP . 6
Available PHP Modules . 8

Configuring PHP in IIS . 8
Configuring PHP by Using the IIS Manager . 9
Configuring PHP from the Command Line . 11

Installing by Using the Web Platform Installer . 12
Setting Up the Web PI . 12
Setting Up IIS and PHP . 13
Checking Your PHP Installation . 14

Backing Up Your Configuration . 14
A First Sample Application . 15
Remote Access . 16
Summary . 18

2 IIS Architecture . 19
Sites . 19

Setting Up a New Site . 20
Adding Additional Bindings . 24
Managing the Website . 26

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you . To participate in a brief online survey, please visit:

microsoft .com/learning/booksurvey

vi Table of Contents

Applications . 27
Paths and Folders . 27
Setting Up a New Application . 28
Changing Application Settings . 29

Virtual Directories . 30
Setting Up a Virtual Directory by Using IIS Manager 30
Setting Up a Virtual Directory from the Command Line 31

HTTP Request Flow . 31
Request Flow Overview . 32
Application Process Flow . 33

Modules . 34
Application Pools . 35

Setting Up Application Pools by Using IIS Manager 35
Setting Up Application Pools from the Command Line 35
Application Pool Identity . 36

FastCGI . 38
FastCGI vs . CGI . 38
FastCGI vs . ISAPI . 40

Summary . 40

3 Configuring IIS . 41
Configuration Files . 42

Global Configuration . 42
Distributed Configuration . 42

Configuration Structure . 43
Sections and Section Groups . 44
Elements and Configuration Listings . 44
Moving and Binding Sections . 45
The Configuration Editor . 45

Schema and configSections . 47
Configuring Paths by Using location . 47

Configuring by Using IIS Manager . 48
Configuring from the Command Line . 49

Sites, Applications, and Directories . 49
Sites . 50
Applications . 52
Virtual Directories . 53

 Table of Contents vii

Locking the Configuration . 53
Locking with configSections . 54
Locking and Unlocking with location . 54
Specifying Rights for Individual Settings . 56
Locking and Unlocking by Using IIS Manager . 58

Summary . 60

4 Configuring PHP . 61
Installing PHP Manager . 61
Configuring PHP . 63

Recognizing Configuration Changes . 63
Path and Host-Dependent Configuration in php .ini 65
Configuring by Using .user .ini . 66

Specifying the Default Document . 69
Specifying the Default Document by Using the IIS Manager 69
Specifying from the Command Line . 70
Defining Directly in the Configuration . 71

Request Limits . 71
Configuring by Using the IIS Manager . 72
Configuring from the Command Line . 73
Configuring Directly in the Configuration File 73

Time Limits for Request Processing . 74
PHP Limits . 74
FastCGI Limits . 74

Session Storage and Temporary Files . 75
Setting Up PHP Syntax Highlighting . 76

Configuring Syntax Highlighting by Using the IIS Manager 76
Configuring from the Command Line . 78

Setting Up Different PHP Versions . 78
Installing a New PHP Version . 78
Configuring by Using the PHP Manager . 79
Configuring the Handler Assignment . 79
Configuring the FastCGI Application . 80
Testing . 81

Setting Up Different PHP Configurations . 83
Summary . 83

viii Table of Contents

5 Security . 85
Structuring the Application . 86

Root Folder or Virtual Directory . 87
Specifying the Executable Files . 89

PHP Configuration . 90
User Authentication . 92

Installing the Required Role Services . 93
Setting Up User Authentication by Using IIS Manager 93
Setting Up User Authentication from the Command Line 94
Windows Authentication and Host Names . 94
Retrieving the Authentication in PHP . 95

Identity and Access Rights . 96
Identity of the Application Pool . 96
Path Logon Information . 97
Specifying the Identity of the Anonymous User 97
Securing the PHP Application . 98

Authorization Rules . 98
Installing the Required Role Services . 99
Defining the Rules by Using IIS Manager . 99
Defining the Rules from the Command Line . 100

Request Filter . 101
Defining General Settings . 102
Filtering File Name Extensions . 106
Filtering with Rules . 107

Encrypted Connections (HTTPS) . 109
Creating Keys and Certificates . 109
Setting up an Encrypted Connection . 110
Authentication with Client Certificates . 114

Summary . 115

6 Caching . 117
Caching in the Web . 117

Caching for a Limited Time . 118
Mutable Contents . 120
Caching Conditions . 122
Specifying the Headers with IIS . 123

 Table of Contents ix

Output Cache . 126
Configuring by Using IIS Manager . 126
Configuring from the Command Line . 128
Configuration Elements . 128

The WinCache Extension for PHP . 129
Setting Up the WinCache Extension . 130
The PHP Opcode and File Cache . 132
Session Handler . 133
User Cache . 134

Summary . 136

7 URL Rewrite . 137
Setting Up URL Rewrite . 137

Installing URL Rewrite Manually . 138
Installing URL Rewrite by Using the Web PI . 138

Predefined Variables . 138
Common Gateway Interface Variables . 139
IIS and PHP Variables . 140
Merging PHP Script . 142

Evaluating Rules . 143
Action Types . 144
Hierarchy and URL Paths . 144
Time of the Evaluation . 145

Setting Up Rules . 146
Setting Up Redirect Rules . 146
Setting Up Rewrite Rules . 149
Additional Action Types . 151
Setting Up Rules with Templates . 152

Rewrite Maps . 154
Creating a Rewrite Map . 154
Creating an Associated Rule . 156

Rules in Detail . 156
Patterns . 156
Conditions . 160
Actions . 161
Setting Server Variables and HTTP Headers . 162
Outbound Rules . 164
Tag Filters . 165
Creating an Outbound Rule . 166

x Table of Contents

XML Configuration . 167
URL Rewrite . 167
Allowed Server Variables . 168
Rules . 168
Conditions . 169
Server Variables and HTTP Headers . 170
Actions . 170
Rewrite Maps . 171
Outbound Rules . 172
Single Outbound Rule . 174

Examples . 175
User-Friendly URLs . 175
Canonical Host Name . 176
Multilingual Pages . 176
Canonical User Directories . 177
Preventing the Embedding of Graphics on Foreign Sites 179
Redirecting to HTTPS . 180
Adding a Notice to Each Page . 180

Converting from Apache mod_rewrite . 181
Summary . 183

8 Error Messages and Error Search . 185
Detailed Error Messages . 185

Disabling Friendly Error Messages in Internet Explorer 186
Enabling Detailed Error Messages . 186
PHP Error Output . 188

Tracing . 189
Installing the Tracing Role Service . 190
Enabling a Trace . 190
Configuring Logging Rules . 191
Trace Entries . 192

PHP Error Messages . 194
Outputting to STDERR . 194
PHP Messages in the Trace . 194
FastCGI and STDERR . 195

Determining the Causes of Server Problems . 196
The Server Can’t Be Reached . 196
PHP Scripts are not Executing . 197

Summary . 198

 Table of Contents xi

Part II SQL Server
9 Setting Up SQL Server . 201

Installing SQL Server . 202
Configuring SQL Server . 202
Installing SQL Server Express . 206
Installing the SQL Server PHP Extension . 209

SQL Server Tools . 211
SQL Server Management Studio . 211
The sqlcmd Command-Line Tool . 213
The T-SQL Batch . 213

Configuring for Remote Access . 214
Enabling the TCP/IP Protocol . 214
Sharing Access in the Windows Firewall . 215

Installing the Sample Database . 217
Migrating MySQL Databases . 219

Installing the Migration Assistant . 219
Migrating a MySQL Database . 221

Summary . 223

10 Databases and Tables . 225
Databases . 225

System Databases . 225
Database Structure . 226
Setting Up Databases . 227
Deleting a Database . 230
Creating a Snapshot . 231

Data Types . 234
Numeric Data Types . 234
Strings and Binary Data . 235
Dates and Times . 237
Other Data Types . 237

Schemas and Object Names . 238
Object Names . 238
Creating Schemas . 238
Deleting Schemas . 239

Tables . 239
Creating Tables . 239
Deleting Tables . 243

xii Table of Contents

Keys and Indexes . 243
Primary Keys . 243
Foreign Keys . 246
Indexes . 249

Summary . 252

11 Working with SQL Server . 253
Querying Data (SELECT) . 253

Simple SELECT Expressions . 254
Constraining Queries by Using WHERE . 255
Grouping Query Data (GROUP .BY, .HAVING) . 255
Sorting (ORDER .BY) . 256
Queries with Multiple Tables . 257
Common Table Expressions (WITH) . 261
Paging Through Data . 263

Manipulating Data . 266
The INSERT Command . 266
The UPDATE Command . 268
The DELETE Command . 271

Querying Metadata . 274
Listing Databases . 274
Listing Tables . 275
Retrieving Table Information . 276
Listing the Columns of a Table . 277
Listing Constraints . 277
Listing Keys and Indexes . 278

Summary . 278

12 PHP and SQL Server . 279
Approach and Process . 279

Preparations . 279
The Sample Program . 280
An Overview of the Individual Steps . 282
Supporting Script . 285

Database Connections . 285
Server Names . 286
Authentication . 287
Connection Pooling . 289
More Connection Options . 290

 Table of Contents xiii

Database Queries . 291
Parameterizing Statements . 291
Retrieving Results . 297
Prepared Statements . 299

Data Types . 304
Converting from PHP to SQL Server . 304
Converting from SQL Server to PHP . 304
Streams . 306
PDO and SQL Server . 310
PDO Database Access Lifecycle . 310
Connecting to SQL Server . 311
Direct Queries and Prepared Statements . 311
Retrieving Results . 314
Data Types and Streams . 315

Summary . 317

13 Advanced Database Functions . 319
Full-Text Search . 319

Installing the Module . 320
Language Selection . 320
Creating the Catalog and the Index by Using SSMS 321
Creating the Catalog and the Index by Using T-SQL 322
Search with Full-Text Index . 323

Transactions . 326
T-SQL Transactions . 326
Transaction Isolation Levels . 327
PHP Transactions . 328
Transactions Using PHP Data Objects . 330

Stored Procedures . 331
Variables . 331
Defining Procedures . 332
Calling Procedures . 333
Output Parameters and Return Values . 333
Control Structures . 334
Calls from PHP . 336
Calling Stored Procedures from PDO . 337

Custom Functions . 338
Scalar Functions . 338
Table-Valued Functions . 339

xiv Table of Contents

Triggers . 340
Creating a Trigger . 340
Detailed Explanation . 341
Initiating the Trigger . 342

Summary . 342

14 Users and Permissions . 343
SQL Server Principals . 343

Server Principals . 343
Database Principals . 344

Creating SQL Server Principals . 346
Creating Logins . 346
Creating Users . 348
Creating Database Roles . 351

Objects and Permissions . 353
Permissions . 353
Managing Permissions by Using SSMS . 355
Managing Permissions by Using T-SQL . 356

Stored Procedures . 358
Security Through Permissions . 358
Execute as User . 360

Summary . 361

Part III Active Directory
15 Setting Up Active Directory . 365

Overview . 365
Domains . 366
Entries . 367

Installing Active Directory . 367
Preparation . 368
Installing the Role . 368
Installing the Domain Services . 370

First Steps . 372
Active Directory Domain Services . 372
Organizational Units . 373
Users . 375
Groups . 377

Setting Up Active Directory Certificate Services . 381

 Table of Contents xv

Working with Certificates . 384
Issuing a Certificate for Active Directory . 385
Exporting the Root Certificate . 386
Exporting Other Certificates . 387

Summary . 388

16 LDAP Basics . 389
LDAP Basics . 389

Hierarchical Structure . 390
Classes and Inheritance . 391
Protocol Elements . 391

Utilities . 392
LDP . 393
ADSI Edit . 395

Configuring the PHP LDAP Extension . 398
Activating the LDAP Extension . 398
Communication Process . 399
Supporting Script . 400
Establishing an Encrypted Connection . 401

Authenticating Users . 403
Querying Entries . 405

Sample Program: Searching for Domain Users 405
LDAP Filter . 407
Iterating Through Search Results . 410

Summary . 412

17 Searching in Active Directory . 413
The PHP LDAP Browser . 413

Main Program and User Interface . 413
Formatting an LDAP Entry . 417
Type Information and Search Definitions . 419
Conversion Functions . 421

The Directory Information Tree and Naming Contexts 421
Active Directory Schema . 422

Object Classes . 422
Attribute Classes . 426

Domain Objects . 431
General Attributes for Domain Objects . 431
Groups . 438
Organizational Units . 440

xvi Table of Contents

Concrete Search Examples . 442
Schema . 442
ANR . 444
Users . 445
Groups . 446

Summary . 450

18 Writing in Active Directory . 451
Preparation . 451

Access Rights . 451
Error Logging . 453
Supporting Scripts . 455

Writing Attributes . 458
Adding Attributes . 458
Deleting Attributes . 459
Changing Attributes . 461
Encoding and Character Sets . 462

Practical Examples for Changing Attributes . 463
Unlocking an Account . 463
Activating and Deactivating Accounts . 464
Group Memberships . 464
Forced Password Change . 465
Changing Passwords . 466

Writing Entries . 467
Adding New Entries . 467
Deleting Entries . 469
Moving Entries . 470

Practical Examples . 471
Creating a New Group . 472
Creating a New User . 472
Deleting a User or a Group . 474

Summary . 475

 Table of Contents xvii

Part IV Exchange Server
19 Setting Up Exchange Server . 479

Setting Up Required Services and Features . 479
General Requirements . 480
Configuring IIS . 480
Configuring Features . 481
Configuring Shared Ports . 481
Installing the Office System Converter . 482
Configuring DNS Entries . 482

Installing Exchange Server . 482
Configuration After the Installation . 484

Registering Exchange . 484
Configuring the Exchange Server Certificate . 485

Creating a Mailbox . 489
Summary . 490

20 Exchange Web Services . 491
Required PHP Extensions . 491
Autodiscover . 492

How Autodiscover Searches for Configuration Data 492
Configuration Data . 493
Retrieving Configuration Data . 495
Alternative Methods for URL Queries . 498

SOAP and WSDL . 499
WSDL Structure . 499
EWS, WSDL, and PHP . 500

SOAP Messages . 501
ExchangeSoapClient .Class . 502
Using the ExchangeSoapClient Class . 504

Information About the Following Chapters . 506
Shorter SOAP Messages . 506
Shorter PHP Listings . 506
Object-Oriented Alternative for Parameters . 507

Summary . 508

xviii Table of Contents

21 Email and Exchange Web Services Basics 509
Structure, IDs, and Views . 509

IDs of Labeled Folders . 510
Viewing Elements . 510
Selected Properties of Elements . 511
Names of Properties . 511

Finding Folders (FindFolder) . 513
Selected Properties . 513
Request . 513
Response . 514

Listing Messages (FindItem) . 516
Limiting the Results (Paging) . 516
Sorting . 517
PHP and Replacement Groups . 517
Request . 519
Response . 520

Viewing a Message (GetItem) . 522
Requesting the Exchange 2010 Mode Within a SOAP Header 523
Defining and Filtering the Message Content . 524

Requesting the Original MIME Content . 524
Request . 525
Response . 526
Example . 527
Email Attachments (GetAttachment) . 529

Sending a Message (CreateItem) . 531
SOAP Errors Caused by References and Accessors 531
Request . 533
Response . 536

Deleting Messages (DeleteItem) . 536
XML Messages . 537
PHP . 537

Summary . 538

22 Contacts and Search . 539
Properties of Contacts . 539

Standard Properties . 539
Name Properties . 541
Properties of Email Addresses . 542
Address Properties . 543

 Table of Contents xix

Changing a Contact (UpdateItem) . 543
Request . 544
Response . 547

Finding Certain Properties . 548
Expressions . 548
Preparation: Modifying the Schema . 550

Defining the Search in a Request . 552
Complete PHP Example . 552

Summary . 558

23 Calendar and Impersonation . 559
Calendar Entries . 559

Standard Properties . 560
Meetings . 561
Recurring Appointments . 561
Time and Time Zones . 562

Creating a Common Calendar Entry . 563
The Request Message . 563
The Response Message . 564
Created Entry . 564

Meetings . 566
Creating a Meeting . 566
Creating the Meeting Invitation . 570
Responding to a Meeting Invitation . 572
Canceling a Meeting . 577

Appointment Conflicts . 580
The Request Message . 580
The Response Message . 581

Searching the Calendar . 582
The Request Message . 582
The Response Message . 583
A Complete PHP Example . 583

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you . To participate in a brief online survey, please visit:

microsoft .com/learning/booksurvey

xx Table of Contents

Impersonation . 587
Granting Impersonation Rights . 587
Impersonation in EWS Operations . 588

Additional Steps . 590
Summary . 591

24 Example Scripts and Data . 593
The HTMLPage Class . 593
The HTML Template . 596
The DatabaseConnection Class . 597
Example Database: AdventureWorksLT2008 . 599

Index . 601

 xxi

Introduction
PHP has changed the world: no other language has influenced and spurred web develop-
ment so strongly. From simple home pages to social software and business applications
to the largest global websites, PHP has played a leading role for years. Simultaneously,
Microsoft and its Windows operating system has made computers available to all house-
holds. Along with Internet Information Services (IIS) for Windows Server, Microsoft SQL
Server, Microsoft Active Directory, and Microsoft Exchange Server, it has created a solid and
powerful platform for organizations and companies, as well. Microsoft recognizes the poten-
tial that lies in supporting PHP in its own products, and is now explicitly incorporating PHP
into its development strategy, thus promoting interoperability with the Windows platform.

Thanks to the recent efforts by the Windows PHP team, including Pierre Joye, Ruslan
Yakushev, and others, the combination of IIS and PHP is now faster, more stable, more secure,
and easier to manage than ever. These efforts—FastCGI, WinCache, PHP Manager, new driv-
ers for SQL Server, the integration with Microsoft’s Web Platform Installer (Web PI), as well
as development aids for Windows Azure, Virtual Earth, Webslices, Silverlight, and SQL Server
(just to name a few)—make PHP development on Windows an enjoyable and productive
experience.

Combined with the ever-improving interoperability of Microsoft’s products, PHP is ready
for just about every task in corporate environments. Whether you want to access Exchange
Server through its SOAP web services, manage users in Active Directory with Lightweight
Directory Access Protocol (LDAP), or use Windows credentials to provide seamless authenti-
cation of your users, PHP is up to the task.

In addition, Microsoft provides extensive developer documentation on its MSDN developer
network and on TechNet, which leaves few common questions unanswered. Also, several of
Microsoft’s core PHP developers share valuable insights, tips, and tricks on their blogs.

If, like me, you have mostly been using PHP with Apache and MySQL, you should be excited
about the functionality, stability, performance, and integrated security architecture of the
Microsoft platform. This book shows you how to run your PHP applications effectively and
securely with IIS and SQL Server, and how to access user data in Active Directory as well as
the calendar and email data in Exchange Server.

xxii Introduction

Who Should Read This Book
This book exists to introduce PHP developers to Microsoft’s web and database technolo-
gies. It is also especially useful for programmers developing applications that interface with
Microsoft Active Directory or Microsoft Exchange Server.

After reading this book, you will have a deep understanding of how PHP interacts with IIS so
that you can tweak your configuration for optimal security and performance. You will know
how to access SQL Server, which authentication model is best suited for your needs, how to
perform full-text searches, and how to interface with stored procedures. You will be able
to access Active Directory to manage users and groups, or use it for authentication purposes.
And finally, you will be able to use Exchange Web Services (EWS) to read and write emails,
organize meetings, and manage your calendar.

Assumptions
This book assumes that you already have some experience in developing PHP applications
and accessing relational database systems (for example, with Apache and MySQL). You should
also be familiar with basic web concepts, such as the HTTP request/response cycle, and be
familiar with the concepts of the relational database model, such as tables and rows, and
have dabbled in SQL. In addition, this book assumes that you have a basic understanding of
XML, because XML is used for configuration files and Exchange Server’s SOAP web services.

Although this book describes the necessary steps to set up IIS, SQL Server, Active Directory,
and Exchange Server, as well as the necessary steps to follow the given examples, it is not
by any means a comprehensive description of these products. Therefore, you should have a
minimal understanding of the purpose and function of these systems.

Who Should Not Read This Book
Not every book is aimed at every possible audience. If you have no prior experience with
PHP or database systems, you might have a hard time following the explanations. Also, if
you expect a complete introduction to Active Directory or Exchange Server, you might be
disappointed—there’s simply not enough room in a single book.

 Introduction xxiii

Organization of This Book
This book introduces you to programming IIS, SQL Server, Active Directory, and Exchange
Server. In each section, you will learn how to set up your development environment, the basic
architecture and inner workings of these systems, and how to implement common tasks in
PHP. Example configurations and listings illustrate each point and help you to improve your
understanding and achieve your goals. This book attempts to lower the entry barrier for
programming these systems as well as to thoroughly prepare you for further exploration of
Microsoft’s ecosystem.

This book is divided into four sections that roughly correspond to the technologies discussed.
Depending on your interest or prior knowledge, you can jump directly to any section. The
four sections are:

■ Part I, “Internet Information Services (IIS)” This part discusses how PHP can be in-
tegrated into IIS and how IIS processes a request. You will gain a solid understanding of
how to configure IIS and how it operates. This part is especially useful if you are switching
to IIS from another web server. The chapters in this part discuss how to secure your PHP
applications against attacks, how to use caching to dramatically increase the performance
of your application, and how you can use URL Rewrite to create user-friendly URLs.

■ Part II, “SQL Server” This part shows how to interface PHP programs with SQL Server,
or, to be more precise, SQL Server’s database engine. You will learn how to create data-
bases and tables and how to manage access rights. Because SQL Server uses a flavor of
SQL called Transact-SQL (T-SQL), this part describes the T-SQL syntax and commands.
Next you’ll dive into using the native PHP driver for SQL Server, using it for tasks that
range from reading the results of simple SQL SELECT statements to dealing with stored
procedures and converting data types between SQL Server and PHP. This part also
covers accessing SQL Server via PHP Data Objects (PDO), and the differences between
PDO and the native driver. You’ll also look at how to set up full-text search in the data-
base, which is a common requirement of web applications.

■ Part III, “Active Directory” After introducing the general concepts of Active Directory,
domains, and forests, this part explains the hierarchical data structure in detail, intro-
ducing important objects and attributes and visualizing them by way of a PHP LDAP
browser that you’ll develop as an example application. Other chapters in this part de-
scribe how you can search for and authenticate users and other principals by using
LDAP, and how you can modify user attributes, manage their group memberships,
create new users, and reset their passwords.

xxiv Introduction

■ Part IV, “Exchange Server” Accessing Exchange through its SOAP web service inter-
face is the focus of this part. Each chapter focuses on one aspect, such as sending and
reading email, searching for contacts in the address book, creating calendar entries, or
accepting and denying meeting invitations. In each chapter, you’ll also learn additional
options and interface methods. This part contains valuable tips and tricks on how to
coax PHP and Exchange to work together and helps you overcome the initial hurdles.

Conventions and Features in This Book
This book presents information using conventions designed to make the information readable
and easy to follow.

■ Each exercise consists of a series of tasks, presented as numbered steps (1, 2, and so on)
listing each action that you must take to complete the exercise.

■ Boxed elements with labels such as “Note” provide additional information or alternative
methods for completing a step successfully.

■ Text that you type (apart from code blocks) appears in bold type.

■ A plus sign (+) between two key names means that you must press those keys at the
same time. For example, “Press Alt+Tab” means that you hold down the Alt key while
you press the Tab key.

■ A vertical bar between two or more menu items (for example, File | Close) means that
you should select the first menu or menu item, and then the next, and so on.

System Requirements
You will need the following hardware and software to complete the practice exercises in this
book:

■ Either Windows 7 or Windows Server 2008 R2. For Exchange Server, you need the
64-bit version of Windows Server 2008 R2.

■ SQL Server 2008 R2 (Express Edition or higher), with SQL Server Management Studio
(Express Edition or higher).

■ Exchange Server 2010 (or 2010 SP1).

■ A computer that has a reasonably fast processor (2 GHz recommended); a 64-bit
processer for Exchange Server.

 Introduction xxv

■ 2 GB RAM for running IIS, SQL Server, and Active Directory in a development environ-
ment; another 4 GB RAM for Exchange Server.

■ 3.5 GB of available hard disk space.

■ An Internet connection to download software or chapter examples.

You will require Local Administrator rights for installation and configuration of the server
systems; for Active Directory, you will require Domain Administrator rights.

Code Samples
Most of the chapters in this book include exercises that let you interactively try out new
material learned in the main text. All sample projects, in both their pre-exercise and post-
exercise formats, can be downloaded from the following page:

http://go.microsoft.com/FWLink/?Linkid=229620

Follow the instructions to download the PHP_sample_code.zip file.

Installing the Code Samples
Follow these steps to install the code samples on your computer so that you can use them
with the exercises in this book.

 1. Unzip the PHP_sample_code.zip file that you downloaded from the book’s website
(name a specific directory along with directions to create it, if necessary).

 2. If prompted, review the displayed end-user license agreement. If you accept the terms,
select the accept option, and then click Next.

Note If the license agreement doesn’t appear, you can access it from the same webpage
from which you downloaded the PHP_sample_code.zip file.

xxvi Introduction

Using the Code Samples
The folder created by extracting the zip file contains two subfolders.

■ Listings This folder contains all of the listings sorted by chapter, as they appear in the
book. The listings are UTF-8 encoded, without a byte-order mark (BOM) at the begin-
ning. The filename suffix indicates the content:

● *.php PHP script or PHP code snippet

● *.sql T-SQL script

● *.xml IIS configuration or EWS SOAP message

■ EWS This folder contains the modified WSDL definition of Exchange Web Services
2010 SP1. The modifications are necessary for PHP and Exchange to work together and
are discussed in Chapters 19 to 23.

You should be able to use the provided examples as is, but sometimes you will need to adjust
the configuration for your own development environment. When the book creates and adds
to PHP files in a step-by-step fashion as part of an exercise (most notably the LDAP browser
in Chapter 17, “Searching in Active Directory”), the listings also contain PHP files that incor-
porate all the edits.

Note that PHP files are referenced by other scripts without the chapter and listing number
(just as they appear in the book). So you should either rename the files to be included or
change the include/require statement accordingly. Also, many of the examples require the
listings from Appendix A, “Example Scripts and Data,” to be in the include path: either include
this directory in the PHP include path or just copy the files into the directory, where the script
you would like to run resides.

Acknowledgments
To write a book, authors need a supportive and motivating environment. At O’Reilly Media,
I would like to thank my editor Russell Jones, along with Holly Bauer and Christie Rears, and
Dianne Russell at Octal Publishing for their great help and teamwork; Brigitte Possin and
Angela Walwick, for the skilled and seamless translation of the text from its original German
to English; Christian Wenz, for his knowledgeable technical editing; Lars Denneko and Daniel
Chapman, technical reviewers for the English translation; Manfred Steyer, for inciting me to
write this book; Agnes Krispel, Julia Egger, and my colleagues at FH CAMPUS 02 for providing
a comfortable and inspiring working environment; the teachers and mentors who have ac-
companied me on my journey; my long-time friends Doris “Donnerdackel” Leipold and Anton
Huber; and my family, without whose support I can’t imagine living my life. Dad, this one is
for you.

Graz, September 2011

—Arno Hollosi

 Introduction xxvii

Errata & Book Support
We’ve made every effort to ensure the accuracy of this book and its companion content.
Any errors that have been reported since this book was published are listed on our Microsoft
Press site at oreilly.com:

http://go.microsoft.com/FWLink/?Linkid=229618

If you find an error that is not already listed, you can report it to us through the same page.

If you need additional support, email Microsoft Press Book Support at mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through the addresses
above.

We Want to Hear from You
At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable
asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in advance
for your input!

Stay in Touch
Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress.

Contacting the Author
PHP, Windows, and accompanying technologies are constantly being developed and im-
proved. If you have ideas or remarks that you would like to share, or have had noteworthy
experiences while programming Microsoft technologies with PHP, I would like to hear from
you. Criticism is welcome, as well.

You can reach me by email at ahollosi@xmp.net. Additional information can be found on my
website at http://xmp.net/php/.

 1

Part I

Internet Information Services (IIS)
In this Part:
Chapter 1 Setting up the Work Environment . 3
Chapter 2 IIS Architecture . 19
Chapter 3 Configuring IIS . 41
Chapter 4 Configuring PHP . 61
Chapter 5 Security . 85
Chapter 6 Caching . 117
Chapter 7 URL Rewrite . 137
Chapter 8 Error Messages and Error Search . 185

 3

Chapter 1

Setting Up the Work Environment

This chapter describes how to set up your work environment, which consists of PHP and the
Internet Information Services (IIS) web server. Initially, you will install only the essential com-
ponents to keep resource use to a minimum and limit attack surfaces.

The examples in this book use the versions of the individual components that were current at
the time of printing (October, 2011); these include PHP 5.3.8 and IIS 7 (version 7.5). The oper-
ating systems (OS) are Windows Server 2008 R2 SP1 and Windows 7 Ultimate SP1. The
descriptions should (in slightly modified form) also work for other Windows OS versions.

IIS 6, although still widely used, is not covered in this book. The differences between IIS 6
and IIS 7 are significant. IIS 7 provides many new features that are especially pertinent to PHP
programmers—and these features are not available in IIS 6. Furthermore, the configuration
has been changed radically, so descriptions that apply to IIS 7 cannot be applied to IIS 6.

The following sections first describe the process to set up IIS 7, then PHP, and then the instal-
lation of PHP on IIS. You’ll cover the installation with the help of the Windows Management
Tools as well as how to set it up by using the command line. The latter is especially interest-
ing for advanced users. Finally, you’ll see how to perform the installation via the Microsoft
Web Platform Installer, which automates many of the manual configuration steps.

In this chapter:
Setting Up IIS . 4
Setting Up PHP . 6
Configuring PHP in IIS . 8
Installing by Using the Web Platform Installer . 12
Backing Up Your Configuration . 14
A First Sample Application . 15
Remote Access . 16
Summary . 18

4 Part I Internet Information Services (IIS)

Setting Up IIS
The current version of IIS has a modular design that ensures a fine granularity of selectable
features that support a wide variety of usage scenarios. You only need to install the mod-
ules required for your particular usage scenario; thus, can use these features to customize IIS
according to your requirements to save system resources. Furthermore, a server configured
in this fashion provides a smaller attack surface, and therefore, improved security against
attacks from the Internet.

You can install IIS in several different ways. The following sections explore the installation
procedure using both Server Manager and via the command prompt. You can also install IIS
via the command prompt on the Windows Server 2008 R2 Core edition.

The installation described here adds only the Common Gateway Interface (CGI) Role Service,
which is required to run PHP with IIS. You can install other role services if you need them.
Later chapters will indicate when you need to install additional features.

Installing IIS by Using the Server Manager
If you are using the Server Manager for installation, perform the following steps, which will
start a wizard that takes you through the individual IIS installation steps.

 1. Start the Server Manager by clicking the Start menu, and then clicking All Programs |
Administrative Tools | Server Manager.

 2. Select Roles | Add Roles.

The Add Roles Wizard opens. Confirm the Before You Begin page by clicking Next.

 3. On the Server Roles page, choose Web Server (IIS), and then click Next.

 4. Click Next to confirm the Web Server (IIS) page.

 5. On the Select Role Services page, select the Web Server (IIS) option. In the Application
Development section, select the CGI check box (see Figure 1-1), and then click Next.

 Chapter 1 Setting Up the Work Environment 5

FIgURE 1-1 Adding the CGI role service to IIS.

 6. Click Install to confirm your choices and begin the installation.

 7. After the installation completes, click Close to complete the wizard.

You have now successfully installed IIS. You don’t need to restart Windows. You can check
whether the installation of IIS was successful by starting a web browser and opening the
website http://localhost/. The default website with the welcome text will be displayed.

6 Part I Internet Information Services (IIS)

Installing from the Command Line
To install IIS from the command line, you need the pkgmgr.exe tool, which is a new command-
line tool that ships with Windows Server 2008 for managing optional Windows features. It
replaces the older sysocmgr.exe tool.

Important You need administrator rights to perform this procedure. By default under Windows
Server 2008, only the integrated administrator account has these rights. Other user accounts do
not—even if they belong to the administrator group.

 1. Open a command prompt window with administrator rights.

You can find the command prompt in your Start menu by clicking All Programs |
Accessories | Command Prompt, or you can launch it via the Start menu by typing
cmd in the Search Programs And Files text field.

 2. With the command prompt open, enter the following command to install the IIS Server
Role and the CGI Role Service:

pkgmgr /iu:IIS-WebServerRole;IIS-CGI

 3. Ensure that the installation completed without errors by entering:

echo %errorlevel%

You have now successfully installed IIS via the command prompt. You can check whether
the installation of IIS was successful by starting a web browser and opening the website
http://localhost/. You’ll see the IIS default website containing some welcome text.

Setting Up PHP
After you have successfully installed IIS, you can install PHP and configure it for use with IIS.
Again, you’ll see how to configure PHP via the IIS Manager application as well as from the
command line. Only experienced users should use the command-line version; typically you’d
use it when there’s no graphic interface (such as under Windows Server 2008 R2 Core edi-
tion) or when you want to automate the installation with a script.

Installing PHP
 1. In Internet Explorer or another browser, open the website http://windows.php.net/

download/.

 2. Download the current PHP version 5.3.x (as of this book’s printing, the latest version
is 5.3.8) as a zip file. Choose the zip file from the VC9 x86 Non Thread Safe download
section.

 Chapter 1 Setting Up the Work Environment 7

 3. Create a C:\PHP folder, and then extract the zip file to that folder.

You can actually unzip the files anywhere you like, but this book uses the folder
C:\PHP, so following the examples will be easiest if your location folder matches this.

 4. Copy the file C:\PHP\php.ini-development to C:\PHP\php.ini.

 5. Open the file C:\PHP\php.ini with a text editor such as NotePad.

 6. Look for the line that configures the date.timezone, and set the value to your local time
zone, for example: date.timezone = “America/Los_Angeles”.

 7. Set the option cgi.force_redirect = 0.

Note You also set the option fastcgi.impersonate=1, but for now you can skip this op-
tion. It controls which account IIS uses to execute PHP code. You’ll see more details later in
Chapter 5, “Security,” in the section “Identity and Access Rights.”

 8. To check whether your installation was successful, open a command prompt window,
browse to the folder C:\PHP, and then run the command php –c C:\PHP –info. PHP
will list all its settings and configuration data, as shown in Figure 1-2.

FIgURE 1-2 Output following the successful installation of PHP.

Important If you receive an error message about an invalid side-by-side configuration, your
system is missing the Visual C++ runtime component libraries that correspond to the PHP ver-
sion. If that happens, download the Microsoft Visual C++ 2008 SP1 Redistributable Package (x86)
from MSDN (you can find a link in the left bar on the PHP download page), and then install it on
your system.

8 Part I Internet Information Services (IIS)

Available PHP Modules
Your PHP installation is now complete. The precompiled PHP installation files provided on
http://windows.php.net/ contain all the default PHP modules as well as some optional exten-
sions. After installation, you can check the list of compiled modules by typing the command
php –m at the command prompt in your C:\PHP folder.

You’ll find additional modules that can be dynamically loaded when you launch PHP in the
folder C:\PHP\ext. To activate these modules, you must configure PHP to load and activate
them in the php.ini file.

Note This book alerts you whenever you need to configure any of the dynamic modules to
follow the examples.

Configuring PHP in IIS
Now that PHP is installed on your computer, you need to configure IIS to use PHP to pro-
cess requested PHP pages. You configure PHP as a handler in IIS. Because of the modular
structure of IIS, you can specify different programs (handlers) to process different types of
content. The basic IIS installation sets up three handlers: the specific handlers for the HTTP
methods, OPTIONS and TRACE, as well as the StaticFile handler, whose only task is to return
an existing requested local file without changing it.

Note Handlers are only a link in the IIS chain of commands for processing an incoming
HTTP request. You will find a more detailed illustration of the complete chain in Chapter 2,
“IIS Architecture.”

By default, IIS simply uses the StaticFile handler to return requested files that have a .php
extension. However, when you configure PHP as a handler, files with the extension .php are
no longer delivered directly and unmodified, but are executed by the PHP Interpreter, and
the result is sent back to the browser.

For now you’ll perform only the minimal configuration required to run PHP programs.
Chapter 3, “Configuring IIS,” contains a more detailed description of other important con-
figurations, particularly with regard to performance and security.

 Chapter 1 Setting Up the Work Environment 9

Configuring PHP by Using the IIS Manager
To configure PHP by using the IIS Manager, perform the following procedure:

 1. Start the IIS Manager.

You can do this via the Server Manager application by clicking Server Manager | Roles |
Web Server (IIS) | Internet Information Services (IIS) Manager, or via the Windows Start
menu by typing inetmgr in the Search Program And Files text box.

 2. On the server level, open the Handler Mappings item, as shown in Figure 1-3.

FIgURE 1-3 Selecting the handler mappings in the IIS Manager.

 3. In the right column, select the action Add Module Mapping.

 4. Set the values to those shown in Figure 1-4.

The request path should include all files with the PHP extension (*.php). Select
FastCgiModule for the module, and php-cgi.exe for the executable file. You can choose
any name you like.

10 Part I Internet Information Services (IIS)

FIgURE 1-4 Module assignment of PHP in IIS.

 5. Click the Request Restrictions button.

 6. On the Mapping tab, select the Invoke Handler Only If Request Is Mapped To check
box, and then select the File option.

 7. On the Verbs tab, you can optionally set restrictions for the HTTP assignment methods
(for example, restrict to the methods HEAD, GET, and POST).

 8. Click OK to close the Request Restrictions dialog box.

 9. Click OK to confirm your choices.

 10. Click Yes to confirm the module mapping.

This enables IIS to run PHP as a FastCGI application.

 11. In the web server’s root folder (C:\inetpub\wwwroot\), create the file phpinfo.php with
the following content:

<?php phpinfo(); ?>

 12. Start a web browser, and then browse to the address http://localhost/phpinfo.php.

The response contains the phpinfo() information with the current PHP settings, as
shown in Figure 1-5.

Important If, instead of getting the phpinfo() page, you receive a server error “500—
Internal server error,” perform an error search as described in Chapter 8, “Error Messages
and Error Search.”

 Chapter 1 Setting Up the Work Environment 11

FIgURE 1-5 The phpinfo() output after successfully setting up PHP.

Configuring PHP from the Command Line
To configure IIS from the command line, you use the new IIS 7 command-line program
appcmd, which is located in the C:\Windows\System32\inetsrv folder. By default, this folder
is not in the Windows search path, so to launch the program, you must either browse to the
folder and then open a command prompt, or enter the complete program path at the com-
mand prompt, or add the path to the PATH environment variable for your Windows installa-
tion. Here’s the procedure to configure PHP from the command line:

 1. Open a command prompt window with administrator rights.

 2. Configure the FastCGI application pool by typing the following command:

appcmd set config /section:system.webServer/fastCGI /+[fullPath='C:\PHP\php-cgi.exe']

 3. To configure the handler assignment, run the following command:

appcmd set config /section:system.webServer/handlers /+[name='PHP_via_FastCGI',
modules='FastCgiModule',scriptProcessor='C:\PHP\php-cgi.exe',
verb='*',path='*.php',resourceType='File']

12 Part I Internet Information Services (IIS)

Important Due to space restrictions, the preceding command is shown on multiple
lines. However, when you type the command, you must be sure to enter the configuration
parameters on a single line.

 4. In the web server’s root folder (C:\inetpub\wwwroot\), create the file phpinfo.php with
the following content:

<?php phpinfo(); ?>

 5. Start a web browser, and then browse to the address http://localhost/phpinfo.php.

You should see the phpinfo() page with the current PHP settings.

Installing by Using the Web Platform Installer
A simple alternative to the previously described methods for setting up your PHP and IIS
work environment is to use the Microsoft Web Platform Installer (Web PI). Web PI bundles
many of the manual steps you’ve just seen into a fully automatic installation. By installing the
Windows Web App Gallery, Web PI also offers automatic installation of a number of other
supported applications, such as the blog software WordPress, or the content management
system Joomla!. Web PI is therefore perfectly suited for getting started with PHP under
Windows, quickly and easily.

The following section describes how to install on a Windows 7 Ultimate SP1 OS. However,
you can also use Web PI with Windows Vista, Windows XP SP2+, Windows Server 2003 SP1+,
and Windows Server 2008. The steps are similar and should be easy to follow on these other
systems.

Setting Up the Web PI
The Web PI is itself a program, so you need to install it first by performing the following
steps.

 1. Open the website http://www.microsoft.com/web/downloads/platform.aspx.

 2. Download the Web PI and save the installation file wpilauncher_3_10.exe locally.

The Web PI version used in this book is 3.0.

 3. Run the installation file wpilauncher_3_10.exe.

If you are not logged on as an administrator, confirm the User Account Control dialog
by clicking Yes, to permit the installation to execute.

 4. After a successful installation, you’ll see the start window of the Web PI.

 Chapter 1 Setting Up the Work Environment 13

Setting Up IIS and PHP
With the Web PI configured, you can now set up the web server by performing the following:

 1. Start the Web PI.

 2. Click Products at the top. Add IIS 7 Recommended Configuration, IIS: CGI, and PHP
Manager For IIS by clicking the respective Add buttons, as shown in Figure 1-6.

FIgURE 1-6 Selecting the web server options in the Web PI.

 3. Click the Install button.

 4. In the Web PI dialog box that appears, click the I Accept button.

The Web PI now starts to download and install all the selected (and required)
components—this process can take a few minutes.

 5. When the installation is complete, click the Finish button.

 6. Click the Exit button to close the Web PI.

 7. Start a web browser, and then open the webpage http://localhost/.

You should see the IIS welcome page.

14 Part I Internet Information Services (IIS)

Note Microsoft also provides a complete web development environment called WebMatrix.
This is a very nice tool that is quick and easy to deploy, but it has limited configuration options.
This is why we do not use WebMatrix for the examples in this book.

Checking Your PHP Installation
Just as with the other installation methods, it’s a good idea to ensure that your PHP installa-
tion was successful by performing the following procedure:

 1. In the web server’s root folder (C:\inetpub\wwwroot\), create a file called phpinfo.php
with the following content:

<?php phpinfo(); ?>

Note If you don’t have sufficient rights to create a file in the root web folder, open
Windows Explorer, select the folder C:\inetpub\wwwroot, and then from the context
menu, select Properties | Security | Edit. In the ensuing dialog box, you can set the
permissions appropriately for your user account.

 2. Start a web browser, and then browse to the address http://localhost/phpinfo.php. The
resulting webpage displays the phpinfo() information with the current PHP settings.

Backing Up Your Configuration
After successfully installing IIS and PHP, you should definitely back up the data of your server
configuration. IIS stores configuration data in the C:\Windows\System32\inetsrv\config folder,
in three files: applicationHost.config, administration.config, and redirection.config.

You can back up the entire folder manually, but alternatively, you can use the command line
appcmd tool to create a backup copy of all essential configuration files by typing appcmd
add backup "MyBackup".

This command creates a backup copy of the current configuration in the folder C:\Windows\
System32\inetsrv\backup\MyBackup.

Note In Windows 7, you need to run appcmd in a command prompt with administrator rights.
Select Start | All Programs | Accessories | Command Prompt, right-click it, and then from the con-
text menu, execute the command Run As Administrator.

You should create a backup copy of the current configuration after each modification, espe-
cially after you install new modules or components. By doing that, you can reset the configu-
ration back to a defined state, if necessary.

 Chapter 1 Setting Up the Work Environment 15

A First Sample Application
After completing the IIS and PHP configurations as described in the preceding sections,
you’re ready to begin writing and using PHP applications. Before getting into more advanced
configuration options in the next chapters, you can use the basic configuration you just com-
pleted to run your first sample application. This exercise serves to show that you can run and
use PHP features such as forms and sessions as expected in the basic configuration.

This example creates a simple PHP application that guesses a random number between 1 and
100. Figure 1-7 shows the start page of the PHP application, and you can see the program
code in Listing 1-1. When the session first starts, if no random number is set, the application
generates one, and saves it in the session variable $_SESSION['number']. When a user enters
a number (the variable $_POST['guessed']), the program compares it to the stored number to
be guessed and display and appropriate message. The game ends when the user guesses the
correct number. The program then calls the function startGame() to start a new game.

LISTINg 1-1 A PHP example application to guess a number between 1 and 100.

<?php session_start(); ?>
<html>
<head><title>Guessing Numbers</title></head>
<body>
<?php
/* Generate random number and return help text */
function startGame() {
 $_SESSION['number'] = rand(1, 100);
 echo "<p>Can you guess the number? It's between 1 and 100.</p>";
}

/* First Call? -> Start game */
if (!isset($_SESSION['number'])) {
 startGame();
}
/* Guess? */
elseif (isset($_POST['guessed']) && is_numeric($_POST['guessed'])) {
 if ($_SESSION['number'] == $_POST['guessed']) {
 echo "<p>Great! You guessed the correct number.</p>",
 "<p>Would you like to play again?</p>";
 startGame();
 } elseif ($_SESSION['number'] < $_POST['guessed']) {
 echo "<p>Sorry, you're wrong! The number is smaller.
",
 "Try again.</p>";
 } else {
 echo "<p>Sorry, you're wrong! The number is larger.
",
 "Try again.</p>";
 }
}

16 Part I Internet Information Services (IIS)

/* Invalid or missing entry */
else {
 echo "<p>Please enter a number.",
 "The number you are trying to guess is between 1 and 100.</p>";
}
?>
<form action="" method="post">
 <p>Number: <input name="guessed" /></p>
 <p><input type="submit" value="Guess number"></p>
</form>
</body>
</html>

FIgURE 1-7 The start page of the PHP sample application: guessing a number between 1 and 100.

Remote Access
By default, both Windows Server 2008 R2 and Windows 7 have an enabled Windows Firewall.
Windows Firewall performs an important function, which is to protect and shield your com-
puter from unwanted access: it blocks access by outside connections to services running on
your computer or permits it, according to defined rules. For example, you might want to
allow external users to connect to IIS—or you might want to prohibit such access. Either way,
you specify such settings directly through Windows Firewall. While remote access might be a
requirement when you deploy a program, you probably don’t want to allow remote connec-
tions to your personal work environment.

Windows Firewall provides a set of predefined rules for IIS. You can control remote access
(these steps apply to both Windows 7 and Windows Server 2008 R2) by using the following
procedure:

 1. Open the Windows Firewall settings by clicking Start | Control Panel | System And
Security, and then select Windows Firewall | Allow A Program Or Feature Through
Windows Firewall.

 Chapter 1 Setting Up the Work Environment 17

 2. If the Change Settings button is enabled, click it; if it is not enabled, you’ll need to get
permission to change the settings.

 3. To make IIS accessible or inaccessible from outside connections, enable or disable the
World Wide Web Services (HTTP) option, as shown in Figure 1-8.

When allowing remote access, you must also select whether you want to allow only
computers belonging to the same domain, or allow access only via a private network,
or allow general access (the Public column). (For this setting to work, your networks
must be assigned to the appropriate profile.)

FIgURE 1-8 Enabling remote access to IIS under Windows 7.

 4. Confirm your changes by clicking OK.

18 Part I Internet Information Services (IIS)

Summary
After setting up your work environment, you can take your first steps with PHP and IIS. The
installation methods described in this chapter only set up the basic default components. IIS
supports a large number of additional modules and functions, some of which you’ll cover in
subsequent chapters.

Of the three ways to set up PHP and IIS, using the Web PI is the simplest because it largely
automates the process. Web PI is particularly well suited, for example, for setting up a quick
default development environment so that you can get started easily. The other two setup
options require more manual work, but support finer granularity and control over the
installation.

Before discussing extended configuration options and additional modules, Chapter 2 pro-
vides an overview of IIS architecture and walks you through how an HTTP request executes
internally.

 19

Chapter 2

IIS Architecture

With the release of Internet Information Services (IIS) 7, Microsoft has improved the modu-
larization of IIS architecture and improved security in many areas. If you are switching from
other web servers, it’s important to get an overview of how IIS processes a request, and how
it assigns the request contents.

Just like other web servers, you can run several websites on the same server by using a single
IIS instance. IIS uses three building blocks that on one hand simplify maintenance and opera-
tion, and on the other, support a tiered and granular configuration that enhances server
security significantly. These three building blocks are Site, Application, and Virtual Directory.
The description of these building blocks in the following sections cover the complete life
cycle execution of an HTTP request, application pools, and FastCGI binding. Together, these
should give you a solid overview of how IIS works, which will help you to plan and develop
your PHP applications for IIS.

Sites
In IIS 7, a site is an area of the web server that has its own applications and virtual directories
as well as its own bindings. Sites let you run several individual websites, which, for example,
can be bound to different domain names, IP addresses, or ports by using a single IIS instance.
Therefore, sites permit “virtual hosting” of websites.

In this chapter:
Sites . 19
Applications . 27
Virtual Directories . 30
HTTP Request Flow . 31
Modules . 34
Application Pools . 35
FastCGI . 38
Summary . 40

20 Part I Internet Information Services (IIS)

Note For Apache Administrators: Sites are comparable to the <VirtualHost> configuration
directive, but IIS goes one step further—even the basic properties of the web server can be
changed from site to site (for example, the available modules). You can find more details about
IIS configuration in Chapter 3, “Configuring IIS.”

Setting Up a New Site
You can set up sites by using the IIS Manager application or from the command line by using
the appcmd tool.

Setting Up a Site by Using IIS Manager
To set up a new site in your configured work environment, perform the following steps:

 1. Open IIS Manager.

 2. In the Connections pane (on the left), select Sites, and then in the Actions pane (on
the right), click Add Web Site.

The Add Web Site dialog box opens, as shown in Figure 2-1.

FIgURE 2-1 The Add Web Site dialog box with the values entered.

 Chapter 2 IIS Architecture 21

 3. In the Site Name text box, enter the name of the site that you want to create.

The name is not identical to the site’s domain name, and you can name the site what-
ever you like; however, you should choose a meaningful name to make it easily recog-
nizable for administration purposes later on.

 4. Click the Connect As button.

In the dialog box that opens, you can configure the user account that the site will use
to access the files. You can find a detailed description of the path logon information in
Chapter 5, “Security.” If you deviate from the default setting—for example, by setting a
special user account—it is recommended that you use the Test Settings button to check
whether the specified user has access to the root folder.

 5. In the Physical Path text box, enter the path of the folder that you want to use for
the site.

This folder is the root folder for the site. In the example, we’re using C:\inetpub\
phpdemosite as the root folder.

 6. Enter the data for the binding.

If you are setting up a site that should be accessible via HTTP on the default port 80,
select http in the Type drop-down list, and then enter 80 in the Port text box. If your
web server doesn’t have several IP addresses, or if you don’t want to bind the site to a
specific IP address, then leave the IP address box set to the value All Unassigned.

 7. In the Host Name text box, enter the domain name of the site. You can also leave it
empty. This site then takes requests for all host names. You must ensure that for any
given Type, IP address, and Port binding, no more than one site is defined without a
host name (default site).

 8. Select the Start Web Site Immediately check box, and then click OK to exit.

Your site has now been set up successfully. Figure 2-2 illustrates that you can now find the
new site listed by going to the Connections pane, and then clicking Server Name | Sites. Here,
you will find some brief information about the most important binding data, the root folder,
and the state of the individual sites on the web server.

22 Part I Internet Information Services (IIS)

FIgURE 2-2 The list of the sites with information about state, binding, and path.

Setting Up a Site from the Command Line
You can use the command appcmd to set up a new site. This command requires parameters
for the site name, the bindings, and the physical path if the root application of the site should
be generated automatically. It is recommended that you create the root application at the
same time.

The binding can be specified two ways:

■ Similar to a URL, using the syntax protocol://domain name:port number (for example,
http://www.phpdemo.site:80)

■ As binding information, using the syntax protocol/IP address:Port number:domain name,
(for example, http/*:80:www.phpdemo.site)

To set up the PHP Demo Site, as in the section “Setting up a Site by Using IIS Manager,” enter
the following command:

appcmd add site /name:"PHP Demo Site" /bindings:http/*:80:www.phpdemo.site
 /physicalPath:"C:\inetpub\phpdemosite"

Note Unlike the IIS Manager setup method, setting up a site via the command line doesn’t
automatically generate its own application pool. You can find information on how to create an
application pool and assign it to the site in the section “Application Pools,” later in this chapter.

 Chapter 2 IIS Architecture 23

Testing Your New Site
Before you create a connection to your new site, you need to ensure that the domain name
you have been using points correctly from your work environment to the web server. To do
this, open the file C:\Windows\System32\drivers\etc\hosts in a text editor, and then enter the
corresponding assignment. For example, if you used www.phpdemo.site as the domain name
and are accessing the site from your local web server, you would enter the following, and
then save the file:

127.0.0.1 www.phpdemo.site

Caution If you are already calling the site http://www.phpdemo.site/, you will receive an HTTP
error 403.14 – Forbidden. This happens because no data exists in the specified root folder, and
the site does not allow a folder list in the default configuration. Chapter 4, “Configuring PHP,”
provides more information about configuring the default document and permitting folder lists.

There are two ways to test your new site:

■ To test HTML and graphics and site availability, copy the files iisstart.html and welcome
.png from the folder C:\inetpub\wwwroot into the root folder (C:\inetpub\phpdemosite)
of your new site. Then, open the site http://www.phpdemo.site/ in a browser. You
should see the IIS welcome page displayed.

■ To test PHP, create the file welcome.php in the root folder (C:\inetpub\phpdemosite) of
your site by using the code shown in Listing 2-1.

LISTINg 2-1 The code for welcome.php.

<html>
<head><title>Welcome</title></head>
<body>
<h1>Welcome!</h1>
You are at:

<?php
 echo “Server: $_SERVER[SERVER_NAME]”;
 echo “Port: $_SERVER[SERVER_PORT]”;
 echo “Adresse: $_SERVER[LOCAL_ADDR]”;
 echo “Protokoll: $_SERVER[SERVER_PROTOCOL]”;
 echo “HTTPS: $_SERVER[HTTPS]”;
?>

</body>
</html>

Browse to the http://www.phpdemo.site/welcome.php. Your output should look similar to that
shown in Figure 2-3.

24 Part I Internet Information Services (IIS)

Note In IIS, you obtain the IP address of the server via the predefined PHP variable
$_SERVER[‘LOCAL_ADDR’], and not via the more common variable $_SERVER[‘SERVER_ADDR’].
Also, in IIS the variable $_SERVER[‘HTTPS’] is not empty when a request takes place via HTTP
instead of HTTPS; instead, it contains the value off.

FIgURE 2-3 Output of welcome.php.

Adding Additional Bindings
Your site can have any number of bindings. This makes sense, for example, when you want
to make a site accessible via the domain name www.example.com as well as under the name
example.com (no www). However, during site setup, you can specify only one binding.

Adding Bindings by Using IIS Manager
You can use the IIS Manager application to add additional bindings by performing the
following:

 1. Open IIS Manager.

 2. In the Connections pane, select the site that you want to configure.

 3. In the Actions pane, click Edit Site | Bindings.

The Site Bindings dialog box opens.

 4. Click the Add button to open the Add Site Binding dialog box.

 5. Enter the binding data according to your requirements; for example:

● Type: http

● IP address: All unassigned

● Port: 80

● Host name: phpdemo.site

 Chapter 2 IIS Architecture 25

 6. Click OK to confirm.

Now, when you click the Browse button, you can open a browser window with the
corresponding URL.

Caution If you are using new domain names, use the entry in your DNS server to ensure
that the corresponding IP addresses point to the web server. Alternatively, you can insert
the assignment into the file C:\Windows\System32\drivers\etc\hosts in your work environ-
ment, as described in the section “Testing Your New Site,” earlier in this chapter.

 7. To add further bindings, repeat the procedure from step 4. Otherwise, click Close to
exit the dialog box.

Figure 2-4 shows two additional bindings added to the sample site for the domain
name phpdemo.site, on ports 80 and 1234.

FIgURE 2-4 List of the site bindings.

If you now try browsing to welcome.php (Listing 2-1) by using the addresses of the new bind-
ings, you will see that the PHP variables are set according to the binding data.

Adding Bindings from the Command Line
You can change the bindings of a site from the command line by using the appcmd tool.
There is no unique command for adding or removing bindings. When making modifications,
you must specify all of the bindings that you want the site to have. For example, to add the
three bindings in the previous example, call appcmd as follows:

appcmd set site "PHP Demo Site"
 /bindings:http/*:80:www.phpdemo.site,http/*:80:phpdemo.site,http/*:1234:phpdemo.site

26 Part I Internet Information Services (IIS)

Managing the Website
IIS lets you start and stop individual sites at run time. This function is intended only for tem-
porary site deactivation for maintenance purposes, so you don’t need to shut down the web
server itself.

Starting and Stopping a Website by Using IIS Manager
You can find the functions to start and shut down a site in IIS Manager. After you have
selected a site in the Connections pane, you’ll find the following options in the Actions pane
in the Manage Web Site section:

■ Start Start a site that has been stopped.

■ End Stop a running site, making the site no longer available for requests.

■ Restart Stop a running site, and then restart it (cycle it). The site is temporarily
unavailable. This process reloads all site configuration.

Starting and Stopping a Website from the Command Line
You can also list, start, and stop sites from the command line. Open a command prompt
window with sufficient rights. To list all sites, enter the following command:

appcmd list sites

The output contains the name, the internal ID, the bindings, and the current state of the site.
For example, the output for a configured PHP Demo Site would appear as follows:

SITE "Default Web Site" (id:1,bindings:http/*:80:,state:Started)
SITE "PHP Demo Site" (id:2,bindings:http/*:80:www.phpdemo.site,http/*:80:phpdemo.site,
 http/*:1234:phpdemo.site,state:Started)

To stop a site, enter the following command:

appcmd stop site "Site name"

To start a site, enter:

appcmd start site "Name of Site"

The appcmd tool does not have a command equivalent to the IIS Manager Restart function.
Instead, you need to stop the site and then start it again.

 Chapter 2 IIS Architecture 27

Applications
In IIS, an application is a collection of files grouped together. Usually, applications contain
executable files and scripts. Each application has a virtual directory assigned to it, which is
called the root directory. At least one application is assigned to each site, which is called the
root application.

Applications are grouped into application pools. Doing so allows IIS to maintain a separation
between execution environments; this improves isolation, which in turn increases both secu-
rity and web server/application availability. When applications are programmed and config-
ured properly, you can port them easily from one web server to another.

With IIS, it is possible for applications to use different PHP configurations across the web
server or within a site. You can find more information about this in Chapter 3.

Paths and Folders
As just described, each application contains at least one virtual root directory. The root direc-
tory path is part of the application’s URL. You can create a new application on any of several
different layers:

■ Site Each site has at least one root application, which is generated automatically.
Additional applications can be added.

■ Folder or virtual directory An application can also be set up in a virtual directory
or folder. In this case, the path to the application is composed of the path to the folder
or virtual directory and the path to the application. The physical application path (the
assigned folder), however, can be selected independent of the virtual directory or
folder.

■ Application Applications can also be nested. For URL paths and physical paths, the
same rule applies as for folders and virtual directories.

The examples in Table 2-1 illustrate the connection between paths and folders. The sample
application has the path myapp and the root folder (the physical path) C:\myapp. The appli-
cation’s root folder contains the file info.html. The physical path to info.html is independent
of the folder of the parent element.

28 Part I Internet Information Services (IIS)

TABLE 2-1 Examples for the connections between application paths and folders

Element Path Folder Path to info .html Physical path

Site / C:\inetpub\wwwroot /myapp/info.html C:\myapp\info.html

Folder /gallery C:\inetpub\wwwroot\
gallery

/gallery/myapp/
info.html

C:\myapp\info.html

Virtual Directory /apps/gallery C:\app-gallery /apps/gallery/myapp/
info.html

C:\myapp\info.html

Application /phpapps C:\phpapps /phpapps/myapp/
info.html

C:\myapp\info.html

Setting Up a New Application
You can use IIS Manager to set up a new application, or you can do it from the command
line.

Setting Up an Application by Using IIS Manager
To use IIS Manager to set up a new application, perform the following:

 1. Start the IIS Manager.

 2. In the Connections pane, right-click the site, folder, virtual directory, or existing applica-
tion to which you want to add an application, and then from the context menu, select
Add Application .

The Add Application dialog box opens, as shown in Figure 2-5.

FIgURE 2-5 The Add Application dialog box.

 3. In the Alias text box, enter the path to the application.

This path becomes part of the URL.

 Chapter 2 IIS Architecture 29

 4. The default Application Pool setting is the application pool of the parent element. If
you want to change the application pool, click the Select button.

In the dialog box that opens, select the desired application pool in the Application Pool
drop-down list, and then click OK to confirm it.

 5. Enter the desired physical path to the application.

 6. Click OK to confirm your choices.

You have now created a new application and know how to assign an existing application
pool.

Setting Up an Application from the Command Line
Using appcmd add app, you can create applications from the command line and add an
application pool. The most important difference between setup via the command line and
setup via IIS Manager is that when using the command line, you must specify the applica-
tion path along with the paths of all parent elements. For example, to set up an application
myapp in the virtual directory gallery, which is located directly below the site root, you need
to specify the path /gallery/myapp as part of the appcmd command.

To expand on the example, you would enter the following command to set up the applica-
tion the same way as in the preceding IIS Manager example:

appcmd add app /site.name:"Default Web Site" /path:/myapp /physicalPath:"C:\inetpub\phpapp"

You can also use appcmd to change the application pool. Again, you must specify the site
name along with the path. For example, you would enter the following command to change
the application pool for the application that you just created to the PHP Demo Site applica-
tion pool:

appcmd set app "Default Web Site/myapp" /applicationPool:"PHP Demo Site"

Changing Application Settings
Use the following steps to change the settings of an existing application:

 1. Start the IIS Manager.

 2. In the Connections pane, select the application that you want to change.

 3. In the Actions pane, select Basic Settings.

The Edit Application dialog box opens.

 4. Change the data by using the description in the previous section, “Setting Up a New
Application.”

30 Part I Internet Information Services (IIS)

You can also change the settings by using the command appcmd set app. The following com-
mands let you establish which settings are possible:

appcmd set app /?
appcmd set app "Complete Application Path" /?

Note The process for changing the application pool is explained in the section “Setting Up an
Application from the Command Line,” earlier in this chapter.

Virtual Directories
A virtual directory is a pairing, or assignment, of a path to a folder of your choice. This makes
the outwardly visible structure of your website independent of the actual folder structure on
the web server.

As far as the configuration hierarchy is concerned, virtual directories can have only applica-
tions as a parent element. However, because you can choose the path assignment freely,
virtual directories can appear anywhere in the path hierarchy, even as children of sites, fold-
ers, or other virtual directories. When you use IIS Manager as your management tool, it
handles path conversions for you. But if you are using appcmd, you must take care of the
conversions yourself.

Setting Up a Virtual Directory by Using IIS Manager
To set up a virtual directory by using IIS Manager, perform the following steps:

 1. In the Connections pane of IIS Manager, right-click the element for which you want to
set up the virtual directory (such as the site), and then from the context menu, select
Add Virtual Directory.

The Add Virtual Directory dialog box opens.

 2. Enter the directory path into the Alias text box.

The path you enter becomes part of the URL.

 3. Enter the desired physical path of the directory.

 4. Click OK to confirm your choices.

To view all the virtual directories of a site, select the site in the Connections pane, and then
in the Actions pane, click View Virtual Directories. You can also edit directories from that
location.

 Chapter 2 IIS Architecture 31

Setting Up a Virtual Directory from the Command Line
To set up a virtual directory from the command line, you again use the appcmd tool. As men-
tioned earlier, you need to specify the paths relative to the parent application.

To set up a virtual directory, run the following command:

appcmd add vdir /app.name:"PHP Demo Site/" /path:/tony /physicalPath:c:\inetpub\user\tony

Table 2-2 presents three examples of how IIS assembles the path of a virtual directory. The
first example is a virtual directory located directly below the site’s root application. The par-
ent element of the second example is also the root application, but the virtual directory itself
is set up one level further below. In this case, the user folder can exist in advance—but it
doesn‘t have to. The /user folder can also be a different virtual directory. In the third example,
/user is a standalone application, which is why it has a different path. If you are creating a
virtual directory within an application, you must specify the path relative to that application.

TABLE 2-2 Examples for virtual directory paths

Application path Relative directory path Directory URL

PHP Demo Site/ /tony http://phpdemo.site/tony

PHP Demo Site/ /user/tony http://phpdemo.site/user/tony

PHP Demo Site/user/ /tony http://phpdemo.site/user/tony

Note You can use the command appcmd list vdir to display all virtual directories on the server.

HTTP Request Flow
IIS received a complete overhaul for version 7. The most important change is in improved
modularization, resulting in a more economical use of resources, higher performance, the
ability to customize your IIS installation to your own application’s requirements, and last but
not least, a smaller attack surface, which contributes to improved security.

In the following sections, you’ll take a look at how IIS processes an HTTP request. After you
understand the request sequence, you’ll find it much easier to configure IIS and find con-
figuration errors or server problems. This discussion is not complete; it focuses on only those
points that PHP programmers would find beneficial.

IIS lets you embed modules and components that must either be programmed as managed
.NET modules (for example, for use with ASP.NET) or written in C++. Creating managed mod-
ules in PHP that can be embedded into IIS is not currently possible.

32 Part I Internet Information Services (IIS)

Request Flow Overview
Figure 2-6 illustrates an overview of the request process, which includes the following steps:

 1. The client—usually a web browser—generates an HTTP request and sends it to the
server.

 2. The HTTP protocol stack http.sys accepts the request. The protocol stack is part of the
operating system’s network subsystem and works in kernel mode, supporting rapid
processing, especially for cached requests. The HTTP protocol stack passes the request
to the Windows Process Activation Service (WAS), which queries the website configuration.

 3. WAS determines the configuration data for the website by requesting it from the con-
figuration file in memory applicationHost.config. The WWW Publishing Service receives
this data. The configuration data contains, for example, information about which appli-
cation pool should be used.

 4. The WWW Publishing Service prepares the HTTP protocol stack for the answer from
the application pool.

 5. WAS starts the application process (w3wp.exe) for the selected application pool and
transfers the request data.

 6. The application process handles the request. If the request refers to a PHP script, the
PHP program executable engages during this step. The result of this processing is
returned to the HTTP protocol stack.

 7. The HTTP protocol stack returns the completed, processed result to the web client as
the response to the HTTP request from step 1. This completes the request process.

Web Client

1 7

2

3

5

4 6

HTTP Protocol Stack (http.sys)

applicationHost.config

Kernel Mode
User Mode

Windows Server

WIndows Activation
Service (WAS)

WWW Publishing Service

svchost.exe Application Pool

Module

Module

Module

Worker Process
(W3WP.exe)

FIgURE 2-6 The HTTP request flow.

 Chapter 2 IIS Architecture 33

Application Process Flow
In the application process, an HTTP request is run through a number of steps, as shown in
Figure 2-7. The individual steps and events are handled by system-integrated modules. As an
example, Figure 2-7 shows the Anonymous Authentication, Static File, and Default Document
modules. Other modules are, for example, responsible for the event log, or for querying and
updating the cache.

If you want to call a managed module (usually written in .NET technology, such as ASP.NET),
the managing module takes care of the necessary steps to instantiate and call the managed
module.

The events that are important for PHP programs are handler assignment and handler execution.

The IIS selects the appropriate handler for the current request, based on configuration.
For example, a request for a graphic or a simple HTML file would be passed to the module
for static contents (StaticFile). Similarly, a request for an executable PHP program is passed
to the FastCGI module, which then runs the PHP interpreter. The output (the result of run-
ning the PHP program) is returned to the application process, after which the remaining
steps of the processing take place.

Begin Request Processing

Authentication

Authorization

Cache Resolution

Handler Mapping

Handler Pre-execution

Handler Execution

Release State

Update Cache

Update Log

End Request Processing

Anonymous Authentication

Managed Engine

Static File

Default Document

PHP

M
anaged M

odules

Web Server Core
Worker Process (W3WP.exe)

Native Modules

FIgURE 2-7 The request flow in the application process.

34 Part I Internet Information Services (IIS)

Modules
Because of the modularization of IIS, you can adjust the server to the exact requirements of
your application. As described in the preceding section, the application process itself runs
through a number of steps when handling an application request. To display a list of the
enabled modules, perform the following steps:

 1. Start IIS Manager.

 2. In the Connections pane, select the corresponding server.

The server Start Page opens.

 3. From the Start Page, select the Modules feature.

 4. If you have built your work environment by following the steps described in Chapter 1,
“Setting Up the Work Environment,” the list of active modules should correspond to the
list in Table 2-3.

TABLE 2-3 System-internal modules that are installed by default

Module name Module description
AnonymousAuthenticationModule Generates the appropriate HttpUser object for anonymous

authentication

CgiModule Implements the Common Gateway Interface (CGI)

CustomErrorModule Permits custom error messages and detailed IIS 7 error
messages

DefaultDocumentModule Redirects HTTP requests with a closing forward slash (“/”)
to a configurable default document

DirectoryListingModule Permits displaying and searching folders

FastCgiModule Provides the FastCGI functionality used by PHP

HttpCacheModule Caches the HTTP answer; logic for Kernel mode cache with
http.sys

HttpLoggingModule Default logging of requests via http.sys

ProtocolSupportModule Custom HTTP answer header and redirection header; HTTP
verbs TRACE and OPTIONS; HTTP Keep Alive configuration

RequestFilteringModule Security module that filters suspicious requests

StaticCompressionModule Compresses static contents to save bandwidth

StaticFileModule Sends static contents with the appropriate MIME data type,
such as HTML, CSS, or graphic files

 Chapter 2 IIS Architecture 35

Application Pools
Requests are processed in applications, which IIS groups into application pools, as described
earlier in the chapter. IIS manages these application pools, launches new application pro-
cesses when request volume increases, and shuts down application processes to save
resources when request volume diminishes.

Setting Up Application Pools by Using IIS Manager
The following procedure describes how to set up a new application pool:

 1. Open IIS Manager.

 2. In the Connections pane, select Application Pools.

 3. In the Actions pane, click Add Application Pool.

 4. In the dialog box that opens, enter the name for your new application pool into the
Name text box.

Microsoft recommends that you accept the default values for Pipeline Mode
(Integrated) and the .NET Framework Version.

 5. Click OK.

You have now created a new application pool that you can use for new applications.

Setting Up Application Pools from the Command Line
To set up an application pool from the command line, use the command appcmd add
apppool, and then provide a name, as shown in the following command:

appcmd add apppool /name:"PhpApp"

To list all the existing application pools, use this command:

appcmd list apppool

To display the configured properties of an application pool, run one of the following two
commands:

appcmd list apppool /config "PhpApp"
appcmd list apppool /text:* "PhpApp"

36 Part I Internet Information Services (IIS)

Application Pool Identity
Application pools also fulfill an important security function: they protect application pro-
cesses from processes in other application pools. This way, applications are clearly separated
at the process level as well. IIS generates a virtual account with a unique security identifier
(SID) for each application pool. This virtual account is not a true user account; therefore, it
is not listed among the local users. However, the virtual account contains the name of the
application pool. For example, IIS AppPool\DefaultAppPool is the virtual account name for
the default application pool.

For your applications, this architecture means that application processes (including the PHP
FastCGI processes) execute in the context of the application pool identity. Therefore, you can
grant file access rights for these accounts individually, which also helps shield PHP (and other)
programs from each other at the data-access level.

Specifying Application Pool Identity by Using IIS Manager
You can specify which identity that you want to use to run an application pool. To specify the
identity (the user) by using IIS Manager:

 1. Open IIS Manager.

 2. In the Connections pane, select Application Pools.

 3. Select the application pool that you want to configure in the work environment, and
then in the Actions pane, click Advanced Settings.

The Advanced Settings dialog box opens, as shown in Figure 2-8.

 4. In the Process Model section, click the […] button to the right of Identity.

Another Application Pool Identity dialog box opens.

 Chapter 2 IIS Architecture 37

FIgURE 2-8 Specifying the identity of an application pool.

 5. You can choose Built-In Account (from the drop-down list) or Custom Account.

● If you choose a Built-In Account, you should use the ApplicationPoolIdentity
option, because it causes every application pool to automatically use a different
identity.

● To choose a custom account, click the Specify button, and then enter the
account name and password. The password is encrypted in the configuration
automatically.

 6. Click OK twice to close the dialog boxes.

38 Part I Internet Information Services (IIS)

Specifying Application Pool Identity from the Command Line
To specify the identity of an application pool from the command line, execute the following
command:

appcmd set apppool PhpApp /processModel.identityType:ApplicationPoolIdentity

For the identity type, you can specify ApplicationPoolIdentity, LocalSystem, LocalService,
NetworkService, or SpecificUser. To specify a custom account, you will also need to enter the
user name and the password, as follows:

appcmd set apppool PhpApp
 /processModel.identityType:SpecificUser /processModel.userName:MyUserAccount
 /processModel.password:MyPassword

The password you enter is encrypted in the configuration automatically.

FastCgI
Using FastCGI for processing HTTP requests is an important new option in IIS 7. FastCGI
provides a much higher level of performance than the older, still-common binding of PHP
via CGI. Compared to binding PHP as an ISAPI module, FastCGI provides more stability and
better configurability.

FastCGI vs . CGI
CGI is a standard that permits binding any desired program to a web server. The program
that CGI calls runs as a standalone process. Figure 2-9 shows the process flow, which is
described here:

 1. The web client generates an HTTP request and sends it to the web server (IIS).

 2. The web server processes the request. It starts the PHP interpreter in its own process
and passes the HTTP request data (following the CGI standard) to PHP.

 3. The PHP program calculates the result and returns the answer via CGI to the web
server. The PHP program and the associated process then end.

 4. The web server returns the PHP program’s answer to the web client.

 Chapter 2 IIS Architecture 39

Web Client

1

4

2

3

Windows Server

Web Server
(IIS)

CGI Process

PHP

FIgURE 2-9 A PHP request flow with CGI.

The obvious disadvantage of CGI is that PHP must be restarted for each request. This kind
of overhead devours resources and leads to significantly lower performance than you can
achieve with FastCGI.

With FastCGI, the request flow looks similar to Figure 2-10, as described here:

 1. The web client generates a request.

 2. The web server processes the request and passes it to a free (not busy) PHP process in
the application pool.

 3. The PHP program generates a result and returns the answer to the web server. In
FastCGI, however, the PHP process is not stopped; instead, it’s freed for additional
requests.

 4. The web server returns the answer to the web client.

Web Client

1

4

2

3

Windows Server

Web Server
(IIS)

Application Pool

PHP

PHP

PHP

FIgURE 2-10 A PHP request flow with FastCGI.

The performance advantage of FastCGI, therefore, happens primarily because IIS can reuse
the PHP process, avoiding the resource-intensive starting and ending process required by
CGI. FastCGI preserves all the advantages of CGI, such as separation of web server processes
and PHP. In addition, you can use the non-thread–safe version of PHP, because each PHP
process handles only one request at a time. PHP thus saves work-intensive thread-safety
checks, which in turn has a positive effect on performance.

40 Part I Internet Information Services (IIS)

FastCGI vs . ISAPI
Before FastCGI became available for IIS, binding PHP as an ISAPI extension was the only
alternative to CGI. When PHP is configured as an ISAPI extension, it runs directly in the appli-
cation process of the web server. That also dispenses with the need to start and stop PHP
for each request, so PHP as ISAPI extension achieves a high level of performance and data
throughput.

Unfortunately, because of its lack of separation from the web server, running PHP as an
ISAPI extension also poses a disadvantage: both PHP and the web server use the same user
account with the same access rights. Separating the two for security reasons is not possible.
Furthermore, stability problems can arise: IIS can pass ISAPI extensions several requests,
which should then be handled by that single process in a parallel fashion. Some PHP exten-
sions, however, are not considered thread-safe, which is a requirement for parallel execution
and handling of requests.

Note This is one reason why PHP 5.3 no longer supports binding PHP as an ISAPI extension.
PHP is only bound via FastCGI now.

Summary
This chapter provided a high-level overview of IIS architecture and functionality. You’ve seen
information about sites, applications, and virtual directories, the process flow of an HTTP
request, and the underlying reasons why IIS uses application pools mapped to individual
applications. Together with the description of FastCGI and its advantages, you now have a
solid foundation for a more in-depth discussion of the IIS and PHP configuration possibilities
in the next two chapters.

 41

Chapter 3

Configuring IIS

In Internet Information Services (IIS) 7, configuration has been freshly conceived from the bot-
tom up. Instead of a centralized configuration, IIS 7 configuration is distributed over several
files, depending on the structure of the websites and applications. The ubiquitous use of XML
for the configuration file format is also new.

This chapter introduces IIS configuration in considerable detail, but a complete description
is beyond the scope of this book. Instead, the focus here is on the general structure of IIS 7
configuration, and in particular, on the configuration of the essential building blocks (such
as websites, applications, and virtual directories) that are of interest to PHP developers. The
chapter also covers the configuration options for certain access paths with location.

The chapter closes with a discussion of how you can lock down parts of the configuration,
thus permitting you to delegate IIS administration. Being able to lock the configuration is
especially important for web hosts, or when system administrators want to grant restricted
rights to allow others to administer their own applications.

In this chapter:
Configuration Files . 42
Configuration Structure . 43
Schema and configSections . . 47
Configuring Paths by Using location . . 47
Sites, Applications, and Directories . 49
Locking the Configuration . 53
Summary . 60

42 Part I Internet Information Services (IIS)

Configuration Files
IIS saves configuration in plain text files. This simplifies copying, backing up, and editing the
configuration: you can use common tools for the files when administering them.

There are several ways to read or edit the IIS configuration:

■ Manually, with a text editor

■ Using application programming interfaces (APIs) for native and managed programs

■ Through tools such as Windows PowerShell or appcmd

■ Through graphical interfaces, such as IIS Manager

IIS monitors all changes to configuration files; normally any configuration file changes
become effective immediately, without requiring a computer reboot or server restart. This is
a significant change when compared to previous IIS versions. The authoritative configuration
sources are the configuration files themselves, not copies of the files in memory.

Global Configuration
The configuration of IIS is distributed over several files. This distribution has system-inherent
causes, and at the same time brings certain advantages with it. The configuration files make
up a hierarchy, at the top of which sit the global server-wide valid configurations. IIS recog-
nizes two (or respectively three) global configuration files:

■ applicationHost.config contains the IIS configuration (folder: C:\Windows\System32\
inetsrv).

■ machine.config contains the configuration of .NET Framework and ASP.NET (folder:
C:\Windows\Microsoft.NET\Framework\[version number]\CONFIG).

■ The web.config root file, located in the same folder, contains additional settings.

The distribution to these files takes place because IIS and Microsoft .NET are two different
products with different product cycles.

Distributed Configuration
In addition to the global configuration files, there are distributed web.config configuration
files. This distributed configuration orients itself along the physical layout of the websites,
applications, virtual directories, and (physical) folders.

The configuration files constitute a hierarchy, as shown in Figure 3-1. At the top, there are
the machine.config file and the root file web.config, followed by the file applicationHost.
config. The settings for the following configuration files override or extend the settings of the
previous files.

 Chapter 3 Configuring IIS 43

applicationHost.config

web.config
(Site)

web.config
(Site)

web.config
(Applications)

web.config
(Subfolder)

machine.config
&

Root web.config

web.config
(Subfolder)

FIgURE 3-1 The hierarchy of the configuration files.

The global configuration is followed by the distributed configuration of the web.config files.
These configurations impact only the websites, directories, and folders, in which they are
saved (and their child elements). The configurations lower in the hierarchy override or extend
the previous settings here, as well.

Note For Apache administrators: the web.config files are comparable to the .htaccess files,
whereas applicationHost.config corresponds to the file httpd.conf.

This structure permits PHP applications to supply the required settings themselves, together
with a web.config file. Installing, moving, and copying of PHP applications becomes much
easier and more comfortable than in the previous version of IIS.

Configuration Structure
The IIS configuration is grouped into sections; logically linked settings are defined and saved
together in one section. A module represents a typical section grouping; each module has its
own configuration section. The sections are closed within themselves, generally do not refer-
ence each other, and cannot be nested.

44 Part I Internet Information Services (IIS)

Sections and Section Groups
Sections are combined into section groups. The only task of section groups is to structure the
configuration. They do not contain properties or settings themselves. Because section groups
can be nested, a configuration hierarchy is created. Listing 3-1 shows the hierarchical structure
of section groups and sections.

LISTINg 3-1 Section groups and sections in the configuration.

<!-- Section group: Web server configuration -->
<system.webServer>
 <!-- Section: FastCGI configuration -->
 <fastCgi>
 <application fullPath="C:\PHP\php-cgi.exe" />
 </fastCgi>
 <!-- Section group: Trace configuration -->
 <tracing>
 <!-- Section: Trace configuration for request errors -->
 <traceFailedRequests />
 <!-- Section: Configuration of trace providers -->
 <traceProviderDefinitions>
 <add name="WWW Server" guid="{3a2a4e84-4c21-4981-ae10-3fda0d9b0f83}">
 <areas>
 <clear />
 <add name="StaticFile" value="16" />
 <add name="FastCGI" value="4096" />
 </areas>
 </add>
 </traceProviderDefinitions>
 </tracing>
</system.webServer>

Elements and Configuration Listings
The sections contain the actual configuration settings in elements and attributes. The prop-
erties are saved in attributes, and the elements are for grouping. If there are several entries
for a property that must be configured, configuration collections are used.

The element system.webServer/tracing/traceProviderDefinitions/areas in Listing 3-1 is an
example for such a configuration collection. Configuration collections consist of three
elements:

■ <add> Adds a configuration entry. Each entry has an attribute for the name (name)
and optional additional attributes for the values (for example, value).

 Chapter 3 Configuring IIS 45

■ <remove> Entries can also be deleted. This way the configuration can be changed
accordingly for certain server areas.

■ <clear> Deletes all previously defined settings. This statement ensures that the sub-
sequent local definition is the only valid definition for this configuration property.

Moving and Binding Sections
To maintain clarity, you can move sections and section groups into several different files. For
example, this allows you to separate applicationHost.config into distinct files, which can be
helpful during administration. IIS automatically recognizes configuration changes in external
files. There is no need to restart the server.

To include the configuration files, you must specify the attribute configSource. Listing 3-2
shows you how to do this. Note that for the bound configuration file, you must start with the
configuration element as the root.

LISTINg 3-2 Binding an external configuration file.

applicationHost .config
<system.webServer>
 <defaultDocument configSource="defaultDoc.config" />
</system.webServer>

defaultDoc .config
<configuration>
 <system.webServer>
 <defaultDocument enabled="true" >
 <files>
 <add value="index.php" />
 <add value="index.html" />
 </files>
 </defaultDocument>
 </system.webServer>
</configuration>

The Configuration Editor
IIS Manager provides a configuration editor for working on the IIS configuration base. You
need to know which configuration element you want to edit. For example, to configure the
default document (see Listing 3-2), follow these steps:

 1. In the Connections pane of the IIS Manager, browse to the desired element.

 2. Open the Configuration Editor feature by double-clicking it.

46 Part I Internet Information Services (IIS)

 3. Select the desired configuration element in the Section drop-down list box.

 4. In the drop-down list box titled “From,” select the configuration file to use.

You can then define and edit the location elements (see the section “Configuring Paths
by using location,” later in this chapter).

 5. The properties of the element are displayed in the workspace, and you can change
them by putting entries into the text boxes.

 6. You can edit collections by using the button on the right, as shown in Figure 3-2.

You can create new entries by using Collection | Add, or edit the properties of existing
entries in the Properties pane. Afterward, close the dialog box with the Close Window
icon in the upper-right corner.

FIgURE 3-2 The Configuration Editor in the IIS Manager.

 7. In the Actions pane, click Apply to apply your changes.

 8. In the Actions pane, click Search Configuration to view and search the current
configuration.

 Chapter 3 Configuring IIS 47

Schema and configSections
The XML configuration file content is based on a schema located in the folder C:\Windows\
System32\inetsrv\config\schema. The schema defines the syntax of the configuration’s sec-
tions, elements, and attributes. In addition, the schema specifies default values for attributes,
which is convenient because you don’t need to specify all properties in a configuration file—
it’s sufficient to list the properties that deviate from the default values. This provides a clearer
overview of the configuration files.

The applicationHost.config file contains a special section that serves as a point of registration
for other sections and section groups: configSections. With configSections, other sections and
section groups of IIS are registered at this location, as demonstrated in Listing 3-3.

LISTINg 3-3 An excerpt for the configSections section.

<configSections>
 <sectionGroup name="system.webServer">
 <section name="defaultDocument" overrideModeDefault="Allow" />
 <section name="fastCgi" allowDefinition="AppHostOnly"
 overrideModeDefault="Deny" />
 <sectionGroup name="tracing">
 <section name="traceFailedRequests" overrideModeDefault="Allow" />
 <section name="traceProviderDefinitions" overrideModeDefault="Deny" />
 </sectionGroup>
 </sectionGroup>
</configSections>

Each IIS module has the correct schema for its configuration and an entry in the section
configSections. This mechanism can also be used to extend the IIS configuration with settings
and properties. For your own PHP applications, this configuration mechanism—compared
to others such as simple .ini files—wouldn’t necessarily be your first choice: to access the cur-
rently valid configuration of this path, you would either need to use Windows Management
Instrumentation (WMI) or command-line tools such as appcmd.

Configuring Paths by Using location
IIS configuration is distributed into separate files: globally valid configuration resides in the
files machine.config (and global, web.config) and applicationHost.config, whereas locally
valid configuration for a path resides in web.config files in the folders assigned to the sites
and applications.

48 Part I Internet Information Services (IIS)

Even though this distribution into local web.config files facilitates installing applications, it
can’t be applied to all application situations, for example, when two virtual directories that
need to have different configurations point to the same folder, or if an administrator prefers
to keep the complete application available in a single file for safety reasons.

In such cases, you can use the location statement, which lets you limit configurations to a cer-
tain path (the URL path, not the physical path). You specify location with the path attribute:

■ <location path=“.”> The current particular path.

■ <location path=“PHP Demo Site/phpapp”> The application path phpapp of the
website PHP Demo Site.

■ <location path=“PHP Demo Site/phpapp/wiki/index.php”> Unlike web.config
files, a location path can also reference individual files, such as index.php in our
example.

If location is not specified in the applicationHost.config, but instead in a web.config file, the
path specification is relative—in other words, the path must begin with the web.config loca-
tion. Absolute path specifications are not permitted. With location, you can only modify
paths below the web.config file’s own location in the hierarchy.

Within location, you use the same sections and section groups as in the configuration files
themselves (see Listing 3-4). For the relative path download, starting with the current path
of the web.config file where this statement is located, the directory display is unlocked. Even
though under normal circumstances download is most likely a subfolder of the web.config
folder, that’s not always the case; it could also be the path of a virtual directory, which means
that the physical download folder could be located at a completely different position.

LISTINg 3-4 A configuration statement with location.

<location path="download">
 <system.webServer>
 <directoryBrowse enabled="true" />
 </system.webServer>
</location>

Configuring by Using IIS Manager
With IIS Manager, you can edit location sections only by using the Configuration Editor.
Other features always write into the appropriate web.config file. The status bar at the bottom
of the open feature window shows you where the IIS Manager writes the configuration.

 Chapter 3 Configuring IIS 49

Here’s how to configure individual files (the location entry is written into the web.config of
the folder that contains the file):

 1. In the Connections pane, select the directory that contains the file.

 2. Click the Content View button at the bottom of the workspace.

 3. Select the file that you want to configure, and then in the Actions pane, click Switch To
Features View.

You are now back in Features view, except for the selected file, as you can see in the
Connections pane, or in the status bar of an open feature.

Configuring from the Command Line
Using the /commit parameter, you can use the appcmd tool to create or update location
elements. The /commit parameter accepts the following values:

■ site Generates an entry in the web.config file of the website

■ app Generates an entry in the root folder of the application

■ appHost Generates an entry in applicationHost.config

■ <Path> Generates an entry in the specified path

You can generate Listing 3-4 as follows, assuming download is a subfolder of the application
phpapp:

appcmd set config "Default Web Site/phpapp/download"
 -section:system.webServer/directoryBrowse /enabled:true /commit:app

Sites, Applications, and Directories
Configuring sites, applications, and virtual directories is an essential part of IIS administration.
In the subsections that follow, you’ll explore at the most important options. You can find a
complete description in the online IIS documentation.

Sites, applications, and virtual directories are defined together in one section. Unlike other
settings for features and modules, these must be defined in the file applicationHost.config,
in the section group system.applicationHost, not the section group system.webServer.

50 Part I Internet Information Services (IIS)

Table 3-1 lists the most important sections of system.applicationHost. In addition to listeners
and application pools, the sites are defined, which themselves also contain the applications
and virtual directories.

TABLE 3-1 Section in the section group system.applicationHost (excerpt)

Section (element) Description
applicationPools Defines the application pools.

listenerAdapters Defines the listener adapters being used, which bind to the Windows
Process Activation Service (WAS)—for example, http.

log Central setting for log creation.

sites Defines the sites, applications, and virtual directories.

webLimits Defines bandwidth and TCP/IP connection limits.

The default for all configuration sections of system.applicationHost is that settings can be
specified only in the file applicationHost.config (allowDefinition=AppHostOnly) and that the
configuration sections are locked (overrideModeDefault=Deny).

Listing 3-5 shows a configuration that defines two application pools and the directories for
the log files.

LISTINg 3-5 system.applicationHost configuration.

<system.applicationHost>
 <applicationPools>
 <add name="DefaultAppPool" autoStart="true" />
 <add name="PHP Demo Site" autoStart="true" />
 </applicationPools>
 <listenerAdapters>
 <add name="http" />
 </listenerAdapters>
 <log>
 <centralBinaryLogFile enabled="true"
 directory="%SystemDrive%\inetpub\logs\LogFiles" />
 <centralW3CLogFile enabled="true"
 directory="%SystemDrive%\inetpub\logs\LogFiles" />
 </log>
 <sites> [...] </sites>
 <webLimits />
</system.applicationHost>

Sites
Sites are defined in the sites section. The site configuration elements are listed in Table 3-2.
You can define individual sites and set default values for application and virtual directories.

 Chapter 3 Configuring IIS 51

TABLE 3-2 The elements of the sites section

Element Description
applicationDefaults Defines default values for applications, such as the application pool that

you want to use or the active logs.

site Defines a single site (can be specified multiple times).

siteDefaults Defines default values for sites; for example, the bindings, the log
properties, or whether sites should start automatically.

virtualDirectoryDefaults Defines default values for virtual directories; for example, whether web
.config files are permitted in subfolders.

Defining a Single Site
You can define a website with the site configuration element. Its elements and attributes are
listed in Table 3-3. Sites contain the required specifications for bindings and applications. You
cannot define virtual directories on this level, because they must always be part of an appli-
cation. Each site requires at least one application: the root application, which has the path “/”.

TABLE 3-3 Configuration element <site> (excerpt)

Element Attribute Description

site Defines a site

id Unique number of the site (the default website has the
number 1)

name Name of the site; used for administration

serverAutoStart Specifies whether a site is started automatically (true, false)

site/application Defines the applications of a site (can be defined multiple
times)

site/bindings Defines the bindings of a site

site/limits Limits bandwidth as well as number and durations of
connections

Listing 3-6 shows the definition of the default website directly after setting up the IIS: the site
has a root application with the path “/” and a binding for the HTTP protocol to port 80.

LISTINg 3-6 Configuration of the default website with root application and binding.

<site name="Default Web Site" id="1" serverAutoStart="true">
 <application path="/">
 <virtualDirectory path="/" physicalPath="%SystemDrive%\inetpub\wwwroot" />
 </application>
 <bindings>
 <binding protocol="http" bindingInformation="*:80:" />
 </bindings>
</site>

52 Part I Internet Information Services (IIS)

Bindings
A site can have multiple bindings. For each binding the protocol, host name, IP address, and
port must be specified. Table 3-4 lists the configuration properties.

TABLE 3-4 Configuration element <bindings>

Element Attribute Description

bindings Lists all bindings.

bindings/binding Defines a single binding.

bindingInformation IP address, port, and host name separated by a colon; for
example, *:80:phpdemo.site. You can use a placeholder
for the IP address. The host name does not need to be
specified (the binding applies to all host names).

protocol The protocol you are using, usually http or https.

bindings/clear Deletes all inherited bindings and bindings set by default.

Applications
The purpose of an application is to assign virtual paths (URL paths) to application pools. Each
site has at least one application: the root application, with the path “/”. Table 3-5 lists the con-
figuration properties for applications. Each application has at least one virtual directory: the
root directory, which maps a virtual path to a physical path. Path specifications are relative,
which means that the paths to the directories must be interpreted relative to the application
path. Therefore, the root directory of an application always has the path “/”.

TABLE 3-5 Configuration element <application>

Element Attribute Description

application Defines an application

applicationPool The application pool you want to use

enabledProtocols Permitted protocols; usually http

path Application path

application/virtualDirectory Assigned virtual directory

application/virtualDirectoryDefaults Default values for virtual directories of the
application

Even though applications can be logically nested, they are located next to each other in the
configuration, as shown in Listing 3-7. The application /phpapp/wiki is part of the application /
phpapp, but both definitions are located at the same level in the configuration file. The com-
plete virtual path of the directory /data is /phpapp/wiki/data, because paths are relative to
the applications.

 Chapter 3 Configuring IIS 53

LISTINg 3-7 Configuration of applications and their virtual directories.

<application path="/" applicationPool="PHP Demo Site">
 <virtualDirectory path="/" physicalPath="C:\inetpub\phpdemosite" />
</application>
<application path="/phpapp" applicationPool="PhpApp">
 <virtualDirectory path="/" physicalPath="C:\inetpub\phpapp" />
</application>
<application path="/phpapp/wiki" applicationPool="PhpApp">
 <virtualDirectory path="/" physicalPath="C:\inetpub\phpwiki\scripts" />
 <virtualDirectory path="/data" physicalPath="C:\inetpub\phpwiki\data" />
</application>

Virtual Directories
Table 3-6 lists the configurable properties of virtual directories. You must specify the virtual
and the physical path, because the core task of a virtual directory is to assign them to each
other. If the web server accesses the directory with a special user account, you can also spec-
ify the user name and password.

TABLE 3-6 Attributes of the configuration element <virtualDirectory>

Attributes Description

allowSubDirConfig Specifies whether web.config should be taken into account in subfolders
(true, false).

logonMethod Specifies how IIS should be authenticated against the directory: ClearText
(default value), Interactive, Batch, Network.

password Optional password specification for authentication. The password should
always be set via the IIS Manager or appcmd.exe, because this ensures that
it is encrypted when it is inserted into the configuration file.

path URL path of the virtual directory, relative to the parent elements.

physicalPath Physical path of the assigned folder.

userName Optional specification of the user name for authentication.

Locking the Configuration
For security reasons, you might want to ensure that certain configuration settings are not
overridden or cancelled at other locations. This applies especially to central configurations of
single modules, such as error handling or which modules are available for which websites. IIS 7
provides a highly granular mechanism for locking configuration settings. The default installa-
tion is set up in such a way that only the most essential settings can be rewritten on the lower
hierarchy levels; yet another example of the continuous IIS security philosophy.

54 Part I Internet Information Services (IIS)

Locking with configSections
The section configSections serves as a registration point for other sections and section
groups. You can define whether and how the definitions can be changed in lower hierarchy
levels. You can use the following attributes:

■ overrideModeDefault Defines the default value for permitting configuration
changes for this section or section group. Allow permits configuration changes, Deny
prohibits them on lower configuration hierarchy levels. If the attribute is not specified,
Allow is used by default.

■ allowDefinition Defines where in the configuration hierarchy changes are allowed if
changing is enabled. If this attribute is not specified, changes are allowed everywhere.
The following values can be set:

● MachineOnly The configuration can only be specified in machine.config.

● MachineToRootWeb In addition to MachineOnly, the configuration can also be
changed in the root configuration file web.config of .NET Framework (same folder
as machine.config).

● AppHostOnly The configuration may only be specified in applicationHost.config.

● MachineToApplication The configuration can (in addition to MachineToRoot
Web and AppHostOnly) be changed in all root folders of IIS applications. This also
includes configuration changes on the website level, because each website has a
root application assigned to it.

● Everywhere The configuration can be changed everywhere, including in virtual
directories and in all physical folders.

Locking and Unlocking with location
The settings in the section configSections specify the default values for changing and locking
the configuration. With location, you can change these settings for individual paths.

Specifying Section Rights
In the location element, you can use the attribute overrideMode to specify for a path whether
the configuration is locked or changes are allowed. The attribute can accept the following
values:

■ Allow The listed sections permit configuration changes.

■ Deny The listed sections are locked, and therefore, prohibit configuration changes.

■ Inherit The configuration hierarchy is examined toward the top to determine whether
changes are permitted. Ultimately, the values of the section configSections take effect.
Inherit is the default value if the overrideMode attribute is not specified.

 Chapter 3 Configuring IIS 55

For example, Listing 3-8 prohibits changes to the module defaultDocument in configSections
(overrideModeDefault="Deny") in applicationHost.config. Because the AllowDefinition attribute
is not set, changes (if allowed) could be made anywhere, such as in the web.config file of an
application. Next, the globally valid settings for the module defaultDocument are defined in
the section group system.webServer.

With location, you can enable the configuration to accept changes specifically for the path
of the application phpapp. As you can see, you don’t need to set new values directly with
location. Unlocking the section to allow changes can also be achieved without any further
specifications.

Because the configuration is no longer locked, you can specify new values for defaultDocument
in the web.config file of the phpapp root folder.

LISTINg 3-8 Changing the rights for the configurations of a certain path.

applicationHost .config
<configSections>
 <sectionGroup name="system.webServer">
 <section name="defaultDocument" overrideModeDefault="Deny" />
 </sectionGroup>
</configSections>
<system.webServer>
 <defaultDocument enabled="true">
 <files>
 <add value="index.html" />
 <add value="index.htm" />
 </files>
 </defaultDocument>
</system.webServer>
<location path="PHP Demo Site/phpapp" overrideMode="Allow">
 <system.webServer>
 <defaultDocument />
 </system.webServer>
</location>

web .config in the phpapp root folder
<defaultDocument enabled="true">
 <files>
 <clear />
 <add value="index.php" />
 </files>
</defaultDocument>

56 Part I Internet Information Services (IIS)

It also works the other way around: if a configuration section is never locked, but you would
like to lock it for individual paths, you can lock the section with overrideMode="Deny" within
a location. In this case, you should also specify properties and values within the location sec-
tion. Otherwise, the general default values are used.

Specifying Rights for Individual Settings
By setting the overrideMode attribute, you can lock or unlock entire sections. Sometimes it
can be useful to only lock or unlock individual settings for changes within a section. For this
purpose, the IIS configuration provides you with five attributes:

■ lockAttributes Locks the specified attributes of the element.

■ lockAllAttributesExcept Locks all attributes of the element, except for the those
listed.

■ lockElements Locks the specified child elements of the element that contains the
definition.

■ lockAllElementsExcep Locks all child elements of the element, except for the those
listed.

■ lockItem Locks the element that belongs to the attribute (useful for configuration
collections).

These attributes can be set for all sections, whether they are located in applicationHost.config,
web.config, or in a location section. With the exception of lockItem, all attributes accept as
values individual names or comma-separated lists of names, while lockItem can have the
value true or false.

Example: lockAttributes
Listing 3-9 shows how to lock individual attributes. The configuration in the example permits
enabling and disabling directory contents, but the type of list cannot be changed: only size
and file name extension are specified, but not the change date of the files.

LISTINg 3-9 Locking individual attributes by using lockAttributes.

<location path="PHP Demo Site">
 <system.webServer>
 <directoryBrowse enabled="false" showFlags="Size,Extension"
 lockAttributes="showFlags" />
 </system.webServer>
</location>

 Chapter 3 Configuring IIS 57

Example: lockElements
With lockElements, you can lock child elements, as shown in Listing 3-10. The default docu-
ment for the application phpapp is set to index.php. The elements remove and clear, possible
child elements of files, are locked. This locks their specification in subsequent configurations.
In this example, the lock ensures that entries can be added to the configuration list, but no
existing entries can be deleted.

LISTINg 3-10 Locking individual child elements by using lockElements.

<location path="phpapp">
 <system.webServer>
 <defaultDocument enabled="true" >
 <files lockElements="remove,clear">
 <add value="index.php" />
 </files>
 </defaultDocument>
 </system.webServer>
</location>

Example: lockItem
The lockItem attribute is closely related to lockElements. While lockElements locks children of
the current element, lockItem locks the current element itself. Listing 3-11 demonstrates this
with another configuration. The entries for index.html and index.htm are locked and there-
fore cannot be deleted or altered. The entry index.php, however, can be deleted in the con-
figuration hierarchy.

LISTINg 3-11 Locking individual elements by using lockItem.

<system.webServer>
 <defaultDocument enabled="true" >
 <files>
 <add value="index.php" />
 <add value="index.html" lockItem="true" />
 <add value="index.htm" lockItem="true" />
 </files>
 </defaultDocument>
</system.webServer>

You can set the lockItem attribute for any desired element, even for sections.

58 Part I Internet Information Services (IIS)

Locking and Unlocking by Using appcmd
With appcmd, you can lock or unlock the configuration, but only on the level of the individ-
ual sections and not on the level of individual elements and attributes within the sections, as
you can by direct editing of configuration files.

To do so, appcmd provides the following commands:

appcmd lock config "<PATH>" –section:<section>
appcmd unlock config "<PATH>" –section:<section>

<PATH> is the absolute (URL) path of a website, application, virtual directory, or physical
folder, for example, PHP Demo Site/phpapp/wiki. If you leave out the path, the global server-
wide configuration is targeted. <section> represents the section name such as rewrite/
rewriteMaps or defaultDocument.

Unfortunately, there is no command to retrieve the section status (locked or unlocked) for a
certain path.

Locking and Unlocking by Using IIS Manager
You can also lock or unlock sections (not elements and attributes within sections) by using IIS
Manager. Compared to appcmd, there is one additional restriction: you can access sections
only globally or for a website. You cannot specify paths to applications or directories.

Locking and Unlocking Sections
To lock or unlock sections, perform the following steps:

 1. In the Connections pane of the IIS Manager, select the web server.

 2. In the area Home | Management, open the Feature Delegation module.

 3. In the Feature Delegation workspace (which is now displayed), select a feature from
the list.

 4. In the Actions pane, in Set Feature Delegation, you can choose from among the follow-
ing actions:

● Read/Write Shares the features (corresponds to unlocking the section).

● Read Only Locks the feature against changes.

 Chapter 3 Configuring IIS 59

● Not Delegated Similar to the Read Only state. In addition, the feature is no
longer displayed in the IIS Manager for users without administrator rights.

● Reset To Inherited The configuration above the feature determines whether
the feature is locked or unlocked.

 5. The action is executed immediately. You can continue with other features or leave
the pane.

Locking and Unlocking Features
You can lock or unlock features for individual websites from the same workspace:

 1. In the Actions pane, click Custom Site Delegation.

 2. The Custom Site Delegation workspace is displayed, as shown in Figure 3-3.

FIgURE 3-3 The Custom Site Delegation dialog box.

 3. From the drop-down list, select the website that you want to configure.

 4. Configuring the delegation of individual features is done in the same way as for server-
wide configuration.

You can delete the site-specific configurations in the Actions pane by clicking Reset All
Delegation; the site takes over the server-wide configuration.

Using the Copy Delegation button, you can transfer the delegation configuration of the
current site to other sites.

 5. In the Actions pane, click Default Delegation to return to the server-wide configuration.

60 Part I Internet Information Services (IIS)

Summary
The IIS configuration provides the appropriate kind of access for any administrator type:
whether you are administering via the graphical interface of the IIS Manager, working from
the command line, or editing the configuration files directly, the IIS configuration is always
current and doesn’t miss a step.

The ASP.NET-style distributed configuration with web.config files makes it easy for users
coming from the other environments, such as an Apache web server, to orient themselves.
Thanks to the XML structure, the purpose and scope of the specified settings is immediately
obvious. No need to guess. Even unknown configuration sections can be assigned quickly,
thanks to meaningful element names.

By providing the possibility to lock parts of the configuration, the IIS opens up new ways of
delegating administrative tasks without compromising security: the locking option permits
you to grant only the minimally-required rights.

Once you have read the description of the PHP configuration within IIS in the next chapter,
you will know all the required methods and settings to run PHP applications efficiently and
securely in IIS.

 61

Chapter 4

Configuring PHP

This chapter discusses the configuration of PHP under Internet Information Services (IIS) in
detail. You learn how to define time limits for request processing, how to specify index.php
as the default document of a directory, and how to set up different PHP configurations and
versions on the same server.

Not only can you configure PHP via the php.ini file, but you can also configure it via the
Windows registration, with local .user.ini files, or through the IIS PHP Manager. As of IIS 7.5,
FastCGI can also be configured in such a way that changes to the php.ini configuration file
can be recognized automatically. In the following section, you will look at these configuration
options in more detail.

Installing PHP Manager
IIS PHP Manager is a very useful tool to change PHP settings quickly and easily. If you have
installed PHP with the Web Platform Installer (Web PI), PHP Manager is already available. To
manually install it, perform the following:

 1. Go to http://phpmanager.codeplex.com/ and download the PHP Manager installer. Be
sure that you download the proper version for your architecture (x64 versus x86).

 2. Start the installer, and then click Next.

 3. Agree to the license, and then click Next to start the installation.

In this chapter:
Installing PHP Manager . 61
Configuring PHP . 63
Specifying the Default Document . 69
Request Limits . 71
Time Limits for Request Processing . 74
Session Storage and Temporary Files . 75
Setting Up PHP Syntax Highlighting . 76
Setting Up Different PHP Versions . 78
Setting Up Different PHP Configurations . 83
Summary . 83

62 Part I Internet Information Services (IIS)

 4. Restart the IIS Manager.

 5. In the Connections pane, select the server or a site, and then double-click the PHP
Manager feature.

The PHP Manager screen appears, as shown in Figure 4-1.

FIgURE 4-1 The PHP Manager start screen.

PHP Manager always changes PHP settings directly in php.ini; thus, any changes affect
all sites using that PHP version. Also, PHP manager automatically adds handler mappings
and default documents settings at the selected level chosen in the Connections pane of
IIS Manager. Depending on your setup, you might need to manually adjust your settings
afterward.

Important When using PHP Manager, you should always install additional PHP versions by using
the Register New PHP Version function. If possible, you should install PHP Manager before you
configure any PHP version in IIS. Otherwise, depending on your setup, PHP Manager might not
recognize existing and configured PHP versions and (at least in 1.1.2) will not allow reregistering
that PHP version.

 Chapter 4 Configuring PHP 63

Configuring PHP
PHP configuration can be specified at different locations and at different times. You can even
adjust the PHP interpreter itself during compilation. Examples are the Suhosin Patch or the
Hardening Patch of the Hardened PHP Project (http://www.hardened-php.net/). You can also
change PHP configuration at runtime.

Some runtime settings must be specified (in php.ini) when starting PHP, and are therefore
globally valid. Other settings can be changed at a later time, for example depending on
the folder that contains the PHP script or even within the PHP script itself (with ini_set()).
Table 4-1 shows you an overview of the four change modes of PHP settings.

TABLE 4-1 Change modes of PHP settings at runtime

Change mode php .ini .user .ini Windows registration PHP script

PHP_INI_ALL Yes Yes Yes Yes

PHP_INI_PERDIR Yes Yes – –

PHP_INI_USER – – Yes Yes

PHP_INI_SYSTEM Yes – – –

Before discussing the path-dependent configuration via php.ini, .user.ini, and Windows regis-
tration, you’ll see how IIS can automatically apply configuration changes to php.ini.

Recognizing Configuration Changes
IIS automatically recognizes and implements changes to the IIS configuration. However, this
is not the case for the PHP configuration; associated application pools must be restarted
manually to reliably implement the configuration changes. As of IIS version 7.5 (Windows 7
and Windows Server 2008 R2), there is a feature that recognizes changes to the php.ini con-
figuration file (or any other file you choose) and restarts PHP processes.

Caution Changes to files can only be recognized if this feature is supported by the file system.
Files that are located on a network share are not supported.

64 Part I Internet Information Services (IIS)

Configuring by Using the IIS Manager
To configure the configuration monitoring feature, perform the following:

 1. In the Connections pane of the IIS Manager, select the server, and then open the
FastCGI Settings feature by double-clicking it.

 2. From the list of FastCGI applications, select the desired PHP application, and then in
the Actions pane, click Edit.

 3. In the General section, in Monitor Changes To File, you can specify a file (for example,
C:\PHP\php.ini). If this file is changed, the PHP processes are restarted, as shown in
Figure 4-2.

FIgURE 4-2 Specifying a file to monitor for changes.

 4. Click OK to close the dialog box.

From that point forward, changes to the php.ini configuration file are automatically
implemented.

Configuring from the Command Line
To set up file monitoring with appcmd, use the following command:

appcmd set config /section:system.webServer/fastCgi
 /[fullPath='%PHP%\php-cgi.exe'].monitorChangesTo:"C:\PHP\php.ini"

Specify %PHP% in the fullPath parameter according to which FastCGI application you want
to configure.

 Chapter 4 Configuring PHP 65

Configuring by Using PHP Manager
To set up file monitoring by using PHP Manager, perform the following:

 1. In the Connections pane of the IIS Manager, select the server, and then open the PHP
Manager feature by double-clicking it.

 2. Click the View Recommendations link in the PHP Setup section.

 3. Select the monitorChangesTo check box, and then click OK. (If this option is not avail-
able, monitoring is already activated.)

Path and Host-Dependent Configuration in php .ini
As of version 5.3, PHP gives you the option to specify configuration settings in the php.ini
file, depending on the physical path of the PHP script or the host name. The configuration is
quite simple; you just need to define a section in php.ini for the respective path or host, as
follows:

■ [PATH=…] All subsequent settings apply only to this path. They are not applied to
any subfolders.

■ [HOST=…] All subsequent settings apply only to this host name. PHP checks the
SERVER_NAME variable to determine the host name. In IIS, SERVER_NAME is set to the
host name in the URL (unlike in Apache).

The settings are applied to the defined host name or path up until the next [HOST] or [PATH]
section. Other section statements, such as those in php.ini, have no effect. For this reason,
these sections should always be placed at the end of the php.ini file.

Listing 4-1 shows a configuration. The [PATH] settings apply only to the respective folder, not
to subfolders. The [HOST] setting applies to all PHP scripts independent of the physical path,
if the request takes place via the specified host name. If a setting applies to both the [PATH]
and the [HOST] setting, the [PATH] setting takes precedence.

LISTINg 4-1 Path-dependent and host-dependent settings in php.ini.

[PATH=C:\inetpub\phpdemosite\wwwroot]
open_basedir = "C:\inetpub\phpdemosite"
[PATH=C:\inetpub\secondsite]
short_open_tags = On
[HOST=manfred.phpdemo.site]
memory_limit = 256M

IIS does not automatically recognize changes to the php.ini file (unless you configured the
change monitoring). To implement the changes, the corresponding application pool must be
restarted in this case.

66 Part I Internet Information Services (IIS)

PHP Manager does not yet support path or host-dependent configurations. All settings you
make through PHP Manager’s PHP Settings | Manage All Settings affect global settings only,
and leave path or host-dependent settings untouched.

Configuring by Using .user .ini
As of PHP version 5.3, you can also configure PHP in individual configuration files directly in
the folders—similar to web.config of IIS—if you are running PHP as FastCGI. These settings
apply to the folder that contains the .user.ini file and to all subfolders.

The .user.ini files have the same structure as the standard php.ini file.

You can simply copy or move PHP configurations from a site or application to a different
location. The .user.ini file is just copied along with the rest, and thus all settings are copied,
as well.

Tip With the configuration option user_ini.filename, you can choose a different name for the
local configuration files. This can be helpful, because file names with a leading period are not
common in Windows.

The settings you specify in .user.ini files can later be changed in the PHP script with ini_set().
If you make entries in the Windows registration as well as in the .user.ini file, the Windows
registration takes precedence and prevents retroactive changes from the PHP script or
.user.ini files.

Note For Apache administrators: the .user.ini files correspond to the php_value and php_flag
statements in an .htaccess file.

Also note the following two issues:

■ For performance reasons, PHP saves .user.ini files in a cache. Changes to these files
don’t take effect immediately—only after the cache has expired (the default setting
is five minutes, which you can edit via the user_ini.cache_ttl configuration setting). To
allow a change to take effect earlier, you need to restart the corresponding IIS applica-
tion pool.

■ Searching for .user.ini files works only up to the root folder of the site (DOCUMENT_
ROOT). In the current version of PHP, this means that .user.ini files in applications out-
side the site’s root folder are valid only in the folder that contains the file itself. They
are not valid for subfolders, which limits their use in such situations.

 Chapter 4 Configuring PHP 67

Configuring by Using the Windows Registry
PHP can read settings from the Windows Registry. You can restrict these setting to just physi-
cal paths. The registry key is HKEY_LOCAL_MACHINE\SOFTWARE\PHP\Per Directory Values.

Note For 64-bit Windows, the registry key can also be HKEY_LOCAL_MACHINE\SOFTWARE\
Wow6432Node\PHP\Per Directory Values. The Wow6432Node key is for 32-bit programs that run
under 64-bit Windows.

Below this registry key the keys specify the path. For example, if you want to specify a setting
only for the path C:\inetpub\phpdemosite\apps\phpapp1, you need to use the registry key
HKLM\SOFTWARE\PHP\Per Directory Values\c\inetpub\phpdemosite\apps\phpapp1.

You need to specify the PHP setting as a string at the desired key. The setting name corre-
sponds to the name in the php.ini configuration. If you enter the setting directly at the regis-
try key Per Directory Values, the values are valid for all paths.

If you specify PHP settings in the Windows Registry, these settings can no longer be changed
with ini_set() in the PHP script. Therefore, the settings are protected against changes.
Depending on the circumstances under which you run your PHP application, this might be
precisely what you want.

To specify settings in the Windows Registry, use the Registry Editor by following this
procedure:

 1. Start the Registry Editor by clicking Start | Run. Enter regedit as the program that you
want to open.

 2. In the left pane, browse to the appropriate registry key.

 3. If the PHP key does not exist yet, create it by clicking New | Key in the context menu
of the parent registry key. Do the same for the key Per Directory Values and any other
keys for the physical path.

 4. To enter a PHP setting, select the desired key, and then click Edit | New | String Value.
Alternatively, you can use the same command from the context menu, as shown in
Figure 4-3.

68 Part I Internet Information Services (IIS)

FIgURE 4-3 Editing PHP settings in the Registry Editor.

 5. Click File, and then click Exit to close the Registry Editor.

Note For Apache administrators: the settings in the Windows Registry correspond to the
php_admin_value and php_admin_flag statements in the .htaccess file.

Configuring a FastCGI Application
Because PHP is executed in IIS via FastCGI, you can use various FastCGI applications and
handler assignments to change any configuration options on any folder level—even those
that can only be specified in php.ini.

To do so, you need to set up a new FastCGI application that loads an alternative configura-
tion file as parameter (PHP command line parameter -c). You will read more about this in the
section “Setting Up Different PHP Configurations,” later in the chapter.

Note PHP Manager does not support different FastCGI applications based on the same PHP
version. Such configurations must be done manually.

Because the settings are specified directly in the php.ini file, and the handler assignment can
be changed at any level (as long as the IIS configuration is not locked), you are free to change
any PHP settings at any location on the server, on the site, or in the application. However, this
advantage comes at the price of an increased consumption of resources (especially memory),

 Chapter 4 Configuring PHP 69

because for each FastCGI application you set up, several PHP Interpreter instances are started.
In addition, this kind of configuration can quickly become unclear: changes to PHP configu-
rations that you want to apply globally must now be implemented in all php.ini files.

Nevertheless, being able to freely change all settings (even with the change mode PHP_INI_
SYSTEM) cancels out these disadvantages in certain situations. Whether you prefer the con-
figuration via FastCGI or the path-dependent configuration in the php.ini file is contingent
upon the circumstances of your application scenario.

Specifying the Default Document
When requesting a folder, IIS gives you the option to display a document instead of the
folder contents. This default document can be a simple HTML file or a PHP script. If you
installed PHP with the Web PI or have registered PHP with the PHP Manager, the list of pos-
sible default document names already contains the name index.php; if you didn’t, that file
name is probably missing. However, the Web PI places index.php at the last position in the
list (whereas PHP Manager places it at the first position). To increase performance, you might
want to adjust the order in which IIS searches for default documents, or delete document
names you are not using.

Note With the IIS default installation, you can redefine the default document at any level. If
your installation is different, you might first need to share the configuration accordingly.

For reasons of security and performance, it makes sense to only include the default docu-
ment names in the list that you are actually using. You might also want to specify different
default documents for different applications or folders.

Specifying the Default Document by Using the IIS Manager
The following procedure describes how to use the IIS Manager to specify the default docu-
ments for a directory:

 1. Open the IIS Manager, and then in the Connections pane, select the element that you
want to configure (site, application, directory, subfolder).

 2. In the workspace, select the Default Document feature.

 3. To add a new default document, in the Actions pane, click Add.

 4. Enter the name of the default document into the dialog box, and then click OK.

Figure 4-4 demonstrates that the local settings are entered at the top.

70 Part I Internet Information Services (IIS)

FIgURE 4-4 The Default Document feature workspace.

 5. To remove default documents, select the document in the workspace, and then in the
Actions pane, click Remove.

 6. To change the order of the default documents, select the document that you want to
move, and then in the Actions pane, click Move Up or Move Down.

Caution If you are changing the order, all entries become local entries and inheritance is
no longer in effect.

Specifying from the Command Line
To specify the standard documents from the command line, use the following commands:

■ To list all default documents, run the following command:

appcmd list config /section:defaultDocument <PATH>

■ To add one default document, run the following command:

appcmd set config /section:defaultDocument <PATH> /+files.[value='content.php']

■ To remove a default document, run the following command:

appcmd set config /section:defaultDocument <PATH> /-files.[value='iisstart.htm']

■ To remove all default documents, run the following command:

appcmd set config /section:defaultDocument <PATH> /~files

Note In the preceding examples, <PATH> stands for the appropriate element; for example,
“Default Web Site/phpapp/hamster” (the quotes are necessary because of the spaces). If you
want to change the server-wide settings, just leave out <PATH>.

 Chapter 4 Configuring PHP 71

Defining Directly in the Configuration
To specify a default document in the configuration, either globally in applicationHost.config
or distributed in the web.config files, specify the entries in the configuration section system.
webServer/defaultDocument, as shown in Listing 4-2.

LISTINg 4-2 Defining the default document in the XML configuration.

<defaultDocument enabled="true">
 <files>
 <add value="index.php" />
 <add value="index.html" />
 </files>
</defaultDocument>

If you apply the specifications in Listing 4-2 to a web.config file, those default documents that
are inherited are not nullified. Use the configuration element <clear /> to remove them.

Tip To ensure that a default document is always at the top of the list—no matter if it has already
been inherited in the configuration hierarchy—enter the following:

<defaultDocument enabled="true">
 <files>
 <remove value="index.php" />
 <add value="index.php" />
 </files>
</defaultDocument>

Removing and adding the entry ensures that it is always first.

Request Limits
Using PHP with FastCGI means that the same PHP process is reused for multiple requests.
The fact that PHP does not need to be restarted for each request increases performance.
However, there is a possibility that stability can be compromised: if PHP or a PHP extension
does not release all resources due to an error, those resources remain in use. In such cases,
the server can eventually become unavailable because PHP is using all the resources.

To guard against this situation, both FastCGI and PHP provide the ability to automatically end
processes after a certain number of requests. Doing so frees up any unreleased resources.

It’s good practice to leave this automatic ending of processes to IIS—specifically, to the FastCGI
module. The FastCGI module has more information than a single PHP process; it is therefore
able to make better decisions. Also, FastCGI cannot always distinguish an automatically-ending
PHP process from an error abort.

72 Part I Internet Information Services (IIS)

Two variables control process restarts: instanceMaxRequests on the FastCGI side, and
PHP_FCGI_MAX_REQUESTS on the PHP side.

You should set the variables so that instanceMaxRequests is smaller than PHP_FCGI_
MAX_REQUESTS. This ensures that FastCGI triggers the restart.

Configuring by Using the IIS Manager
The following is the procedure to specify the restart limit by using the IIS Manager:

 1. In the Connections pane of the IIS Manager, select the server.

 2. In the workspace, select the FastCGI Settings feature.

 3. In the FastCGI Settings, select the PHP application that you want to configure, and then
in the Actions pane, click Edit.

 4. In the Edit FastCGI Application dialog box, enter the request limit for process restarts
into the Instance MaxRequests text box. The recommended value is 10,000 requests.

 5. Click the Collection button under Environment Variables.

The EnvironmentVariables Collection Editor dialog box opens.

 6. Click Add, and then in the Misc pane, in the Name text box, enter the value PHP_
FCgI_MAX_REQUESTS. In the Value text box, type the number 10001, as shown in
Figure 4-5.

FIgURE 4-5 Configuration of the environment variable PHP_FCGI_MAX_REQUESTS.

 7. Click OK to Close the open dialog boxes.

It’s not necessary to restart the server or the application pool; IIS takes care of it
automatically.

 Chapter 4 Configuring PHP 73

Configuring from the Command Line
To start the configuration from the command line, use appcmd, as follows:

 1. Start a Command Prompt window with administrator rights.

 2. To configure the FastCGI limit, run the following command:

appcmd set config /section:system.webServer/fastCgi
 /[fullPath='%PHP%\php- cgi.exe'].instanceMaxRequests:10000

 3. To add the PHP limit, run the following command:

appcmd set config /section:system.webServer/fastCgi/+"[fullPath='%PHP%\php-
 cgi.exe'].environmentVariables.[name='PHP_FCGI_MAX_REQUESTS',value='10001']"

Note %PHP% in the fullPath parameter stands for the FastCGI application that you want
to configure.

Configuring Directly in the Configuration File
You can also set the parameters directly in the configuration file applicationHost.config, in
the section system.webServer/fastCGI, as follows, and as shown in Listing 4-3:

■ Specify the FastCGI limit as the value for the attribute instanceMaxRequests in the
application configuration element.

■ Specify the PHP environment variable in the environmentVariables collection.

LISTINg 4-3 Setting the process restart limits in applicationHost.config.

<fastCgi>
 <application fullPath="C:\PHP\php-cgi.exe" instanceMaxRequests="10000">
 <environmentVariables>
 <environmentVariable name="PHP_FCGI_MAX_REQUESTS" value="10001" />
 </environmentVariables>
 </application>
</fastCgi>

74 Part I Internet Information Services (IIS)

Time Limits for Request Processing
It can take a long time to handle a request, depending on the data input and other param-
eters. A program error can also prevent a PHP program from ending. For such scenarios, you
can limit the available processing time for a request.

IIS has three crucial time limits during request processing via PHP scripts: PHP limits, FastCGI
limits, and limits by IIS itself. The IIS limit (ConnectionTimeout) is triggered only when a con-
nection is inactive for a certain amount of time, but does not interfere with the processing of
a running PHP script. Therefore, a running PHP script can only be prematurely ended when
either the PHP time limit or the FastCGI time limit has been exceeded. The following is a
description of these configuration limits.

PHP Limits
You can define two time limits in PHP:

■ max_execution_time Specifies the maximum script execution time in seconds

■ max_input_time Specifies the maximum time (in seconds) that is available for read-
ing and evaluating input data (for example $_POST, $_FILES). This limit is especially
important for large files and slow connections.

You can set both values in the PHP configuration, or you can use PHP Manager, which pro-
vides an interface for setting those limits (click PHP Manager | PHP Settings | Set Runtime
Limits).

FastCGI Limits
FastCGI recognizes two time limits: the time a PHP application can use to process the request,
and the time a request can wait before it’s executed. The latter is crucial only during work-
load peaks: if more requests arrive than the number of PHP processes available to handle
them, the requests are added to a waiting list, and are subsequently handled in sequence. If
a request has been waiting too long for processing, it is removed from the waiting list and an
error message is sent to the requesting client.

Configuring by Using the IIS Manager
To configure the time limits by using the IIS Manager, perform the following:

 1. Open the FastCGI Settings feature of the desired server in the IIS Manager.

 2. Select the FastCGI application that you want to configure from the list, and then in the
Actions pane, click Edit.

The Edit FastCGI Application dialog box opens.

 Chapter 4 Configuring PHP 75

 3. In the Process Model section, in the Activity Timeout field, you can configure the time
that the PHP script has for execution.

 4. In the Request Timeout field, you can specify the time that a request can stay in the
waiting list for execution.

 5. Click OK to apply your entries.

Configuring from the Command Line
You can specify the activity timeout by using the following appcmd command:

appcmd set config /section:system.webServer/fastCgi
 /[fullPath='%PHP%\php-cgi.exe'].activityTimeout:90

To set the request timeout, use the following command:

appcmd set config /section:system.webServer/fastCgi
 /[fullPath='%PHP%\php-cgi.exe'].requestTimeout:90

Note %PHP% stands for the complete path to the PHP application that you want to configure.

Session Storage and Temporary Files
By default, PHP saves session data (accessible via $_SESSION) and temporary files in the
directory C:\Windows\Temp. You can retrieve the folder PHP is currently using for session
storage by using session_save_path(). The directory for temporary files, for example, those
created during file upload, can be read with sys_get_temp_dir().

You can change these folders by setting the configuration values session.save_path and
upload_tmp_dir in php.ini to your preferred folders. Alternatively, you can set them in PHP
Manager by using the command PHP Settings | Manage All Settings. In both cases, you must
ensure that PHP has the necessary permissions for the folders.

To change permissions for folders, perform the following:

 1. Right-click the folder in Windows Explorer, and then in the context menu, click
Properties.

 2. Browse to the Security tab, and then click Edit.

 3. In the Permissions dialog box, click Add.

 4. Enter IIS_IUSRS as the object name, and then click OK.

Note If the user is not recognized, ensure that the Search Path field in the dialog box contains
the current computer, not the domain.

76 Part I Internet Information Services (IIS)

 5. Select IIS_IUSRS in the list box, and then give it the additional right, Change.

 6. Click OK to close the dialog box.

Restart the PHP application pool to apply the changed configuration. Now PHP uses the
directories you specified for the session storage and for temporary files.

In Chapter 6, “Caching,” you learn how to use the WinCache PHP extension as session
memory.

Setting Up PHP Syntax Highlighting
With PHP, you can display the source code of a PHP file with colored syntax highlighting. You
can accomplish this in two ways: by using a handler for all files with the extension .phps, or
with the URL Rewrite module.

Configuring Syntax Highlighting by Using the IIS Manager
To set up the handler for PHP syntax highlighting via the IIS Manager, perform the following
procedure:

 1. Open the IIS Manager, and then in the Connections pane, select the server.

 2. Select the Handler Mappings feature in the workspace.

 3. In the Actions pane, click Add Module Mapping to start the assignment.

The Add Module Mapping dialog box opens, as shown in Figure 4-6.

FIgURE 4-6 Adding a module assignment for PHP source code.

 Chapter 4 Configuring PHP 77

 4. Enter the following data into the text boxes:

● Request Path: *.phps

● Module: FastCgiModule

● Executable (Optional): %PHP%\php-cgi.exe|-s

Be sure to separate the parameter from the program path with a pipe character
(|) (not a space).

● Name: PHP source code (as desired)

 5. Click the Request Restrictions button.

 6. On the Mapping tab, select the check box, and then select the option File.

 7. Browse to the Verbs tab, select the option One Of The Following Verbs, and then type
gET, HEAD in the text box.

 8. Click OK to close the Request Restrictions dialog box.

 9. Confirm your entries by clicking OK.

 10. Click Yes in response to the pop-up asking whether you want to set up a new FastCGI
application.

Now, when you call up a file with the extension .phps, the PHP source code automatically
displays with colored syntax, as shown in Figure 4-7.

FIgURE 4-7 The source code of the number guessing example from Chapter 1, “Setting up the Work
Environment,” displayed in color. In this illustration the colors are represented as shades of gray.

Caution Source code can provide hints about potential weak spots for attackers. Think care-
fully about which source code files you make accessible and which servers you want to allow to
display files that contain source code.

78 Part I Internet Information Services (IIS)

Configuring from the Command Line
You can also set up the syntax highlighting from the command line by using appcmd:

 1. Start a Command Prompt Window with administrator rights.

 2. To configure the FastCGI application pool, run the following command:

appcmd set config /section:system.webServer/fastCGI
 /+["fullPath='%PHP%\php-cgi.exe',arguments='-s'"]

 3. To configure the handler assignment, run the following command:

appcmd set config /section:system.webServer/handlers
 /+["name='PHP_Quellcode',modules='FastCgiModule',
 scriptProcessor='%PHP%\php-cgi.exe|-s',verb='GET,HEAD',
 path='*.phps',resourceType='File'"]

Set the path to php-cgi.exe, according to the PHP installation that you want to configure.

Setting Up Different PHP Versions
PHP via FastCGI permits you to use different PHP versions on the same server—and even in
the same site, if desired. This is possible because you can use different handler assignments
for different paths.

In the following subsections, you will learn how to install PHP version 5.2, in addition to PHP
version 5.3. You can apply the description to other PHP versions as well. This procedure leads
you step-by-step through a manual installation, because installing different PHP versions
with the Web PI is (currently) not possible.

Installing a New PHP Version
First, you need to install the new PHP version, as follows:

 1. Open the website http://windows.php.net/download/.

 2. Download the current PHP version, 5.2.x (at time of this book’s printing: 5.2.17) as a zip
archive. Select the VC6 x86 Non Thread Safe version.

 3. Extract the zip file into a folder of your choosing. This book uses the folder C:\PHP_5_2.

 4. Copy the file C:\PHP_5_2\php.ini-recommended to C:\PHP_5_2\php.ini.

 5. Open the file C:\PHP_5_2\php.ini in an editor, and then set the following configuration
options:

date.timezone = "Pacific/Auckland"
cgi.force_redirect = 0

 Chapter 4 Configuring PHP 79

Configuring by Using the PHP Manager
PHP Manager makes it very easy to configure the new PHP version:

 1. Start the IIS Manager.

 2. In the Connections pane, select the desired element.

 3. Select the PHP Manager feature in the workspace, and then click PHP Setup | Register
New PHP Version.

 4. Provide the path to the php-cgi.exe executable in the dialog window, and then click OK.

That’s it. PHP Manager creates the necessary FastCGI application and handler mappings. It
also sets the newly configured PHP version as the default version of the element that you
selected in the first step. Afterward, you can change the PHP versions on any level by going
to the desired element in the Connections pane, starting PHP Manager, and then changing
the version by clicking PHP Setup | Change PHP Version.

Although PHP Manager does not handle different FastCGI applications based on the same
PHP version, it is easy to set up different PHP versions and assign them to sites, applications,
or subfolders. Just keep in mind that all locations with the same PHP version share the same
PHP configuration.

Configuring the Handler Assignment
If you do not use the PHP Manager, you need to configure the handler assignment yourself.
The configuration can take place at your desired level (site, application, virtual directory,
subfolder).

Configuring by Using IIS Manager
To specify the handler assignment by using IIS Manager, perform the following:

 1. Open the IIS Manager.

 2. In the Connections pane, select the desired element.

 3. Select the Handler Mappings feature in the workspace.

 4. If an assignment for *.php exists already, delete it by going to the Actions pane, and
clicking Remove.

 5. In the Actions pane, click Add Module Mapping to create a new assignment.

80 Part I Internet Information Services (IIS)

 6. Enter the following values for the assignment into the text boxes:

● Request Path: *.php

● Module: FastCgIModul

● Executable: C:\PHP_5_2\php-cgi.exe

● Name: PHP 5.2 via FastCgI

 7. Use the Request Restrictions button to limit the assignment, as desired.

 8. Click OK to confirm your entries.

 9. Click Yes in response to the pop-up asking whether you want to set up a new FastCGI
application.

Configuring from the Command Line
To specify the handler mapping from the command line, run the following command:

appcmd set config /section:system.webServer/handlers <Path> /+[name='PHP_52_via_FastCGI',
 modules='FastCgiModule',scriptProcessor='C:\PHP_5_2\php- cgi.exe', verb='*',
 path='*.php',resourceType='File']

Note <Path> stands for the (virtual) path to the element that you want to configure (for
example PHP Demo Site/php52).

Configuring the FastCGI Application
Finally, you need to configure the FastCGI application—unless you used PHP Manager for
the setup. It’s important that you configure the path to the php.ini file. PHP offers different
options for specifying the path. Here, you’ll use the environment variable PHPRC.

Configuring by Using the IIS Manager
If you set up the handler assignment via the IIS Manager, FastCGI will already have been gen-
erated. All you need to do is set the environment variable as follows:

 1. Open the IIS Manager, and then select the feature FastCGI Settings.

 2. Select the appropriate FastCGI application, and then in the Actions pane, click Edit.

The Edit FastCGI Application dialog box opens.

 3. In the dialog box, click Environment Variables | Collection.

 Chapter 4 Configuring PHP 81

 4. Click Add. In the right pane, in the Name text box, enter PHPRC; in the Value text
box, enter the absolute physical path to the php.ini file (C:\PHP_5_2\php.ini), and
then click OK.

 5. Click OK to complete the configuration.

Configuring from the Command Line
To configure the FastCGI application from the command line, run the following commands:

 1. To set up the application:

appcmd set config /section:system.webServer/fastCGI
 /+[fullPath='C:\PHP_5_2\php-cgi.exe']

 2. To Specify the PHPRC environment variable:

appcmd set config /section:system.webServer/fastCgi
 /+"[fullPath='C:\PHP_5_2\php-cgi.exe'].environmentVariables.
 [name='PHPRC',value='C:\PHP_5_2\php-cgi.exe']"

Testing
To test the settings, you can either create and execute a file in the desired directory with the
following content:

<?php phpinfo() ?>

Or, you can use the program from Listing 4-4.

LISTINg 4-4 Using info.php to gather information about PHP version and the php.ini path.

<html>
<head><title>PHP Version</title></head>
<body>

 PHP version: <?php echo phpversion(); ?>
 Path to php.ini:
 <?php
 $inipath = php_ini_loaded_file();
 echo empty($inipath) ? 'No php.ini loaded' : $inipath;
 ?>

 Physical script path: <?php echo __FILE__ ?>

</body>
</html>

82 Part I Internet Information Services (IIS)

Not only can you use two different PHP versions on one server or one site, you can even
run the same PHP script with different PHP versions. To do this, you must be able to reach
the script that you want to execute via two different URL paths that have two different han-
dlers assigned to them, as follows:

 1. Set up a path (application, virtual directory, or folder) for the first handler mapping for
PHP version 5.3 (for example, /php53).

 2. Set up a path for the second handler mapping for PHP version 5.2 (for example, /php52).

 3. Set up a virtual directory in /php53 and in /php52 that both point to the folder contain-
ing the PHP scripts that you want to execute.

Because of the path, IIS recognizes which handler mapping should be selected, and there-
fore, which PHP version to execute. The virtual directories, however, point to the same folder.
Listing 4-5 demonstrates how you can show the parallel execution. Figure 4-8 shows the
result.

LISTINg 4-5 Parallel script execution with different PHP versions.

<html>
<head><title>Two PHP versions on the same server</title></head>
<body>
 <h1>PHP 5.3</h1>
 <iframe src="php_5_3/php_x2/info.php" height="100" width="80%"></iframe>
 <h1>PHP 5.2</h1>
 <iframe src="php_5_2/php_x2/info.php" height="100" width="80%"></iframe>
</body>
</html>

FIgURE 4-8 The window showing the result of parallel script execution with different PHP versions.

 Chapter 4 Configuring PHP 83

Setting Up Different PHP Configurations
Just as you can set up different PHP versions to run on the same server, you can also run
different configurations on a server for a single PHP version.

IIS differentiates FastCGI applications for the handler assignment, based on two properties:
the path of the executable file, and the passing parameters. If, as in this case, you are dealing
with different applications for the same PHP version (the same executable file), the only way
to differentiate the FastCGI applications from each other is to give PHP different parameters
when calling them. Because you want to use different configurations, it makes sense to use
the parameter -c for specifying the php.ini path.

Note To use the path as the differentiator for different PHP configurations, follow the instruc-
tions in the preceding section, “Setting up Different PHP Versions.”

 1. Create an alternative php.ini configuration.

 2. For the desired configuration element (site, application, and so on), remove the existing
*.php handler assignment, if such an assignment exists.

 3. Add a new handler assignment for the configuration element.

Separate the parameters from the executable file with a pipe, for example:
C:\PHP\php-cgi.exe|-c C:\PHP\alternative-php.ini.

 4. Create the corresponding FastCGI application or let the IIS Manager generate it.

 5. Check your configuration with a simple phpinfo() PHP script.

Note PHP Manager currently does not support different configurations for the same PHP
version. Therefore, such configurations must be set up manually.

Summary
You can configure PHP under IIS in a very flexible manner. In particular, path-dependent and
hostname-dependent configuration facilitates the installation of different PHP applications
on the same server. By configuring different PHP versions on the same server—or even the
same site—you can migrate to new PHP versions gradually, application by application. This is
a very helpful feature for installations with many applications, but thanks to FastCGI, you can
implement it easily.

The next chapter discusses security aspects of the configuration and how PHP executes
under IIS.

 85

Chapter 5

Security

Due to its modular structure and integrated security philosophy, Internet Information
Services (IIS) 7 is a very secure platform for running websites. IIS offers multiple features for
securing PHP applications. One of the most important of these features is the ability to assign
a specific user account to each application. This gives you the ability to clearly manage data
access at file-system level by using access control lists (ACLs). The application must be struc-
tured accordingly, which is why you will see information about structuring your application
first. Later in the chapter, you’ll see tips on how to secure your PHP configurations as well as
an in-depth discussion of identity and access rights for PHP processes. The Authentication,
Authorization, and Request Filter features, along with the configuration of encrypted connec-
tions with HTTPS provide you with a good overview of the security features of IIS combined
with PHP.

In this chapter:
Structuring the Application . 86
PHP Configuration . 90
User Authentication . 92
Identity and Access Rights . 96
Authorization Rules . 98
Request Filter . 101
Encrypted Connections (HTTPS) . 109
Summary . 115

86 Part I Internet Information Services (IIS)

Structuring the Application
Because of the highly granular configuration of IIS, you can significantly increase the security
of a PHP application by arranging the file and folder structure. The ability to configure IIS in
such a way that PHP or other programs are only run in defined directories is the cornerstone
of this approach.

A

 PHP application usually consists of the following parts:

■ PHP scripts that can be called directly via a URL.

■ PHP scripts that are included by other PHP scripts, but are not called directly them-
selves—for example, third-party libraries or include files.

■ Data files—for example, pictures, graphics, CSS files, or downloadable files.

■ A writable, publicly-accessible zone for storing data permanently.

■ A writable area for permanent files not publicly accessible via a URL—for example, to
hold configuration files or log files.

■ An area for temporary data storage—for example, to hold files while they are pro-
cessed by a PHP script.

The properties of these areas can be divided into three dimensions:

■ Executable/Not executable (Can PHP scripts be executed?)

■ Public/Private (Can the area be accessed via a URL?)

■ Read-only/Read and write (Do the access rights allow editing the area?)

Depending on which properties an area has, you can grant custom rights with the IIS config-
uration. Figure 5-1 shows an example of a typical application structure, based on what you've
learned thus far.

 Chapter 5 Security 87

PHP application
\

Public zone
\wwwroot

Private zone
\private

Temporary data
\logs, \temp

PHP scripts
\php

Images, CSS, etc.
\img, \style, \data

User data
\upload

PHP scripts
\php

Configuration, data
\config, \data

Variable data
\userconfig, \vardata

FIgURE 5-1 The folder structure of a PHP application.

From this point on, this chapter assumes that the PHP application has not been installed at
the website level, but is instead configured as one of the website’s multiple applications. You
can then use the configuration and process information in the same fashion for a PHP appli-
cation that is the root application of a website.

Root Folder or Virtual Directory
When installing a PHP application, you first need to determine whether you want to set up
the application inside or outside of the website’s physical root folder. Both approaches have
advantages and disadvantages.

88 Part I Internet Information Services (IIS)

Setup in the Root Folder
Installing the application in the root folder gives you the advantage of keeping the physical
path identical to the URL path. This simplifies website administration; however, there is a
considerable disadvantage: by default, all files and folders within the root folder are accessi-
ble via a URL, which means that they are publicly accessible. For security reasons, you should
not allow users to access the private zone of the application via a URL. Therefore, you need
to configure IIS in such a way that requests for files in the private zone are rejected. To do
so, you can use a request filter based on the URL, as described in the section “Request Filter,”
later in this chapter. You should also exclude any folders for temporary files.

Caution If you want to set up additional folders in the application, you need to check each time
whether the new folder must be added to the filter.

Setup with a Virtual Directory
As an alternative to setting up the application in the root folder, you can embed the appli-
cation by using a virtual directory. Figure 5-2 shows a possible folder structure: outside of
the root folder of the site, an additional folder, \apps, is created that contains the individual
applications.

PHP demo site
\

Root folder
\wwwroot

Application
\apps

Temporary data
\logs, \temp

Application 1
\phpapp1

Application 2
\phpapp2

Application 3
\phpapp3

FIgURE 5-2 The folder structure for applications based on virtual directories.

 Chapter 5 Security 89

You should set the physical path of the virtual directory to the public zone of the applica-
tion right away, for example \apps\phpapp1\wwwroot. This also automatically excludes other
application folders that you might create later from public access.

Specifying the Executable Files
Executable files are PHP scripts that are called by a URL and executed by the PHP Interpreter.
This means that executable PHP scripts must meet two requirements: the file you are work-
ing with must be located in the public zone of the application, and IIS must have a handler
assignment that executes these files via PHP.

Note PHP scripts outside of an application’s public zone are not directly executable via a URL
request; therefore, they are not considered executable in this context.

Configuring the Handler Assignment
With IIS, you can change the handler assignment on all levels of the website, if the configura-
tion has not been locked. To ensure that the configuration is secure, only the \php folder (or
folders with executable PHP scripts) in the public zone should have a handler assignment for
PHP. No other folder!

Configuring the Request Filter
Because the handler assignment is typically based on the file extension (*.php), you can also
exclude access to PHP files outside of the \php folder with the request filter as an alternative
to configuring the handler assignment. The advantage of this option is that the source code
of the PHP files is not sent as a substitute, because general access is denied.

PHP Scripts in the Root Folder of the Public Zone
If PHP scripts are located directly in the root folder of the application’s public zone, for
example index.php, you have two options for separating executable folders from the others.

The first approach assumes that the PHP scripts in the public zone are always executable and
you remove this right from the data folders (for example, \img, \data, \upload). The problem
with this approach is that you must not forget to remove this directly from any folders you
create later on.

The second approach prohibits the execution of PHP scripts in the public zone in general.
You only configure the execution for the \php folder. You need to move any PHP scripts
that are located in the root folder into the \php folder. You can then redirect or rewrite user
requests by using URL Rewrite (see Chapter 7, “URL Rewrite”).

90 Part I Internet Information Services (IIS)

Important Ensure that PHP scripts cannot be executed in writable folders. An attacker who
could execute his own PHP script on your server would have a much easier time than an attacker
who didn’t have this option.

PHP Configuration
PHP provides some configuration settings that impact the security of PHP applications.
Among other things, these settings have an effect on which files allow PHP access, how to
use variables, and which functions can be executed.

Table 5-1 contains general security-relevant configurations. It does not list settings for the
PHP Safe Mode, because its security is deceptive and should instead be taken care of by
using separate application pools. You should avoid escaping input data automatically,
because this option does not sufficiently take into account the different encoding of input
data and the various ways of escaping data for databases.

TABLE 5-1 General security settings

Configuration Value Description
allow_url_fopen Off Denies access to external resources on other servers (but

not for special extensions such as cURL)

allow_url_include Off Prohibits embedding PHP scripts from external sources: if
allow_url_fopen is set to On, this setting should be Off

default_charset Character set Specifies the default character set that is sent in the HTTP
header Content-Type such as UTF-8

disable_classes Class list Lists PHP classes that must not be instantiated

disable_functions Function list Lists PHP functions that must not be executed; for example,
exec, dl, passthru, shell_exec, system, eval, popen, fsockopen,
proc_open, proc_get_status, proc_nice, proc_terminate, show_
source, stream_socket_server, symlink, link, lchgrp, lchown,
chown, chgrp, posix_initgroups, posix_kill, posix_mkfifo,
posix_mknod, and posix_setegid, posix_seteuid, posix_setgid,
posix_setpgid, posix_setsid, posix_setuid

enable_dl Off Prohibits dynamic reloading of extensions

expose_php Off Reduces the information that becomes visible from the
outside via PHP

magic_quotes_gpc Off Prevents automatic escaping of input data

magic_quotes_runtime Off Prevents automatic escaping of data from external sources

open_basedir Path Limits data access to folders (and subfolders); the path
should end with a back slash

register_globals Off Prevents input data from being registered as global
variables

 Chapter 5 Security 91

Table 5-2 lists settings for limiting resources. You should adjust the values according to the
requirements of your application.

TABLE 5-2 Resource limits

Configuration Value Description
file_uploads Off Permits (On) or prohibits (Off) the uploading of files

max_execution_time 30 Maximum time in seconds that a PHP may take

max_input_time 60 Maximum time in seconds that it may take PHP to read the input
data

memory_limit 16M Maximum memory usage

post_max_size 8M Maximum size of incoming HTTP POST data (including files to
upload)

upload_max_filesize 2M Maximum size of files to upload

upload_tmp_dir Path Temporary folder for uploaded files: should be located outside of
DOCUMENT_ROOT and only accessible to PHP users

Tip PHP Manager provides a special interface for setting most of the options in Table 5-2.
For the desired PHP version, open PHP Manager from within IIS Manager, and then go to PHP
Settings | Set Runtime Limits.

Table 5-3 contains the settings regarding error logs and error output. Unlike what you might
expect, display_errors=Off only takes effect if log_errors=On and the file specified in error_log
is writable. In production environments, the values should be set as shown, in development
environments, errors can also be displayed directly.

TABLE 5-3 Error output and log

Configuration Value Description
display_errors Off Suppresses the error display

display_startup_errors Off Suppresses the error display on PHP start

error_log Path to file Log file that should be located outside of DOCUMENT_ROOT

error_reporting E_ALL Reports all errors (alternatively: E_ALL|E_STRICT)

log_errors On Logs the errors

Tip PHP Manager provides two error reporting profiles appropriate for a development or
production environment. Open PHP Manager for the desired PHP version, and then go to PHP
Settings | Configure Error Reporting. There, you can select one of the two profiles and set the
error log file.

92 Part I Internet Information Services (IIS)

Table 5-4 shows the settings for PHP session management. Session IDs in URLs should be
prohibited, because they allow or facilitate attacks on sessions (session fixation, session
hijacking).

TABLE 5-4 Configuration for the PHP session function

Configuration Value Description
session.cookie_httponly On Prevents session IDs from being read by using JavaScript

session.cookie_secure On/Off Set to On for HTTPS websites; otherwise, Off

session.hash_function 1 Use SHA-1 instead of MD5

session.save_path Path Set to a folder that is located outside of DOCUMENT_ROOT
and can only be read by the executing PHP users

session.use_only_cookies On Prohibits the use of session IDs in URLs

session.use_trans_sid Off Prohibits the use of session IDs in URLs

User Authentication
Users can be authenticated in two different ways: either within the PHP application itself or
via the authentication mechanisms of the HTTP protocol. Using the first method, the PHP
application retrieves the user name and password—both are transferred as plain text—and
checks the data against locally saved user data. If the check is successful, cookies or the PHP
session function are used to assign an authenticated session ID to the user.

If authentication takes place via the HTTP protocol, IIS (instead of the PHP application) can
take care of the user management and the authentication. Such an authentication not only
protects PHP scripts, but also all resources within the order structure that you are using.

With HTTP and IIS, the user can be authenticated in three ways:

■ Basic authentication (Basic) The password is transferred as plain text.

■ Digest authentication (Digest) The password is transferred encrypted.

■ Windows Authentication (NTLM, Negotiate) Authentication takes place via the
secure NT LAN Manager (NTLM) protocol and permits you to pass the Windows logon
to the server, which allows for website single sign-on.

Which authentication method you want to use depends on the conditions in which you want
to use it. The default authentication always works, but it should only be used for encrypted
connections. The digest authentication works with many browsers, but does not function well
with Mozilla Firefox. The Windows Authentication works with all modern browsers but is not
supported by cell phones.

 Chapter 5 Security 93

Installing the Required Role Services
Before you can use the additional authentication methods, you must install the necessary IIS
role services.

Installing the Authentication Role Services by Using the Server Manager
To install the authentication role services by using the Server Manager, perform the following
steps:

 1. Open the Server Manager.

 2. Click Roles, and then right-click Web Server (IIS). From the context menu, click Add Role
Services.

 3. In the Web Server section, in Security, select the Basic Authentication, Windows
Authentication, and Digest Authentication options.

 4. Click Next, and then click Install.

Installation via the Web Platform Installer
To install the authentication role services by using the Web Platform Installer (Web PI), perform
the following steps:

 1. Start the Web PI.

 2. Click Products | Server, and then add the IIS: Basic Authentication, IIS: Windows
Authentication, and IIS: Digest Authentication options.

 3. Click Install, and then click I Accept.

You have now completed the installation and can configure the authentication method in IIS.

Setting Up User Authentication by Using IIS Manager
To set up user authentication by using the IIS Manger, perform the following steps:

 1. In the Connections pane of IIS Manager, select the item that you would like to secure
via authentication.

 2. Open the Authentication feature by double-clicking it.

 3. Select Anonymous Authentication, and then in the Actions pane, click Disable.

94 Part I Internet Information Services (IIS)

 4. Select the type of authentication that you want, and then in the Actions pane, click
Enable.

You can also enable several types:

● When using basic authentication, you can specify names for the application’s
authentication realm and default domain in the Actions pane by clicking Edit.

● When using Digest authentication, you can specify a name for the authentication
realm.

● When using Windows authentication, you can enable extended security in the
Actions pane by clicking Advanced Settings. This setting only makes sense for
websites encrypted by using HTTPS. In this case, the option should be set to
Accept.

Now you have enabled the user authentication for this site or directory.

Setting Up User Authentication from the Command Line
With appcmd, you can specify the authentication for a certain path. Use the following com-
mand to prevent anonymous authentication:

appcmd set config <PATH> /section:anonymousAuthentication /enabled:false

Note If you receive an error message that the configuration section is locked, unlock it for the
authentication sections, as described in Chapter 3, “Configuring IIS.”

Use the following command to enable the default authentication:

appcmd set config <PATH>/section:basicAuthentication
 /enabled:true /realm:MyArea /defaultLogonDomain:"<Domain>"

Use the following command to enable the Digest authentication:

appcmd set config <PATH> /section:digestAuthentication /enabled:true /realm:MyArea

Use the following command to enable the Windows authentication:

appcmd set config <PATH> /section:windowsAuthentication
 /enabled:true /extendedProtection.tokenChecking:Allow

Windows Authentication and Host Names
If you are using Windows authentication and are using a server name that is not the same as
the computer name in the URL, calling the page from your local computer that is running IIS
will fail. This happens because Windows authentication also checks the computer name.

 Chapter 5 Security 95

Note You can enter the server name via C:\Windows\System32\drivers\etc\hosts or in your local
DNS-Server.

Local Authentication
To be able to use a different server name, do the following:

 1. Click Start | Run, and the type regedit to start the Registry Editor.

 2. Change the following two keys:

● You can also turn off the name check during authentication: to do so, go to
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Lsa, and then create
a new DWORD entry called DisableLoopbackCheck. Set its value to 1.

● Alternatively, you can add the desired domain name: go to HKEY_LOCAL_
MACHINE\SYSTEM\CurrentControlSet\Control\Lsa\MSV1_0, create a new multi-
part string entry named BackConnectionHostNames, and then enter the
desired host names (one per line) there.

 3. Close the Registry Editor and restart IIS.

Authentication Against Active Directory
During the authentication of domain users, the Windows authentication can also fail when
the additional domain names are not known in Microsoft Active Directory. Use the command
setspn to add names, as shown in the following:

setspn -A HTTP/<domain> <computer name>
Example: setstpn -A HTTP/www.phpdemo.site websrv

Use the following command to view the currently entered services:

setspn -L <computer name>

Retrieving the Authentication in PHP
In PHP, you can retrieve the user name via three different variables:

■ $_SERVER[“LOGON_USER”] contains the name of the assigned user account (possibly
after a change of identity with an IIS authentication filter) that is used for the request.

■ $_SERVER[“AUTH_USER”] and $_SERVER[“REMOTE_USER”] contain the (raw) user name
exactly as it is retrieved from the HTTP headers.

Tip Normally, you should use $_SERVER[“LOGON_USER”] to retrieve the current user.

96 Part I Internet Information Services (IIS)

Identity and Access Rights
For access rights to files and external data sources, such as SQL Server and Active Directory,
it’s important to understand with which identity and with which rights PHP is run. The rights
depend on various settings in IIS and PHP.

The access rights or the identity of PHP scripts are the result of the following rules, which are
applied one after the other. PHP takes the identity of the first rule that applies:

 1. fastcgi.impersonate=0 Uses the identity of the IIS application pool, for example
IISAppPool\DefaultAppPool.

 2. Path log-on information exists You can configure specific user accounts for IIS
applications and virtual directories. PHP takes the identity of the configured user.

 3. Authenticated web user PHP takes the identity of the web user.

 4. Anonymous web user The IIS-internal anonymous user NT AUTHORITY\IUSR is
applied.

Note PHP only applies the identity of an authenticated web user if fastcgi.impersonate=1 and
there is no path logon information.

Next, you’ll see how to define the identities of the application pool, the anonymous user, and
the path logon information.

Identity of the Application Pool
You can define the application pool identity separately for each pool. By default, application
pool identities (also custom accounts) are assigned dynamically to the group IIS_IUSRS. The
security ID (SID) of the application pool’s integrated account is also included in the process
(for example, IIS AppPool\DefaultAppPool). You can always bind the access rights of files to
the account of the application pool or to the group IIS_IUSRS.

To specify the application pool identity by using IIS Manager, perform the following steps:

 1. In the IIS Manager, in the Connections pane, click Application Pool, and then from the
drop-down list, select the desired application pool.

 2. In the Actions pane, click Advanced Settings.

 3. Select Process Model | Identity.

 4. In the dialog box that opens, you can now choose from a list of integrated accounts or
specify your own user.

 5. Click OK to close the dialog boxes and apply the entries.

 Chapter 5 Security 97

You can use appcmd to specify the application pool identity. For example, the following
command denotes a specific user:

appcmd set apppool <Pool name> /processModel.identityType:SpecificUser
 /processModel.userName:manfred /processModel.password:top-secret

Path Logon Information
For applications and virtual directories, you can define a user who is employed by IIS, and
therefore, also by PHP (assuming fastcgi.impersonate=1) to access the data.

To specify the path logon information by using IIS Manager, perform the following steps:

 1. In the Connections pane of IIS Manager, select the site, the application, or the virtual
directory.

 2. In the Actions pane, click Basic Settings.

 3. In the dialog box that opens, click Connect As.

 4. In the new dialog box, you can either specify a certain user or select the application
user (Pass-Through Authentication).

 5. Click OK to confirm your entries.

You can also use appcmd to specify the path logon information. For example, use the follow-
ing command to specify a virtual directory for a certain user:

appcmd set vdir <PATH> /userName:manfred /password:top-secret

Specifying the Identity of the Anonymous User
You can specify the identity of the anonymous user directly by using the authentication
feature. To do so, perform the following steps:

 1. In IIS Manager, open the authentication feature for the desired item.

 2. In the work area, select Anonymous Authentication, and then in the Actions pane, click
Edit.

 3. In the dialog box that opens, you can now specify the user or use the application pool
identity. The user IUSR does not need a password.

 4. Click OK to complete your entry.

You can also use appcmd for this setting, for example:

appcmd set config <PATH> /section:anonymousAuthentication /userName:tony /password:top-secret

98 Part I Internet Information Services (IIS)

Securing the PHP Application
Based on the enabled identity, you can grant individual rights for PHP applications or files
on the server. This makes it possible to separate the applications, based on file access rights
(based on ACLs), which increases security tremendously.

Caution When accessing other files (for example graphics), IIS has the same rights as PHP, if
fastcgi.impersonate=1. To keep the rights consistent you should therefore always run PHP with
the configuration fastcgi.impersonate=1.

To grant access to files and folders only to users who are permitted, perform the following
steps:

 1. In the Windows Explorer, select the file or folder, and then click the Properties com-
mand in the context menu.

 2. On the Security tab, click Edit.

 3. Click Add to add the desired user and specify the rights in the list box below.

For PHP scripts and other files, the Read right is sufficient.

 4. To remove inherited users from the rights (for example, the read access for the Users
group), on the Security tab, click Advanced, and then click Change Permissions. Clear
the Include Inheritable Permissions check box from this object’s parent. In the dialog
box that appears, click Add.

Afterward, you can edit the access rights for the other principals or remove the princi-
pals completely.

To grant access from the command line, use the command icacls as shown here:

icacls auth.php /inheritance:d
icacls auth.php /grant "IIS AppPool\DefaultAppPool":R /remove "PREDEFINED\user"
icacls auth.php

The first two commands remove the rights inheritance and the rights of the Users group. In
addition, the DefaultAppPool is assigned read/write permission for the file auth.php. Finally,
the last line lists the current permissions for the auth.php file.

Authorization Rules
You can control access to sites and applications based on user authentication; for example,
you can grant or deny access to specific groups or users by using authorization rules.

 Chapter 5 Security 99

IIS provides two types of authorization rules: permission rules and rejection rules. The latter
always take precedence. If a user or a group to which the user belongs is part of a rejection
rule, access is always denied. You can create rule restrictions that apply only to individual
HTTP verbs, which allows you to share sensitive areas for read access (GET, HEAD), but not for
changes that typically take place with forms, via POST.

Installing the Required Role Services
You must install the necessary authorization IIS role service before you can start.

Installing Authorization Role Services by Using the Server Manager
To install the authorization role services by using the Server Manager, perform the following
steps:

 1. Open the Server Manager.

 2. Click Roles, and then right-click Web Server (IIS). From the context menu, click Add Role
Services.

 3. In the Web Server/Security section, select the URL Authorization option.

 4. Click Next, and then click Install.

Installation via the Web PI
To install the authorization role services by using the Web PI, perform the following steps:

 1. Start the Web PI.

 2. Click Products | Server, and then add the option IIS: URL Authorization.

 3. Click Install, and then click I Accept.

You have now completed the installation and can configure authorization rules in IIS.

Defining the Rules by Using IIS Manager
You can also specify authorization rules via IIS Manager. To do so, perform the following steps:

 1. In the Connections pane of IIS Manager, select the desired item.

 2. Open the Authorization Rules feature by double-clicking it.

 3. To set up a new permission rule, in the Actions pane, click Add Allow Rule. (For a new
rejection rule, in the Actions pane, click Add Deny Rule.)

The Add Allow Authorization Rule dialog box opens.

100 Part I Internet Information Services (IIS)

The rule can be applied to all users, all anonymous users, certain roles, user groups, or
users (see Figure 5-3). You can restrict it to certain HTTP verbs (for example POST).

FIgURE 5-3 The Add Allow Authorization Rule dialog box, in which you can add an authorization
permission rule.

 4. Click OK to create the rule.

Defining the Rules from the Command Line
To manage authorization rules from the command line, use appcmd as follows:

■ To add a permission rule for certain users:

appcmd set config <PATH> -section:security/authorization
 /+[accessType='Allow',users='doris,julia']

■ To add a rejection rule for certain roles or groups:

appcmd et config <PATH> -section:security/authorization
 /+[accessType='Deny',roles='xmp\hamsterlovers']

■ To set up a permission rule for all anonymous users for access with HTTP GET:

appcmd set config <PATH> -section:security/authorization
 /+[accessType='Allow',users='?',verbs='GET']

Note For authorization rules, use the following syntax:

■ To represent all users: users="*".

■ To represent all anonymous users: users="?".

 Chapter 5 Security 101

Request Filter
IIS 7 provides a request filter feature that automatically filters and rejects unwanted requests.
The request filter is called very early in the processing chain of an HTTP request so that it can
prevent malicious or unwanted requests quickly and efficiently. This makes the request filter
an effective tool for securing your PHP application.

If the filter denies a request, IIS returns an error message to the browser containing the status
code 404. The status subcode provides you more details about the reason for the filtration. If
IIS is configured to display detailed error messages, the response includes the reason for the
denial.

The request filter has eight different settings or functions:

■ general settings These settings handle request limits and coding of strings (see the
section “Defining General Settings,” later in this chapter).

■ Limits to the length of individual HTTP headers Defines size limit in bytes for
specified headers.

■ Restrictions of permitted HTTP verbs Specifies which HTTP verbs are allowed or
denied.

■ URL filtering If the beginning of a URL corresponds to a specified string, the URL can
be marked as locked or allowed. If the URL is marked as allowed, no further URL filters
will be run (alwaysAllowedUrls).

■ Query string filtering If the specified string is located anywhere in the query string,
the request can be allowed or locked. If the query string is marked as allowed, no fur-
ther URL filters will be run (alwaysAllowedQueryStrings).

■ File name extension allowing or filtering You can use this to prevent attacks on
*.exe files (see the section “Filtering File Name Extensions,” later in this chapter).

■ Hiding URL segments You can use this to prevent access to web.config.

■ Rule-based filtering Filters according to specified rules (see the section “Filtering
with Rules,” later in this chapter).

Next, you’ll look at some selected request filter functions and their most important proper-
ties. For other functions and properties, for example, to exclude WebDAV from certain rules,
you will be referred to the IIS documentation.

Note The request filter is run after URL Rewrite. Therefore, all URL checks are performed for the
rewritten URL. Be sure to keep that in mind when setting up rules.

102 Part I Internet Information Services (IIS)

Defining General Settings
The request filter provides a number of global settings, which impact all requests: request
limits, character filter, and default behavior for HTTP verbs and file name extensions.

Request Limits
You can limit the request size by using three different settings:

■ Content size (HTTP body), typically for a POST or PUT request

■ Length of the URL

■ Length of the query string

While the default values for URL and query string length should work for all applications, the
content size default value of 30 MB might be too large for some applications and too small
for others. If so, you need to adjust the setting.

Character Filter
The character filter parses the path of a URL for unwanted characters. Other parts of the URL,
especially the query string, are not affected. The request filter provides two ways to filter for
characters:

■ Prohibiting characters outside the US-ASCII range (00 to 7F hex) If you select
this function, for example, you can no longer call URLs with umlaut characters (¨) in the
file name. This function is disabled by default.

■ Prohibiting false or double-escaped characters This function is enabled by default
and rejects requests with improperly escaped characters (for example, when special
characters, such as <, >, #, “, and so on, are not escaped). Double-escaped characters
are characters that have (intentionally or unintentionally) been masked multiple times
with URL encoding. IIS filters out these requests, because in the past, hackers have used
double-escaped characters to exploit gaps in application security.

Note The filter for false or double-escaped characters also filters out a “+” (plus character)
that is encoded as part of a URL path. In a query string, a plus character represents a space. For
historical reasons, applications have also interpreted plus characters in a URL path as a space.
However, this does not correspond to the HTTP standard. IIS 7 now filters out such URLs.

Best practice is to enable double-escaped character filtering. This should cause problems
only if your application passes and processes parameters via a URL subpath (variable PATH_
INFO). In this case, you should ensure that these parameters are coded correctly. In general,

 Chapter 5 Security 103

you should not allow the percent character (%) to be part of a parameter. Otherwise, you run
the risk of unintentionally creating coding that is indistinguishable from a double-escaped
character, which will be filtered out by the request filter.

Tip To code the different parts of a URL path, use the PHP functions rawurlencode() and
rawurldecode(), because they comply with the corresponding standards. For the query string,
you should use urlencode() and urldecode().

If your application produces or uses URLs that the filter rejects, you will need to either
turn off the filter or rewrite your application. The latter makes more sense from a security
standpoint.

URL Encoding
URL coding rules are specified by the Internet standards RFC 1738 and RFC 3986. Apart
from how to structure a URL, these standards dictate that all characters, with the excep-
tion of alphanumeric characters and a few special characters, must be escaped. An
escaped character is converted into a three-character string: the percent character fol-
lowed by the hexadecimal value of the character.

As an example, the tilde character(~) is escaped as %7F.

Originally, characters outside of the US-ASCII character set (00 to 7F hex) had not been
envisioned for use in URLs, which helps explain why URL paths and query strings are
coded differently.

Coding the URL Path
Characters not in the US-ASCII character set—for example, German umlaut characters
(¨)—are coded according to UTF-8 rules in the URL path. UTF-8 is a coding regulation
for Unicode, which generates a variable number of bytes in the range 80 to FF hex
for characters outside of the US-ASCII range. Characters based on Latin script, such as
German characters with umlauts, are coded as two bytes. They’re converted (escaped)
into percent format according to the URL regulation.

For example, the umlaut character for A (Ä), whose Unicode code point is U+00C4, is
coded as C3 84 hex in UTF-8. In a URL, the character would be escaped as %C3%84.

104 Part I Internet Information Services (IIS)

Coding the Query String
The coding of the query string varies depending on the conditions under which it is cre-
ated. If a user enters the URL directly into a browser’s address bar, the coding depends
on the browser. If the query string contains only characters from the ISO-8859-1 char-
acter set (which contains the essential Central European special characters), ISO-8859-1
is used as the coding. The umlaut A (Ä) is coded as %C4 in this case. However, if the
query string also contains other characters, different browsers take different paths:
some also use UTF-8 coding for the query string. Wherever possible, Internet Explorer
substitutes equivalent characters from the Latin alphabet or substitutes a question mark.

If the query string is generated by the browser, for example, via a form on a page that
uses the GET method, the query string coding will match the coding of the page. So if
the HTML page is coded in UTF-8, the generated query string is also coded in UTF-8;
if the HTML page is coded as ISO-8859-1, the browser generates a ISO-8859-1-coded
query string.

PHP Coding
Unfortunately for programmers developing for an international audience, the core
code in PHP is not Unicode-ready; it processes all input data as ISO-8859-1. To process
Unicode characters, you need to use the multibyte string PHP extension or iconv.

In the rules, the search strings are checked against the original input data format.
With query strings, the decoded format is checked as well. This ensures that unwanted
strings can’t be smuggled past the filters by using percent coding.

Specifying the Settings by Using IIS Manager
To define the general settings of the request filter, perform the following steps:

 1. Open IIS Manager.

 2. In the Connections pane, select the item that you want to configure.

 3. In the work area, open the Request Filter feature by double-clicking it.

 4. In the Actions pane, click Edit Feature Settings.

The Edit Request Filtering Settings dialog box opens, as shown in Figure 5-4.

 Chapter 5 Security 105

FIgURE 5-4 Editing the general settings of the request filter.

You can set the request limits in the text boxes of the Request Limits section.

 5. To permit characters outside of the US-ASCII character set in the URL path, select the
Allow High-Bit Characters check box.

 6. To permit double-escaped characters in the URL path, select the Allow Double Escaping
check box.

 7. Click OK to close the dialog box.

Specifying the Settings from the Command Line
To change the general settings of the request filter from the command line, open a com-
mand prompt window with administrator rights, and then run the following appcmd
commands:

■ To specify the request-length limit, you need to set the attribute maxAllowedContent
Length. Set the maxUrl attribute to control the maximum length of the URL, and the
maxQueryString attribute to control the maximum length of the request string, as in
the following example:

appcmd set config "<PATH>" /section:requestFiltering
 /requestLimits.maxAllowedContentLength:2500000 /requestLimits.maxUrl:4000
 /requestLimits.maxQueryString:1500

106 Part I Internet Information Services (IIS)

■ To allow characters not in the US-ASCII character set in the URL path, run the following
command:

appcmd set config "<PATH>" /section:requestFiltering /allowHighBitCharacters:true

■ To allow double-escaped characters in the URL path:

appcmd set config "<PATH>" /section:requestFiltering /allowDoubleEscaping:true

■ To turn off the extended check (against the decoded request string) when request
strings are checked:

appcmd set config "<PATH>" /section:requestFiltering /unescapeQueryString:false

Note <PATH> in the preceding examples represents the path to the server area that you want
to configure, for example, PHP Demo Site/phpapp.

Filtering File Name Extensions
With the request filter, you can also selectively block requests that end with a certain file
name extension. This filter can run in two modes:

■ Prohibit all listed extensions (default setting).

■ Allow only the listed extensions, prohibit all others.

Specifying the Settings by Using IIS Manager
To configure file name extensions by using IIS Manager, perform the following steps:

 1. Start IIS Manager.

 2. In the Connections pane, select the item that you want to configure.

 3. In the work area, open the Request Filter feature by double-clicking it.

 4. In the work area, click the File Name Extensions tab.

 5. In the Actions pane, click Deny File Name Extension, enter into the text box the file
name extension that you want to deny, and then click OK.

 6. To set the behavior to denying all file name extensions that are not listed, in the Actions
pane, click Edit Feature Settings, and then clear the Allow Unlisted File Name Extensions
check box.

 Chapter 5 Security 107

Specifying the Settings from the Command Line
To configure file name extensions from the command line, open a command prompt window
with administrator rights, and then run the following commands:

■ To add a file name extension (false: deny, true: allow):

appcmd set config "<PATH>" /section:requestfiltering
 /+fileExtensions.[fileextension='.exe',allowed='false']

■ To remove a file name extension:

appcmd set config "<PATH>" /section:requestfiltering
 /-fileExtensions.[fileExtension='.exe']

■ To specify whether unlisted file name extensions are allowed:

appcmd set config "<PATH>" /section:requestfiltering /fileExtensions.allowUnlisted:true

Filtering with Rules
As the last function of the request filter, you’ll explore filtering with rules, an extremely
powerful filter function. Filter rules can search for strings in URL paths, query strings, and
HTTP headers. You can limit rules so that they apply only to specific file name extensions.

Setting up Filter Rules by Using IIS Manager
To set up a new filter rule by using IIS Manager, perform the following steps:

 1. Start IIS Manager.

 2. In the Connections pane, select the item that you want to configure.

 3. In the work area, open the Request Filter feature by double-clicking it.

 4. On the Rules tab, click Actions | Add Filtering Rule.

The Add Filtering Rule dialog box opens, as shown in Figure 5-5.

108 Part I Internet Information Services (IIS)

FIgURE 5-5 Adding filter rules.

 5. Enter the desired values:

● In the Name text box, enter a name for the rule.

● If you want to search for a string in the URL path, select the Scan URL check box.

● If you want to search for a string in the query string, select the Scan Query String
check box.

● If you also want to search for a string in the HTTP headers, enter the header you
want to check in the Scan Headers section.

● If you want to limit the rule to certain file types, in the Applies To section, enter
the file name extensions (including the dot) in the File Extension text box.

● Finally, enter the strings that you want to deny in the Deny Strings list box. The
rule takes effect (and the request is denied) if one of the specified strings is found
in the areas you want to check (URL path, query string, HTTP header).

 6. Complete the dialog box by clicking OK to apply the rule.

 Chapter 5 Security 109

Editing Filter Rules from the Command Line
To change filter rules from the command line, open a command prompt window with admin-
istrator rights, and then run the following commands:

■ To set up a new rule:

appcmd set config "<PATH>" /section:requestfiltering
 /+"filteringRules.[name='directory change',scanUrl='true']"

■ To add the HTTP headers that you want to check:

appcmd set config "<PATH>" /section:requestfiltering
 /+"filteringRules.[name='directory change'].scanHeaders.[requestHeader='Referer']"

■ To limit the rule to certain file name extensions:

appcmd set config "<PATH>" /section:requestfiltering
 /+"filteringRules.[name='directory change'].appliesTo.[fileExtension='.php']"

■ To specify a string that you want to check:

appcmd set config "<PATH>" /section:requestfiltering
 /+"filteringRules.[name='directory change'].denyStrings.[string='..']"

To delete strings, file name extensions, HTTP headers, or entire rules, use /– instead of /+ in
the commands.

Encrypted Connections (HTTPS)
With HTTPS, you can perform an encrypted data transfer with the HTTP protocol, based on
the TLS or SSL protocol. The encryption ensures that no attacker can monitor or manipulate
the transferred data. If you transfer sensitive data, you should provide a secure, encrypted
connection for your website via HTTPS.

For an HTTPS connection, you need a certificate for the web server. Client certificates for
user authentication are optional. IIS Manager provides functions for all necessary setup steps,
which are easy to use. In the following, you will learn how to set up a server certificate and an
encrypted connection, how to request user certificates and how to use them for authentica-
tion, and how to query information via the encrypted connection in PHP.

Creating Keys and Certificates
IIS can manage several server certificates for different bindings and websites. IIS Manager
provides functions for setting up three different certificates: self-signed certificates, certifi-
cates from the root certification authority of the Windows domain, and certificates for exter-
nal certification authorities. This section only covers how to set up a domain certificate, but
you can create the other types in the same fashion.

110 Part I Internet Information Services (IIS)

To set up a domain certificate, you must run Active Directory certificate services in the
domain. Chapter 15, “Setting Up Active Directory,” describes how to set up certificate
services.

How to set up a domain certificate, perform the following steps:

 1. In the Connections pane of IIS Manager, Select the server.

 2. Open the Server Certificates feature by double-clicking it.

 3. In the Actions pane, click Create Domain Certificate.

The Create Domain Certificate dialog box opens.

 4. Enter your company data.

In the Common Name text box, you must enter the complete domain name of the
secure website; for example, www.phpdemo.site. To generate a placeholder certificate
that can be used for multiple child domain names, use the asterisk placeholder; for
example, *.phpdemo.site.

 5. Select the certification authority by clicking the Select button, and then enter any
desired display name.

Note If you are not able to select a certification authority, the Active Directory certificate
services are either not enabled, your computer does not belong to the domain or the gen-
eral structure in which these services are run, or the certificate authority is not among the
server’s Trusted Root Certification Authorities.

 6. Click Finish to request the certificate and set up IIS.

You have now created and set up the certificate. In the next step, you can use the certificate
for an encrypted connection.

Setting up an Encrypted Connection
To set up an encrypted connection, you need to add an HTTPS binding to a website. You can
then specify whether using the encrypted binding is mandatory.

Setting up the Binding
To set up an HTTPS binding for a website, perform the following steps:

 1. In the Connections pane of IIS Manager, select the website.

 2. In the Actions pane, click Binding.

 Chapter 5 Security 111

 3. Click Add, and then enter the following values for the new binding:

● Type: https

● IP Address: IP address of the binding (optional)

● Port: 443 (this is the default)

● SSL Certificate: select the appropriate server certificate

● Host Name: if you have selected a placeholder certificate, you can also enter the
host name

Important You can only use one certificate per IP address/port combination. You cannot
use different certificates for different sites that have the same IP address and port. Only
with a placeholder certificate can multiple sites share an HTTPS binding with the same IP
address and port.

 4. Click Close to exit the dialog box.

If you now call up the website with its HTTPS URL, an encrypted connection is established.

Note If you call up the website from outside of the Windows domain, Internet Explorer will
notify you that the server certificate is not valid because the root certificate of the Active
Directory certification authority is not recognized outside of the domain.

You can continue the connection (temporarily) and later add the root certificate of your certi-
fication authority to the certification storage of trusted root certification authorities, or classify
only the server certificate itself as trusted (you can do this directly via the Certificate Error/View
Certificates/Install Certificate dialog box right in the Address Bar in Internet Explorer).

You can find out how to add a binding by using appcmd from the command line in
Chapter 2, “IIS Architecture,” in the section “Adding Additional Bindings.”

SSL Settings
Using the SSL Settings feature, you can predefine additional parameters for an encrypted
connection. Specify the following settings in IIS Manager:

 1. In the Connections pane of IIS Manager, select the website.

 2. Open the SSL Settings feature by double-clicking it.

 3. If you want to force the use of the encrypted connection, select the SSL Required option.

 4. For user certificates, you can select one of the following three options: Ignore, Accept,
or Required. The default setting (Accept) usually works best.

 5. In the Actions pane, click Apply to complete your entries.

112 Part I Internet Information Services (IIS)

You can also use appcmd from the command line to force the use of client certificates and SSL:

appcmd set config <PATH> -section:security/access
 /sslFlags:"Ssl, SslNegotiateCert, SslRequireCert" /commit:apphost

When you open the website in a browser, you are now prompted to select a certificate, as
shown in Figure 5-6.

FIgURE 5-6 Use the Windows Security dialog box to select a user certificate.

Setting Up a User Certificate
With a user certificate, a server can identify itself to users, and users can authenticate them-
selves to the server. User certificates are not often employed for public servers. However, for
intranet sites that can be reached from the outside, user certificates represent an interesting
alternative to other authentication methods.

To issue a client certificate for a domain user, perform the following steps:

 1. Click Start | Run, and then type mmc to open the Microsoft Management Console.

 2. Add the snap-in Certificates by clicking File | Add/Remove Snap-in. Select My User
Account as certificate type for the snap-in.

 3. In the console root, select the item Certificates – Current User, right-click Personal,
and then in the context menu, click All Tasks | Request New Certificate to start the
Certificate Enrollment Wizard.

 4. On the second page of the wizard, select the Active Directory Enrollment Policy, and
then click Next.

 5. Select the User option as certificate type, and then click Enroll.

 6. After the certificate has been issued successfully, click finish to close the wizard.

 7. You can view the completed certificate in the MMC by double-clicking Certificates –
Current User | Personal | Certificates on the certificate in the list view.

 Chapter 5 Security 113

Querying Information with PHP
In PHP, you can use different $_SERVER variables to retrieve information about the HTTPS
connection, the server certificate, and the (optional) client certificate.

Table 5-5 shows the variables with example values for the HTTPS connection and the server
certificate used. With $_SERVER[‘HTTPS’]=on, you can check whether the PHP script has been
called via an encrypted connection. With $_SERVER[‘HTTPS_KEYSIZE’], you can check the
length (in bits) of the transport key. Requesting clients can negotiate different values.

TABLE 5-5 $_SERVER variables for retrieving connection and server certificate information

$_SERVER variable Example value
HTTPS On

HTTPS_KEYSIZE 128

HTTPS_SECRETKEYSIZE 1024

HTTPS_SERVER_ISSUER DC=site, DC=xmp, CN=my-CA

HTTPS_SERVER_SUBJECT C=AT, S=Styria, L=Graz, O=XMP, OU=HamsterClub, CN=*.phpdemo.site

If you are using a client certificate, you can use additional variables to query the certificate
information; see Table 5-6. The user identity can be read into $_SERVER[‘CERT_SUBJECT’], and
$_SERVER[‘CERT_COOKIE’] contains a unique identifier for the certificate.

TABLE 5-6 $_SERVER variables for the client certificate

$_SERVER variable Example value
CERT_COOKIE 1058a4ac31108e8dcebcee12ab2780da80777b77a7acfe5dc7ed

7b308ebbccd3

CERT_FLAGS 1

CERT_ISSUER DC=site, DC=xmp, CN=my-CA

CERT_SERIALNUMBER 1c-3f-a9-fb-00-00-00-00-00-0d

CERT_SUBJECT DC=site, DC=xmp, OU=AdventureWorks, OU=Departments,
OU=Engineering, CN=Julia A. Curtis, E=JuliaA.Curtis@xmp.site

Using this data, a PHP script can clearly identify and authenticate a user. When using client
certificates, a separate authentication step is not really necessary.

114 Part I Internet Information Services (IIS)

Authentication with Client Certificates
Client certificates are useful for more than just setting up and authenticating encrypted con-
nections: they can be used directly as an authentication method. In the following, you’ll
learn how to authenticate domain users. First you need to install the correct authentication
feature.

Installing the Required Role Services
To install the IIS role service necessary for authentication with client certificates, perform
the following steps:

 1. Open the Server Manager.

 2. Click Roles, and then right-click Web Server (IIS). From the context menu, click Add Role
Services.

 3. In the Web Server section, in Security, select the Client Certificate Mapping
Authentication option.

Note The other option, IIS Client Certificate Mapping Authentication, does not use Active
Directory for the assignment. Instead, IIS itself manages a local assignment directly. You
can find a description of this option on MSDN at http://www.iis.net/ConfigReference/
system.webServer/security/authentication/iisClientCertificateMappingAuthentication.

 4. Click Next, and then click Install.

Alternatively, you can use the Web PI to install the necessary module, as follows:

 1. Start the Web PI.

 2. Click Products | Server, and then add the IIS: Client Certificate Mapping Authentication
option.

 3. Click Install, and then click I Accept.

You have now completed the installation and can configure the authentication method in IIS.

Activating the Client Certificate Assignment Authentication
You can enable the Client Certificate Assignment Authentication just like other authentication
methods. Use the following appcmd command to enable this method (/commit:apphost is
necessary to write the configuration into the applicationHost.config file):

appcmd set config <PATH> -section:clientCertificateMappingAuthentication /enabled:true
 /commit:apphost

 Chapter 5 Security 115

Note An error in IIS Manager currently prevents activation by using that method. Therefore,
this section focuses on using appcmd.

If you are using a browser that has the correct client certificate installed for accessing the site,
you will now be asked for the certificate. After selecting the certificate, you are automatically
authenticated.

In PHP, you can then query the assigned user account; for example, with $_SERVER[‘LOGON_
USER’]. The variable $_SERVER[‘AUTH_TYPE’] contains the value “SSL/PCT”.

Other settings, such as the authorization rule, also apply now, depending on the logon.

Summary
The ability to assign various identities and access rights to different PHP applications, either
with different application pools or via path logon information, is an essential building block
for making websites secure. Using these tools, you can achieve sufficient application isolation
to ensure that errors in an application will mostly have no impact on other applications. A
secure PHP configuration also significantly reduces the attack surface. By taking advantage of
user authentication, authorization rules, and the request filter options, you can implement a
highly granular security scheme for PHP applications in IIS. If you also set up HTTPS connec-
tions, you can protect the data from unwanted access during transfer as well.

In the next chapter, you will learn how to increase the performance of your PHP application
substantially by using various types of caching.

 117

Chapter 6

Caching

Caching is an important technique for improving the performance of PHP applications and
simultaneously reducing the amount of resources used on the server side.

Three caching options are available to you:

■ With the HTTP headers, you can control whether and how long requesting clients or
intermediate proxies can cache. The advantage of this option is that during later access,
no new requests are sent to the server, and therefore, no server resources or bandwidth
is required.

■ With the Internet Information Services (IIS) Output Cache, frequently requested files
are kept directly in the working memory and are issued upon request. Access to the
file system is no longer necessary; PHP scripts and database access are no longer per-
formed. The result is a correspondingly large increase in performance.

■ The WinCache PHP Extension speeds up the execution of PHP scripts. WinCache caches
the opcodes of the compiled PHP scripts and reduces execution time as well as the
number of accesses to the file system.

You’ll explore all three options in the sections that follow.

Caching in the Web
A webpage is composed of many individual elements: the HTML of the page itself, embed-
ded graphics, formatting statements in Cascading Style Sheets (CSS) format, script files (such
as JScript and JavaScript), and other active content (for example, Microsoft Silverlight and
ActiveX). Each one of these files is transferred in its own HTTP request/reply cycle from the
server to the client.

In this chapter:
Caching in the Web . 117
Output Cache . 126
The WinCache Extension for PHP . 129
Summary . 136

118 Part I Internet Information Services (IIS)

Even though HTML changes within a website from one page to the next, other embedded
content stays the same—for example, the logo or CSS formatting statements. Many elements
(including the HTML pages themselves) are relatively static. Their content seldom changes,
or doesn’t change at all. For a news portal, for example http://msn.com/, the start page might
change quite frequently. However, the logo hardly ever changes, and it’s likely that individual
articles will not be rewritten.

Therefore, it makes sense to cache replies to HTTP requests locally on the client and thus
save bandwidth and transfer time, to increase performance and improve the user experience.
This becomes especially obvious when using the Back function of a web browser: If the pre-
vious page wasn’t cached locally, it would need to be requested again by the server, which
would result in a noticeable delay.

HTTP provides mechanisms and headers for caching, with which the server can control
which contents may be cached, under which conditions, and for how long. For example, on
http://uk.msn.com/, the logo can be cached for several months, individual articles for several
minutes, but the start page only for the purposes of the Back function, otherwise it must be
reloaded.

The HTTP protocol provides various techniques for caching, which target time, content
changes, and conditions. In the following, you will look at them in more detail.

Caching for a Limited Time
HTTP provides two techniques to limit the caching duration: the Expires header and the
max-age cache statement.

The Expires Header
To allow a resource to be cached for a certain amount of time, use the HTTP reply header
Expires. The Expires header contains a specific time, after which cached content must no
longer be used (neither by the browser nor by a proxy), but must be requested again from
the source. Listing 6-1 shows this header in an HTTP reply.

LISTINg 6-1 Using the Expires header to limit the caching duration.

HTTP/1.1 200 OK
Content-Type: image/jpeg
Date: Wed, 07 Sep 2011 07:31:07 GMT
Expires: Fri, 07 Sep 2012 07:25:03 GMT

 Chapter 6 Caching 119

The date format is specified in HTTP RFC; it must have the following format (the numbers in
parentheses represent the number of required characters):

Day(3), date(2) month(3) year(4) time(8) GMT

You specify them using the Greenwich Mean Time (GMT) time zone.

Note GMT in HTTP is identical to Coordinated Universal Time (UTC).

In PHP, this format can be generated by using the following statement:

$dateString = gmdate('D, d M Y H:i:s', $timeStamp) . ' GMT';

Note The date/time you specify in the Expires header should not be more than a year in the
future.

If you want to ensure that the content of pages that change frequently is always freshly
requested, you should set the Expires header to the same date/time as the Date header:

Date: Wed, 07 Apr 2010 07:31:07 GMT Expires: Wed, 07 Apr 2010 07:31:07 GMT

Note Many browsers also accept the value –1 in the Expires header. It also specifies that the
resource must be requested again.

Max-Age Statement
The Expire header specifies an absolute point in time. With the max-age statement, however,
you can set a relative time in the Cache-Control header. The max-age value is specified in
seconds: the content can be cached for the specified number of seconds. For example, to
allow the caching of a resource for two days, the header would look as shown Listing 6-2.

LISTINg 6-2 The max-age statement is another way to limit the caching duration.

HTTP/1.1 200 OK
Content-Type: image/jpeg
Date: Wed, 07 Sep 2011 07:31:07 GMT
Cache-Control: max-age=172800

120 Part I Internet Information Services (IIS)

If both the Expires header and the max-age statement are used, the max-age statement takes
precedence. To ensure that the content is always requested again, you need to set max-age
to 0, as follows:

Cache-Control: max-age=0

Mutable Contents
HTTP provides two options to determine whether the content of a web resource has changed:
a last-modified change date and an entity tag that denotes versions of a resource that are
distinctly different.

Change Date
The change date is specified with the Last-Modified header. This way, clients can find out later
whether the content of the resource has changed since the last time. If the content hasn’t
changed, the server responds with a corresponding message (HTTP code 304). This option
does not prevent the HTTP request from the client to the server, but it reduces the amount of
data that’s transferred.

Listing 6-3 demonstrates what happens: the server replies to the first client request with
the content of the resource and the header Last-Modified, which gives you the date of the
latest change. If the client calls up the resource again at a later time, it also sends the header
If-Modified-Since. This way, the PHP script can check whether the data has changed since.
If not, an HTTP-304 reply is sent without supplying the resource content with it (see the
Listing). The client retrieves the content from its cache. If the content has changed, it is trans-
ferred as usual with an HTTP-200 reply.

LISTINg 6-3 Course of requests and replies when the Last-Modified header is specified.

First client request
GET /lastmodified.php HTTP/1.1
Host: phpdemo.site

Server reply
HTTP/1.1 200 OK
Last-Modified: Mon, 05 Sep 2011 07:31:07 GMT
Date: Wed, 07 Sep 2011 08:57:04 GMT

Second client request
GET /lastmodified.php HTTP/1.1
Host:phpdemo.site
If-Modified-Since: Mon, 05 Sep 2011 07:31:07 GMT

Server reply
HTTP/1.1 304 Not Modified
Date: Wed, 07 Sep 2011 08:57:13 GMT

 Chapter 6 Caching 121

The server or the PHP script must therefore evaluate the HTTP request header If-Modified-
Since explicitly.

Entity Tag
It’s not always possible to specify a change date; it simply might not be easy to find out what
it is. For such situations, you can use the ETag header, which assigns an Entity tag to the
content—a unique string for this version of the content—for example, a number or a hash
value. It works the same as Last-Modified: If requests follow, the client sends an If-None-
Match header, which is evaluated by the server or the PHP script.

Listing 6-4 shows both client requests. After the first request, the server replies with an ETag
header: You must place the value between quotes, but you are free to choose any value you
like. At the second client request (at a later time), it sends the ETag of the version in its cache
as part of the header If-None-Match. The server or the PHP script can evaluate this informa-
tion and answer either with an HTTP-304 code (if the content hasn’t changed yet) or with an
HTTP-200 code and the data of the new version.

LISTINg 6-4 Course of requests and replies when the ETag header is specified.

First client request
GET /etag.php HTTP/1.1
Host: phpdemo.site

Server reply
HTTP/1.1 200 OK
ETag: "387060f9402aca1:5fff-35"
Date: Wed, 07 Sep 2011 08:57:04 GMT

Second client request
GET /etag.php HTTP/1.1
Host:phpdemo.site
If-None-Match: "387060f9402aca1:5fff-35"

Note The If-None-Match header can also contain multiple comma-separated ETag values:

If-None-Match: "387060f9402aca1:5fff-35", W/"3653412", "38:5fff:35aca1"

Entity tags can be classified as either strong or weak tags:

n	 Strong tags must differ from one other as soon as the resource version has changed by
at least one byte.

n	 Weak tags, represented by the syntax W/”...”, should change only if the semantic mean-
ing has changed.

122 Part I Internet Information Services (IIS)

For example, a strong tag for a visitor counter changes with each visitor, a weak tag might
only change once a day, if the exact number of visitors is not important for the application.
You should use strong tags whenever possible.

You can use ETag headers and Last-Modified headers together. If both the If-None-Match
and If-Modified-Since headers are set in subsequent requests, the server should typically
reply only with an HTTP-304 message when both conditions are met.

Caching Conditions
Using the Cache-Control HTTP header, you can set additional conditions for caching. Table 6-1
shows the most important Cache-Control statements. The max-age statement has already
been introduced in the section “Max-age Statement,” earlier in this chapter.

TABLE 6-1 Statements in the Cache-Control header

Statement Description
max-age=seconds Maximum age of the version in the cache, at which the client must request the

content again from the server.

must-revalidate The resource can be cached, but the client must contact the server before
using it again, to check whether the resource has changed.

no-cache The resource must never be cached, but instead must always be requested
from the server.

no-store The resource must not be cached or locally saved in a file (for example, in the
Temporary Internet Files folder). This option is designed mainly for websites
with sensitive content.

private The resource can only be stored in a private cache for the individual user who
has sent the request.

public The resource can be stored in a cache, which is used for several users, typically
a proxy cache. This is the default behavior when there is no authentication on
the HTTP level.

You can combine and link statements in the header with commas, as demonstrated in the
following:

Cache-Control: public, max-age=86400, must-revalidate

Different browsers interpret no-cache and no-store differently: for the Back and Forward
functions, all browsers reload the page when no-store is specified. If no-cache is specified, the
cached version is displayed, or (depending on the browser) the resource is reloaded.

Older browsers still have the (slightly repurposed) Pragma header:

Pragma: no-cache

You can use it to prohibit caching for these browsers.

 Chapter 6 Caching 123

Specifying the Headers with IIS
You can specify HTTP headers that have an impact on caching from PHP by using the
header() method. For other contents, such as graphics, you can specify headers from IIS.

Entity tags (ETag headers) and Last-Modified headers are automatically added to content
supplied via the StaticFile handler. For this type of content, IIS takes over management of the
change headers by monitoring the file and adjusting both headers accordingly when there
are changes.

You can specify other headers via IIS Manager or by using appcmd.

Specifying the Headers by Using IIS Manager
To set a cache time limit by using IIS Manager, perform the following steps:

 1. Open IIS Manager.

 2. In the Connections pane, select the desired site, application, or directory.

 3. On the start page, open the HTTP Reply Response Headers module.

 4. In the Actions pane, click Specify Set Common Headers.

The Set Common HTTP Response Headers dialog box opens, as shown in Figure 6-1.

 5. Select the Expire Web Content check box, and then choose one of three options:

● Immediately Content must not be cached (sets the header Cache-Control
to no-cache)

● After Enter a duration for the caching (sets the header Cache-Control to
max-age=<value>)

● At Specifies that content can only be cached up until a certain defined point in
time (sets the reply header Expires to the desired time)

FIgURE 6-1 Specifying the HTTP reply header for expiring web content.

124 Part I Internet Information Services (IIS)

 6. Click OK to apply the settings.

You can specify additional headers, especially the Cache-Control header, in the same
module by doing the following:

 7. In the Actions pane, click Add.

 8. In the dialog box that opens, enter the name of the HTTP header in the Name text box
(for example, Cache-Control) and the desired header content in the Value text box (for
example, must-revalidate, public).

 9. Click OK to add the header for new requests.

Note IIS automatically connects set Cache-Control statements of the Common Headers func-
tion to the manually added reply headers so that both can be used at the same time.

Specifying Headers from the Command Line
To set the desired headers from the command line, run the following commands by using
appcmd:

■ Prohibiting the caching of static content:

appcmd.exe set config "<PATH>"
-section:system.webServer/staticContent /clientCache.cacheControlMode:"DisableCache"

■ Permitting the caching of static content for a certain amount of time (which is entered
as days.hours:minutes:seconds):

appcmd.exe set config "<PATH>" -section:system.webServer/staticContent
/clientCache.cacheControlMode:"UserMaxAge" /clientCache.cacheControlMaxAge:"1.12:30:00"

■ Permitting the caching of static content up to a defined point in time:

appcmd.exe set config "<PATH>"
-section:system.webServer/staticContent /clientCache.cacheControlMode:"UseExpires"
/clientCache.cacheControlMaxAge:"Thu, 07 Apr 2011 07:25:03 GMT"

To manage your own headers (no matter whether the content is supplied by the StaticFile
handler), run the following appcmd commands:

■ Adding a new header:

appcmd set config "<PATH>"-section:system.webServer/httpProtocol
/+customHeaders.[name='<Header Name>',value='<Header Value>']

■ Removing a header:

appcmd set config "<PATH>"
-section:system.webServer/httpProtocol /-customHeaders.[name='<Header Name>']

 Chapter 6 Caching 125

Configuration Elements
Two different configuration elements are used to specify the cache settings directly in the
configuration file: staticContent/clientCache and httpProtocol/customHeaders.

Table 6-2 shows the content caching attributes supplied via the StaticFile handler.

TABLE 6-2 Attributes for the staticContent/clientCache configuration element

Attribute Description
cacheControlMaxAge Specifies the allowed duration for the caching in the format days

.hours:minutes:seconds—for example, 1.12:30:00; only works in connec-
tion with cacheControlMode=UseMaxAge.

cacheControlMode Specifies the mode for the cache:

■ DisableCache Caching is not allowed

■ UseMaxAge Caching is only allowed for the defined duration

■ UseExpires Caching is allowed up to the defined point in time

httpExpires Specifies the date/time up to which caching is permitted—for example,
Thu, 07 Apr 2011 07:25:03 GMT; only works in connection with
cacheControlMode=UseExpires

Listing 6-5 shows how to set caching for a period of one day, 12 hours, and 30 minutes.

LISTINg 6-5 Specifying the cache settings for static content.

<system.webServer>
 <staticContent>
 <clientCache cacheControlMode="UseMaxAge" cacheControlMaxAge="1.12:30:00" />
 </staticContent>
</system.webServer>

You can specify other headers with the help of the configuration collection httpProtocol/
customHeaders. Listing 6-6 shows how you can add the Cache-Control statement
must-revalidate.

LISTINg 6-6 Configuring the addition of reply headers.

<system.webServer>
 <httpProtocol>
 <customHeaders>
 <add name="Cache-Control" value="must-revalidate" />
 </customHeaders>
 </httpProtocol>
</system.webServer>

126 Part I Internet Information Services (IIS)

Output Cache
For faster HTTP request processing, IIS provides an output cache. Files and content in this
cache are kept directly in the main storage. File access to the drives is not required. The out-
put cache can also be used for PHP scripts and can thus increase performance significantly
(because PHP execution and database access no longer take place).

IIS provides two options for configuring the output cache: User mode and Kernel mode.
Caching in Kernel mode is extremely powerful, because the entire request is handled directly
in the HTTP protocol stack (http.sys), and request data does not need to be passed on to
the IIS modules in User mode. However, caching in Kernel mode has certain limits. Not all
requests can be saved.

Note You can find descriptions of the conditions that need to be met for the Kernel mode to
work on http://support.microsoft.com/kb/817445/ and http://msdn.microsoft.com/en-us/library/
aa364670%28VS.85%29.aspx.

Logging the request errors also helps (see Chapter 8, “Error Messages and Error Search”),
assuming the cache area feature is logged. You can find more information in the log entry
under HTTPSYS_CACHEABLE.

Configuring by Using IIS Manager
To configure the output cache in IIS Manager, perform the following steps:

 1. Start IIS Manager.

 2. In the Connections pane, select the desired item.

 3. On the item’s start page, open the Output Caching module.

 4. In the Actions pane, click Edit Feature Settings, ensure that the desired cache (kernel
cache or user mode cache) is enabled, and then click OK.

Note The maximum size of the HTTP replies and the cache size limit can only be set on
the server level.

 5. In the Actions pane, click Add.

The Add Cache Rule dialog box opens, as shown in Figure 6-2.

 6. Enter the file name extension for which you would like to enable caching. Select one of
the two caching types, and then set the file cache monitoring for PHP scripts to At Time
Intervals.

http://msdn.microsoft.com/en-us/library/aa364670%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa364670%28VS.85%29.aspx

 Chapter 6 Caching 127

FIgURE 6-2 Adding a caching rule.

 7. For caching in User mode, you can specify additional settings by clicking the Advanced
button.

For example, to make the caching dependent on the cookie content, select the Headers
check box, and then enter Cookie into the corresponding text box. Click OK to apply
the advanced settings.

 8. Click OK to add the cache rule.

You have now enabled caching. You can check the function by writing a simple test script,
such as that in Listing 6-7, and copy it to the corresponding location on your website. If you
run the script a few times, you should see that the time does not change for 30 seconds.

LISTINg 6-7 cachetest.php—a script for testing cache.

<html>
 <head><title>Cache Test</title></head>
 <body>
 <p>Time: <?php date('d.m.Y H:i:s'); ?></p>
 </body>
</html>

128 Part I Internet Information Services (IIS)

You can specify from which time forward IIS caches a file by using frequentHitThreshold
(number of required hits) and frequentHitTimePeriod (time period in which the hits must
happen) of the system.webServer/ServerRuntime configuration element. In IIS Manager,
these values can only be set in the configurations editor (see Chapter 3, “Configuring IIS”). By
default, two hits must happen within 10 seconds for a file to be saved.

Configuring from the Command Line
To enable caching in User mode, use the following appcmd command:

appcmd set config "<PATH>" -section:caching/+profiles.[extension='.php',
duration='00:00:30',policy='CacheForTimePeriod',varyByHeaders='Cookie']

If you want the file version to be dependent on the query string, you need to set the attri-
bute varyByQuerystring.

To enable caching in Kernel mode, you need to set the attribute kernelCachePolicy instead of
or in addition to the attribute policy.

To remove a cache rule, use appcmd as follows:

appcmd set config "<PATH>" -section:caching /-profiles.[extension='.php']

To control from what time forward a file should be cached, use the following command:

appcmd set config -section:system.webServer/ServerRuntime /frequentHitThreshold:5
/frequentHitTimePeriod:00:00:15

Both attributes can only be set server-wide, not for individual sites.

Once you have enabled the Kernel mode cache, you can use the command netsh to retrieve
the current state of the cache, as shown in the following:

netsh http show cache

Configuration Elements
The cache is configured with the configuration collection caching/profiles. Table 6-3 shows
the attributes for caching content.

 Chapter 6 Caching 129

TABLE 6-3 The attributes for the configuration collection caching/profiles

Attribute Description
duration Specifies the cache duration; works only with the CacheForTimePeriod policy

extension File name extension

kernelCachePolicy Type of the Kernel mode cache; same options as for the user mode cache

policy Type of the User mode cache:

■ CacheUntilChange Cache until the file changes

■ CacheForTimePeriod Cache for a certain amount of time

■ DontCache Never cache

varyByHeaders Specifies the parameters of the query strings that impact the caching (only
for User mode cache)

varyByQueryString Specifies the HTTP request headers that impact the caching (only for User
mode cache)

Listing 6-8 shows how to permit caching for a period of 30 seconds.

LISTINg 6-8 Configuration for the cache profile.

<system.webServer>
 <caching>
 <profiles>
 <add extension=".php" policy="CacheForTimePeriod" duration="00:00:30"
 varyByHeaders="Cookie" />
 <add extension=".png" kernelCachePolicy="CacheUntilChange" />
 <profiles>
 </caching>
</system.webServer>

The WinCache Extension for PHP
The WinCache extension for PHP does not target caching at HTTP level, but instead improves
the performance when PHP scripts are executed. The extension provides the following
functions:

■ Opcode Cache PHP scripts are processed in two steps: the script is parsed and com-
piled into opcode statements, which are then run in the next step. The PHP opcodes of
a script are cached in the opcode cache, and the compilation step is no longer needed
for additional statements.

130 Part I Internet Information Services (IIS)

■ File Cache WinCache can also cache PHP script files to further reduce file access
operations.

■ Session Handler PHP sessions let you save data (whose values are cached in a file by
default) in the $_SESSION variable. WinCache provides a session handler that keeps this
data in the main storage and thus makes slower file or database access unnecessary.

■ Cache for User Data The WinCache functions can also be addressed directly from
the user script to save custom data in the cache and to address them from any PHP
processes within the application pool.

The installation of WinCache and some of the functions are described in more detail in the
following section.

Setting Up the WinCache Extension
You can either install the WinCache extension manually or with the help of the Web Platform
Installer (Web PI).

Note At the time of this book’s printing, the current version of the WinCache extension and the
version for PHP 5.3 required a manual installation.

Manually Installing the WinCache Extension
To manually install the WinCache extension, perform the following steps:

 1. Download the current version of the extension’s installation program that works for
your PHP version (5.2 or 5.3) from http://www.iis.net/expand/WinCacheForPhp, and
then save the file. This book uses and describes version 1.1 Beta 2 of the WinCache
extension.

 2. Start the installation program and confirm the licensing information by selecting Yes.

 3. Select the directory into which you want to extract the files.

 4. Go to the selected directory and copy the file php_wincache.dll into the PHP extension
directory C:\PHP\ext.

 5. Open the file php.ini (C:\PHP\php.ini) in a text editor, and then add the following line:

extension = php_wincache.dll

 6. Ensure that the extension directory in php.ini is set to ext, as shown in the following;

extension_dir = "ext"

If extension directory is not set this way, the extension will not be loaded.

 7. Restart the corresponding IIS application pool.

 8. Run a phpinfo() script.

 Chapter 6 Caching 131

You should see the WinCache extension, as shown in Figure 6-3.

FIgURE 6-3 The WinCache extension for PHP.

Installing the WinCache Extension by Using the Web PI
To install the WinCache extension with the Web PI, perform the following steps:

 1. Start the Microsoft Web PI with administrator rights.

 2. Click Web Platform | Frameworks And Runtimes | Customize.

 3. Select the Windows Cache Extension For PHP option, and then click the Install button.

Important Ensure that the WinCache extension matches your PHP version. If it does not,
you need to avoid manual installation.

 4. Click the I Agree To Start The Installation button. After a successful installation, click the
Finish button.

 5. Click Exit to close the Web PI.

132 Part I Internet Information Services (IIS)

The PHP Opcode and File Cache
The PHP opcode cache and the file cache help you run PHP scripts faster because they mini-
mize file access. This feature also minimizes the need for the compilation step during script
execution, because the opcodes are cached.

Configuration
You can use configuration options to control both caches. Table 6-4 lists the most important
properties.

TABLE 6-4 Configuration statements for the file cache and the opcode cache

Configuration options Description
wincache.chkinterval Specifies in seconds how long WinCache waits before

checking whether a file has changed—the longer the
interval, the fewer file accesses take place, but the lon-
ger it takes for file changes to take effect.

wincache.fcachesize, wincache.ocachesize Maximum size of the file cache (f) and the opcode
cache (o) in megabytes.

wincache.fcenabled, wincache.ocenabled Turns the file cache (fc) or Opcode cache (oc) on (1) or
off (0).

wincache.ignorelist List of files (without path specification) that must not
be cached (separated by a pipe).

As of version 1.1, WinCache detects changes to PHP files automatically. The check interval
(chkinterval) has no impact in this case, unless the file system does not support change noti-
fications (for example, a UNC share). In this case, WinCache checks these files at the specified
interval.

Note If necessary, you can use the function wincache_refresh_if_changed() to renew entries in
the cache before the time specified in wincache.chkinterval has run out.

Status Information
The WinCache installation also includes a PHP script that can inform you about the current
state of WinCache. To be able to use this script, perform the following steps:

 1. Copy the file wincache.php from the installation directory into a directory on your web-
site (for example, C:\inetpup\wwwroot\wincache\wincache.php).

 Chapter 6 Caching 133

 2. Open the file with an editor, go to the section CONFIGURATION SETTINGS, and then
enter a new password.

If you have saved the script in an area that uses IIS authentication, enter the permitted
users in the variable $user_allowed.

 3. Save the file, and then open it in the browser.

You are now receiving information about the current memory and cache status of
WinCache, as shown in Figure 6-4.

FIgURE 6-4 Status information of the WinCache extension for PHP.

Session Handler
As of version 1.1, WinCache provides a PHP session handler.

To use the WinCache session handler, perform the following steps:

 1. Open the file php.ini (C:\PHP\php.ini).

 2. Look for the line that contains the statement session.save_handler, and then replace
it with:

session.save_handler = wincache

 3. The session data is also saved in the Windows folder for temporary files. If you want to
change the folder, set the configuration variable session.save_path to the desired folder
path. Don’t forget to grant the IIS application pool users (IIS_IUSRS) the required access
rights to the folder.

 4. Save the file and restart the associated IIS application pool.

134 Part I Internet Information Services (IIS)

PHP now uses WinCache to store the session data and keeps them in main storage memory
for quick access.

You can specify the size of the available session cache together with the user cache by using
the configuration option wincache.ucachesize. Its value is specified in megabytes.

User Cache
The user cache of the PHP WinCache extension has been available since version 1.1 of the
extension. With it, you can save your own data in the cache. The data in the cache can be
accessed from all PHP processes within the same application pool. Typically, it is used for
saving global status information, global counters, or as cache for the result of frequent calcu-
lations or database operations.

You should use the cache for saving global data for the entire PHP application. The variable
$_SESSION is better suited for user-related data.

Caution When multiple PHP applications are using the same application pool, the PHP applica-
tions can access the data of the other applications in the user cache. This can pose a security risk.

Listing 6-9 shows a simple application of the user cache: a chat script that uses all of the fol-
lowing essential functions of the user cache:

■ wincache_ucache_clear() Deletes all entries in the user cache.

■ wincache_ucache_exists($key) Checks whether a certain entry exists.

■ wincache_ucache_add ($key, $value, $ttl) Adds a new entry, but only if it doesn’t
exist yet. $ttl specifies after how many seconds the entry must be deleted, 0 (the
default) means that the value must not be deleted.

■ wincache_ucache_inc($key, $inc_by) Increases an entry by $inc_by or by 1, if
$inc_by is not specified. If an error occurs (for example, because the entry doesn’t
exist or is not a number), the function returns false.

■ wincache_ucache_get($key, &$success) Reads an entry and returns false if it
doesn’t exist. If you want to check Boolean variables for success, you can set the status
in the optional variable $success.

■ wincache_ucache_set($key, $value, $ttl) Adds a new entry or overrides an existing
entry. $ttl states the duration of the entry.

 Chapter 6 Caching 135

LISTINg 6-9 wincache-chat.php—a short chat script with WinCache.

<html>
<head>
 <title>Chatroom</title>
</head>
<body>
<h1>Chatroom</h1>
<?php
if (isset($_POST['clear'])) {
 wincache_ucache_clear();
 echo '<p>Messages deleted, counter reset.</p>';
}
if (!wincache_ucache_exists('counter')) {
 wincache_ucache_add('counter', 0);
}
$cnt = wincache_ucache_inc('counter');
echo "$cnt page hits since the last restart.\n";
?>
<form action="" method="post">
 Message: <input name="msg" />
 <input type="submit" value="Send!" />
 <input type="submit" name="clear" value="Delete all" />
</form>
<hr />
<h2>The 5 latest messages</h2>
<p><?php
if (!wincache_ucache_exists('chat')) {
 wincache_ucache_add('chat', array());
}
$chat = wincache_ucache_get('chat');
if (isset($_POST['msg'])) {
 $chat[] = $_POST['msg'];
 if (count($chat) > 5) {
 array_shift($chat);
 }
 wincache_ucache_set('chat', $chat);
}
foreach (array_reverse($chat) as $msg) {
 echo htmlspecialchars($msg), "
\n";
}
?></p>
</body>
</html>

Figure 6-5 shows the chat script output after a few passes. The output is the same for all
users. The value and content of the WinCache user cache are global.

136 Part I Internet Information Services (IIS)

FIgURE 6-5 Chat script output.

Summary
With the techniques described in this chapter, you can increase the performance of your PHP
applications significantly. Especially for popular pages, you should try to use all three options:
caching based on HTTP headers, IIS output cache, and PHP caches such as WinCache.

You should pay special attention to the difference between anonymous and logged-in users:
normally, anonymous users generate a lot more requests than logged-in users. Also, the
pages for logged-in users are usually personalized; therefore, the IIS output caching for PHP
scripts is not very efficient in this case. A simple differentiation between user types can be
achieved via different URLs for the anonymous area and the area for logged-in users. You
should already take this into account when you are designing your PHP application.

During configuration, it’s helpful to set up files with different caching requirements (for
example, graphics and style sheets) in their own folders and not mix them with PHP scripts.

In special cases, the caching can be configured at file level (with the location element; see
Chapter 3) instead of on folder level. This might become necessary for index.php files.

Fine-tuning depends on your application and your users. Analyzing the log files can provide
you with important information.

 137

Chapter 7

URL Rewrite

URL Rewrite is an extremely useful and powerful tool for developing PHP applications: with
it, you can assign the requested URL to any desired PHP script or other resource and thus
override the mapping of the URL path to the physical path. PHP scripts can therefore be
responsible for any URLs and process them. Starting with version 2.0, it’s also possible to
rewrite outgoing HTML and HTTP headers.

In this chapter, you will first learn the basics so that you understand the functionality behind
URL Rewrite: URL paths, their parts and associated PHP variables, and how to evaluate rules.
Then you will see how to create rules by using the IIS Manager. The patterns, conditions, and
actions are discussed in detail. Finally, you will look at the XML configuration of the module,
along with a few examples.

Setting Up URL Rewrite
You can use the Web Platform Installer (Web PI) to install the URL Rewrite module, or install
the module manually by using an installation package.

In this chapter:
Setting Up URL Rewrite . 137
Predefined Variables . 138
Evaluating Rules . 143
Setting Up Rules . 146
Rewrite Maps . 154
Rules in Detail . 156
XML Configuration . 167
Examples . 175
Converting from Apache mod_rewrite . 181
Summary . 183

138 Part I Internet Information Services (IIS)

Installing URL Rewrite Manually
To install the URL Rewrite module without the Web PI, perform the following steps:

 1. Open the website http://www.iis.net/expand/URLRewrite and download the version
(x86 or x64) of URL Rewrite Module 2.0 that works for your system.

 2. Run the downloaded installation file.

 3. In the dialog box, select the check box to agree to the licensing conditions, and then
click the Install button.

 4. Exit the installation by clicking the Finish button.

If you are asked to restart the server, do so.

You have now installed the module.

Installing URL Rewrite by Using the Web PI
To install the URL Rewrite module by using the Web PI, perform the following steps:

 1. Start the Web PI as an administrator.

 2. Click Products | Server.

 3. Click to add URL Rewrite 2.0.

 4. Click the Install button.

The Web Platform Installation dialog box opens.

 5. In the dialog box, click the I Agree button.

The Web PI now starts the download and the installation.

 6. After a successful installation, click the Finish button.

Predefined Variables
To understand the impact of redirecting and rewriting rules, let’s first look at the predefined
PHP variables that are important for the rewrite. Once you understand how the rules work,
you will be better able to apply them yourself. The variables are based on three different
sources: PHP, Internet Information Services (IIS), and the CGI specification.

 Chapter 7 URL Rewrite 139

Common Gateway Interface Variables
The Common Gateway Interface (CGI) is a specification (RFC 3875) that describes how
external programs are called by a web server, and how request information is passed to
these programs.

The important variables for rewriting are based on the URL of the HTTP request. A URL con-
sists of several parts, as shown in Figure 7-1.

FIgURE 7-1 The structure of a URL.

The individual parts of a URL have the following meaning:

■ The schema specifies the protocol that the application uses (for websites, either HTTP
or HTTPS).

■ The host name specifies the name of the server. Normally it is a fully qualified domain
name, such as www.bing.com or www.microsoft.com.

■ The port number is optional and specifies the TCP/IP port for the connection. For the
HTTP protocol, port 80 is the default port; for the HTTPS protocol, it is port 443.

■ The path identifies the requested resource within the server. In Figure 7-1, the path
is /phpapp/info.php. It contains a leading forward slash. URL paths behave like folder
paths. By default, many web servers, including IIS, map the URL path to the physical
folder path.

■ The query string can be used for passing parameters—for example, search strings or
actions that need to be performed. A query string may contain any number of param-
eters. In practice, however, it is limited to approximately 2,000 characters.

■ The document fragment identifies a part within the document. It is only evaluated by
the browser itself and is not transferred in the HTTP protocol. They are typically used as
jump targets for headings or footnotes.

In the CGI specification, different variables are assigned to these parts of the URL, which can
be queried in PHP with the global variable $_SERVER. CGI has one particularity which is dif-
ferent from the standard division of a URL: the path can be divided into two parts. Simply
put, the path can be continued as desired behind the path for the script. The path after the
script is passed to the script as a variable.

140 Part I Internet Information Services (IIS)

Table 7-1 shows all URL-based variables of the CGI specification. As a URL example, we are
using http://phpdemo.site:80/phpapp/info.php/sub/path?art=1.

The PHP script (= the resource) is located in the root folder of the website at phpapp\info.php.

TABLE 7-1 CGI variables in $_SERVER, based on the URL of an HTTP request

CGI variable Description Example
PATH_INFO Subpath, which is specified behind the script /sub/path

PATH_TRANSLATED Complete physical path of the script, including
the subpath

%root folder%
\phpapp\info.php\sub\path

QUERY_STRING Query string of the URL art=1

SCRIPT_NAME URL path and name of the executed script /phpapp/info.php

SERVER_NAME Host name of the server, which is also contained
in the host header of the HTTP request

phpdemo.site

SERVER_PORT TCP/IP port number of the incoming HTTP
request

80

SERVER_PROTOCOL Protocol and version number HTTP/1.1

Note If in your work environment the variables PATH_INFO and PATH_TRANSLATED don’t con-
tain the correct values, check whether the option cgi.fix_pathinfo=1 is specified in php.ini.

CGI also defines a number of other variables. For example, all HTTP headers for the request
are passed in the form of HTTP_*, which means that the header Content-Type is passed as
HTTP_CONTENT_TYPE or as a PHP variable in $_SERVER[‘HTTP_CONTENT_TYPE’]. Information
about the requesting client is also transferred according to the CGI specification; for example,
the client’s IP address is transferred as REMOTE_ADDR to the PHP script.

IIS and PHP Variables
IIS and PHP define several additional variables, which can be used for URL rewrites in HTTP
requests. The variables give you information about the physical path of the script and the
original URL of the request.

Table 7-2 lists the additional variables that are defined in the global variable $_SERVER. Our
URL example is again http://phpdemo.site:80/phpapp/info.php/sub/path?art=1.

The PHP script is located in the root folder of the website C:\inetpub\wwwroot at
phpapp\info.php.

The URL is rewritten internally.

 Chapter 7 URL Rewrite 141

TABLE 7-2 Relevant $_SERVER variables of an HTTP request

PHP variable Description Example
APPL_PHYSICAL_PATH
(IIS only)

Physical path of the assigned IIS application
of the PHP script.

C:\inetpub\wwwroot

DOCUMENT_ROOT Root folder of the website. C:\inetpub\wwwroot

HTTP_X_ORIGINAL_URL
(IIS only)

If only the URL has been rewritten, this
contains the original URL of the HTTP
request.

/phpapp/info.php/sub/
path?art=1

HTTPS Specifies whether this is an HTTPS request. off

IIS_UrlRewriteModule
(IIS only)

Specifies whether the URL Rewrite module
is enabled.

1

IIS_WasUrlRewritten
(IIS only)

If the URL has been rewritten, this variable
is defined, otherwise not.

1

ORIG_PATH_INFO If PATH_INFO is not set, ORIG_PATH_INFO
can contain the path information.
Caution This also contains the relative
path of the script itself.

/phpapp/info.php/sub/path

PHP_SELF Relative path of the script including the
subpath.

/phpapp/info.php/sub/path

REQUEST_URI URL of the HTTP request. /phpapp/info.php/sub/
path?art=1

SCRIPT_FILENAME Absolute physical path of the PHP script. C:\inetpub\wwwroot\
phpapp\info.php

UNENCODED_URL
(IIS only)

If the URL has been rewritten, this contains
the original URL of the HTTP request, with-
out decoding URL-coded characters.

/phpapp/info.php/sub/
path?art=1

Note In contrast to Apache, $_SERVER[‘HTTPS’] is not empty, but has the value off when the
connection is encrypted. PATH_INFO and ORIG_PATH_INFO are always set correctly in IIS 7 with
FastCGI and the php.ini setting cgi.fix_pathinfo=1 (the default value).

In addition to the $_SERVER variables, there are two constants that provide further informa-
tion about the current PHP script: FILE contains the complete physical path of the PHP
file; DIR (as of PHP 5.3) contains the complete physical path of the folder in which the
PHP file is located. One important difference is that the constants are dependent on the file
in which they are located. Therefore, they are different for PHP files, which are included by
the executed PHP script.

PHP also provides the global variable $_ENV, which contains environment variables. In the
default installation of IIS, no environment variables are passed to PHP in $_ENV; instead, a lot
of entries end up in $_SERVER.

142 Part I Internet Information Services (IIS)

Merging PHP Script
For you to better understand the impact of redirecting and rewriting rules, we are using
the PHP script urlinfo.php from Listing 7-1. The $_SERVER variables are divided into three
groups: specifications about the binding, the request URL, and the executing script. First, a
printServerVar() function is defined, which returns the values of $_SERVER securely in a list.

LISTINg 7-1 urlinfo.php—information about the HTTP request and the PHP script.

<!DOCTYPE html>
<html>
<head><title>Information about the HTTP Request</title></head>
<body>
<h1>Information about the HTTP Request</h1>
<h2>Binding specifications</h2>

<?php
function printServerVar($text, $parameter) {
 echo "$text ($parameter): ";
 if (isset($_SERVER[$parameter])) {
 echo '"', htmlspecialchars($_SERVER[$parameter]), '"';
 } else {
 echo '--not specified--';
 }
 echo "\n";
}
printServerVar('Server name', 'SERVER_NAME');
printServerVar('Port', 'SERVER_PORT');
printServerVar('Protocol', 'SERVER_PROTOCOL');
printServerVar('Secure connection', 'HTTPS');
?>

<h2>URL specifications</h2>

<?php
printServerVar('Request URL', 'REQUEST_URI');
printServerVar('Query string', 'QUERY_STRING');
printServerVar('URL-Script path incl. subpath', 'PHP_SELF');
printServerVar('URL path of the script', 'SCRIPT_NAME');
printServerVar('Subpath', 'PATH_INFO');
printServerVar('Original path information', 'ORIG_PATH_INFO');
printServerVar('Did a URL rewrite take place?', 'IIS_WasUrlRewritten');
printServerVar('Original URL', 'HTTP_X_ORIGINAL_URL');
printServerVar('Unencoded URL', 'UNENCODED_URL');
?>

<h2>Script specifications</h2>

<?php
printServerVar('Root folder', 'DOCUMENT_ROOT');
printServerVar('Physical path of the IIS application', 'APPL_PHYSICAL_PATH');
printServerVar('Physical path of the script', 'SCRIPT_FILENAME');

 Chapter 7 URL Rewrite 143

printServerVar('Physical path incl. subpath', 'PATH_TRANSLATED');
echo '__FILE__ constant: ', __FILE__, '';
echo '__DIR__ constant: ', __DIR__, ''; // only as of PHP 5.3
?>

</body>
</html>

Copy the file into the root folder of your website and call up the script in the browser.
Figure 7-2 shows the output of urlinfo.php if it is contained in the root folder C:\inetpub\
wwwroot and is called with the URL http://localhost/urlinfo.php/sub/path?article=1.

FIgURE 7-2 The output of urlinfo.php.

Evaluating Rules
The URL Rewrite module is a rule-based system. The rewriting of URLs and other actions are
triggered by defined rules. Each rule consists of three parts:

■ The pattern against which the URL path is tested

■ The conditions that must be met (in addition to the pattern)

■ An action, which is performed upon the successful testing of the pattern and the
conditions

144 Part I Internet Information Services (IIS)

For an incoming request, the rules are evaluated, one after the other, to check whether a rule
applies. If a rule does apply, the action of that rule is executed. If there are further rules in the
list, the process continues with the next rule.

Action Types
The module provides five different actions for rules:

■ Redirect Redirects to a different URL. The browser then loads the new page.

■ Rewrite Internally rewrites a URL to a different file. With this, the connection between
URL and physical file layout can be lifted.

■ Custom Response Responds with an HTTP status code, which can be chosen freely.

■ Abort Request The server immediately disconnects without sending an appropriate
HTTP reply.

■ None Nothing is done and no action is performed. The purpose of this action
becomes apparent during the processing of rules. For example, it can be used to pro-
cess subsequent rules, only conditionally.

Hierarchy and URL Paths
Rules can be defined on all levels: server, website, application, virtual directory, and subfolder.
Server rules represent one category; all others are called distributed rules and they are pro-
cessed differently:

n	 Server rules apply to the entire web server—for instance, to all websites. The rule pat-
terns are applied to the complete and absolute URL path. These rules are applied
before any others.

n	 Distributed rules are applied in sequence according to their hierarchy. Therefore, the
rules of the parent element take precedence. The patterns are no longer evaluated
against the complete URL path, but only against the relative URL path of the defining
element. For example, if a virtual directory has the URL http://phpdemo.site/phpapp/
and you define a rule for this directory, when calling http://phpdemo.site/phpapp/demo/
info.php, only the path demo/info.php relative to the directory serves as input data for
the pattern.

Important Consequently, patterns should never begin with a forward slash when working with
distributed rules.

Distributed rules are inherited downward. This means that the rules also apply to child ele-
ments. The reference point for the rule to extract the relative path does not change, however.

 Chapter 7 URL Rewrite 145

The reference point is always the element in which the rule has been defined. In practice,
this means that the rules always behave as if they were run on the level of the defined ele-
ment. The fact that inheritance takes place only becomes apparent when inherited rules are
cancelled in child elements. In this case, the rule of the parent element is not applied for
requests that fall into the scope of the child element.

The URL paths are also important for the actions of the redirect and rewrite rules: if you
specify a relative path for the action of these two types, the path is relative to the element
in which the rule is defined. Unlike with patterns, defining an absolute path (forward slash at
the beginning) makes sense here: it allows you to rewrite or redirect virtual directories and
subfolders application-wide. You can also redirect to complete URLs, not just relative and
absolute URL paths. This means that you can redirect to other websites or foreign sites out-
side of the server.

Time of the Evaluation
The module’s rules are applied very early in the request processing. Figure 7-3 shows this
instance: the rules are already applied at the start of the request processing. This ensures that
these rules impact all types of requests, no matter whether you are working with PHP scripts
or graphic files.

The three action types Redirect, Abort Request, and Custom Response skip a large part of
the processing pipeline. Only the action types Rewrite and None run completely through the
requests, and thus through the pipeline.

Begin Request Processing

Authentication

Authorization

Cache Resolution

Handler Mapping

Handler Pre-execution

Handler Execution

Release State

Update Cache

Update Log

End Request Processing

URL Rewrite

Native ModulesWeb Server Core

Worker Process (W3WP.exe)

PHP

FIgURE 7-3 Processing of rules.

146 Part I Internet Information Services (IIS)

Setting Up Rules
Let’s take a closer look at the individual rule types and how they are created. Later on, you
will learn more details such as how to use conditions and regular expressions.

Setting Up Redirect Rules
A redirect is different from a rewrite of a URL: a redirect is known to and becomes effective
from the outside, whereas a rewrite only influences the course of events within IIS itself. This
means that the client (the web browser) is part of the redirect.

Flow
Figure 7-4 shows the request flow when a redirect rule is applied. Following that is a descrip-
tion of each step in the flow.

1
3
4
5

2
Redirect Rule

Web Server
(IIS)

Web Client

FIgURE 7-4 The course of events during a redirect of an HTTP request.

 1. The web client sends a request to the web server.

 2. The web server finds an applicable rule for the URL of the request.

 3. The web server sends the status code for a redirect with a new URL to the client.

 4. The client sends a new request with the URL from step 3.

 5. The server replies with the requested page or resource (for example an image).

Table 7-3 shows possible HTTP status codes and what they mean. The most frequent status
codes are 301 and 302. The latter is often used the wrong way, but has become generally
accepted. With the status codes 303 and 307, HTTP/1.1 has defined alternatives to the status
code 302.

 Chapter 7 URL Rewrite 147

TABLE 7-3 HTTP status codes for redirect

HTTP status code Description
301 (permanent) The request and all future requests must target the new URL. For example, 301

is used after a site has been reorganized permanently.

302 (found) The request must target the new URL, but future requests must continue to use
the old URL, because the redirect is only temporary. The HTTP method must not
change for the new request (for example, POST must remain POST). In practice,
browsers behave the same with 302 as with the status code 303.

303 (see other) As of HTTP/1.1: the reply to the request is located at a different URL, but the
request itself was processed correctly. The new URL must be requested with
the GET method. Future requests must go to the original URL. 303 HTTP replies
must not be cached. The idea behind 303 is that, for example, a form that is
targeted with POST can redirect to different result pages after processing,
depending on the content.

307 (temporary) As of HTTP/1.1: the request must target a new URL, but future requests must
continue to use the old URL, because the redirect is only temporary. The HTTP
method must not change. The client can’t assume that the request has already
been processed.

Adding a Redirect Rule
To create a redirect rule and add it to the existing set of rules, perform the following steps:

 1. Start the IIS Manager.

 2. In the Connections pane, select the appropriate element; for example, Default Web Site.

 3. In the Start Page pane, select the module URL Rewrite by double-clicking it.

 4. In the Actions pane, select Add Rule(s).

The Add Rule(s) dialog box opens.

 5. Select the Blank Rule template.

 6. The work area of the IIS Manager changes to the Edit Inbound Rule view, as shown in
Figure 7-5.

148 Part I Internet Information Services (IIS)

FIgURE 7-5 Adding a redirect rule.

 7. In the Name text box of the rule, enter a unique name.

 8. In the Using drop-down list, select Wildcards (Regular Expression will be covered later).

 9. In the Pattern text box, enter the URL from which you want to redirect another URL.

In the example, we are using info-url.

 10. In the Action section, in the Actions Type drop-down list, select Redirect.

 11. In the Action Properties subsection, in the Redirect URL text box, enter the URL to
which you want to redirect.

In the example, we are using urlinfo.php (the sample script from the section “Merging
PHP Script,” earlier in this chapter).

 12. In the Redirect Type drop-down list, select Temporary (307).

 13. In the Actions pane, click Apply to confirm your entries, and then click Back To Rules to
return to the Rules view.

If you now call up the URL http://localhost/info-url in the browser, you are automatically
redirected to the URL http://localhost/urlinfo.php. If the redirect is working, the new URL is

 Chapter 7 URL Rewrite 149

displayed in the browser’s address bar: the browser is included in the redirect. The redirect
can also be checked in the IIS log file of the website. This file contains two entries that look as
follows (the status code is the fourth number from the last):

2011-07-02 19:52:19 ::1 GET /info-url - 80 - ::1 Mozilla/4.0+(compatible;+MSIE+9.0;+Tride
nt/5.0) 307 0 0 0
2011-07-02 19:52:19 ::1 GET /urlinfo.php - 80 - ::1 Mozilla/4.0+(compatible;+MSIE+9.0;+Tride
nt/5.0) 200 0 0 15

Note The IIS log files are located in the IIS root folder under C:\inetpub\logs\LogFiles\.

If you take a look at the result page of urlinfo.php after a redirect, you will notice that there
is no difference between a direct call via http://localhost/urlinfo.php and a redirected call
via http://localhost/info-url. The reason for this is the redirect flow: the browser generates a
standalone second request with the URL http://localhost/urlinfo.php. This request is a regular
HTTP-GET request and is indistinguishable from a direct (manual) URL request.

Setting Up Rewrite Rules
A rewrite rule permits you to rewrite the request URL internally within the server (server-
internal) and replace it with another URL. This allows you to design the mapping of URL paths
to physical file paths as you wish. For example, rewrite rules are used for Blog software to
generate readable URLs (pretty URLs) for the individual Blog entries.

Flow
Rewrite rules are applied very early on in the request processing—like all rules of the
URL Rewrite module—and impact all resources, PHP scripts, and image files. The rewrite
happens exclusively internally within the server for the request processing. From the outside,
on the client page, the rewrite is not noticeable.

While any further processing is aborted when redirect rules are applied, the processing con-
tinues when rewrite rules are applied. The subsequent rules are evaluated and applied. If
the action of the rule has been enabled, the subsequent rules use the action URL for pattern
tests, but not for the original URL of the request. Therefore, it is possible that a URL is rewrit-
ten multiple times before the request processing continues. You can use an option to prohibit
the processing of subsequent rules, and control exactly which rules can be applied and when.

150 Part I Internet Information Services (IIS)

Adding a Rewrite Rule
To create a rewrite rule, perform the following steps:

 1. In the IIS Manager of the desired element, select Start Page | URL Rewrite | Add Rule(s);
for example, the Default Web Site.

The Add Rule(s) dialog box opens.

 2. Select the Blank Rule template. The center pane of the IIS Manager changes to the Edit
Rules view.

 3. In the Name text box of the rule, enter a unique name.

 4. Fill in the Match URL fields according to your requirements.

Note The pattern syntax is explained in the section “Pattern,” later in the chapter.

 5. In the Action section, in the Actions Type drop-down list, select Redirect.

 6. Enter the new URL (the rewrite target) into Action Properties.

If you want to retain the query string of the original request, leave the check box
Append Query String selected.

If you want to end rule processing, select the Stop Processing Of Subsequent Rules
check box.

 7. In the Actions pane, click Apply to confirm your entries, and then click Back To Rules to
return to the Rules view.

For example, if you enter other-url/* (type: Wildcards) as a pattern during rule creation and
urlinfo.php/{R:1} as the URL that you want to rewrite, you will see the following output of
the script urlinfo.php when calling the URL http://localhost/other-url/test/path:

URL specifications
Request URL (REQUEST_URI): "/other-url/test/path"
Query string (QUERY_STRING): ""
URL Script path incl. subpath (PHP_SELF): "/urlinfo.php/test/path"
URL path of the script (SCRIPT_NAME): "/urlinfo.php"
Subpath (PATH_INFO): "/test/path"
Original path information (ORIG_PATH_INFO): "/urlinfo.php/test/path"
Did the rewrite take place? (IIS_WasUrlRewritten): "1"
Original URL (HTTP_X_ORIGINAL_URL): "/other-url/test/path"
Unencoded URL (UNENCODED_URL): "/other-url/test/path"

 Chapter 7 URL Rewrite 151

Script specifications
Root folder (DOCUMENT_ROOT): "C:\inetpub\wwwroot"
Physical path of the IIS application (APPL_PHYSICAL_PATH): "C:\inetpub\wwwroot\"
Physical path of the script (SCRIPT_FILENAME): "C:\inetpub\wwwroot\urlinfo.php"
Physical path including subpath (PATH_TRANSLATED): "C:\inetpub\wwwroot\urlinfo.php\test\path"
__FILE__ constant: C:\inetpub\wwwroot\urlinfo.php
__DIR__ constant: C:\inetpub\wwwroot

The script specifications show that the request has been rewritten internally to the PHP script
urlinfo.php. The variables PHP_SELF and SCRIPT_NAME reflect the same. You can only read
the path of the original request from the variables REQUEST_URI and the IIS-specific HTTP_X_
ORIGINAL_URL and UNENCODED_URL.

Tip PHP programs that must recognize the request URL should use the variable REQUEST_URI.
This ensures that the program can be used across platforms.

Additional Action Types
You can set up rules with other action types the same way as the redirect and rewrite rules.
Only the Action section is different.

Customizing a Reply
The Custom Response action type permits you to send any desired HTTP status codes and
substatus codes. To set up a rule with such an action, simply do the same as when setting up
other rules:

 1. For the new rule you want to create, in the Action section, in the Action Type drop-
down list, select the Custom Response.

 2. Enter the HTTP status code (for example 403) and the IIS-specific substatus code
into the corresponding text boxes. In the Reason text box, you can enter a plain text
description of the status code. The reason is transferred in the status line of the HTTP
reply.

 3. In the Error Description text box, you can enter a more detailed description. This box
can be used for debugging.

 4. In the Actions pane, click Apply to Confirm your entries.

If you use the browser to call up a URL to which this rule applies, you will receive an error
message that corresponds to your entries, as shown in Figure 7-6. For known status codes, IIS
returns an HTML page with a user-friendly error message.

152 Part I Internet Information Services (IIS)

FIgURE 7-6 Defined error message for a rule with custom reply.

The Abort .Request Action Type
The Abort Request action type ends a request as quickly as possible. No HTTP reply is returned
to the requesting client. IIS does not generate a log entry for such aborted requests. You
should therefore think twice before using an Abort Request action. It makes sense to use it
when you know that there are unwanted or malicious requests or if the server is overrun
with too many requests (such as during a Denial-of-Service attack). You can protect your
resources by cancelling requests immediately.

You can’t add further options to the Action section for this rule.

The None Action Type
As the name suggests, the None action type does not perform an action. Based on the pat-
tern and the conditions of the None rule, the processing of the subsequent rules can be
canceled.

The Action section of the rule only contains a single check box: Stop Processing Of
Subsequent Rules. If you don’t want the subsequent rules to be applied, select this check box.

Setting Up Rules with Templates
So far, we have used the Blank Rule template when setting up rules. URL Rewrite also offers
two templates to simplify rewriting and canceling requests.

 Chapter 7 URL Rewrite 153

User-Friendly URL
Rewrite rules are mainly used for creating user-friendly URLs. A user-friendly URL generally
uses no query string, and the individual parts of the URL are separated with forward slashes.
The template for creating user-friendly URLs does this for you. It takes care of the formulation
of the rewrite rule.

 1. In the IIS Manager, click URL Rewrite | Add rule(s).

The Add Rule(s) dialog box opens.

 2. Select the User-Friendly URL template.

The Add Rules To Enable User-Friendly URLs Wizard opens.

 3. In the first text box, enter an example for a URL that you want to rewrite.

 4. In the drop-down list, you can choose among various suggestions for user-friendly
URLs.

 5. In the Rewrite Rule Definition section, you can see the suggested URL pattern and the
replacement URL.

 6. If you want to make the user-friendly URLs the canonical URLs of your application,
you can select the Create Corresponding Redirect Rule check box to create a redirect
rule that redirects clients from internal to user-friendly URLs. If you select the Create
Corresponding Outbound Rewrite Rule check box, then an outbound rule will be added
that replaces all occurrences of internal URLs in the response HTML with their corre-
sponding user-friendly URLs.

 7. Click OK to close the wizard. The corresponding rules with the name RewriteUser
FriendlyURLn, RedirectUserFriendlyURLn, and OutboundRewriteUserFriendlyURLn are
generated (depending on what you chose in step 6).

The rules are now displayed in the rule list like regular rules. From there, they can be edited,
renamed, disabled, or deleted.

Blocking Requests
To use the template for creating request blockings, perform the following steps:

 1. In the IIS Manager, click URL Rewrite | Add rule(s).

The Add Rule(s) dialog box opens.

 2. Select the Request Blocking template.

The Add Request Blocking Rule Wizard opens, as shown in Figure 7-7.

154 Part I Internet Information Services (IIS)

FIgURE 7-7 The template for creating a request blocking.

You can block the requests based on different request data: URL path, User-agent HTTP
header, IP address, query string, reference (Referer HTTP header), or host header.

 3. Enter the rule pattern into the Pattern text box. You can specify the pattern syntax in
the Using drop down list.

 4. In the How To Block drop-down list, you can enter the type of reply; you can choose
between custom replies with the status codes 401, 403, and 404, or abort the request.

 5. Click OK to close the dialog box; the corresponding rule with the name
RequestBlockingRuleN is created.

You can now view, edit, disable, or delete the generated rule just as with all other rules in the
rule list.

Rewrite Maps
If you need to define rules for many different URLs, it makes sense to use rewrite maps. A
rewrite map is a number of name-value pairs. It is used for replacing a name with the cor-
responding value. The names are usually URL paths that you want to rewrite or redirect to
other URLs. Rewrite maps, however, are not limited to URL paths.

Creating a Rewrite Map
To create a rewrite map, perform the following steps:

 1. Start the IIS Manager.

 2. In the Connections pane, select the element (for example, the Default Web Site).

 Chapter 7 URL Rewrite 155

 3. Click URL Rewrite

 4. In the Actions pane, click View Rewrite Maps.

 5. In the URL Rewrite Maps pane, a list of existing maps is displayed.

 6. In the Actions pane, click Add Rewrite Map.

The Add Rewrite Maps dialog box opens.

 7. Enter the name of the map into the text box and confirm your entry with OK. The work
area Edit Rewrite Map is displayed.

 8. In the Actions pane, click Add Mapping Entry.

The Add Mapping dialog box opens.

 9. Fill in the Original Value and New Value text boxes according to your requirements, and
then click OK to close the dialog.

Caution Neither the original value nor the new value allows placeholders or back refer-
ences. Maps simply replace one string with another.

You have now set up a rewrite map and an entry.

A rewrite map also permits you to specify a default value, if none of the map entries apply.
You should be very careful with default values, because they might lead to unintentional
rewrites when using the maps. To set the default value, perform the following:

 1. In the Actions pane, click Edit Rewrite Maps to open the work area of the selected
rewrite map.

 2. In the Actions pane, click Edit Map Settings.

The Edit Rewrite Map dialog box opens.

 3. Enter the desired default value into the text box, and then click OK to confirm.

Note Rewrite maps are inherited. However, they cannot be extended by additional entries, and
individual entries cannot be deleted from them. Even though the user interface suggests this,
what actually happens is that the old rewrite map is deleted on the level where the change takes
place, and a new map is generated with the content of the old one.

If you change the original map that is higher in the hierarchy, these changes do not take effect
lower in the hierarchy.

However, since the changed rewrite map has the same name as the original one, inherited rules
are applied to the changed rewrite map.

156 Part I Internet Information Services (IIS)

Creating an Associated Rule
Rewrite maps by themselves do not cause a request rewrite. The maps must first be entered
into the rules. Rewrite maps can be used within a condition or in the action properties. They
cannot be used in patterns.

IIS provides a rule wizard for creating a rule:

 1. Select URL Rewrite.

 2. In the Actions pane, click Add Rule(s).

 3. Select the Rule With Rewrite Map rule template, and then click OK to confirm.

The Add Rule With Rewrite Map Wizard opens.

 4. Select The Rule Action drop-down list, choose whether you want to create a rewrite or
a redirect rule.

 5. Select the rewrite map from the second drop-down list, and then click OK to confirm.

You have now created a rule with the desired action and rewrite map.

Caution The rule you created is using the rewrite map in a condition for which the server vari-
able REQUEST_URI is used as condition entry. Unlike the paths in the rule patterns, REQUEST_URI
always begins with a slash and also contains the query string. The original values of the map
entries must therefore also begin with a slash and take the query string into account.

Rules in Detail
Rules consist of patterns, conditions, and actions. In the following subsections, you will find
more detailed descriptions of these components.

Patterns
Rules are only applied when your URL follows certain patterns and when the conditions work
for these patterns, as well. IIS recognizes three different syntaxes for patterns: exact match,
simple wildcards, and regular expressions.

Wildcards

Wildcards represent a simple syntax for rule patterns, but can still cover a variety of typical
application situations. The placeholder syntax has only one special character, the asterisk “*”.

 Chapter 7 URL Rewrite 157

The * character is a placeholder for any number of any characters. This means that neither
the type nor the number of the characters is limited. The asterisk can even represent zero
characters. A back reference is created for the content of the placeholder.

Table 7-4 presents a few examples. In the notes, back references are represented as {R:x}
according to IIS syntax. The null back reference {R:0} always represents the entire content of
the search pattern if there is a hit, such as when it is identical to the input data.

TABLE 7-4 Examples for the placeholder syntax of search patterns
Pattern Input data Applies Notes
a*c abc Yes {R:0}=abc, {R:1}=b.

a*c a/b/d-e/c Yes {R:0}=a/bde/c, {R:1}=/b/d-e/; the placeholder can contain
special characters such as slashes .

a*c a/b/d-e/c/d No The input data must always completely match the search pat-
tern: Here the “/d” at the end prevents a hit.

ab/*/cd/* ab/12/cd/cd Yes {R:0}=ab/12/cd/cd, {R:1}=12, {R:2}=cd; a search pattern can
contain several placeholders.

Regular Expressions

Regular expressions are much more powerful than placeholders. They permit a very granular
and exact definition of the search pattern. However, with this power comes more complexity.

Regular expressions recognize the following control characters that have special meanings:

. () [] * + ? { } \ | ^ $

If you prefer not to use these characters as control characters, you need to escape them with
a backslash. For example, to test for a point (period) in the pattern, you need to write “\.” in
the pattern.

One important difference to the placeholder syntax is that the search pattern of regular
expressions does not need to match the entire input data, but only a certain string within
the input data. Therefore, it is possible that the input data has other characters before and/or
after the search pattern. You should keep this in mind, because otherwise the search pattern
might capture many more URLs than you had intended.

Table 7-5 lists all control characters and their meaning. All other characters can be used with-
out any restrictions. Back references in the form of {R:x} are generated with parentheses, {R:0}
contains the entire matching search pattern.

Regular expressions make for a powerful tool, but it can easily lead to mistakes due to its
complexity. To support you, IIS provides a tool for testing regular expressions, which makes
working with them much easier.

158 Part I Internet Information Services (IIS)

TABLE 7-5 Control characters in regular expressions
Control character Description

. The period stands for one character of your choice (only one, never several).

[] Defines a group of characters; for example, [ADE] stands for A, D, or E, but
not for the string ADE. You can use the – (hypen character) to specify a
range in alphanumerical order; for example, [A-Z] stands for all letters from
A to Z.

[̂] If the caret is in front, the square bracket defines a group of characters that
contains all characters with the exception of the specified character. For
example, [̂ 3-8] means all characters except for the numbers 3 to 8.

| The pipe represents an or-relation. For example, abc|def applies to either
the string abc or the string def.

^ Defines the beginning of the input data without representing the first
character. For example, the pattern ^be applies to beat or best, but not to
strobe or lobe.

$ Defines the end of the input data without representing the last character.
For example, the pattern er$ applies to better or longer but not to verb or
erase.

 () The parentheses serve to group and to generate a back reference.

(?:) Parentheses with a leading question mark and colon are also used for
grouping, but do not generate a back reference.

* The preceding expression may appear any amount of time, or not at all. For
example, A* means zero or any amount of As, and AB* means one A fol-
lowed by zero or multiple Bs. With the help of grouping, the strings can be
repeated. The pattern (AB)*, therefore, means any number of the string AB
such as ABABAB.

+ The preceding expression may appear any amount of time, but at least
once. For example, [AB]+ means any sequence of the characters A and B,
but at least one.

? The preceding expression may appear once or not at all.

{ } The preceding expression appears a certain amount of times. {4} means
that the expression appears exactly four times, {2,4} means that the expres-
sion appears two to four times, {2,} means that the expression appears at
least twice.

*?, +?, ?? If the quantifiers *, +, and ? are followed by a question mark, it means that
the search algorithm is not greedy and ends after the first possible hit.
For example, if the input data is ABBBC, the back references for the search
pattern A(B+)(B*)C are set as follows: {R:1}=BBB, {R:2}=empty. But the back
references for the search pattern A(B+?)(B*)C (not greedy) are set as follows:
{R:1}=B, {R:2}=BB, because now the search is stopped in the first group after
the shortest hit.

(?=), (?!) Look-Ahead: (?=) means that the hit must be followed by this group. Thus,
(?!) means that the hit must not be followed by this group. For example,
the pattern BCD(?=EF) applies to the string ABCDEFG, because EF follows
BCD. Because the Look-Ahead expression itself is no longer part of the hit,
the zeroth back reference (the entire hit) is {R:0}=BCD.

 Chapter 7 URL Rewrite 159

Control character Description
\ The backslash is used for escaping control characters, but also defines addi-

tional standalone control characters

\u0000 \u defines a character by its Unicode value in hexadecimal syntax. For
example, \u0041 stands for A.

\x00 \x defines a character by its ISO-8859-1 value in hexadecimal syntax. For
example, \xdc stands for Ü.

\b, \B \b stands for a word boundary without being a character of the word
boundary itself. A word boundary is always created when a word character
(letter, number or underscore) meets a non-word character.
\B stands for a spot which is not a word boundary. \B itself does not repre-
sent a character.

\d, \D \d stands for the numbers 0 to 9; \D stands for all character except for the
numbers 0 to 9.

\s, \S \s stands for all kinds of space characters; \S stands for all characters that
are not space characters.

\w, \W \w stands for word character and corresponds to the group of characters
that contains all letters, numbers, and the underscore. \W stands for all
characters, except for word characters.

Testing Patterns
IIS provides a comfortable function for testing patterns:

 1. In the IIS Manager, open the URL Rewrite module, and then create a rule by using the
Add Rule(s) dialog box, or select a rule, and then in the Actions pane, click Edit.

 2. In the Edit Rule pane, select the corresponding pattern type in the Using drop-down
list, and then click the Test Pattern button.

The Test Pattern dialog box opens.

 3. In the Pattern text box, enter the pattern that you want to test. In the Input Data To
Test text box, enter the URL path that you want to test with the pattern, and then
click Test.

The Test Results pane shows whether the entered URL path corresponds to the pattern.
If so, the list of generated back references is displayed, as well.

 4. Repeat the tests with different entry data, until you are satisfied with the accuracy of
your pattern, and then click Close to exit the dialog box.

If you have changed the pattern configuration, you will be asked whether you want to
keep the changes. Answer with Yes or No to return to the Edit Rule pane.

160 Part I Internet Information Services (IIS)

Conditions
With the rule patterns you have learned so far, you can only test the URL path. Other parts of
the URL or the HTTP headers can’t be queried via the Pattern text box. To test for patterns in
this HTTP request data, you need to use the rule conditions.

In addition to matching the pattern of the URL path, the condition also must be met so that
the action of a rule can be performed. Conditions consist of three parts: condition input, con-
dition type, and (depending on the type) condition pattern.

The condition input specifies which data will be used as input data for the test or the pattern.
You can use the CGI and IIS variables from the section “Predefined Variables,” earlier in the
chapter, as input data. Examples for such variables are QUERY_STRING for the query string,
SERVER_NAME for the host name of the server, and HTTP_USER_AGENT for the User-Agent
HTTP header.

IIS provides six different condition types. Apart from the pattern tests, there are types that
test whether the target of a request is a file or a directory. In addition to these three positive
tests, there are equivalent negative tests: the request target is not a file, not a directory, or
the entry data doesn’t correspond to the condition pattern.

Adding and Editing Conditions
To add conditions to a rule, perform the following steps:

 1. In the IIS Manager, open the rule you want to edit in the URL Rewrite module.

 2. Click the Conditions section to expand it.

 3. In the Logical Grouping drop-down list, choose whether you want all conditions to
be met before the action of the rule is triggered, or whether it’s enough if one condi-
tion is met.

 4. Click Add to add a new condition.

The Add Condition dialog box opens, as shown in Figure 7-8.

FIgURE 7-8 Adding a condition to a rule.

 Chapter 7 URL Rewrite 161

 5. Enter the input data that you want to test into the Condition Input text box.

Server variables are written in curly brackets. Even though it’s possible to use multiple
variables at the same time, you should use only one server variable per condition to
retain a better overview. You can also use back references and rewrite maps (see also
the section “Actions,” which follows this section).

 6. Specify the condition type in the Check If Input String drop-down list.

Note that file or directory-related tests only make sense when input data that makes up
the physical path are checked. If that is not the case, you should only perform pattern
tests.

 7. If you are performing pattern tests, enter the pattern into the Pattern text box. By
using the Test Pattern button, you can check various entry data against the pattern, as
described in the section “Testing Patterns,” earlier in the chapter.

 8. Click OK to close the dialog box.

 9. To add more conditions, in the Conditions section, click the Add button.

 10. In the Actions pane, click Apply to finish the rule edit.

Back References
Just like patterns for URL paths, conditions can also generate back references. These back
references can be addressed in the following conditions or action properties of the rule as
{C:0}, {C:1} … {C:n}.

By default, the {C:n} variables receive the back references of the condition that was applied
last. You can no longer access the back references of other previous conditions. As of ver-
sion 2.0 of URL Rewrite, you can enable the trackAllCaptures option by selecting the Track
Capture Groups Across Conditions check box. When enabled, the capture groups are sequen-
tially numbered. For example, if you have two rules, each one with two capture groups, then
the groups of the first rule are numbered {C:0} and {C:1}, whereas the groups of the second
rule are numbered {C:2} and {C:3}.

In both modes, the order of conditions is important. You can sort the conditions when edit-
ing rules and put them into the desired order.

Actions
A rule’s actions define how to continue the request processing. As you already learned in the
section “Setting Up Rules,” earlier in the chapter, URL Rewrite provides five different action
types: Redirect, Rewrite, Custom Response, Abort, and None (no action). You can use variables
and functions in the action properties.

162 Part I Internet Information Services (IIS)

Variables You can use different variables for the action properties, especially the URL speci-
fications of the Redirect and Rewrite action types:

■ Server variables, for example {QUERY_STRING}, {SERVER_NAME}

■ Back references from the pattern of the rule {R:0}, {R:1}, … {R:n}

■ Back references from conditions {C:0}, {C:1}, … {C:n}

■ Redirect maps, using {Name of map:entry value}; for example, when you want to use the
variable {REQUEST_URI} as input data for the map My_Map: {My_Map:{REQUEST_URI}}

Note These variables can also be used for the condition entry of the data against which the
condition pattern tests.

Functions In addition to the variables, you can also use functions in the action properties.
The URL Rewrite module defines three functions:

■ ToLower The uppercase letters of the entry data are converted into lowercase letters.

■ UrlEncode Entries are URL-encoded. Special characters or characters prohibited in
URLs are escaped according to the URL specification.

■ UrlDecode The opposite of UrlEncode.

You again use curly brackets, for example {ToLower:House} to return the string “house.” You
can also specify other variables as parameters; for example, {UrlEncode:search. php?string={R:1}}.

Note These functions can also be used for condition entries. The function UrlDecode should
only be used in this context, because it can lead to undesirable results in the action properties
(prohibited characters in the URL path).

Setting Server Variables and HTTP Headers
In addition to the actions taken, when pattern and conditions match, URL Rewrite also pro-
vides a function to set server variables and HTTP headers for the incoming request. Both can
be specified in the Server Variables section when editing a rule.

 Chapter 7 URL Rewrite 163

You can choose any name for the server variable—even replace well-known server variables.
HTTP headers must use the same HTTP_* naming scheme as in PHP. For example, to set
the HTTP header Referer, you would set the variable HTTP_REFERER.

IIS has a built-in precautionary measure: before a rule is allowed to set variables, you must
name the variables that rules are allowed to set or change, as follows:

 1. In the Connections pane, select the desired element, and then open the URL Rewrite
feature.

 2. In the Actions pane, click View Server Variables.

 3. To add a new variable, again, in the Actions pane, click Add, enter the variable name in
the dialog box, and then click OK.

Next, you can add these server variables and values to rules, by adding them in the Server
Variables section of the Edit Inbound Rule pane. Figure 7-9 shows how to set the HTTP
Referer header to the client’s remote address if the header is missing. Be sure that the
Replace The Existing Value check box is cleared, because you do not want to overwrite an
existing header.

FIgURE 7-9 Modifying an HTTP header with an inbound rewrite rule.

164 Part I Internet Information Services (IIS)

Server variables and headers are set in the $_SERVER global variable of PHP. If you set
the variable answer as shown in the variable list in Figure 7-9, you could access it with
$_SERVER[‘answer’] from PHP.

Note that adding or changing inbound headers and server variables only makes sense if you
use a Rewrite or None action, unless you have deployed special IIS custom modules. Setting
headers or variables within a None action allows you to augment incoming requests, without
a rewrite taking place. You could also use this to distinguish different cases in later rules, by
testing for those headers or variables in the rule’s conditions.

Outbound Rules
With URL Rewrite, you can also rewrite outgoing responses; you can again set HTTP head-
ers and server variables, but you can also change the content of the response. Rewriting
responses can be useful if you would like to change links or add a notice to all pages. The basic
structure of outbound rules is the same as for inbound rules. However, because IIS must
parse the content, outbound rules can affect performance. This is why IIS has several addi-
tional mechanisms to minimize the performance impact: pre-conditions, tag filters, and
caching. The caching method is only available through XML configuration and will be dis-
cussed there.

Pre-Conditions
Pre-conditions are checked before the rule is processed any further. The most common
usage of these conditions is checking whether the response has the right content type. To
this end, URL Rewrite provides one predefined condition called ResponseIsHtml1, which
checks whether the content type of the response starts with text/html. To create your own
pre-conditions, perform the following steps:

 1. In the Connections pane, select the desired element, and then open the URL Rewrite
feature.

 2. In the Actions pane, click Outbound Rules | View Preconditions.

 3. Again, in the Actions pane, click Add.

The Add Precondition dialog box opens.

 4. In the dialog box, set the name of the pre-condition collection, and then click Add to
add a new condition.

 5. In the Add Condition dialog box, specify the Condition Input for the pattern.

Here, HTTP headers must be prefixed with “RESPONSE_”. For example, to specify the
Cache-Control header, you would write {RESPONSE_CACHE_CONTROL}.

 Chapter 7 URL Rewrite 165

 6. Enter the pattern and whether the pattern should or should not match for the pre-
condition to be true, and then click OK.

 7. You can either add additional conditions by using Add or save the pre-condition collec-
tion by clicking OK.

Tag Filters
To improve the performance of pattern matching, you can and should use tag filters. Tag
filters specify to which attributes of HTML elements the pattern should be applied—for
example, only to the src attribute of the Img element. Tag filters only allow the definition of
attributes, not that of the content of elements. It is still a useful concept, because usually you
are using outbound rules to rewrite URLs, which are stored in HTML attributes.

URL Rewrite provides predefined tag filters for the elements A, Area, Base, Form, Frame,
Head, IFrame, Img, Input, Link, and Script. To define your own tag filter, perform the following:

 1. In the Connections pane, select the desired element, and then open the URL Rewrite
feature.

 2. In the Actions pane, click Outbound Rules | View Custom Tags.

 3. Again, in the Actions pane, click Add Group.

The New Custom Tags Collection dialog box opens, as shown in Figure 7-10.

FIgURE 7-10 Creating a custom tag filter collection for outbound rewrite rules.

 4. In the dialog box, enter a name for the tag collection, and then enter element and
attribute names.

 5. Click OK to create the tag filter collection.

166 Part I Internet Information Services (IIS)

Creating an Outbound Rule
The outbound rule itself is created similarly to inbound rules:

 1. In the Connections pane, select the desired element, and then open the URL Rewrite
feature.

 2. In the Actions pane, click Add Rule(s).

 3. Select Outbound Rules | Blank Rule, and then click OK.

 4. In the Edit Outbound Rule pane, define the name of the rule in the associated text box.

 5. Select a pre-condition that should be checked.

If you are rewriting the content of the response, you should always use a pre-condition
that checks the content type of the response.

 6. Select the Matching Scope: either Response or Server Variable.

With the option Server Variable, you can again add or modify outgoing HTTP headers
or set variables for custom IIS modules later in the process chain. HTTP headers use the
prefix “RESPONSE_”; (for example, RESPONSE_COOKIE). The following steps assume
that you have selected Response as the matching scope.

 7. If you are going to match against attribute values, select a set of tag filters from the
Match Content Within drop-down list; otherwise, leave this option empty.

 8. Define the matching pattern, its syntax, and the case-sensitivity according to your
needs.

Optionally, you can define additional conditions, just like with inbound rules.

 9. Finally, you specify the action. Two action types are available: Rewrite and None. Again,
None only makes sense if you are using it to stop processing of subsequent requests.
The value you can specify for the Rewrite action type is the value that is replaced for
the matching pattern; for example, for the matching attribute value.

 10. In the Actions pane, click Apply to create the rule.

For example, if you would like to rewrite all links to the login URL of applications from http://
insecure.xmp.site/application/login to https://secure.xmp.site/application/login, you would use
the following settings:

■ Pre-Condition: ResponseIsHtml1

■ Matching Scope: Response, matching content within A, Form

■ Using the Wildcards syntax, the pattern would be http://insecure.xmp.site/*/login

■ Action type: Rewrite with Value https://secure.xmp.site/{R:1}/login

 Chapter 7 URL Rewrite 167

XML Configuration
Like all other configuration settings, URL Rewrite rules are mapped to the IIS XML configura-
tion files. In the following, you will find an overview of the most important settings.

The rules are entered into the system.webServer section of the configuration files (for exam-
ple, web.config). Listing 7-2 shows a rule example that allows an http://php.net/-type search.

LISTINg 7-2 A configuration example.

<system.webServer>
 <rewrite>
 <rules>
 <rule name="Automatic search" stopProcessing="true">
 <match url="^(\w+)$" />
 <conditions>
 <add input="{SERVER_NAME}" pattern="^phpdemo\.site$" />
 </conditions>
 <action type="Rewrite" url="/search.php?search={R:1}" />
 </rule>
 </rules>
 </rewrite>
</system.webServer>

URL Rewrite
Table 7-6 lists the configuration elements of the URL Rewrite module. The global server rules
can only be specified in applicationHost.config.

TABLE 7-6 Configuration element <rewrite>

Element Description
rewrite Definitions of the URL Rewrite module

rewrite/allowedServerVariables Definition of server variables and HTTP headers that can be
added or modified

rewrite/globalRules Global rules (valid server-wide)

rewrite/outboundRules Definition of distributed outbound rules

rewrite/providers Custom rewrite providers written in .NET

rewrite/rewriteMaps Rewrite maps

rewrite/rules Distributed rules

168 Part I Internet Information Services (IIS)

Allowed Server Variables
To specify the server variables and HTTP headers that can be modified by URL Rewrite, you
use the <allowedServerVariables> configuration collection element. Table 7-7 describes the
elements.

TABLE 7-7 Configuration elements for <allowedServerVariables>

Element Description
add Adds a variable that can be modified by subsequent rewrite rules. The variable is

specified with the name attribute, for example: <add name=”is_webbot” />.

clear Deletes all previously defined variables. Used to clear any inherited values. <clear />
has no attributes and not content.

remove Deletes the variable that is specified with the name attribute, for example: <remove
name=”HTTP_REFERER” />.

Rules
Like the global rules, the distributed rules are configured as shown in Table 7-8. While it is
good practice to begin the definition of the global rules with a <clear> statement, using
<remove> in a global context makes no sense.

TABLE 7-8 Configuration elements for <rules> and <globalRules>

Element Description
clear Deletes all previously defined rules on this hierarchy level, including inherited rules.

Normally put at the beginning of <rules> when the inherited rules should not be
used for this section. <clear /> has no attributes and no content.

remove Deletes the rule that is specified with the name attribute. This is used to delete indi-
vidual inherited rules; for example, <remove name=”searchRule” />.

rule Definition of a rule.

The definition of an individual rule consists of three sections: pattern, conditions, and action
(as shown in Table 7-9). Each rule receives a unique name. This makes it possible to remove
the rule from deeper within the hierarchy by using <remove>. The rule order is important: a
URL can be rewritten multiple times by different rules, unless the processing of subsequent
rules is stopped due to the action type (for example Abort) or because of the stopProcessing
property.

 Chapter 7 URL Rewrite 169

TABLE 7-9 Configuration element <rule>

Element Attribute Description
rule Definition of a rule

enabled Specifies whether the rule is enabled (true) or disabled
(false)

name Unique name of the rule

patternSyntax Syntax to be used for placeholders in the pattern
and the conditions: regular expressions (ECMAScript),
simple placeholders (Wildcard), or exact match
(ExactMatch)

stopProcessing Specifies whether to stop the processing of the subse-
quent rule if the rule applies (false, true)

rule/match Definition of the pattern of a rule

negate Specifies whether an action is triggered when a pat-
tern matches (false) or does not match (true)

ignoreCase Specifies whether the case of letters (upper/lower) is
ignored

url Pattern against which the URL path is tested

rule/conditions Definition of the conditions of a rule

logicalGrouping Specifies whether all conditions must be met
(MatchAll) or at least one (MatchAny)

trackAllCaptures If true, then URL Rewrite tracks capture groups across
all conditions; if false, then only the capture groups of
the last condition are used for {C:x}

rule/conditions/add Definition of an individual condition

rule/serverVariables/set Set server variables and HTTP headers

rule/action Definition of the action of a rule

type Defines the action type:
Redirect
Rewrite
CustomResponse
AbortRequest
None: No action

Conditions
The conditions of a rule are defined in the configuration element <add> within the element
<conditions>. Table 7-10 shows which attributes can be used with the individual conditions.

170 Part I Internet Information Services (IIS)

TABLE 7-10 Attributes for the <add> conditions of a rule

Attribute Description
ignoreCase Only for pattern type: specifies whether the case of letters (upper/lower) is ignored.

input The condition entry defines which data should be checked for the condition.

matchType Defines the type of test: testing against a pattern (pattern, default), testing whether
an object is a file (isFile), testing whether an object is a folder (isDirectory).

negate Specifies whether the condition is fulfilled if there is a match (false) or no match
(true).

pattern Only for pattern type: specifies the pattern you want to check.

Server Variables and HTTP Headers
Changes to server variables are specified in the element <set> within the element <server-
Variables>. Table 7-11 lists the attributes of the <set> element.

TABLE 7-11 Attributes for setting server variables using <set>

Attribute Description
name Server variable to change. Inbound HTTP headers have the prefix “HTTP_”,

outbound HTTP headers have the prefix “RESPONSE_”.

replace Specifies whether an existing variable/header should be replaced. If false, then
existing variables and headers are left untouched.

value Value to be set in the variable or header.

Actions
You can specify various attributes with the <action> configuration element for the five dif-
ferent action types. Table 7-12 lists the attributes for a redirect rule, Table 7-13 presents the
attributes of a rewrite rule, and Table 7-14 gives the attributes for a custom reply.

There are no additional attributes for the action types Abort and No Action.

TABLE 7-12 Attributes for the redirect action type

Attribute Description
appendQueryString Defines whether the query string should be appended to the target URL

(true, false).

redirectType Specifies the HTTP status code that should be sent. Can be a number or
text. Possible values: 301, Permanent; 302, Found; 303, See other; 307,
Temporary.

url Target URL to which you want to redirect. Can be an absolute URL.

 Chapter 7 URL Rewrite 171

TABLE 7-13 Attributes for the rewrite action type
Attribute Description
appendQueryString Defines whether the query string should be appended to the target URL

url Target URL to which you want to rewrite (see also the section “Actions,”
earlier in the chapter)

TABLE 7-14 Attributes for the custom reply action type
Attribute Description
statusCode HTTP status code of the reply

statusDescription Single-line description of the status code that is sent in headers with the
HTTP reply

statusReason Reason for reply

subStatusCode Substatus code—only used within IIS

Rewrite Maps
Rewrite maps are defined in the section <rewriteMaps>. Table 7-15 shows that in addition to
defining a single rewrite map, you can also delete individual or all defined maps.

TABLE 7-15 Configuration element <rewriteMaps>

Element Description
rewriteMaps Rewrites maps

rewriteMaps/clear Deletes all previously defined rewrite maps, including the inherited rewrite
maps

rewriteMaps/remove Removes a single, named rewrite map (for example, <remove
name=”rewriteMap1” />)

rewriteMaps/rewriteMap Defines an individual rewrite map

The configuration options for a single rewrite map are listed in Table 7-16. You can define
the name and default value for the map as well as the name/value pairings for the individual
map entries.

172 Part I Internet Information Services (IIS)

TABLE 7-16 Configuration element <rewriteMap>

Element Attribute Description
rewriteMap Defines the rewrite map

name Name of the rewrite map

defaultValue Default value if none of the map entries applies

ignoreCase Specifies whether to ignore the letter case (upper/lower)

rewriteMap/add Defines an entry

key Original value (key, name)

value New value

Outbound Rules
Outbound rules are specified in the configuration element <outboundRules>. Table 7-17
shows its elements. The rewriteBeforeCache attribute allows caching of the rewritten
response, which can drastically increase performance, especially if no tag filters are applied
and the complete response is used for the pattern matching. You should not enable caching
if you use HTTP chunked transfer encoding.

TABLE 7-17 Configuration element <outboundRules>

Element Attribute Description
outboundRules

rewriteBeforeCache If true, the result of the rewriting will
be cached, if IIS caching is enabled (see
Chapter 6, “Caching”)

outboundRules/customTags Definition of custom tag filters

outboundRules/preConditions Definition of pre-conditions

outboundRules/rule Outbound rules

Custom tag filter groups can be defined with the configuration collection <customTags>. The
tag filter group is itself a configuration collection. Table 7-18 presents the details.

 Chapter 7 URL Rewrite 173

TABLE 7-18 Configuration elements for <customTags>

Element Description
clear Deletes all previously defined and inherited definitions.

remove Deletes the filter group that is specified with the name attribute, for example:
<remove name=”Object tags” />.

tags Definition of tag filter group, name is given in the name attribute. This is a con-
figuration collection.

tags/clear Deletes all previously defined tags.

tags/remove Deletes the tag that is specified by the name/attribute pair, for example: <remove
name=”param” attribute=”value” />.

tags/tag Adds a tag filter. The element name is given in the name attribute and the
attribute’s name is given in attribute. For example, <tag name=”object”
attribute=”codebase” />.

Preconditions are defined in the configuration collection <preConditions>. Apart from the
standard <clear/> and <remove/> elements, the collection defines preconditions with
the <precondition> element, as shown in Table 7-19.

TABLE 7-19 Configuration elements for <preConditions/preCondition>

Element Attribute Description
preCondition

name Name of the pre-condition group

logicalGrouping MatchAll, if all conditions must be fulfilled, MatchAny, if at
least one condition must be satisfied

patternSyntax Either regular expression syntax (ECMAScript, default
value), wildcard matching (Wildcard), or an exact match
(ExactMatch)

preCondition/add Definition of a single pre-condition inside the group

ignoreCase Specifies whether the pattern matching is case-sensitive
(true) or not (false)

input Input data to match against

negate If true, condition is satisfied, if pattern does not match

pattern Definition of the match pattern

174 Part I Internet Information Services (IIS)

Single Outbound Rule
A single outbound rule is defined with the configuration element <rule> inside of <out-
boundRules>. The basic structure is the same as with inbound rules. Table 7-20 provides the
details. The attribute occurrences is useful to increase performance, especially when the full
response body is checked: occurrences defines the number of matches, after which the rewrit-
ing stops. If you use the rewrite rule only to modify a single element, setting occurences="1"
can increase performance.

TABLE 7-20 Configuration Element <rule>

Element Attribute Description
rule Definition of a rule.

enabled Specifies whether the rule is enabled (true) or disabled (false).

name Unique name of the rule.

patternSyntax Syntax to be used for placeholders in the pattern and the con-
ditions: regular expressions (ECMAScript), simple placeholders
(Wildcard), or an exact match (ExactMatch).

preCondition Name of the pre-condition group that should be checked, before
the rule match is executed.

stopProcessing Specifies whether to stop the processing of the subsequent rule if
the rule applies (false, true).

rule/match Definition of the pattern of a rule.

customTags Name of custom tag filter group that should be used. Is only
applied if CustomTags flag is set in filterByTags.

filterByTags A bit array defining which tag filters should be applied. Values:
None (0), A (1), Area (2), Base (4), Form (8), Frame (16), Head
(32), IFrame (64), Img (128), Input (256), Link (512), Script (1024),
CustomTags (32768).

ignoreCase Specifies whether the case of letters (upper/lower) is ignored.

negate Specifies whether an action is triggered when a pattern matches
(false) or does not match (true).

occurrences Specifies the maximum number of matches, after which pattern
matching stops. Useful for increasing performance in certain
cases.

pattern Pattern against which the specified content is tested.

serverVariable Specifies the server variable or HTTP response header to be added
or modified. This cannot be combined with rewriting the response
body; that is, this attribute cannot be combined with customTags,
filterByTags, and occurrences.

 Chapter 7 URL Rewrite 175

Element Attribute Description
rule/conditions Definition of the conditions of a rule. Same as for inbound rules.

See Table 7-10.

rule/action Definition of the action of a rule.

replace Specifies whether an existing server variable or header should be
replaced (true, false). Only affects matching of server variables.

type Defines the action type, can be one of Rewrite or None.

value Value to be inserted in place of the match.

Examples
In the following subsections, you will find a few typical examples for URL Rewrite: user-
friendly URLs, multilingual pages, preventing the embedding of graphics on foreign pages,
canonical host names and user directories, and redirecting HTTPS. Together, these examples
should give you a good overview of the functions of URL Rewrite.

User-Friendly URLs
With user-friendly URLs, you can redirect all kinds of different URLs to a single PHP script.
Such a redirect is desirable for Blog software and PHP Framework. Listing 7-3 shows how
a simple rule might look: it writes all URLs of the type http://phpdemo.site/2011-08-12/
Hamsters-and-other-pets to the urlinfo.php PHP script in the form http://phpdemo.site/
urlinfo.php?date=2011-08-12&title=Hamsters-and-other-pets.

Because you might be able to retrieve graphics or other resources in the same folder, you
need to define two bindings that prohibit a rewrite if folders or files with this URL exist.

LISTINg 7-3 Setting a rule for a user-friendly URL.

<rule name="RewriteUserFriendlyURL1" stopProcessing="true">
 <match url="^([^/]+)/(.*)" />
 <conditions>
 <add input="{REQUEST_FILENAME}" matchType="IsFile" negate="true" />
 <add input="{REQUEST_FILENAME}" matchType="IsDirectory" negate="true" />
 </conditions>
 <action type="Rewrite" url="urlinfo.php?date={R:1}&title={R:2}" />
</rule>

176 Part I Internet Information Services (IIS)

Canonical Host Name
The binding of a website frequently contains multiple host names. A typical example is a
binding that contains the server name with and without the www prefix. You can take advan-
tage of a redirect rule to redirect the user and especially browsers to the preferred syntax.
For HTTP status code, you should use 301 (permanent redirect) to send subsequent requests
directly to the new address.

Listing 7-4 shows how such a rule might look. It uses a condition to query the server name
and another to query the port. For example, if you don’t just want to redirect from www
.phpdemo.site to phpdemo.site, but from all host names of the binding to the canonical host
name, you should test whether the host name is unequal to the canonical name (as shown in
the rule).

LISTINg 7-4 Setting a rule for a canonical host name.

<rule name="Canonical host name" patternSyntax="Wildcard" stopProcessing="true">
 <match url="*" />
 <conditions>
 <add input="{SERVER_NAME}" negate="true" pattern="phpdemo.site" />
 <add input="{SERVER_PORT}" negate="true" pattern="80" />
 </conditions>
 <action type="Redirect" url="http://phpdemo.site/{R:1}" redirectType="Permanent" />
</rule>

Important In the form as shown in the preceding example, this rule can only be inserted at
website level, because the action URL appends the back reference directly to the host name. For
the back reference to contain the complete URL path, the rule must be applied at website level
(see the section “Hierarchy and URL Paths,” earlier in the chapter).

Multilingual Pages
Websites that offer their contents in multiple languages usually use different URLs for their
different language versions. For example, English content can be accessed at http://php-
demo.site/en/, German content at http://phpdemo.site/de/, and Hungarian content at http://
phpdemo.site/hu/. Browsers send their preferred language as part of the HTTP header
Accept-Language.

Listing 7-5 shows how the header can be evaluated to redirect the user automatically to the
matching language.

 Chapter 7 URL Rewrite 177

In the conditions, the rule has_language first tests whether a language version is already
being accessed (directory with two letters) and then whether the Accept-Language header
has been set. If both conditions apply, the rewrite map language_map is used to select the
correct subfolder (value) for the language (key). If no language applies, an automatic redirect
to the English version takes place (defaultValue)

The rule has_no_language is only applied when the first rule is not applied. In this case, an
automatic redirect to the English version takes place.

LISTINg 7-5 Setting rules for redirecting to a matching browser language.

<rewrite>
 <rules>
 <rule name="has_language">
 <match url=".*" />
 <conditions>
 <add input="{REQUEST_URI}" negate="true" pattern="^/../" />
 <add input="{HTTP_ACCEPT_LANGUAGE}" pattern="^(..)" />
 </conditions>
 <action type="Redirect" url="{language_map:{C:1}}/{R:0}" redirectType="Found" />
 </rule>
 <rule name="has_no_language">
 <match url=".*" />
 <add input="{REQUEST_URI}" negate="true" pattern="^/../" />
 </conditions>
 <action type="Redirect" url="/en/{R:0}" redirectType="Found" />
 </rule>
 </rules>
 <rewriteMaps>
 <rewriteMap name="language_map" defaultValue="en">
 <add key="en" value="en" />
 <add key="de" value="de" />
 <add key="hu" value="hu" />
 </rewriteMap>
 </rewriteMaps>
</rewrite>

Canonical User Directories
To set up personal websites on a server for multiple users, you can use one of two common
URL formats: the syntax with tilde, and child domains. In some cases, the physical layout of
the user directories is the same: inside a folder, each user has his own subfolder, which con-
tains the personal user directory.

178 Part I Internet Information Services (IIS)

Listing 7-6 shows the syntax with tilde using a URL rewrite. In addition, you can add the path
/user via a virtual directory to any desired location on the server drives.

LISTINg 7-6 Setting a rule for canonical user directory URLs by using the tilde.

<rule name="User directories with tilde">
 <match url="^~(.+?)/(.*)" />
 <action type="Rewrite" url="user/{R:1}/{R:2}" />
</rule>

Listing 7-7 shows how to convert user directories with child domains. It’s important that all
entries for the child domains resolve to the IP address of the server and that the IIS website
has bindings for these domains. Compared to the previous codes sample, this one contains
three changes:

■ The first rule prevents the rewritten URL /user from being called directly. This is nec-
essary, because otherwise the contents belonging to other users could be called in
foreign user domains. This rule must be placed before the second rule; if it isn’t, all
requests are aborted.

■ The user directory selection now takes place via a condition, because the host name
itself cannot be queried in the search pattern of the rule.

■ The condition pattern grabs the first letter of the name and uses it to introduce an
additional subfolder. This can be helpful, if you want a lot of users to have a personal
directory on the server. You can then use virtual directories to distribute these subfolders
to various drives, for example.

LISTINg 7-7 Setting rules for canonical user directories, based on child domains.

<rule name="Prohibiting the binding of foreign user directories" stopProcessing="true">
 <match url="^user\b" />
 <action type="CustomResponse" statusCode="403" />
</rule>
<rule name="User directories with child domains">
 <match url=".*" />
 <conditions>
 <add input="{SERVER_NAME}" pattern="^(.)(.+?)\.phpdemo\.site$" />
 </conditions>
 <action type="Rewrite" url="user/{C:1}/{C:1}{C:2}/{R:0}" />
</rule>

 Chapter 7 URL Rewrite 179

Note IIS 7 doesn’t yet support placeholders for child domains in the bindings. You only have
two ways to transfer domain-based user directories: either each domain is entered into the bind-
ings of the website, or the website you are editing is the default website that has a standard
binding without host name. If you are using the standard binding, you should add another rule
that blocks all requests with unknown main domains, for security reasons.

For PHP programs, some $_SERVER variables change depending on whether the user direc-
tories were converted with a tilde or with child domains:

With tilde: http://phpdemo.site/~tony/urlinfo.php
Server name (SERVER_NAME): "phpdemo.site"
URL of the request (REQUEST_URI): "/~tony/urlinfo.php"
URL path of the script (SCRIPT_NAME): "/user/tony/urlinfo.php"
Root folder (DOCUMENT_ROOT): "C:\inetpub\phpdemosite"
Physical path of the script (SCRIPT_FILENAME): "C:\inetpub\user\tony\urlinfo.php"

With child domains: http://tony.phpdemo.site/urlinfo.php
Server name (SERVER_NAME): "tony.phpdemo.site"
URL of the request (REQUEST_URI): "/urlinfo.php"
URL path of the script (SCRIPT_NAME): "/user/t/tony/urlinfo.php"
Root folder (DOCUMENT_ROOT): "C:\inetpub\phpdemosite"
Physical path of the script (SCRIPT_FILENAME): "C:\inetpub\user\t\tony\urlinfo.php"

In our example, the user folders are located in C:\inetpub\user and the domain phpdemo.site
is used. The virtual directory /user is located outside the root folder of the website.

Preventing the Embedding of Graphics on Foreign Sites
With HTML, you can embed and display graphics from different sources—for example,
different servers. Even though this function can be very useful (for instance, in advertising),
it permits the embedding of graphics on foreign sites without your permission.

With the rule in Listing 7-8, you can prevent hotlinking (the embedding of graphics on for-
eign sites). The rule takes advantage of the Referer HTTP header. Most browsers send this
header to show which page embeds the graphic.

The search pattern is a regular expression that checks if the URL path ends in .jpg, .gif, or
.png. Additionally, two conditions are specified, which both need to be met: the reference
must come from your own site or must be empty, otherwise the action (blocking the request
with status code 403) is executed. Checking for an empty reference is necessary, because cer-
tain firewalls and antivirus programs filter out this header to secure your privacy.

180 Part I Internet Information Services (IIS)

LISTINg 7-8 Setting the rule for preventing the embedding of images on foreign sites.

<rule name="Preventing hotlinking" stopProcessing="true">
 <match url=".*\.(jpg|gif|png)$" />
 <conditions>
 <add input="{HTTP_REFERER}" pattern="^http://phpdemo\.site/" negate="true" />
 <add input="{HTTP_REFERER}" pattern="^$" negate="true" />
 </conditions>
 <action type="CustomResponse" statusCode="403" />
</rule>

Instead of blocking the request, you can also rewrite the URL to a standard image, which
might, for example, contain the note that the embedding of your graphics is prohibited.

Redirecting to HTTPS
If you want to ensure that your users are using an HTTPS-encrypted connection for certain
sections of your website, you can use the rule in Listing 7-9. The rule is set up in the directory
secure-area.

LISTINg 7-9 Forcing an HTTPS connection.

<rule name="enforce-https" patternSyntax="Wildcard" stopProcessing="true">
 <match url="*" />
 <conditions>
 <add input="{HTTPS}" pattern="off" />
 </conditions>
 <action type="Redirect" url="https://phpdemo.site/secure-area/{R:0}"
 redirectType="Permanent" />
</rule>

Adding a Notice to Each Page
Listing 7-10 shows how you can add HTML content to each response, for example, to display
a notice. As the notice should only be inserted once, we limit the number of matches by set-
ting occurrences="1".

 Chapter 7 URL Rewrite 181

LISTINg 7-10 Adding a notice to each page.

<rule name="notice" preCondition="ResponseIsHtml1" patternSyntax="ExactMatch">
 <match pattern="<body>" occurrences="1" />
 <action type="Rewrite" value="<body><div class="notice">
 The content of this page is deprecated.</div>" />
</rule>

You can use this method to add other HTML content, as well. For example, you could add
code for incorporating website statistics tools. In that case, you should insert the content at
the end of the body element (match against </body>) for a better user experience.

Converting from Apache mod_rewrite
URL Rewrite provides a helpful function for converting rules of the Apache module
mod_rewrite. Many software packages supply you with finished mod_rewrite rules. URL
Rewrite during import helps you speed up the conversion.

Caution The architecture of Apache is different from the one of IIS. Therefore, not all mod_
rewrite rules can be ported to IIS.

To convert mod_rewrite rules into URL Rewrite rules, perform the following procedure:

 1. In the IIS Manger, in the Connections pane, select the desired element, and then open
the URL Rewrite module.

 2. In the Actions pane, click Import rules.

 3. Either select the file with the Apache rules (Configuration file), and then click Import, or
copy the files into the Rewrite Rules text box.

The structure view of the URL Rewrite rule is displayed in the Converted Rules section,
as shown in Figure 7-11. Successfully converted rules are highlighted in green; errors
are highlighted in red.

182 Part I Internet Information Services (IIS)

FIgURE 7-11 Importing Apache mod_rewrite rules into URL Rewrite.

If you are clicking a node in the Tree View, the corresponding Apache rewrite rule is
also highlighted. Likewise, you can highlight a statement in the Apache rewrite rules
and the corresponding nodes in the Tree View are highlighted.

 4. You can rename a rule from the context menu of a node in the Tree View.

 5. In the XML View tab, the generated XML of the URL Rewrite rule configuration is
displayed.

 6. In the Actions pane, click Apply to apply the generated rules to IIS.

If there are errors, you need to remove them first by deleting or changing the corre-
sponding Apache mod_rewrite statements.

 7. In the Actions pane, click Back To Rules to return to the URL Rewrite work area, in which
you can continue to edit the generated rules.

Afterward, you should test the rules with a few requests to ensure that the rules work as
expected. Even though the Import function usually works without errors, you need to under-
stand both rule systems in order to handle more complex expressions.

 Chapter 7 URL Rewrite 183

Summary
URL Rewrite leaves nothing to be desired with its rule-based system. To work with URL
Rewrite, it is necessary, however, to completely understand how the evaluation of rules
works, especially which part of the URL is checked and when. In this chapter, you learned
more about evaluating rules, the patterns and conditions of a rule, and the executable
actions. You can use the examples and the sample script urlinfo.php as an aid when develop-
ing your own rules.

In the next chapter, you will learn about error messages and error logs as well as IIS tracing. A
trace can provide you with valuable insights, even with errors in URL Rewrite rules, because it
shows exactly which rules have been activated and which input and output data they had.

 185

Chapter 8

Error Messages and Error Search

Errors occur in applications and in the configuration during development and production. Error
messages and warnings give you valuable insight during error search. With the trace option,
Internet Information Services (IIS) provides information about each step of the request pro-
cessing. It helps you to locate errors quickly and resolve them.

In this chapter, you will learn about tracing as well as how to handle PHP error messages. You
will receive advice on how to search for problems in IIS and PHP.

Detailed Error Messages
By default, IIS error messages are replaced by standard error messages, instead of sending
them unchanged to the user. This is done for security reasons: error messages might contain
sensitive information that could supply a potential attacker with valuable information about
the structure of your system.

However, detailed error messages are important during the development stage. In the sub-
sections that follow, you will learn how to display detailed error messages.

Caution For production systems, detailed error messages should be disabled for reasons of
security. The configuration you see in this chapter is intended for development environments
only.

In this chapter:
Detailed Error Messages . 185
Tracing . 189
PHP Error Messages . 194
Determining the Causes of Server Problems . 196
Summary . 198

186 Part I Internet Information Services (IIS)

Disabling Friendly Error Messages in Internet Explorer
Internet Explorer displays its own short error messages, which explain to users in simple
words what happened and give possible ways of resolving the error, as shown in Figure 8-1.

FIgURE 8-1 Friendly error message in Internet Explorer.

For developers, these error messages are cumbersome because they don’t reveal the actual
cause of the problem; thus, you’ll want to disable them.

To disable friendly error messages in Internet Explorer, perform the following procedure:

 1. Start Internet Explorer.

 2. Click the Tools icon (the cogwheel in the upper-right corner), and then select Internet
Options.

The Internet Options dialog box opens.

 3. Click the Advanced tab.

 4. In the Browsing section, clear the check box for Show Friendly HTTP Error Messages.

 5. Click OK.

Enabling Detailed Error Messages
IIS replaces error messages that originate from PHP scripts or other error sources with cus-
tom error pages. In a production environment, this is a useful measure that helps keep your
system secure, because error messages might contain sensitive information. Figure 8-2 shows
a custom error message that was caused by a syntax error in a PHP script.

 Chapter 8 Error Messages and Error Search 187

FIgURE 8-2 Custom IIS error message for a PHP script error.

IIS also provides detailed error messages or can send the PHP errors directly to the browser.
By default, this only works from your local computer. If you establish access from a different
computer, you will only receive the custom error messages.

The following procedure shows how to enable detailed error messages for all access
locations:

 1. Start IIS Manager.

 2. In the Connections pane, select the desired element (normally a site or an application).

 3. Open the Error Pages feature by double-clicking it.

 4. In the Actions pane, click the Edit Feature Settings link.

 5. In the Error Responses section of the dialog box, select the Detailed Errors option to
enable the detailed error messages for all requests.

 6. Click OK to close the dialog box.

You will now either receive error messages from the PHP script directly or get detailed
information if the error occurred in the IIS processing chain, as shown in Figure 8-3.

188 Part I Internet Information Services (IIS)

FIgURE 8-3 A detailed IIS error message.

PHP Error Output
In PHP, you can use configuration options to control whether error messages should be
passed on to the client or logged in a file. Table 8-1 lists these options.

TABLE 8-1 Configuration options for PHP error messages

Configuration option Description
display_errors Specifies whether an error is displayed (On/stderr) or not (Off).

display_startup_errors Specifies whether errors caused during PHP startup should be displayed
(On) or not (Off).

error_log Specifies the error log file.

error_reporting Specifies which errors are displayed. All messages are displayed with
E_ALL | E_STRICT. Only warnings and errors are displayed with E_ALL &
~E_NOTICE.

log_errors Specifies whether errors should be logged to a file (On) or not (Off).

Caution If log_errors=On, you also need to specify a file with the option error_log; otherwise,
the error messages output to STDERR; therefore, they are visible to clients. The same is true if the
file specified in error_log cannot be written to, because the executing user (for example, the user
of the application pool) does not have the required write permissions. In both cases, PHP ignores
the setting display_errors.

 Chapter 8 Error Messages and Error Search 189

To display PHP errors during development, perform the following procedure:

 1. Open the php.ini file (C:\PHP\php.ini) in an editor.

 2. Add the following configuration options or edit the existing ones:

display_errors = On
display_startup_erros = On
error_reporting = E_ALL | E_STRICT

 3. If you also want to log the errors in a file, add the following options:

log_errors = On
error_log = "C:\inetpub\logs\php-error.log"

 4. Save the php.ini file.

 5. Start the corresponding IIS application pools again.

You should check the settings with phpinfo() or a PHP script that generates an error.

Note If display_errors=On, errors are written directly into HTML and the HTTP status code 200
(OK) is sent.

Alternatively, you can set the level of error reporting by using PHP Manager:

 1. Start IIS Manager.

 2. In the Connections pane, select an element with the desired PHP version.

 3. Double-click the PHP Manager feature in the workspace, and then click PHP Settings |
Configure Error Reporting.

 4. Choose the Development Machine profile, and then in the Actions pane, click apply to
save your choice.

The selected error reporting profile sets display_errors=On, display_startup_errors=On,
log_errors=On, and error_reporting to E_ALL|E_STRICT.

Tracing
With tracing, you can keep a detailed log of each step and module in IIS that’s called to pro-
cess requests. The possibility to make the logging dependent on certain conditions, such as
the execution duration or the HTTP status code, makes it ideal for error search or monitoring
in a production environment.

190 Part I Internet Information Services (IIS)

Installing the Tracing Role Service
You can either install the Tracing module by using the Server Manager or by using the Web
Platform Installer (Web PI).

To set up the tracing role service by using the Server Manager, perform the following steps:

 1. Start the Server Manager.

 2. Select Roles, and then click the Web Server (IIS). In the Role Services section, click Add
Role Services.

 3. Select the Web Server, click Health and Diagnostics, and then select the Tracing check
box.

 4. Click Next, and then click Install to start the installation.

 5. After a successful installation, restart IIS Manager to see the new feature.

Alternatively, you can set up the tracing role service by using the Web PI:

 1. Start the Web PI.

 2. Click Products | Server, and then add IIS: Tracing.

 3. Click Install, and then click I Accept to start the installation.

 4. After a successful installation, restart IIS Manager.

Note If you have installed the URL Rewrite feature before installing the trace, it’s possible
that you can’t enable the trace for URL Rewrite. In this case, you need to repair the URL
Rewrite installation.

To do so, open the Control Panel, and then select Programs | Uninstall A Program. In the
program list, select the URL Rewrite module, and then click the Repair button.

You have now added the trace role service to IIS and are ready to use it. To do so, you need
to enable tracing.

Enabling a Trace
You first need to enable tracing for the desired website, before you can configure and use it.

Enabling Tracing by Using IIS Manager
To enable tracing by using IIS Manager, perform the following steps:

 1. Start IIS Manager.

 2. In the Connections pane, select the desired website.

 Chapter 8 Error Messages and Error Search 191

 3. In the Actions pane, click Manage Web Site | Configure, and then click the Failed
Request Tracing link.

 4. In the dialog box, select the Enable check box.

 5. Change the folder for the log files, if you don’t want to use the suggested folder.

 6. Click OK to confirm your entries.

Enabling Tracing from the Command LIne
You can use appcmd to enable the trace from the command line, as follows:

appcmd configure trace "<Sitename>" /enablesite

To disable the trace from the command line, use the following command:

appcmd configure trace "<Sitename>" /disablesite

Configuring Logging Rules
Once you have enabled tracing for a website, you can define individual logging rules.

Defining Logging Rules by Using IIS Manager
The following procedure lists the steps for defining tracing rules:

 1. Start IIS Manager.

 2. In the Connections pane, select the desired element.

 3. Open the Failed Request Tracing Rules feature.

 4. In the Actions pane, click the Add link.

 5. In the wizard, select the Custom For PHP Programs option, and then enter *.php into
the corresponding text box.

 6. In this step, you can specify conditions for the trace:

● Status code Specifies which status codes are logged; for example, 400–599.

● Time taken Specifies that requests can be logged only if they exceed the
defined time period.

● Event severity Specifies which kind of request is logged.

192 Part I Internet Information Services (IIS)

 7. In this step, you specify what information is logged:

● Providers For logging PHP scripts, the option WWW Server is sufficient.

● Verbosity Specifies whether only severe errors or general information is
logged. For error search, set the severity level to Verbose or Information.

● Areas Specifies which IIS features log information. Select the desired areas.

 8. Click the Finish button to set up the rule.

Configuring from the Command Line
To configure trace rules from the command line, run the command appcmd configure trace,
as shown in the following example:

appcmd configure trace "Default Web Site/phpapp" /enable /path:*.php
 /areas:"WWW Server/Security,Cache,FastCGI,Rewrite" /statuscodes:400-599
 /timeTaken:00:00:10 /verbosity:Warning

To delete trace rules, run the appcmd configure trace command, as shown here:

appcmd configure trace "Default Web Site/phpapp" /disable /path:*.php

Trace Entries
Now, when the web server receives requests that match the request conditions for one of the
defined trace rules, the server creates an entry in the log folder (by default C:\inetpub\logs\
FailedReqLogFiles). You can open these files directly in Internet Explorer.

In the browser, you can use the Request Summary, Request Details, and Compact View tabs
to retrieve details and information about the request. Figure 8-4 shows the compact view of
a trace entry.

 Chapter 8 Error Messages and Error Search 193

FIgURE 8-4 Compact view of a logged trace entry.

A trace entry consists of a number of events that inform you about the individual steps of the
request processing. The beginning and the end of the individual processing steps are usu-
ally indicated with _START and _END events. The events GENERAL_REQUEST_START and
GENERAL_REQUEST_HEADERS give you information about the request itself. The web server
reply appears in the events GENERAL_RESPONSE_HEADERS and GENERAL_RESPONSE_
ENTITY_BUFFER.

You can use the appcmd list traces command to search for entries, as shown in the following
examples:

appcmd list traces /site.name:"Default Web Site" appcmd list traces /verb:POST /statuscode:500
appcmd list traces /url:http://localhost/error.php /timetaken:"$>1000"

194 Part I Internet Information Services (IIS)

PHP Error Messages
PHP error messages can be added to the trace, and the mechanism can also be used for log-
ging PHP internal processes.

Outputting to STDERR
For IIS to recognize PHP errors as such, the errors must be issued to the standard error output
STDERR(). With display_errors=On, the errors are written only into HTML, and the server
returns HTTP status code 200. With display_errors=stderr, the errors are written to STDERR,
and the server returns HTTP status code 500. For filtering during the trace, this would be
desirable.

Note Unfortunately, due to an error in PHP 5.3.6, display_errors=stderr does not lead to the
desired result; instead, you need to set log_errors=On and error_log=stderr.

Figure 8-5 shows a sample output in a trace entry.

FIgURE 8-5 A PHP error that was passed to IIS via STDERR.

PHP Messages in the Trace
As of version 7.5, IIS provides the option of writing your own information or error messages
into the trace entry. The message must start with IIS_TRACE_*: and end with :IIS_TRACE_END
for the trace to handle it correctly. Listing 8-1 shows how you can write info, warning, and
error message events into the trace entry.

 Chapter 8 Error Messages and Error Search 195

LISTINg 8-1 Writing PHP messages into the trace.

<?php
echo 'Writing messages into the trace';
error_log('IIS_TRACE_INFO: PHP info event :IIS_TRACE_END');
error_log('IIS_TRACE_WARNING: PHP warning event :IIS_TRACE_END');
error_log('IIS_TRACE_ERROR: PHP error event :IIS_TRACE_END');
?>

Figure 8-6 shows the resulting events in the trace entry.

FIgURE 8-6 Message entries in the trace entry (detail view).

FastCGI and STDERR
When information is written to STDERR, the FastCGI module suppresses any other output by
default. However, if you would like to use error_log() for logging, that’s not a desirable behav-
ior. As of IIS 7.5, the FastCGI module provides an appropriate configuration option:

 1. Start IIS Manager.

 2. In the Connections pane, select the server.

 3. Open the FastCGI Settings feature by double-clicking it.

 4. Select the desired FastCGI application from the list, and then in the Actions pane,
click Edit.

 5. Set the General/Standard option error mode to the value IgnoreAndReturn200. The
possible values are:

● ReturnStdErrIn500 Only the text that was written to STDERR is returned.

● ReturnGeneric500 A generic error message is returned.

196 Part I Internet Information Services (IIS)

● IgnoreAndReturn200 The output to STDERR is ignored and the content of the
website is returned.

● TerminateProcess The associated IIS process is ended and a generic error mes-
sage is returned.

 6. Click OK to apply your settings.

Using this configuration option, you can ensure that PHP errors and outputs from error_log()
display in the trace. At the same time, you can receive an HTML output, with an HTTP status
code of 200.

Determining the Causes of Server Problems
If you have problems reaching the web server after installation or after changing configura-
tion, you can use the steps that follow to find the cause of the problem.

The Server Can’t Be Reached
When you can’t reach the web server, you need to check your work environment and your
settings:

■ Ensure that the host name that you’re using is found, that it resolves to the correct IP
address, and that there is a network connection. You can use the ping command in the
command line:

ping www.phpdemo.site

■ Ensure that IIS and the websites have been started and that there is an active binding
for the desired domain name, port, and IP address.

■ When you select the Sites element in the Connections pane of IIS Manager, a list of
sites is displayed that shows if they have been started.

■ The command line net start command shows you whether the WWW Publishing
Service is running, and appcmd list sites shows you the status of the individual sites.

■ Check the Windows Event Viewer for possible errors. To do so, start the Server
Manager, and then click Diagnostics | Event Viewer | Windows Protocols | System.
Look for results that have WAS as their source. Also check Diagnostics | Event Viewer |
Custom Views | Server Roles | Web Server (IIS) for possible events.

■ Check whether the website is accessible from your local computer running IIS by start-
ing Internet Explorer on that computer and browsing to the URL http://localhost/. If you
can access the website locally, either the Windows Firewall is prohibiting incoming con-
nections, or no website has an adequate binding for incoming requests.

 Chapter 8 Error Messages and Error Search 197

■ Check whether the application pools belonging to the website have been started:

● In IIS Manager, in the Connections pane, select the Application Pools element,
and then check the status of the application pools displayed in the list.

● From the command line, you can view the application pools and their status with
appcmd list apppools.

PHP Scripts are not Executing
If you can browse to simple HTML files or graphics and load them successfully, but PHP
scripts are not executing, you can check the following settings:

Examine your PHP installation by running the correct php-cgi.exe command in the command
line; for example, C:\PHP\php-cgi.exe –i (or –v). You can also run one of your PHP scripts,
such as C:\PHP\php-cgi.exe path\to\example.php. Make sure that there are no warnings and
that the expected php.ini file is loaded. A PHP extension might pose a problem (for example,
a missing Dynamic Link Library).

Check your FastCGI settings by opening IIS Manager, and then in the Connections pane,
selecting the server. Open the FastCGI Settings feature, and check whether the path of the
FastCGI-PHP application is correct.

You can also control the settings by using appcmd, as follows:

appcmd.exe list config /section:fastcgi /text:*

Ensure that you have assigned the PHP FastCGI applications for the desired site via a handler:

In IIS Manager, in the Connections pane, select the server. Open the Handler Mappings fea-
ture by double-clicking it. Check whether an active handler mapping exists for *.php.

You can also control the settings by using appcmd, as follows:

appcmd.exe list config /section:handlers /text:* | find /i "php"

Important Ensure that the PHP handler mapping is located in the list before the StaticFile
handler. Otherwise, the PHP script is treated as a text file. Also, other handlers whose path speci-
fication could include PHP scripts (Path=*) can only be listed behind the PHP handler (unless they
refer to special HTTP verbs, such as OPTIONSVerbHandler and TRACEVerbHandler).

Also examine the settings of the handler assignment. The specified conditions might restrict
the assignment too much.

Enable tracing and evaluate the associated entries: does a module cause an error? Is FastCGI
being called?

198 Part I Internet Information Services (IIS)

Summary
In this chapter, you explored how to set up and use IIS tracing and how IIS handles PHP error
messages. By redirecting a trace through output to STDERR, PHP error messages and appli-
cations can take advantage of an interesting and useful way of logging, which also works well
for a production environment.

This concludes the description of PHP with IIS. IIS 7.5 with FastCGI is a big step forward for
PHP applications: not only have speed and the stability been improved significantly, PHP
applications can now also access numerous IIS features and take advantage of the modular
and secure architecture of IIS.

Next you will be introduced to Microsoft SQL Server, including installation, streaming
of binary data directly from the database, full-text search, and important functions and
features.

 199

Part II

SQL Server
In this Part:
Chapter 9: Setting Up SQL Server . 201
Chapter 10: Databases and Tables . 225
Chapter 11: Working with SQL Server . 253
Chapter 12: PHP and SQL Server . 279
Chapter 13: Advanced Database Functions . 319
Chapter 14: Users and Permissions . 343

 201

Chapter 9

Setting Up SQL Server

Microsoft SQL Server has developed into a well-engineered, feature-rich, and scalable data
platform. SQL Server consists of four components or services:

■ The database module saves and processes rational data in tables. You can access it with
Transact-SQL (T-SQL) statements. T-SQL is an extension or dialect of the SQL standard.
The database module supports transactions, replications, and high-availability features.

■ Integration Services is a data integration platform that transforms and integrates
data from various data sources. It is used for extract, transform, load (ETL), and Data
Warehouse solutions.

■ The Analysis Services are used for parsing large amounts of data. Online Analytical
Processing (OLAP), Business Intelligence, and Data Mining applications can be realized
by using the Analysis Services.

■ The Reporting Services provide a platform for creating reports from a number of dif-
ferent data sources and their server-based administration. There are many different
formatting options for the reports, and the reports can be accessed via web services.

In this book, we only address the function of the relational database module of SQL Server
2008. In the following chapters, you will learn how to set up databases and tables and how
to manipulate data. You will be introduced to the features of the new SQL Server PHP exten-
sion and the concepts for user administration and naming of objects in SQL Server.

In this chapter:
Installing SQL Server . 202
SQL Server Tools . 211
Configuring for Remote Access . 214
Installing the Sample Database . 217
Migrating MySQL Databases . 219
Summary . 223

202 Part II SQL Server

Installing SQL Server
As of this printing (October, 2011), SQL Server 2008 R2 SP1 is the current version of SQL
Server, and it can be installed in just a few steps, as long as the necessary requirements
are met:

n	 For operating systems, you can use Windows Server 2003 SP2 or Windows Server 2008
or 2008 R2 for the Enterprise version. For the Standard version or for Express, Windows
XP as of SP3, Windows Vista, or Windows 7 are sufficient.

n	 You need at least 512 MB of main memory; however, 2 GB are recommended.

n	 SQL Server is available as 32-bit and 64-bit systems; a current processor with a clock rate
of at least 2 GHz is recommended.

In the following, you will learn how to install on a Windows Server 2008 R2, how to install
SQL Server Express on Windows 7, and how to install the SQL Server driver for PHP.

Configuring SQL Server
To install SQL Server 2008 R2 SP1 on Windows Server 2008 R2, you should first install
Microsoft .NET Framework.

Installing .NET Framework
SQL Server 2008 R2 requires .NET Framework, version 3.5. Under Windows Server 2008 R2,
you first need to set up the Framework and the corresponding role services, as described in
the following procedure:

 1. Open the Server Manager.

 2. Select Features (on the left). Then in the central pane, click Add Features.

The wizard for adding features opens.

 3. Select the .NET Framework 3.5.1 Features option. In the new dialog box, confirm the
addition of the required role services.

 4. Click the Next button three times to confirm your specifications.

You should be on the Confirm Installation Selection wizard page.

 Chapter 9 Setting Up SQL Server 203

 5. Click Install to start the installation.

 6. After a successful installation, close the wizard by clicking on the Close button.

You have now installed .NET Framework 3.5. Now it’s time to install SQL Server.

Installing SQL Server 2008 R2 SP1
To install SQL Server, perform the following steps:

 1. Start the setup file from the installation media.

If the correct version of the Windows Installer is not yet installed on your computer, it
will be installed for you. Following that, you can continue with the setup.

You can use Planning/System Configuration Checker to determine if your system fulfills
all necessary requirements for installing SQL Server.

 2. To start the setup, select Installation | New Installation or Add Features To An Existing
Installation.

 3. The setup checks the installation conditions. Continue by clicking OK.

 4. Enter the product key or select one of the free options (SQL Server Express, evaluation)
and agree to the license agreement by selecting the check box.

 5. Click Install to install the support files. Click Next to continue.

Note If you receive a warning regarding the firewall configuration while checking the
setup support rules again, you can ignore them for now. But don’t forget to configure
the firewall if you want SQL Server to be available for external clients.

 6. On the Setup Role page, select SQL Server Feature Installation, and then click Next.

 7. On the Feature Selection page, choose the desired features.

You should definitely select Database Engine Services and Management Tools (Basic
and Complete) as well as Client Tools Connectivity, as shown in Figure 9-1. In this step,
you can also specify the feature directories.

Click Next to confirm your selection.

204 Part II SQL Server

FIgURE 9-1 Selecting the SQL Server features.

Note You can install additional features at a later time by running the installation pro-
gram again. It is therefore not necessary to install all features immediately.

 8. On the Instance Configuration page, you can give the SQL Server instance a name of
your choosing by using the Named Instance option (the default name is the name
of the computer).

If this is the first instance on the server, you should keep the Default Instance option.

 9. Click Next to confirm your settings.

The wizard now checks the required memory for the installation.

 10. On the Server Configuration page, specify the user accounts for the individual services.

For an installation in a development environment, you can specify the account
NT-AUTHORITY/NETWORK SERVICE for all services. In a production environment, for
security reasons, you should follow the recommendation to set up separate accounts
for the services. You can still change the account assignment after the installation. You
should also start the SQL Server Browser automatically (by selecting the option in the
drop-down list), as shown in Figure 9-2.

 Chapter 9 Setting Up SQL Server 205

Click Next to confirm your entries.

FIgURE 9-2 Specifying the service accounts.

 11. On the Database Engine Configuration page, in the Authentication Mode section,
select the Mixed Mode option.

This setting is important and essential for PHP programs, which usually work with their
own database account. You then need to specify the password for the database admin-
istrator account (sa). In addition, you can grant other user accounts SQL Server
administrator rights.

Note It is not necessary for the Windows administrator to take over the role of an
SQL Server administrator. In most production environments, these two roles are strictly
separated.

 12. Click Next to confirm the next steps, and then on the Ready To Install page, start the
installation by clicking Install.

 13. After the installation has completed successfully, click Close to end the Setup wizard.

SQL Server 2008 R2 SP1 is now installed. Next, you should install the SQL Server driver for PHP.

206 Part II SQL Server

Installing SQL Server Express
For most purposes and for the functions introduced in this book, the Express edition of SQL
Server is sufficient. SQL Server Express is well suited for developing PHP applications in your
own working environment. You have three options for installing Express:

■ From SQL Server 2008 R2 installation media

■ With a standalone SQL Server Express installation package

■ With the Web Platform Installer (SQL Server Express 2008 SP1)

The first option corresponds to the installation described in the section “Installing SQL Server
2008 R2 SP1,” earlier in the chapter. Simply specify the desired SQL Server Express version
in step 4, instead of the product key. The other two options are described in the following
subsections.

Manual Installation
For the manual installation, you can choose between different installation packages:

■ Express Installs only the database, no additional tools or functions.

■ Express with Administration Tools Includes the database as well as the graphical
user interface SQL Server Management Studio Express.

■ Express with Advanced Services The same as Express with Administration Tools, but
also includes modules for full-text search and powerful report functions.

Download the corresponding installation package from http://www.microsoft.com/download/
en/details.aspx?id=26729 for the installation. If you want to use full-text search, you should
install Express with Advanced Services; otherwise, Express with Administration tools.

The installation steps are practically identical to those in the section “Installing SQL Server
2008 R2 SP1,” earlier in the chapter. Figure 9-3 shows the basic functions necessary for the
examples in this book.

http://www.microsoft.com/download/en/details.aspx?id=26729
http://www.microsoft.com/download/en/details.aspx?id=26729

 Chapter 9 Setting Up SQL Server 207

FIgURE 9-3 Selecting features during the SQL Server Express installation.

Tip If you run into any problems with your installation (for example, errors during the creation
of an XML document or errors with an object reference), try the following:

■ Verify that you have the correct version of .NET Framework (3.5.1) installed on your
computer.

■ Uninstall old versions of SQL Server (including old versions of the SQL Server native client
libraries) and try installing again.

■ If the object reference is missing, enable SQL Client Connectivity SDK (shown in Figure 9-3)
during installation.

■ In certain cases, it might be helpful to set up a new administrator account (user with
administrator rights and without spaces in the name) and to install SQL Server via this
account.

208 Part II SQL Server

Installing with the Web Platform Installer
Using the Web Platform Installer (Web PI), you can install SQL Server Express 2008 R2 in a
few simple steps:

Important The version install with the Web PI does not contain the additional modules for
the full-text search or report functions. If you need these functions, you must install SQL Server
Express manually.

 1. Start the Web PI with administrator rights.

 2. Go to Products | Database.

 3. Add the features SQL Server Express 2008 R2 and SQL Server 2008 R2 Management
Studio Express, as shown in Figure 9-4, and then click Install.

FIgURE 9-4 Installing SQL Server Express with the Web Platform Installer.

 4. In the new dialog box, select Mixed Mode Authentication, and then enter a password
for the SQL Server administrator (sa).

 5. Click Next to start the installation.

 Chapter 9 Setting Up SQL Server 209

You have now successfully installed SQL Server Express. If you run into problems during
installation, you can try the tips from the previous section, “Manual Installation.” If you have
a previous version of Microsoft Visual Studio or SQL Server installed, you also might want to
have a look at http://support.microsoft.com/kb/956139.

Installing the SQL Server PHP Extension
PHP provides two extensions for SQL Server

■ mssql This is the original PHP extension that is available for many platforms.

■ sqlsrv This is a newly developed PHP extension, which is only available for Windows
operating systems developed and maintained by Microsoft.

This book uses the sqlsrv PHP extension. It offers support for Windows authentication, trans-
actions, bound parameters, and data streaming. You can set up the extension manually or by
using the Web PI.

Note You can find current information from the developer team concerning the sqlsrv PHP
extension on the SQL Server Driver for PHP Team Blog at http://blogs.msdn.com/b/sqlphp/.

Manual Installation
The sqlsrv PHP extension requires the Microsoft SQL Server Native Client libraries to be
installed on the computer that runs PHP. To install this library, if it is not installed yet, perform
the following steps:

 1. Go to the MSDN website http://msdn.microsoft.com/library/cc296170.aspx.

 2. Download the native client that fits your version and computer architecture. (There are
links at the end of the first list.)

 3. Start the installation program sqlncli.msi.

 4. On the Feature Selection page, it’s sufficient to select Client Components.

 5. You might need to restart your computer after a successful installation.

You have now fulfilled the requirements for installing the extension and can set up the sqlsrv
PHP extension:

 1. Download the installation package from the Microsoft website at http://www.microsoft
.com/download/en/details.aspx?id=20098.

http://www.microsoft.com/download/en/details.aspx?id=20098
http://www.microsoft.com/download/en/details.aspx?id=20098

210 Part II SQL Server

 2. Create a folder where you want to extract the driver data, for example C:\Program
Files\Microsoft SQL Server Driver for PHP.

 3. Start the installation file SQLSRV20.exe.

 4. Select the folder for the files that you need to extract, and then click OK to confirm it.

 5. Go to the installation folder and select the appropriate driver version:

● For PHP 5.3, non-thread safe, Visual C++ 9.0: php_sqlsrv_53_nts_vc9.dll

● For PHP 5.2, non-thread safe, Visual C++ 6.0: php_sqlsrv_52_nts_vc6.dll

 6. If you want to enable PHP Data Objects (PDO) support as well, then additionally select
the appropriate PDO driver versions:

● For PHP 5.3, non-thread safe, Visual C++ 9.0: php_pdo_sqlsrv_53_nts_vc9.dll

● For PHP 5.2, non-thread safe, Visual C++ 6.0: php_pdo_sqlsrv_52_nts_vc6.dll

 7. Copy the selected drivers to the PHP extension folder to C:\PHP\ext.

 8. Open the php.ini configuration file and enter the following lines (depending on your
driver version) to load the SQL Server extension in PHP:

extension_dir = "ext"
extension = php_sqlsrv_53_nts_vc9.dll
; if you would like to enable PDO as well:
extension = php_pdo_sqlsrv_53_nts_vc9.dll

 9. Restart Internet Information Services (IIS) or at least the PHP application pools so that
PHP will apply the configuration changes.

 10. Alternatively, you can use the PHP Manager to enable the extensions through its screen
PHP Extensions | Enable or Disable an Extension.

 11. Call up the phpinfo.php script. You can now see the sqlsrv section for the SQL Server
driver, as shown in Figure 9-5.

FIgURE 9-5 phpinfo() after a successful installation of the SQL Server driver.

 Chapter 9 Setting Up SQL Server 211

Installing by Using the Web PI
If you are working with Microsoft’s WebMatrix environment, you can also use the Web PI to
install the SQL Server driver by performing the following steps:

 1. Start the Web PI with administrator rights.

 2. Add the option Products | Database | Microsoft SQL Server Driver v2.0 for PHP v5.3 in
IIS Express, and then click Install.

 3. Agree to the license agreement to start the installation.

You have now completed the installation. You can check whether the driver has been embed-
ded correctly by using phpinfo().

SQL Server Tools
You will normally use two tools when working with SQL Server: Microsoft SQL Server
Management Studio and the command-line program sqlcmd. The Management Studio pro-
vides a graphical user interface for many of the SQL Server functions, whereas sqlcmd only
allows for entering T-SQL commands.

SQL Server Management Studio
The SQL Server Management Studio (SSMS) provides a graphical user interface for many
administrative tasks with which database administrators are constantly confronted. In addi-
tion, SSMS can generate and display the correct T-SQL statement for most tasks. This makes
SSMS the ideal tool for learning the SQL dialect, step by step. SSMS is also available for SQL
Server Express (see the section “Installing SQL Server Express,” earlier in the chapter).

When starting SSMS, you are asked to log on to SQL Server. You should do so from the same
computer on which SQL Server is installed immediately after installing SQL Server, because
remote access to SQL Server is not yet shared. Log on to the server with an SQL Server
administrator account. After a successful logon, SSMS is started, as shown in Figure 9-6.

212 Part II SQL Server

FIgURE 9-6 Microsoft SQL Server Management Studio.

By default, the interface is divided into four sections:

■ The menu and the toolbar on the upper margin

■ Object Explorer on the left

■ A work area in the center

■ The Properties pane on the right

In Object Explorer, you can select the desired elements (for example tables, databases, or
logons) for editing.

The following procedure shows how to execute T-SQL commands in SSMS:

 1. In the toolbar, click New Query.

A new query window opens in the work pane.

 2. In the drop-down list in the toolbar, make a selection below the database for the query
(in Figure 9-6, master is selected).

 3. Enter the T-SQL command into the query window, and then run the command by click-
ing the Execute button on the lowermost tool bar.

If you make changes to the structure of SQL Server or create new elements, it is possible that
Object Explorer might not update accordingly. If this is the case, click the Update icon, as
shown in Figure 9-7.

 Chapter 9 Setting Up SQL Server 213

FIgURE 9-7 Manually updating Object Explorer.

The sqlcmd Command-Line Tool
sqlcmd is a command-line tool with which you can connect to an SQL Server instance and
send T-SQL statements. If you want to use your local computer to connect with the current
user, the following call is sufficient (the –d parameter specifies the database):

sqlcmd -d AdventureWorksLT2008

To connect with an instance on another computer or to use another user name, call up
sqlcmd as follows:

sqlcmd -S server_name -U user_name

Note The user specified with -U must be an SQL Server user account, not a Windows or domain
user account.

If sqlcmd has been started, you can use :help to retrieve some commands. sqlcmd can be
ended with exit or quit.

The T-SQL Batch
SQL Server processes T-SQL statements by batch. Multiple statements are combined in one
batch, compiled together in an execution plan, and then processed step by step. The end of
a batch is marked with the statement GO.

This is why sqlcmd does not execute statements until it reaches the GO statement.

Note It’s good practice to perform changes to the data model in its own batch and separate
them from data access.

214 Part II SQL Server

Configuring for Remote Access
By default, SQL Server is configured to only allow access from the local computer. If SQL
Server and IIS are installed on two different computers in your work area or production envi-
ronment, you need to configure and share remote access.

Two steps are necessary: first, end points that can receive connections need to be configu-
red in SQL Server. Second, you need to share the necessary ports in the Windows Firewall to
make it possible to connect from the outside.

Enabling the TCP/IP Protocol
To allow for remote access via TCP/IP, you first need to ensure that SQL Server permits state-
ments via this protocol. To do so, start the Configuration Manager by clicking Start | All
Programs | Microsoft SQL Server 2008 R2 | Configuration Tools | SQL Server Configuration
Manager, and then select SQL Server Network Configuration | Protocols (for the desired
instance) in the left pane. Make sure that the TCP/IP protocol is enabled for the selected
instance. If you first need to enable the protocol, you must restart the associated SQL Server
service. Then, go to the SQL Server Services in the left pane and select the Restart command
in the context menu of the SQL Server (Instance) service.

SQL Server can now receive client requests via TCP/IP. Next, you need to check the firewall
settings and allow access from the outside.

Enabling TCP/IP for Selected Networks Only
If the computer has multiple IP addresses, for example, because it possesses several
network adapters, you can also configure SQL Server in such a way that the services are
only permitted for certain local IP addresses.

For this purpose, go to the SQL Server Configuration Manager | SQL Server Network
Configuration | Protocols and call up the properties of the TCP/IP protocol from the
context menu. On the Protocol tab, set the Listen All option to No, and then on the IP
Addresses tab, set the Enabled option to Yes for the desired addresses, as shown in
Figure 9-8.

 Chapter 9 Setting Up SQL Server 215

FIgURE 9-8 Enabling the TCP/IP protocol for individual local IP addresses.

By doing this, you can minimize the attack surface of SQL Server and prohibit access to
certain local IP addresses completely.

Sharing Access in the Windows Firewall
By default, the Windows Firewall blocks all access to running services from the outside. With
this, Microsoft consistently employs good security practice by blocking all services and only
making them available selectively, if necessary. For remote access to SQL Server, you there-
fore need to first enter the appropriate rules into the Windows Firewall:

 1. Start the Firewall configuration:

● Using Windows Server 2008 R2: click Start | Administrative Tools | Windows
Firewall With Advanced Security

● Using Windows 7: click Start | Control Panel | System And Security | Windows
Firewall | Advanced Settings

216 Part II SQL Server

 2. Select Inbound Rules in the navigation pane, and then in the Actions pane, click New
Rule.

 3. In the New Inbound Rule Wizard, select the Port option, and then click Next to confirm.

 4. Select the TCP option, and then in the Specific Local Ports text box, enter 1433.

The TCP port 1433 is the default port for the first instance of SQL Server.

 5. Select the Allow The Connection option.

 6. On the Profile page, you should be as restrictive as possible: if remote access is only
possible from a domain network, select the check box of this profile. If you only access
it from networks which are marked as private, only select this check box.

These settings assume that your networks are assigned to the corresponding profile.
The Public option permits access from any computer. In this case, you should ensure
(for example, by using an external firewall) that access is only permitted from autho-
rized computers.

 7. Give the rule a name (for example, SQL Server Database Default Instance), and then
click Finish to complete the setup.

 8. If you also want to permit access to the SQL Server browser service, repeat steps 2 to 6,
and in step 4 share the UDP port 1434.

Tip To further limit the attack surface, you can edit the rule properties after you have
set them up. Select the rule in the rule list and call up Properties from the context menu.
For example, you can restrict the remote access in the dialog box to a defined IP range or
require that access is only permitted for authorized users (assumes an IPsec-authenticated
connection).

After performing these configuration steps, you can access SQL Server from the permit-
ted computers or networks. To use the Windows authentication, however, you first need
to enter and authorize the users in SQL Server. You can find a description in Chapter 14,
“Users and Permissions,” but you can already log on with the sa account via the SQL Server
Authentication method.

 Chapter 9 Setting Up SQL Server 217

Installing the Sample Database
Microsoft provides a sample database for SQL Server called AdventureWorks. This data-
base contains data and tables for you to try out various different application situations.
AdventureWorks is available for every version of SQL Server and in many different for-
mats. You can find a complete overview and download options on Codeplex at http://
msftdbprodsamples.codeplex.com/.

For our purposes, the version AdventureWorksLT (Light) is sufficient: it contains 12 tables, a
schema, and takes up only about 7 MB, which makes it quick to install. You can find more
information about this version at http://msftdbprodsamples.codeplex.com/wikipage?title=
AWLTDocs.

To install the sample database, perform the following procedure:

 1. Open the webpage http://msftdbprodsamples.codeplex.com/releases/view/37109
(sample database version SQL Server 2008 SR4).

 2. Download SQL2008.AdventureWorksLT2008_Only_Database.zip.

 3. Unpack the Zip file in a folder of your choice; for example, C:\Data\AdventureWorks or
the SQL Server default folder for database files C:\Program Files\Microsoft SQL Server\
MSSQL10.MSSQLSERVER\MSSQL\DATA.

 4. Make sure that the extracted files have the proper access permissions and are writeable
by the database principal.

 5. Start SSMS, and then connect to the database.

 6. In Object Explorer, right-click Databases, and then in the context menu, click the Attach
command.

The Attach Databases dialog box opens, as shown in Figure 9-9.

http://msftdbprodsamples.codeplex.com/
http://msftdbprodsamples.codeplex.com/
http://msftdbprodsamples.codeplex.com/wikipage?title=AWLTDocs
http://msftdbprodsamples.codeplex.com/wikipage?title=AWLTDocs

218 Part II SQL Server

FIgURE 9-9 Appending the sample database AdventureWorks.

 7. In the dialog box, click Add, and then select the file AdventureWorksLT2008_Data.mdf.
Click OK to confirm it.

 8. Click OK to finish attaching.

In Object Explorer, you will now see the newly appended sample database
AdventureWorksLT2008 under Databases.

 9. In Object Explorer, right-click the AdventureWorksLT2008 database, and then in the
context menu, open the Properties.

The Database Properties dialog box opens.

 Chapter 9 Setting Up SQL Server 219

 10. In the dialog box, go to the Files section, and then specify the owner of the database
in the Owner text box. (You can also use the button to the right of the text box to find
existing users.)

 11. Click OK to complete the dialog box.

To bind the sample database by using the command line, in step 5, start the command-line
tool sqlcmd instead of SSMS, and then enter the following commands to append the data-
base (paths according to your installation path) and specify the database user (for example,
the administrator):

sp_attach_db AdventureWorksLT2008,
'C:\Data\AdventureWorks\AdventureWorksLT2008_Data.mdf',
'C:\Data\AdventureWorks\AdventureWorksLT2008_Log.ldf'
GO
ALTER AUTHORIZATION ON DATABASE::AdventureWorksLT2008 TO [WEBSRV\Administrator]
GO

You have now appended the sample database and assigned the required rights. The data-
base can now be used.

Migrating MySQL Databases
Microsoft provides SQL Server Migration Assistant for MySQL (SSMA) for migrating MySQL
databases to SQL Server. The SSMA takes care of the migration of the database schema and
the data itself.

Note The Migration Assistant for MySQL (SSMA) was developed for MySQL 5.1. Older versions
of MySQL might pose problems.

Installing the Migration Assistant
The installation of SSMA is divided into three steps: installation of the MySQL Open Database
Connectivity (ODBC) driver, installation of SSMA, and registration of SSMA. The SSMA may
be installed on any computer, which means it does not necessarily need to be installed on
the same computer as SQL Server.

Installing the MySQL ODBC Driver
The MySQL ODBC driver is used for connecting to the MySQL database. To install it, perform
the following steps:

 1. Go to http://dev.mysql.com/downloads/ and download the appropriate Connector/
ODBC for your work environment.

220 Part II SQL Server

 2. Start the installation program. In the second step, Setup Type, select the option Typical.

 3. Click Next, and then click Install to install the driver.

 4. Click Finish to complete the successful installation.

Installing the SSMA
The SSMA for MySQL is currently at version 5.1. To install the SSMA, perform the following
procedure:

 1. Download the SSMA from http://www.microsoft.com/download/en/detailsaspx?
displaylang=en&id=26712.

 2. Unpack the Zip file and start the SSMA For MySQL 5.1 installation program.

 3. In the Choose Setup Type dialog box, click the Typical button, and then start the instal-
lation by clicking Install.

 4. Start the SSMA For MySQL 5.1 Extension Pack installation program.

 5. Again, choose the Typical setup type and proceed with the installation.

 6. Choose the database instance and the connection parameters.

 7. Choose a password for the extension pack database.

If you don’t want to remember too many passwords, it’s acceptable to reuse the pass-
word from the user performing the migration.

 8. Click Next to install the utilities database on your instance.

 9. Click Exit to finish the installation.

Registering the SSMA
When you start the SSMA for the first time, you are asked for a license:

 1. In the License Management dialog box, open the License Registration Page link.

 2. Log on with your Windows Live ID or register a new Windows Live ID.

 3. Enter the required data for the license registration, and then click Finish.

 4. Save the created license file mysql-ssma.license in the SSMA default directory %user%\
AppData\Roaming\Microsoft SQL Server Migration Assistant.

 5. In the SSMA dialog box, click Refresh License.

You have now successfully installed and registered the SSMA and can start with the migration.

http://www.microsoft.com/download/en/detailsaspx?displaylang=en&id=26712
http://www.microsoft.com/download/en/detailsaspx?displaylang=en&id=26712

 Chapter 9 Setting Up SQL Server 221

Migrating a MySQL Database
To migrate a MySQL database to SQL Server, perform the following procedure:

 1. Start a new migration project by clicking File | New Project

The New Project dialog box opens.

 2. In the dialog box, give the project a name, optionally change the project location, and
then click OK.

 3. Click Connect To MySql, enter the connection data, and then click Connect.

If you are connecting to a remote server, ensure that no firewall is blocking access
and that MySQL allows remote connections.

 4. Ensure that SQL Server Agent service is running. Either check with the SQL Server
Configuration Manager or start the service by clicking Windows Start | Administrative
Tools | Services.

 5. Click Connect To SQL Server, enter the connection data and a database, and then click
Connect. The database can still be changed later.

 6. Select the database that you want to migrate in the MySql Metadata Explorer.

 7. On the Schema Mapping tab, you can select the target database and schema in SQL
Server by clicking Modify.

 8. On the Type Mapping tab, you can specify the data type conversion properties for the
entire database, or separately for individual tables.

 9. Click Convert Schema to perform the database conversion.

Initially it is not yet saved in SQL Server, so the conversion can take place without risk.
Possible errors are displayed as shown in Figure 9-10. If the Convert Schema button
is disabled, ensure that you have actually selected the database item in the MySql
Metadata Explorer, not just selected the check box of the item.

222 Part II SQL Server

FIgURE 9-10 SQL Server Migration Assistant for MySQL.

 10. Tables with conversion problems are marked with a red X. You have the following
options for resolving conversion errors:

● For NULL values, you can enable or disable the Nullable option of the column in
the SQL Server table.

● In MySQL, you can customize the database schema and perform the conversion
again.

● You can save the conversion script from the SQL Server Metadata Explorer with
the context menu command Save As Script, edit it manually, and then run it in
SQL Server.

● You can exclude the object that has the error from the conversion in the
Metadata Explorer.

 11. If you were able to perform the conversion without errors or have resolved the errors,
you can apply the schema within the SQL Server Metadata Explorer by using the con-
text menu command Synchronize With Database.

 Chapter 9 Setting Up SQL Server 223

 12. Select the check boxes of the database (or the desired tables) for the data migration in
the MySql Metadata Explorer, and then click the Migrate Data button.

 13. Specify the connection data to MySQL and SQL Server again.

The migration is started and finishes with a Data Migration Report. Errors during data
migration are most likely due to schema problems. Resolve the database schema and
run the migration for the failed tables again.

You have now migrated a MySQL database to SQL Server in just a few steps.

Summary
In this chapter, you learned about the installation of SQL Server and the associated PHP
extension. If you want to access the database from a different computer, you need to con-
figure this remote access separately, because for security reasons it is not part of the default
installation.

With the SQL Server Migration Assistant, you can migrate databases from MySQL to SQL
Server quickly and easily. The sample database AdventureWorksLT that you set up will be
used as the basis for data in the next chapters. Alternatively, instead of the smaller LT version,
you can also install the complete AdventureWorks sample database.

In the next chapter, you will learn how databases, tables, keys, and indexes are created.

 225

Chapter 10

Databases and Tables

Relational database management systems (RDBMS), such as Microsoft SQL Server, save data
in a structured format. In this chapter, you will learn about the elements of this structure:
databases, schemas, tables, and (column) data types.

Databases
In SQL Server, as in other RDBMS, data is saved in databases. A database contains not only
the data itself in the form of datasets in tables, but also metadata for efficient data manage-
ment. Each database has its own storage location.

Apart from the custom databases, an SQL Server instance also contains system databases
that are necessary for running SQL Server. In the section that follows, we introduce these
system databases and show you how to set up and delete databases and how to create a
database snapshot.

System Databases
SQL Server uses four system databases, which are necessary for its correct operation. They
contain important configuration data:

■ master The master database contains all the information necessary for running SQL
Server. It contains information about other databases, access data, account information,
security settings, and configurations that are valid server-wide. SQL Server cannot be
run without the master database. You should therefore back it up regularly.

In this chapter:
Databases . 225
Data Types . 234
Schemas and Object Names . 238
Tables . 239
Keys and Indexes . 243
Summary . 252

226 Part II SQL Server

■ model The model database serves as a template for creating new databases. Properties
and objects from this database are applied to the newly created database. This way
every new database automatically receives a basic configuration.

■ msdb In the msdb database, the SQL Server agent saves information about tasks that
need to be executed periodically as well as their schedules. This database is also used
by SQL Server Integration Services (SSIS) for storing configuration data.

■ tempdb As the name indicates, the tempdb contains only temporary data. It is used
for storing temporary tables. SQL Server also uses it for caching data during sorting or
aggregating.

There is one more system database, the distribution database, which only exists when the SQL
Server uses the replication of databases to other instances.

Database Structure
An SQL Server database is saved to three different file types:

■ Primary data files (extension .mdf) Contain all information about the database and
possibly the data itself.

■ Secondary data files (extension .ndf) Contain all data that is not stored in the pri-
mary file. A database can contain as many secondary files as desired, but does not need
to have any if all of the data is contained in the primary file.

■ Transaction log files (extension .ldf) Contain information about the transactions
in the database and are used to recover a correct and consistent database state after a
disruption. Each database contains at least one log file.

Data and logs are never mixed, and each file is mapped to a single database. To facilitate
management, SQL Server groups data files into file groups. Log files are never part of a file
group.

SQL Server recognizes two file group types:

■ PRIMARY The standard file group that contains system databases and—unless
specified otherwise during database setup—the newly created databases.

■ FILEgROUP Custom file groups that are created with the keyword FILEGROUP.

During database design, you can take advantage of the option to distribute data to individ-
ual files in order to distribute them to different drives and thus optimize performance and
resource consumption. The distribution can take place at database, table, or index level,
and can be used for partitioning tables or indexes themselves.

 Chapter 10 Databases and Tables 227

To take a look at a PRIMARY files group, go to the Windows Explorer and open the root
folder of your database:

C:\Program Files\Microsoft SQL Server\<Name of instance>\MSSQL\DATA

In the folder, you will find the primary file for each system database and an associated trans-
action log file.

Setting Up Databases
To set up new databases, use the CREATE DATABASE command, as follows:

CREATE DATABASE database_name
 [ON
 { [PRIMARY] [<filespec> [,...n]
 [, <filegroup> [,...n]]]
 [LOG ON { <filespec> [,...n] }] }
]
 [COLLATE collation_name]
 [WITH <external_access_option>]
[;]

With the COLLATE option, you can specify the default sort order to be used within the
database, which you’ll learn more about in the section “Sorting and Code Page,” later in
the chapter.

Specifying Files and File Groups
With CREATE DATABASE, you can further define the storage location and the storage type of
databases, as follows:

<filespec> ::=
{
(
 NAME = logical_file_name ,
 FILENAME = { 'os_file_name' | 'filestream_path' }
 [, SIZE = size [KB | MB | GB | TB]]
 [, MAXSIZE = { max_size [KB | MB | GB | TB] | UNLIMITED }]
 [, FILEGROWTH = growth_increment [KB | MB | GB | TB | %]]
) [,...n]
}
<filegroup> ::=
{
FILEGROUP filegroup_name [CONTAINS FILESTREAM] [DEFAULT]
 <filespec> [,...n]
}

228 Part II SQL Server

For the files, you can specify the initial size, the maximum size, and the step width for incre-
mental file growth. If no size is specified, the number represents megabytes (MB). The dif-
ferentiation into a logical file name (logic_file_name) and a physical file name (os_file_name)
simplifies file handling.

Examples
The following three examples demonstrate how you can set up new databases.

Database with Default Settings

To create a first database with the default settings, run the following command:

CREATE DATABASE test_db;

If you now update Object Explorer in the SQL Server Management Studio (SSMS), you will see
your new database with the name test_db.

Database with Alternative Sort Order

To set up a database that sorts in a case-sensitive, but accent-insensitive manner, run the
following command:

CREATE DATABASE test_db COLLATE Latin1_General_CS_AI;

You can take a look at the database properties in the SSMS. The sort uses the default alphabet
and language (Latin1_General) and is case sensitive (suffix CS) and ignores accents (suffix AI).

Tip To see an overview of all available sort orders, run the following command:

SELECT * FROM fn_helpcollations()

Database with File Groups

The final example, which is presented in Listing 10-1, shows you how to specify files and file
groups in a database:

LISTINg 10-1 Creating a database and specifying files and file groups.

CREATE DATABASE test_groups
ON PRIMARY
(NAME = tg_prim,
 FILENAME = 'C:\data\tg.mdf',
 SIZE = 15, MAXSIZE = 40, FILEGROWTH = 5MB),

 Chapter 10 Databases and Tables 229

FILEGROUP TG_UserData1
(NAME = TG_BD1_dat,
 FILENAME = 'D:\data\tg_bd1_1.ndf',
 SIZE = 1GB, MAXSIZE = UNLIMITED, FILEGROWTH = 10%),
FILEGROUP TG_UserData2
(NAME = TG_BD2_1_dat,
 FILENAME = 'E:\data\tg_bd2_1.ndf',
 SIZE = 100, MAXSIZE = 4GB, FILEGROWTH = 200),
(NAME = TG_BD2_2_dat,
 FILENAME = 'E:\data\tg_bd2_2.ndf',
 SIZE = 100, MAXSIZE = 2GB, FILEGROWTH = 100)
LOG ON
(NAME = TG1_log,
 FILENAME = 'F:\transactions\tg1.ldf',
 SIZE = 10MB, MAXSIZE = 50MB, FILEGROWTH = 10MB),
(NAME = TG2_log,
 FILENAME = 'G:\transactions\tg2.ldf',
 SIZE = 15MB, MAXSIZE = 75MB, FILEGROWTH = 15MB)

This command creates the following files and file groups:

■ The primary file tg_prim in the PRIMARY filegroup. As you can see, the files of a
file group don‘t need to be located in the same directory. (By default, the PRIMARY file
group is located in the root folder of the server.)

■ The file group TG_UserData1 with the file TG_UD1_dat, which is created with a size of
1 GB and can grow in 10 percent increments, without restriction.

■ The file group TG_UserData2 with the two files TG_UD2_1_dat and TG_UD2_2_dat, both
of them on the same drive (not required).

■ Two transaction log files on different drives.

Setting Up a Database with SSMS
To create databases with the SSMS user interface, perform the following steps:

 1. Connect to SQL Server by using SSMS.

 2. In Object Explorer, right-click Databases, and then from the context menu, select
New Database.

 3. Enter the name of the database into the Database Name text box.

 4. You can use the Add button to add files for the database in the Database Files table
field. Figure 10-1 shows the example from the previous section, “Database with File
Groups.” Sizes are specified in megabytes.

230 Part II SQL Server

FIgURE 10-1 Setting up a new database with SQL Server Management Studio.

 5. You can add file groups either with the File groups page or ad hoc when creating a new
file by selecting the option <new file group> in the drop-down list.

 6. On the Options page, you can specify further database properties; for example, the
sort order.

 7. If you have specified your settings according to your requirements, you can create the
database by clicking OK. If you click the Script button beforehand, you can also write
the Transact-SQL (T-SQL) script into a query window and study the generated T-SQL
script.

Deleting a Database
To delete a database, use the DROP DATABASE command, as shown in the following:

DROP DATABASE { database_name | database_snapshot_name } [,...n] [;]

With this command, you can delete one or multiple databases and database snapshots.
When a database is deleted, the associated files on the drives are deleted as well. Therefore,
be careful when performing a deletion, because you might permanently lose data.

Run the following command to delete the sample database:

DROP DATABASE test_db;

 Chapter 10 Databases and Tables 231

Deleting a database can fail for the following reasons:

■ The user does not have the required right (CONTROL).

■ The database is currently being used. While a database is in use, it cannot be deleted.
You can use the ALTER DATABASE command to force that only one user is active in the
database. This user can then delete the database:

ALTER DATABASE database_name SET SINGLE_USER WITH ROLLBACK IMMEDIATE;

The deletion takes place via a connection whose database context is the database you
want to delete. In this case, you can use the command USE to change the context; for
example, by changing to the master system database:

USE master;

■ There are still snapshots of the database. In this case, you need to delete the snapshots
first.

To delete a database by using SSMS, select the database in Object Explorer, click Edit,
and then click Delete. In the Delete Object dialog box, confirm the deletion by clicking OK.

Creating a Snapshot
With SQL Server, you can create a snapshot of a database. A snapshot is a read-only view of
the database as it looks at the moment the snapshot is taken. A snapshot can be used to cre-
ate manual evaluations or reports with the SQL Server Reporting Services, without blocking
database use or setting a database back to an earlier point in time. You can create a database
snapshot with the CREATE DATABASE command, as in the following:

CREATE DATABASE database_snapshot_name
 ON (
 NAME = logical_file_name,
 FILENAME = 'os_file_name'
) [,...n]
 AS SNAPSHOT OF source_database_name
[;]

When creating a snapshot, you need to specify a file for each data file of the database (pri-
mary and secondary files, but not transaction log files). All necessary information is copied to
these files to create the snapshot.

The logical_file_name becomes the logical name of the database file. The os_file_name speci-
fies the physical file (including path) into which the database file is copied.

232 Part II SQL Server

Example
The following example illustrates how this works:

 1. Create a test database, and then create a test table in the database:

CREATE DATABASE test_db;
GO
USE test_db;
CREATE TABLE test (id int IDENTITY(1,1) PRIMARY KEY, value int);

 2. Insert some values into the table:

INSERT INTO test VALUES (12), (13), (14);

 3. Output the values in the table:

SELECT * FROM test;

 4. Create a snapshot of the test database. For each data file of the database, you need to
specify its own file for the snapshot. The logical name is the name that this file has in
the database:

CREATE DATABASE test_snapshot
 ON (
 NAME=test_db, FILENAME='C:\Data\test_snapshot.snap'
)
 AS SNAPSHOT OF test_db;

 5. You can now use the snapshot like a regular database, with the restriction that the
snapshot is read-only. In SSMS, you can find the snapshots in Object Explorer by click-
ing Databases | Database Snapshots, as shown in Figure 10-2.

FIgURE 10-2 Database snapshot in Object Explorer.

 6. Insert a few new values into the table of the test_db database, and then check the
result:

USE test_db;
INSERT INTO test VALUES (15), (16), (17);
SELECT * FROM test;

 Chapter 10 Databases and Tables 233

 7. Now compare the result to the snapshot. The snapshot retains the old data status (at
the time of the snapshot creation):

USE test_snapshot;
SELECT * FROM test;

Restoring the Database
A database can be restored to its state at the time of the snapshot creation. This reverts all
changes to the database and its content that were made up to the point when the snapshot
was created. To do so, use the RESTORE command, as shown in the following:

RESTORE DATABASE database_name
FROM DATABASE_SNAPSHOT = database_snapshot_name

Restoring only works if the database has exactly one snapshot; otherwise, you receive an
error. If there are multiple snapshots, you need to delete them first.

You check this function with the test database and the test snapshot:

 1. Restore the database to its state at the time of the snapshot:

USE master;
RESTORE DATABASE test_db
FROM DATABASE_SNAPSHOT = 'test_snapshot';

 2. Check whether the changes were actually reverted:

USE test_db;
SELECT * FROM test;

Note To restore a database to the time of the snapshot, the same basic conditions apply
as those for deleting a database (presented earlier in the section “Deleting a Database”):
no other users may use the database, and the database context of the connection must be
different.

Snapshots are no substitute for a regular database backup. But they can be a valuable tool
during development.

Deleting a Snapshot
Use the DROP DATABASE command to delete a snapshot:

DROP DATABASE database_snapshot_name [,...n] [;]

234 Part II SQL Server

Run the following commands to delete the created test snapshot and the test database:

USE master;
DROP DATABASE test_snapshot;
DROP DATABASE test_db;

Data Types
SQL Server provides several varied data types for saving data: numbers, strings, binary files,
date and time, and unique identifiers. When selecting the correct data type, you should take
into consideration not only the type of the data that you want to save, but also the amount
of memory this data type requires, possible operations, and how efficiently the most fre-
quent queries of your application can be implemented.

Numeric Data Types
SQL Server provides data types for integers, for numbers with a defined number of decimal
places, and for floating-point numbers. For each class of number, there are multiple types
that differ in value range and storage size.

Table 10-1 presents a list of integer types, from bigint with its value range of 64 bits, down to
bit, which is of course, a single bit. With the exception of tinyint and bit, all types are signed.

TABLE 10-1 Data types for integers

Data type Size Value range

bigint 8 bytes –263 to 263-1 (approximately –9*1018 to 9*1018)

bit 1 bit 0 or 1

int 4 bytes –231 to 231–1 (approximately –2*109 to 2*109)

smallint 2 bytes –215 to 215–1 (–32768 to 32767)

tinyint 1 byte 0 to 28–1 (0 to 255)

Table 10-2 lists data types with a fixed number of decimal places and floating-point numbers.
For the type decimal, you can specify the number of places altogether and the decimal places
behind the point; for example, the definition of decimal(10,3) is a type with a maximum of
10 places, seven before the point and three behind it.

Floating-point numbers are used for calculations with a large range of values. The type float
is more precise than real, but it requires twice as much memory. Calculating with floating-
point numbers can lead to rounding errors. When running queries, you should therefore
never test for an exact match, but rather whether two numbers are only a small interval apart.

 Chapter 10 Databases and Tables 235

TABLE 10-2 Numeric data types and floating-point numbers

Data type Size Description

decimal(p,s)
numeric(p,s)

5–17 bytes Numeric type with up to 38 places. The size depends
on the number of places. The first parameter specifies
the total number of places; the second, the number of
decimal places.

float(n) 4 or 8 bytes Floating-point number with a variable mantissa of
up to 53 bits. The parameter n specifies the number
of bits in the mantissa. Value range –1.79*10308 to
–2.23*10–308, 0 and 2.23*10-308 to 1.79*10308.

money 8 bytes Four decimal places. Value range of approx. –9*1011
to 9*1011.

smallmoney 4 bytes Four decimal places. Value range of –214748.3648
to +214748.3647.

real 4 bytes Floating-point number with a mantissa of 24 bits.
Value range of –3.4*1038 to –1.18*10–38, 0 and
1.18*10–38 to 3.4*1038.

Strings and Binary Data
SQL Server differentiates between two kinds of strings: strings based on Unicode and strings
based on the character set of a defined code page. Data types for binary data are related to
strings. The data types of these three classes are listed in Table 10-3.

TABLE 10-3 Strings and binary data

Data type Size Description
char(n) max. 8000 bytes String with fixed length, 1 byte per character

varchar(n) max. 8000 bytes String with variable length, 1 byte per character

varchar(max)
text

max. 2*109 bytes String with variable length, 1 byte per character;
varchar(max) should be used instead of text (obsolete)

nchar(n) max. 4000 characters Unicode string with fixed length, 2 bytes per character

nvarchar(n) max. 4000 characters Unicode string with variable length, 2 bytes per
character

nvarchar(max)
ntext

max. 109 characters Unicode string with variable length, 2 bytes per char-
acter; nvarchar(max) should be used instead of ntext
(obsolete)

binary(n) max. 8000 bytes Binary data with fixed length

varbinary(n) max. 8000 bytes Binary data with variable length

varbinary(max)
image

max. 2*109 bytes
(2 GB)

Binary data with variable length; varbinary(max)
should be used instead of image (obsolete)

236 Part II SQL Server

To differentiate between the basic types—Unicode and code pages—for string literals, SQL
Server uses different syntax for each:

■ Unicode  Precede the string with N; for example, N'Doris laughing and dancing'.

■ Code page  Without special escaping; for example, 'Doris laughing and dancing'.

If there is an apostrophe within a string, you must escape it by placing another apos-
trophe before it; thus, 'Tony's beard' becomes 'Tony''s beard'.

Sorting and Code Page
The sorting of string data type depends on the value of the individual characters as well as
the language, culture, and context. SQL Server supports many internationally common sort
orders. You can retrieve a list of all sort orders by using the following command:

SELECT * FROM fn_helpcollations()

The name of the sort order already contains hints regarding the sorting. The name itself
provides information about the language and context, the mapped code page, and which
characteristics need to be taken into consideration for the sorting. Table 10-4 lists suffixes for
sort characteristics.

TABLE 10-4 Suffixes for sort orders

Characteristic Suffix for considers Suffix for does .not .consider
Accents AS AI

Binary sort BIN BIN2 (no suffix)

Case sensitive CS CI

Kana (Japanese characters) KS (no suffix)

Coding (width of 1 or 2 bytes) WS (no suffix)

If the string is not a Unicode string, the specified sort order determines the code page of the
character set.

The sort order can be specified at server, database, table, column, and expression level, and
the most specific definition is used (for example, column sort instead of database sort). For the
definition, the T-SQL attribute COLLATE is used, as shown here:

COLLATE { <collation_name> | database_default }
<collation_name> :: =
 { Windows_collation_name } | { SQL_collation_name }

 Chapter 10 Databases and Tables 237

The following is an example for creating a table:

CREATE TABLE test_table (
 id int PRIMARY KEY,
 English varchar(50) COLLATE Latin1_General_100_CI_AI,
 Hungarian nvarchar(10) COLLATE Hungarian_100_CS_AS
);

Dates and Times
Table 10-5 provides an overview of the different SQL Server data types that you can use for
saving the date and time. If you want to specify both date and time, you should use the data
type datetime2(n); otherwise, use the types date or time(n).

TABLE 10-5 Data types for saving date and time

Data type Size Description
date 3 bytes Date from 0001-01-01 until 9999-12-31.

datetime 8 bytes Date and time from 1753-01-01 until 9999-12-31, accurate
to 3.33 milliseconds.

datetime2(n) 6–8 bytes Date and time from 0001-01-01 until 9999-12-31. The parameter
specifies the number of places for split seconds (max. 7 places;
corresponds to 100 ns).

datetimeoffset(n) 8–10 bytes Same as datetime2. In addition, a time zone can be specified.

smalldatetime 4 bytes Date and time from 1900-01-01 until 2079-06-06, accurate to 1
minute.

time(n) 3–5 bytes Time from 00:00:00 until 23:59:59. The parameter specifies the
number of places for split seconds (max. 7 places; corresponds to
an accuracy of 100 ns).

Other Data Types
SQL Server offers additional data types, some of which are listed in Table 10-6. The data type
rowversion (or the obsolete synonym timestamp) can be used to perform a sort according to
the latest change in the table.

TABLE 10-6 Various additional data types

Data type Size Description
hierarchyid Up to 892 bytes Efficient data type for saving hierarchical relations

rowversion timestamp 8 bytes Database-wide unique number that is updated
with each change

uniqueidentifier 16 bytes A global unique identifier (GUID)

xml max. 2*109 bytes (2 GB) Data type with variable length for saving XML data

238 Part II SQL Server

Schemas and Object Names
In SQL Server, each object has a unique name. Schemas combine these objects into groups
for easier administration. On the schema level, you can also assign access rights. This makes
schemas in SQL Server an important grouping level. A complete object name always contains
the name of the schema.

Object Names
Object names have a hierarchical structure and are composed of four parts separated by a
period, as follows:

<SQL server instance> . <Database> . <Schema> . <Object>

With the exception of the object name, all parts are optional. If the instance is not specified,
the instance of the current connection is used. If the database specification is missing, the
database context of the connection is used. If the schema is missing, the default schema is
used.

The default schema of a database is dbo (database owner). If no schema is specified in the
object names, this schema is used. Alternatively, you can map your own default schema to
each user for each database. If it is specified, it is used as long the objects have no schema
specified.

If the object name contains spaces or represents a T-SQL keyword, you can put it into square
brackets, as demonstrated here:

Invalid: SELECT Where AS Specification of location FROM tempdb.My DB.My Table
Correct: SELECT [Where] AS [Specification of location] FROM tempdb.[My DB].[My Table]
Alternative: SELECT [Where] AS 'Specification of location' FROM [tempdb].[My DB].[My Table]

Creating Schemas
Use the CREATE SCHEMA command to create a schema, as shown in the following:

CREATE SCHEMA schema_name
 [AUTHORIZATION owner_name]
 [<schema_element> [...n]]
[;]

In addition to the schema name, you can also specify the owner (user or role), and while
creating the schema, you can also create tables and other objects within it. The simplest
example for creating a schema is as follows:

CREATE SCHEMA testschema
GO

In this case, the owner of the schema is the user who is creating it.

 Chapter 10 Databases and Tables 239

In SSMS, you can find schemas in Object Explorer under Databases | <database> | Security
| Schemas. You can create a new schema by going to the context menu and clicking New
Schema. In the dialog box that opens, you only need to fill in the Schema Name text box. The
rights specifications are optional. Confirm your entries and create the schema by clicking OK.

Deleting Schemas
Use the DROP SCHEMA command to delete a schema:

DROP SCHEMA schema_name

To delete a schema in SSMS, in Object Explorer, in the Security section, click Schemas, and
then right-click the schema of the associated database. In the context menu that opens, click
Delete to open the Delete Object dialog box. Confirm your entries by clicking OK.

Note A schema can only be deleted if it does not contain objects. Therefore, you first need to
delete all objects in the namespace of the schema.

Tables
Tables represent the basic structure for saving data in relational databases. They consist of
rows and columns. Rows represent a data set, and columns specify the data types that are
saved for a data set. Data manipulation in databases always means creating a data set in a
table (adding a row), removing a data set (deleting a row), or changing a data set (changing
the column values for the row).

Creating Tables
Tables are created in the database by using the CREATE TABLE statement. With SQL Server,
you can specify the data type for the columns and a number of other options, as demon-
strated in the following:

CREATE TABLE
 [database_name . [schema_name] . | schema_name .] table_name
 ({ <column_definition> | <computed_column_definition>
 | <column_set_definition> | [<table_constraint>] [,...n]) }
 [ON { partition_scheme_name (partition_column_name) | filegroup
 | "default" }]
 [{ TEXTIMAGE_ON { filegroup | "default" }]
 [FILESTREAM_ON { partition_scheme_name | filegroup
 | "default" }]
 [WITH (<table_option> [,...n])]
[;]

240 Part II SQL Server

The command consists of the following parts:

■ Definition of the table name

■ Definition of the columns, their types, and their restrictions

■ Memory location of the table or the table partition

■ Memory location of the “large” data types varchar(max), nvarchar(max), varbinary(max),
and xml

■ Memory location of the FILESTREAM data types (large binary files that are located out-
side the database but are managed by the database)

■ Additional table options

You will only learn about the most important options here: column definitions and con-
straints. You can find a complete documentation of the CREATE TABLE statement on MSDN
at http://msdn.microsoft.com/en-us/library/ms174979.aspx. Using these options, database
administrators can perform a very granular data distribution to different file groups and
drives in order to optimize system stability and performance at table level.

Defining Columns
To define a column, you need to specify its name, column type, and other optional specifica-
tions and constraints, as shown in Listing 10-2:

LISTINg 10-2 Creating a table.

CREATE TABLE users (
 id int NOT NULL IDENTITY(1,1),
 name varchar(60) COLLATE Latin1_General_100_CI_AI NOT NULL,
 email varchar(80),
 description nvarchar(MAX) DEFAULT 'No description available',
 registered smalldatetime DEFAULT CURRENT_TIMESTAMP
);

The example creates a table called users with five columns: id, name, email, description, and
registered. The additional constraints and specifications used are listed in Table 10-7. The list
also represents the most important specifications for columns.

http://msdn.microsoft.com/en-us/library/ms174979.aspx

 Chapter 10 Databases and Tables 241

TABLE 10-7 Optional specifications and constraints for the column definition

Restriction Description
COLLATE name Specifies a sort order for this column.

DEFAULT Specifies a default value for the column, which is used if this column is not
specified with the INSERT command.

IDENTITY(start, inc) Generates consecutive numbers for all rows that are inserted. The numbers
begin with start and are increased by inc. Only one IDENTITY column per
table is permitted. The column is normally used as primary key.

NULL / NOT NULL Specifies whether NULL values are permitted in the column.

Tip To retrieve the value of the automatically inserted IDENTITY number after an INSERT
or UPDATE operation, you can either query the variable @@IDENTITY or call the function
SCOPE_IDENTITY(), which is restricted to the current scope (for example, stored procedure or
batch). To retrieve the latest IDENTITY value of a table independently of an operation, you can
use IDENT_CURRENT(), as shown in the following:

SELECT @@IDENTITY AS [IDENTITY];
SELECT SCOPE_IDENTITY() AS [SCOPE_IDENTITY];
SELECT IDENT_CURRENT('SalesLT.Person') AS [IDENT_CURRENT];

You can find out how to specify primary keys, indexes, and foreign keys in the section “Keys and
Indexes,” later in the chapter.

Creating Tables by Using SSMS
With SSMS, you can comfortably create tables by using the graphical user interface. To do so,
perform the following steps:

 1. Open SSMS, and then connect to SQL Server.

 2. In Object Explorer, select the Databases, select the desired database, and then click
Tables. In the context menu that appears, select New Table.

 3. In the central pane, enter the column names and their types, as shown in Figure 10-3.

242 Part II SQL Server

FIgURE 10-3 Creating a table by using SSMS.

 4. You can enter the following additional column specifications in the Column Properties
tab:

● DEFAULT General/Default Value or Binding

● COLLATE Table Designer/Collation

● IDENTITY Table Designer/Identity Specification, including Identity Seed and
Identity Increment

 5. In the Properties pane on the left, enter the table name into the text box (Identity)/
(Name).

If you want to map the table to a certain schema, in the Properties pane, in the
(Identity) section, change the Schema text box accordingly.

 6. Create the table by clicking the Save icon in the toolbar.

If you have skipped step 5, a dialog box opens, prompting you to enter the table name.
Enter a name, and then confirm it by clicking OK.

You have now created a new table. If you want to make changes to a table, select it in Object
Explorer, and then select Design in the context menu.

 Chapter 10 Databases and Tables 243

Deleting Tables
Tables can be deleted by using the DROP TABLE command, as shown in the following:

DROP TABLE table_name [,...n]

A table can only be deleted if it is not currently in use and no other objects (such as foreign
keys) are referring to it. Otherwise, the references or referencing objects must be deleted
prior to deleting the table.

You can delete a table in SSMS by selecting it in Object Explorer and selecting Delete in the
context menu. Confirm the Delete Object dialog box that opens by clicking OK.

Keys and Indexes
In relational databases, table keys are used to identify data records and for linking data
records from multiple tables: primary keys for identification, and foreign keys for linking
data. Indexes allow fast access to data records (rows) with certain properties (column values).

Primary Keys
One of the principles of relational data modeling is that the rows of a table (data records)
must be uniquely identifiable. The column (or columns) used to differentiate between data
records is called the primary key of the table. It is good practice to keep the primary key to
only one column; for example, of the type int with the property IDENTITY.

Defining the Primary Key When Creating a Table
SQL Server supports primary keys from any number of columns. In a T-SQL expression, the
specification can take place directly in the associated column if the primary key consists of
only one column, as shown in Listing 10-3:

LISTINg 10-3 Defining a primary key consisting of one column.

CREATE TABLE users (
 id int IDENTITY(1,1) PRIMARY KEY,
 name nchar(10)
)

If the primary key consists of two or more columns, it is placed at the end of the column defi-
nition, as illustrated in Listing 10-4:

244 Part II SQL Server

LISTINg 10-4 Defining a primary key consisting of two columns.

CREATE TABLE bill (
 bill_date date,
 bill_num int,
 amount money,
 PRIMARY KEY (bill_date, bill_num)
)

SQL Server automatically generates an index for the primary key. Therefore, access with the
primary key in the WHERE clause is especially efficient.

The primary key represents a CONSTRAINT. If the primary key is set up as shown in the
two examples, a name is automatically created for the corresponding constraint (pattern:
PK table_name__ID). If you want to give the primary key a name for later use, you need to
name the corresponding constraint, as demonstrated in Listing 10-5:

LISTINg 10-5 Defining a named primary key consisting of two columns.

CREATE TABLE bill (
 bill_date date,
 bill_num int,
 amount money,
 CONSTRAINT PK_bill PRIMARY KEY (bill_date, bill_num)
)

Changing the Primary Key
For existing tables, you can also add or remove the primary key later on by using the ALTER
TABLE command. Changing the key takes place in two steps: first, the old key needs to be
removed, and then the new key is created. For the changes, the name of the constraint is
used.

For example, to change the primary key from our billing table in Listing 10-5, run the follow-
ing commands:

ALTER TABLE bill DROP CONSTRAINT PK_bill;
ALTER TABLE bill ADD CONSTRAINT PK_bill PRIMARY KEY (bill_num);

Tip If you don’t know the name of the key, run one of the following two commands:

SELECT * FROM sys.key_constraints

SELECT constraint_schema, constraint_name, constraint_type
FROM INFORMATION_SCHEMA.TABLE_CONSTRAINTS WHERE table_name='<table name>'

Alternatively, in SSMS, in Object Explorer, select the table, and then look under Keys.

 Chapter 10 Databases and Tables 245

Defining the Primary Key by Using SSMS
SSMS also provides functions for defining or changing the primary key, which are easy to use.
You can add, change, or delete the primary key in the Design view of the table:

 1. Open SSMS, and then connect to the database.

 2. In Object Explorer, select the table that you want to edit, and then in the context menu,
click Design.

If you want to create a new table, go to Databases | <database> | Table, and then in the
context menu, click New Table.

 3. Select the columns in the work area that you want to use as primary key.

Click the Set Primary Key icon in the toolbar, as shown in Figure 10-4 (the highlighted
icon on the left). The columns will be marked with a key symbol.

FIgURE 10-4 Using SSMS for primary key management.

 4. To give the primary key a defined name, click the Manage Indexes And Keys icon (the
highlighted icon on the right; see Figure 10-4).

 5. In the dialog box that opens, select the key on the left.

You can then define the name of the key constraint on the right, in the Name text box,
in the (Identity) section. You can also define the fields belonging to the key by specify-
ing the columns (and their sorting) in the Columns text box in the (General) section.

246 Part II SQL Server

 6. Click the Save icon in the toolbar.

 7. You can now find the primary key that you created in Object Explorer under Key of the
table. The associated index can be found under Indexes.

Foreign Keys
A good database design means that the same data does not appear multiple times within
the database. If data exists twice or multiple times, it’s called a redundancy, and that can lead
to complications when data is modified. Inconsistent data stock can only be prevented with
some extra work in the application.

For example, a client’s email address should only appear in the client table, but not in the
client transactions table. Should the client change his email address, you only need to update
it in the client table and nowhere else. When reading a client transaction, the email address
can then be merged with the updated address from the client table (JOIN of tables).

To set up this relationship between table entries, you need to enter the primary key of one
table in another table as a reference. This is called a foreign key. For example, the primary
key of the client table is entered into the client transactions table, where it becomes a
foreign key.

Defining Foreign Keys
SQL Server supports foreign keys and actions based on foreign keys (for example, cascading).
Foreign keys are also defined with a constraint, as shown in the following:

[CONSTRAINT constraint_name]
{ [FOREIGN KEY] | FOREIGN KEY (column [,...n]) }
 REFERENCES [schema_name .] referenced_table_name [(ref_column)]
 [ON DELETE { NO ACTION | CASCADE | SET NULL | SET DEFAULT }]
 [ON UPDATE { NO ACTION | CASCADE | SET NULL | SET DEFAULT }]
 [NOT FOR REPLICATION]

If you define a foreign key directly in the corresponding column, the keyword FOREIGN KEY
is not necessary. If you define it afterward, you need to specify the keyword FOREIGN KEY as
well as the columns in question.

This syntax is also valid for changing foreign keys with ALTER TABLE.

Listing 10-6 uses two tables to show you how to specify a foreign key directly while defining
the associated column:

 Chapter 10 Databases and Tables 247

LISTINg 10-6 Defining the foreign key directly with the associated column.

CREATE TABLE users (
 id int IDENTITY PRIMARY KEY,
 name nchar(10),
 email varchar(80)
)

CREATE TABLE bill (
 bill_num int PRIMARY KEY,
 bill_date date,
 amount money,
 user_id int NULL
 CONSTRAINT FK_bill_users
 FOREIGN KEY REFERENCES users (id)
 ON DELETE NO ACTION
 ON UPDATE CASCADE
)

Actions Based on Foreign Keys
If the data in the referenced table (user in Listing 10-6) is changed, it’s possible that the
foreign keys in the table bill don’t match anymore. This can happen due to the deletion of
rows from the referenced table (DELETE) or changes to the primary key (UPDATE). In both
cases, referencial integrity is at risk. SQL Server therefore permits you to specify four different
actions for reacting to these changes:

■ SET NULL If the referenced entry is deleted or its primary key changed, the foreign
key is set to NULL. In this case, the foreign key columns must not be defined as NOT
NULL.

■ SET DEFAULT Similar to SET NULL, but instead of NULL, the defined default value of
the foreign key columns is set.

■ NO ACTION SQL Server cancels the original modification in the referenced table with
an error message. It is not possible to make a change as long as rows with foreign keys
refer to the entry that you want to change in the referenced table.

■ CASCADE The modification is applied to the current table as well: if the primary key
has changed, the foreign key values are adjusted as necessary. If the row in the refer-
enced table was deleted, all corresponding rows are deleted from the current table.
Therefore, think twice before using ON DELETE CASCADE.

248 Part II SQL Server

Defining Foreign Keys by Using SSMS
Foreign keys can also be defined via SSMS by performing the following steps:

 1. Open SSMS, and then connect to the database.

 2. In Object Explorer, select the table into which you want to enter the foreign key con-
straints, and then in the context menu, go to Design.

 3. Click the Relationships icon in the toolbar above, or go to Relationships in the context
menu of the work area.

The Foreign Key Relationships dialog box opens.

 4. Click the Add button.

 5. Select the entry Tables And Columns Specification, and then click the button on
the right.

The Tables and Columns dialog box opens, as shown in Figure 10-5.

FIgURE 10-5 Defining foreign key relationships by using SSMS.

 6. Select the primary key table from the drop-down list, and then select the columns that
you want to use in both tables. Click OK to confirm your entries.

 Chapter 10 Databases and Tables 249

 7. In the Foreign Key Relationships dialog box, in the Table Designer section, under
INSERT And UPDATE Specification, you can define the actions that you want to take
place when there is a change to the primary key table (Update Rule is ON UPDATE,
Delete Rule is ON DELETE).

 8. After you have performed the necessary changes, close the dialog box by clicking
Close, and then click Save in the toolbar above.

Indexes
If your program frequently searches a certain column (normally in a WHERE clause but some-
times also as part of a JOIN or GROUP BY), you can increase the database’s performance by
setting up an index for this column (or columns). If a column has an index, the database no
longer has to search the entire table for a certain value. This improvement in performance,
however, requires an additional management effort: the database must update the index
with each change. This disadvantage usually does not pose a problem with database query
patterns, which normally occur in web applications (there are many more queries than
changes). Nevertheless, you should not set up indexes without taking the disadvantages into
consideration.

Creating an Index
An index can be created for a table or a VIEW by using the CREATE INDEX command, as
shown in the following:

CREATE [UNIQUE] [CLUSTERED | NONCLUSTERED] INDEX index_name
 ON <object> (column [ASC | DESC] [,...n])

The specifications include the type of index, the name, and which columns you want to
include in the index. You can include columns into several indexes simultaneously. The com-
mand has a few other options that are used (among other things) for performance optimiza-
tion. You can read a complete documentation of the command on MSDN at http://technet
.microsoft.com/en-us/library/ms188783.aspx.

The clauses have the following meanings:

■ UNIQUE Specifies whether the values collected by the index must be unique.

■ CLUSTERED Specifies that the index (also) defines the physical sorting of the table.
This is why there can be only one CLUSTERED index per table. The index connected to
the primary key is set up as CLUSTERED by default.

■ NONCLUSTERED The index is created in an area outside of the table and contains
a sorted list of references to the table. This is the default setting for indexes. You can
create 999 NONCLUSTERED indexes per table.

http://technet.microsoft.com/en-us/library/ms188783.aspx
http://technet.microsoft.com/en-us/library/ms188783.aspx

250 Part II SQL Server

Listing 10-7 shows how to create two indexes for the table from Listing 10-6. Both indexes
are NONCLUSTERED.

LISTINg 10-7 Creating two indexes.

CREATE UNIQUE INDEX IX_users_email
ON users (email)

CREATE INDEX IX_bill_date
ON bill (bill_date, user_id)

Tip To speed up your most frequent queries even further, you might want to create a so-called
covering index, which contains all columns retrieved by the query. If SQL Server is able to retrieve
all columns from the index itself, it does not need to look up the data in the table, which gives a
tremendous performance boost, as fewer disk operations are required. The drawback is that such
indexes tend to take a substantial amount of space and make inserts and updates expensive. But
for your most frequent queries, this trade-off might well be worth it.

Indexes are created implicitly for columns that are defined as UNIQUE or PRIMARY KEY. In
Listing 10-8, a CLUSTERED index is created for the column id and a UNIQUE NON-CLUSTERED
index is created for the column email:

LISTINg 10-8 A table with two implicitly defined indexes.

CREATE TABLE users (
 id int IDENTITY PRIMARY KEY,
 name nchar(10),
 email varchar(80) UNIQUE
)

Creating an Index by Using SSMS
To use SSMS to create an index, perform the following steps:

 1. Start SMSS, and then connect to the database.

 2. In Object Explorer, select the table for which you want to create an index, and then in
the context menu, click the New Index command.

The New Index dialog box opens, as shown in Figure 10-6.

 Chapter 10 Databases and Tables 251

FIgURE 10-6 Creating a new index by using SSMS.

 3. Enter a name into the Index Name text box. If you want the index to be UNIQUE, select
the Unique check box.

 4. To add the columns that you want to index, click Add.

The Select Columns dialog box opens.

 5. Select the columns that you want to index, and then click OK.

 6. Finish your entries, and then click OK to create the index.

You have now created the index. It should be automatically displayed in Object Explorer. If it
is not, you need to update the view.

Deleting an Index
You can use the DROP INDEX command to delete an index, as shown here:

DROP INDEX index_name [ON <object>]

To delete an index by using SSMS, perform the following steps:

 1. In Object Explorer, select the table for which the index was created.

 2. In Object Explorer, open Indexes of the table.

 3. Select the index that you want to delete, and then in the context menu, click Delete.
Click OK to confirm the dialog box.

252 Part II SQL Server

Summary
Data is set up structurally in relational database systems: individual properties of an object
are grouped into data records, which are saved in a table. Schemas are used to combine
tables (and other objects) into logical units. Schemas (and the objects they include) are saved
in databases.

In this chapter, you were introduced to the creation of databases, schemas, and tables and
learned about the most important data types for table columns and the naming of objects
in databases. Then you learned how to define indexes as well as primary and foreign keys for
efficient access, and how to link data records.

In the next chapter, you will learn how to insert data records into tables, how to delete and
change them, how to read data from databases, and how to join data records from different
tables.

 253

Chapter 11

Working with SQL Server

When working with data in Microsoft SQL Server, four Transact-SQL (T-SQL) statements are
most commonly used: SELECT (for selecting data records), INSERT (for inserting data records),
UPDATE (for updating data records), and DELETE (for deleting data records). In this chapter,
you will be introduced to these statements and a few additional features, such as common
table expressions.

Note For the examples in this chapter, you will be using the sample database AdventureWorks
LT2008 that you installed in Chapter 9, “Setting Up SQL Server.” You can find a database diagram
of the sample database in Appendix A, “Example Scripts and Data,” which gives you an overview
of all tables and table relationships.

Querying Data (SELECT)
Querying data from a database by using the SELECT command is the most frequent action
performed on databases. The SELECT command offers a large number of options and func-
tions. You will learn about the most important ones in the following sections and subsections.

The basic structure of a SELECT command looks like this:

[WITH <common_table_expression>]
SELECT select_list [FROM table]
[WHERE search_conditions]
[GROUP BY grouping] [HAVING search_condition]
[ORDER BY sorting]

In this chapter:
Querying Data (SELECT) . 253
Manipulating Data . 266
Querying Metadata . 274
Summary . 278

254 Part II SQL Server

Simple SELECT Expressions
To select data from a table, you need to specify at least the name of the table and the col-
umns that you want to query. Listing 11-1 shows such a SELECT command. The columns you
want to select must be separated by a comma, and the table name must follow the keyword
FROM:

LISTINg 11-1 Simple SELECT query of the table SalesLT.SalesOrderHeader.

SELECT SalesOrderID, ShipDate, SubTotal, TotalDue
FROM SalesLT.SalesOrderHeader;
GO

SalesOrderID ShipDate SubTotal TotalDue
------------ ----------------------- ---------- ----------
71774 2004-06-08 00:00:00.000 880.3484 972.7850
71776 2004-06-08 00:00:00.000 78.8100 87.0851
71780 2004-06-08 00:00:00.000 38418.6895 42452.6519
...

If you want to select all columns of a table, you can use the placeholder “*” (asterisk) char-
acter, as shown here:

SELECT * FROM SalesLT.SalesOrderHeader

You can also add calculations to your column specification, as shown in Listing 11-2. By using
the options keyword AS, you can rename the columns in the result. In the example, the calcu-
lated column receives the name SurchargePercent.

LISTINg 11-2 SELECT with calculation in the selected columns.

SELECT SalesOrderID, SubTotal, (TotalDue-SubTotal)/SubTotal*100 AS SurchargePercent
FROM SalesLT.SalesOrderHeader;
GO

SalesOrderID SubTotal SurchargePercent
------------ --------------------- ---------------------
71774 880.3484 10.5000
71776 78.8100 10.5000
71780 38418.6895 10.5000
...

 Chapter 11 Working with SQL Server 255

Constraining Queries by Using WHERE
If you don’t want to retrieve all the rows of a table, but only those that have a certain prop-
erty, you can specify these constraints by using the WHERE clause. Listing 11-3 shows a query
that selects only the rows whose LastName column contains the text “brown” and whose
CustomerID column value is less than 1000.

Note Because the default sorting order is not case-sensitive, even though we are searching for
brown, the columns with Brown are found. See the section “Sorting and Code Page,” in Chapter
10, “Databases and Tables,” for information on how to change the sort order.

LISTINg 11-3 Constraining a query by using a WHERE clause.

SELECT FirstName, LastName, EmailAddress
FROM SalesLT.Customer
WHERE LastName='brown' and CustomerID < 1000;
GO

FirstName LastName EmailAddress
---------- --------- ----------------------------
Robert Brown robert5@adventure-works.com
Jo Brown jo2@adventure-works.com
Steven Brown steven1@adventure-works.com

The WHERE clause may contain complex conditions, calculations, and additional SELECT
queries. This is described in the section “Subqueries,” later in the chapter.

Grouping Query Data (GROUP .BY, .HAVING)
The GROUP BY clause is used to combine the query results into groups. Groups are necessary
if you want to determine the number of entries per group or, for example, if you want to add
up the values of a column by using the group.

The most important aggregate functions for grouping are:

■ count(*) Counts the entries in the group.

■ sum(expression) Adds up the specified expression using the group.

■ min(expression), max(expression) Determines the minimum or maximum of the
expression in the group.

Listing 11-4 shows a grouping. The table SalesOrderDetail contains information about the
orders individual invoice items. To group the invoice items according to the corresponding
invoice, GROUP BY SalesOrderID is used. The aggregate columns OrderCount, SumLineTotal,
and MaxQty specify the values for the data grouped by SalesOrderID. The keyword HAVING
is used to select those groups that have five or more entries.

256 Part II SQL Server

LISTINg 11-4 Grouped result output.

SELECT SalesOrderID, count(*) AS OrderCount, sum(LineTotal) as SumLineTotal,
max(OrderQty) AS MaxQty
FROM SalesLT.SalesOrderDetail
WHERE UnitPriceDiscount > 0
GROUP BY SalesOrderID HAVING count(*) >= 5;
GO

SalesOrderID OrderCount SumLineTotal MaxQty
------------ ---------- ---------------- ------
71780 5 1016.982000 6
71783 8 33533.591986 25
71784 5 21935.704314 23
71797 6 1978.089418 23
71902 5 949.183200 5
71936 5 1370.538024 14

The difference between WHERE and HAVING is the moment at which the respective condi-
tions are applied. With WHERE, the rows are filtered before the grouping. Of the 542 rows in
SalesOrderDetail, 43 rows meet the condition in Listing 11-4. These 43 rows are then grouped
by SalesOrderID. The result is 13 groups (= different SalesOrderID). With the inclusion of
HAVING, these 13 rows become subject to another condition after the grouping; as a result,
6 rows remain.

This is why the WHERE clause must not contain any aggregate functions, and no columns
must be selected that are calculated with aggregate functions. The HAVING clause, on the
other hand, may only contain columns that are either the basis for a group (in Listing 11-4
the column SalesOrderID) or are calculated with aggregate functions.

Sorting (ORDER .BY)
The ORDER BY clause is used to sort a SELECT query. It specifies the columns by which you
want to sort. If multiple columns are specified, the data is sorted by the first column. If there
are identical entries, they are sorted by the second column, and so on. The keywords ASC
and DESC after the column names specify whether the sort order is ascending (ASC) or
descending (DESC).

Caution If you don’t specify ORDER BY, you should assume that the column output will be
random; that is, in an order that you can’t predict. Even though in practice the rows are usually
returned in the order in which they were inserted or according to the primary key, you shouldn’t
count on it.

 Chapter 11 Working with SQL Server 257

In Listing 11-5, the output is sorted in descending order by the City column, and for match-
ing entries, ascending by the AddressLine1 column.

LISTINg 11-5 Sorting the result of a SELECT query.

SELECT City, PostalCode, AddressLine1
FROM SalesLT.Address
ORDER BY City DESC, AddressLine1;
GO

City PostalCode AddressLine1
--------- ----------- -------------------------
Zeeland 49464 855 East Main Avenue
York Y024 1GF 308-3250 Casting Road
York Y03 4TN 7 Pioneer Business Park
Woolston WA1 4SY Warrington Ldc Unit 25/2
...

Queries with Multiple Tables
So far, you have only been introduced to SELECT expressions, which query data from a single
table. One of the strengths of relational databases, however, the ability to link multiple tables
during a query.

Joining Tables (JOIN)
With the T-SQL JOIN expression, you can link two or more tables. There are different kinds of
JOIN expressions:

■ INNER JOIN Tables are linked by using common columns with comparison operators.
Only those rows are returned for which both tables have the correct value. INNER JOIN
expressions are the most frequently used JOIN expressions.

■ OUTER JOIN If you want to join tables, and one of the tables does not contain the
right kind of values for the other table, but you still want to output all rows, you need
to use an OUTER JOIN. The missing values will be filled with NULL. There are three
kinds of OUTER JOIN expressions: LEFT [OUTER] JOIN, RIGHT [OUTER] JOIN, and FULL
[OUTER] JOIN. With LEFT JOIN, all rows of the left table are returned and the missing
values of the right table are replaced by NULL. With RIGHT JOIN, all rows of the right
table are returned and the missing values of the left table are replaced by NULL. With
FULL JOIN, all rows of both tables are returned and the missing values of both tables
are replaced with NULL.

■ CROSS JOIN A Cartesian product of two tables is created: every row of the first table
is linked to every single row of the second table. Accordingly, the result can become
quite big!

258 Part II SQL Server

JOIN expressions have a similar structure:

FROM left_table <join_type> right_table
ON join_condition

The condition is located in its own ON clause. For INNER JOIN expressions, the conditions
may be located directly in the WHERE clause. Columns must be uniquely mapped to the
tables: either the column names only appear in a table or the table name is specified with the
column name. You can rename the tables within a SELECT by using AS and save yourself a lot
of typing.

Listing 11-6 shows a typical INNER JOIN. To retrieve the name and category of products, you
need to link the tables SalesLT.Product and SalesLT.ProductCategory via the primary key of
the category.

LISTINg 11-6 An INNER JOIN of two tables.

SELECT p.ProductID, p.Name, pc.ProductCategoryID, pc.Name
FROM SalesLT.Product AS p JOIN SalesLT.ProductCategory AS pc
ON p.ProductCategoryID = pc.ProductCategoryID;
GO

ProductID Name ProductCategoryID Name
---------- -------------------------- ----------------- ------------
680 HL Road Frame - Black, 58 18 Road Frames
706 HL Road Frame - Red, 58 18 Road Frames
707 Sport-100 Helmet, Red 35 Helmets
708 Sport-100 Helmet, Black 35 Helmets
709 Mountain Bike Socks, M 27 Socks
...

Listing 11-7 shows a LEFT OUTER JOIN. We are looking for the correct description (SalesLT
.ProductModelProductDescription) of the product models (SalesLT.ProductModel). The result
must show all product models. With an INNER JOIN, only the models with a description
would be listed. As the Listing shows, the model Rear Brakes has no description: the values
are filled in with NULL.

LISTINg 11-7 LEFT OUTER JOIN of two tables.

SELECT Name AS ModelName, Culture, ProductDescriptionID
FROM SalesLT.ProductModel AS pm LEFT JOIN SalesLT.ProductModelProductDescription AS pd
ON pm.ProductModelID = pd.ProductModelID
WHERE pm.Name like 'Rear%';
GO

 Chapter 11 Working with SQL Server 259

Model Name Culture ProductDescriptionID
----- ------------- ------- --------------------
Rear Brakes NULL NULL
Rear Derailleur en 2005
Rear Derailleur ar 2006
...

You can also use JOIN to link tables to themselves or to more than two tables in one query.
Listing 11-8 shows that to link the address info (SalesLT.Address) with the customer data
(SalesLT.Customer), the table SalesLT.CustomerAddress must be included because it is the link
between the two tables. You can picture the JOIN process as taking place in two steps: in the
first step the tables SalesLT.Customer and SalesLT.CustomerAddress are linked; in the second
step the resulting table is linked to SalesLT.Address. Because INNER JOIN is used, the result
only lists customers who have a new address.

LISTINg 11-8 JOIN of three tables.

SELECT c.CustomerID, c.FirstName, c.LastName, a.City, a.PostalCode
FROM SalesLT.Customer AS c
JOIN SalesLT.CustomerAddress AS ca ON c.CustomerID = ca.CustomerID
JOIN SalesLT.Address AS a ON a.AddressID = ca.AddressID;
GO

CustomerID FirstName LastName City PostalCode
----------- ---------- ------------- ------------- -----------
29485 Catherine Abel Van Nuys 91411
29486 Kim Abercrombie Branch 55056
29489 Frances Adams Modesto 95354
...

Subqueries
A subquery nests SELECT queries inside another SELECT query. Usually a query is used to find
values, and the columns are checked for those values (keywords IN, ANY, ALL).

Listing 11-9 shows a nested SELECT query that finds all product categories belonging to sub-
category 3. The outer SELECT query finds all products that belong to these categories (link
with IN). Subqueries of this kind can frequently be converted into the corresponding JOIN
queries.

260 Part II SQL Server

LISTINg 11-9 An example of a Subquery.

SELECT ProductID, Name
FROM SalesLT.Product
WHERE ProductCategoryID IN
 (SELECT ProductCategoryID
 FROM SalesLT.ProductCategory
 WHERE ParentProductCategoryID = 3
);
GO

ProductID Name
----------- ----------------------------
709 Mountain Bike Socks, M
710 Mountain Bike Socks, L
712 AWC Logo Cap
...

A nested SELECT query may also depend on the outer query. Listing 11-10 shows such a situ-
ation. The inner query refers to the outer SELECT query (check for identical entries with sod.
SalesOrderID) in the WHERE clause. The inner query determines the maximum of OrderQty
for each row of the outer query. To determine the name of the most frequently used product,
a JOIN with the tables SalesLT.SalesOrderDetail and SalesLT.Product is made.

LISTINg 11-10 A dependent SELECT subquery.

SELECT soh.SalesOrderID, soh.TotalDue,
 p.Name, sod.LineTotal, sod.LineTotal/soh.SubTotal*100 AS PercentOfSubTotal
FROM SalesLT.SalesOrderHeader AS soh
JOIN SalesLT.SalesOrderDetail AS sod ON sod.SalesOrderID = soh.SalesOrderID
JOIN SalesLT.Product AS p ON p.ProductID = sod.ProductID
WHERE sod.OrderQty =
 (SELECT max(sod2.OrderQty)
 FROM SalesLT.SalesOrderDetail as sod2
 WHERE sod2.SalesOrderID = sod.SalesOrderID
);
GO

SalesOrderID TotalDue Name LineTotal PercentOfSubTotal
------------- ------------ ----------------------------- ---------- -----------------
71774 972,7850 ML Road Frame-W - Yellow, 48 356.8980 40.5405
71774 972,7850 ML Road Frame-W - Yellow, 38 356.8980 40.5405
71776 87,0851 Rear Brakes 63.9000 81.0810
71780 42452,6519 Women's Mountain Shorts, L 293.9580 0.7651
...

 Chapter 11 Working with SQL Server 261

Common Table Expressions (WITH)
SQL Server provides a practical and powerful feature for SQL queries: the common table
expressions (CTE). CTEs can be used to create temporary views and tables. They are defined
by using the keyword WITH before the SELECT query itself.

Simple Expressions
Listing 11-11 shows an application with only one original table. A temporary view/table is
defined by using the keyword WITH which lists the sum of the orders by SalesOrderID. In the
SELECT expression, the generated table can be accessed just like a regular table. It is not nec-
essary to specify a schema, because the table is only defined in the context of this query.

LISTINg 11-11 Defining a common table expression by using WITH.

WITH OrderQtys (SalesOrderID, SumOrderQty) AS (
 SELECT SalesOrderID, sum(OrderQty)
 FROM SalesLT.SalesOrderDetail
 GROUP BY SalesOrderID
)
SELECT avg(SumOrderQty) AS AvgSumOrderQty FROM OrderQtys;
GO

AvgSumOrderQty

65

Listing 11-12 shows how the query from Listing 11-10 might look with a CTE. By using WITH,
the view ProductDetail is generated, which merges all the required data from the three tables
SalesLT.SalesOrderHeader, SalesLT.SalesOrderDetail, and SalesLT.Product. The actual SELECT
query then only selects those rows whose OrderQty corresponds to the maximum that is
specified in the subquery.

LISTINg 11-12 A CTE with multiple tables.

WITH ProductDetail (SalesOrderID, TotalDue, Name,
 LineTotal, PercentOfSubTotal, OrderQty) AS (
 SELECT soh.SalesOrderID, soh.TotalDue, p.Name, sod.LineTotal,
 sod.LineTotal/soh.SubTotal*100, sod.OrderQty
 FROM SalesLT.SalesOrderHeader AS soh
 JOIN SalesLT.SalesOrderDetail AS sod ON sod.SalesOrderID = soh.SalesOrderID
 JOIN SalesLT.Product AS p ON p.ProductID = sod.ProductID
)

262 Part II SQL Server

SELECT SalesOrderID, TotalDue, Name, LineTotal, PercentOfSubTotal,
FROM ProductDetail AS pd
WHERE pd.OrderQty =
 (SELECT max(pd2.OrderQty)
 FROM ProductDetail AS pd2
 WHERE pd2.SalesOrderID = pd.SalesOrderID
);
GO

Recursive Expressions
A special feature of CTEs is that they can be used recursively. This means that the table
expression can reference itself in the expression definition.

In Listing 11-13, all product categories belonging to the products with the ProductID 706 and
707 must be returned. The product categories are organized in hierarchical order and con-
tain a reference to the parent category (ParentProductCategoryID). The definition of the CTE
ProductInfo is composed of two parts:

■ Starting expression The first SELECT initializes ProductInfo with the desired values
from SalesLT.Product.

■ Recursive expression Extends the dataset (UNION ALL) with the rows of the imme-
diate parent category (JOIN with selection of ParentProductCategoryID).

The definition is iterated through repeatedly until no more new rows are added to the CTE.
This means that beginning with a product category, each iteration adds the next parent cat-
egory until the entire category hierarchy has been added all the way to the root.

The SELECT expression then selects the rows for the products 706 and 707, and adds the cat-
egory name by using a JOIN. In the result, you can see that both products are part of a two-
level category hierarchy.

LISTINg 11-13 A recursively defined CTE.

WITH ProductInfo (ProductID, ProductName, CategoryID) AS (
 SELECT ProductID, Name, ProductCategoryID
 FROM SalesLT.Product
 UNION ALL -- recrusive table extension
 SELECT ProductID, ProductName, ParentProductCategoryID
 FROM ProductInfo
 JOIN SalesLT.ProductCategory ON CategoryID = ProductCategoryID
)

 Chapter 11 Working with SQL Server 263

SELECT ProductID, ProductName, CategoryID, Name
FROM ProductInfo
JOIN SalesLT.ProductCategory ON CategoryID = ProductCategoryID
WHERE ProductID=706 or ProductID=707
ORDER BY ProductID, CategoryID;
GO

ProductID ProductName CategoryID Name
---------- -------------------------- ----------- ------------
706 HL Road Frame - Red, 58 2 Components
706 HL Road Frame - Red, 58 18 Road Frames
707 Sport-100 Helmet, Red 4 Accessories
707 Sport-100 Helmet, Red 35 Helmets

Tip Change the table SalesLT.ProductCategory as follows (the changes don’t have any effect on
the examples later on in this chapter.):

UPDATE SalesLT.ProductCategory SET ParentProductCategoryID=23 WHERE ProductCategoryID=35

Then run the query from Listing 11-13 again and compare the results: product 707 is now part of
a three-level hierarchy.

Paging Through Data
A frequent requirement in web applications is to show tables with many entries in page
views. The lists are usually restricted to 10, 20, 50, or 100 entries, and the user can click links
to page forward or backward through the data.

TOP()
To limit the result of a SELECT query to a certain number of rows, you can use the function
TOP(), as shown in Listing 11-14.

264 Part II SQL Server

LISTINg 11-14 Using TOP() to limit the number of lines in the result.

SELECT TOP(5) ProductID, Name
FROM SalesLT.Product
ORDER BY ProductID;
GO

ProductID Name
----------- --------------------------
680 HL Road Frame - Black, 58
706 HL Road Frame - Red, 58
707 Sport-100 Helmet, Red
708 Sport-100 Helmet, Black
709 Mountain Bike Socks, M

For the next five entries, the PHP application remembers the highest ProductID and can
retrieve the next five entries by constraining the query with WHERE ProductID > 709.

When using this option, you need to take some detours to find the previous five entries in
the current result list: the sort order must be reversed and then set correctly in the PHP appli-
cation. With a CTE, you can do the same directly in SQL Server, as shown in Listing 11-15. The
table expression Product selects the five previous entries beginning at a certain position (in
the listing, ProductID=910). Then they are put into the desired sort order.

LISTINg 11-15 Paging backward by using TOP() and a CTE.

WITH Product (ProductID, Name) AS (
 SELECT TOP(5) ProductID, Name
 FROM SalesLT.Product
 WHERE ProductID < 910
 ORDER BY ProductID DESC
)
SELECT *
FROM Product
ORDER BY ProductID;
GO

ProductID Name
----------- ---------------------------------
905 ML Mountain Frame-W - Silver, 42
906 ML Mountain Frame-W - Silver, 46
907 Rear Brakes
908 LL Mountain Seat/Saddle
909 ML Mountain Seat/Saddle

 Chapter 11 Working with SQL Server 265

ROW_NUMBER()
Using the function ROW_NUMBER() is a more flexible method for paging through data. It
assigns a unique sequential number to each row in the result. In addition, the numbering can
also be used for sorting.

Listing 11-16 shows how you can use ROW_NUMBER() to list products page by page, which
are sorted by list price. In the table expression Product, the row number is defined by the
sort, by descending list price. In the SELECT expression, the rows 21 to 25 are selected.
Restricting them by using the defined column RowNum is easier than using TOP(), because
paging forward or backward can use the same query.

LISTINg 11-16 Paging through data by using ROW_NUMBER().

WITH Product (ProductID, Name, ListPrice, RowNum) AS (
 SELECT ProductID, Name, ListPrice,
 ROW_NUMBER() OVER (ORDER BY ListPrice DESC)
 FROM SalesLT.Product
)
SELECT *
FROM Product
WHERE RowNum BETWEEN 21 AND 25;
GO

ProductID Name ListPrice RowNum
----------- ------------------------ ---------- ------
795 Road-250 Black, 52 2443.3500 20
796 Road-250 Black, 58 2443.3500 21
954 Touring-1000 Yellow, 46 2384.0700 22
955 Touring-1000 Yellow, 50 2384.0700 23
956 Touring-1000 Yellow, 54 2384.0700 24

Tip The upcoming SQL Server 2011 provides the following new syntax for paging data:

SELECT (column list) FROM (table) WHERE (expression)
ORDER BY (sort order)
OFFSET (amount) ROWS
FETCH NEXT (amount) ROWS ONLY

With OFFSET, you can specify how many rows should be skipped. With FETCH, you specify how
many rows should be fetched. The amount given can either be a number or an expression. For
details, take a look at the documentation on MSDN at http://msdn.microsoft.com/en-us/library/
ms188385%28v=SQL.110%29.aspx.

http://msdn.microsoft.com/en-us/library/ms188385%28v=SQL.110%29.aspx
http://msdn.microsoft.com/en-us/library/ms188385%28v=SQL.110%29.aspx

266 Part II SQL Server

Manipulating Data
T-SQL provides three basic operations for changing data: inserting new data with INSERT,
changing or updating data with UPDATE, and deleting data with DELETE. In the following,
you will find a brief description of these operations. You will also learn how you can manipu-
late data by using SQL Server Management Studio (SSMS).

The INSERT Command
The T-SQL INSERT command is used to insert data into a table. In its simplified form, it has
the following syntax:

INSERT [INTO] <object>
{
 [(column_list)]
 [<OUTPUT Clause>]
 { VALUES ({ DEFAULT | NULL | expression } [,...n]) [,...n]
 | DEFAULT VALUES }
}
[;]

For example, to insert new product categories into the AdventureWorks database, run the
command from Listing 11-17. The columns are specified in the second line. If you fill all
columns in table order, you don’t need to specify them. Because in the listing the column
ProductCategoryID is not explicitly filled, as the category number is generated and assigned
automatically (column type IDENTITY), the columns must be specified. The keyword VALUES
is followed by the rows to insert. If columns have default values, the default value can be set
explicitly by using DEFAULT, as you can see in the second line.

LISTINg 11-17 Inserting new product categories by using INSERT.

INSERT INTO SalesLT.ProductCategory
(ParentProductCategoryID, Name, rowguid, ModifiedDate)
VALUES
(37, N'Rear Lights', newid(), CURRENT_TIMESTAMP),
(37, N'Front Lights', DEFAULT, DEFAULT);

Default Values
If you don’t specify any columns during the insert operation, they are automatically filled
with default values. Because the default values for the columns rowguid and ModifiedDate
correspond exactly to the values inserted in Listing 11-17, the simplified version of the INSERT
command could have been written as follows:

 Chapter 11 Working with SQL Server 267

INSERT INTO SalesLT.ProductCategory (ParentProductCategoryID, Name) VALUES
(37, N'Rear Lights'),
(37, N'Front Lights');

If default values are defined for all columns and you want to insert a row with only default
values, you can use the following statement:

INSERT INTO myTable DEFAULT VALUES;

The OUTPUT Clause
You can use the OUTPUT clause to retrieve the rows that you just inserted. This function
is especially useful if you want to ensure that the default values you are using are immedi-
ately available for further processing. In Listing 11-18, the OUTPUT clause is used to retrieve
the category number, GUID, and date. The columns you want to output need the prefix
INSERTED, because they come from the automatically-generated table inserted.

LISTINg 11-18 Output of inserted values with the OUTPUT clause.

INSERT INTO SalesLT.ProductCategory (ParentProductCategoryID, Name)
OUTPUT INSERTED.ProductCategoryID, INSERTED.rowguid, INSERTED.ModifiedDate
VALUES
(37, N'Rear Lights'),
(37, N'Front Lights');
GO

ProductCategoryID rowguid ModifiedDate
----------------- ------------------------------------ -----------------------
42 0E0492E9-ADB6-4597-A697-A6104002DD0E 2011-09-20 13:25:54.650
43 1FAEFCB7-C279-42BB-ACBD-933D360937EC 2011-09-20 13:25:54.650

Inserting by Using SSMS
To insert a table by using SSMS, perform the following procedure:

 1. In the SSMS Object Explorer, right-click the desired table, and then in the context
menu, click Edit Top 200 Rows.

 2. In the work area, scroll to the last row, and then enter the column values.

Figure 11-1 shows the entries for Rear Lights and Front Lights. As soon as you finish
your entries by clicking Enter (or if you move to a different field by clicking it or press-
ing the Tab key), the currently edited row is added to the database. The red marking
lets you know that view is not correct, due to the automatic insertion of default values.

268 Part II SQL Server

FIgURE 11-1 Inserting new rows by using SQL Server Management Studio.

 3. To see the current values, click the Run SQL icon (the red exclamation mark) in the
toolbar.

The UPDATE Command
The T-SQL UPDATE command is used to change existing datasets:

UPDATE <object>
SET { column_name = { expression | DEFAULT | NULL }
| column_name { += | -= | *= | /= | %= | &= | ^= | |= } expression
} [,...n]
[<OUTPUT Clause>]
[FROM{ <table_source> } [,...n]] [WHERE { <search_condition> }]
[;]

Listing 11-19 shows a typical situation. The address in a SalesLT.Address entry is changed.
The first line specifies the table, the second line the columns that you want to change,
and the third uses a WHERE clause to limit the corresponding rows.

Caution Without a WHERE clause, all rows of a table are affected by UPDATE, but you usually
only want to change entries in defined rows.

LISTINg 11-19 Changing a dataset by using UPDATE.

UPDATE SalesLT.Address
SET AddressLine1=N'The Farm', AddressLine2=N'Hamster Road 6'
WHERE AddressID=660;
GO

You can use the OUTPUT keyword to output the data of the specified rows.

 Chapter 11 Working with SQL Server 269

Specifying Which Rows to Change
The WHERE clause for specifying the rows you want to change can be used just like the
WHERE clause for querying data with SELECT. You can also link multiple tables to select the
rows that you want to change by using FROM in the command. UPDATE can also be used
with CTEs (WITH).

Listing 11-20 shows how FROM is used with multiple tables. With JOIN, all rows in SalesLT
.Product are selected that are part of the parent category 3 (Clothing). In these rows, the list
price is incremented by 10% (ListPrice *= 1.1).

LISTINg 11-20 Using multiple tables (FROM) for specifying the rows that need to be changed.

UPDATE SalesLT.Product
SET ListPrice *= 1.1
FROM SalesLT.Product AS p
JOIN SalesLT.ProductCategory AS pc ON p.ProductCategoryID = pc.ProductCategoryID
WHERE pc.ParentProductCategoryID = 3;
GO

The OUTPUT clause
The OUTPUT clause can be used to return the changed values before and after the UPDATE
command. The automatically-generated INSERTED table contains the new values after the
changes, and the DELETED table contains the original values before the changes.

In Listing 11-21, a CTE (WITH) is used in addition to the OUTPUT clause. The table expression
ProductSellDate is a join of SalesLT.Product and SalesLT.ProductCategory. It contains the prod-
uct number, the sale end date, and the parent product category. In the UPDATE expression,
the ProductID and the EndDate (=SalesLT.Product.SellEndDate) before and after the change
are returned with the OUTPUT clause.

270 Part II SQL Server

LISTINg 11-21 Returning changed values by using OUTPUT.

WITH ProductSellDate (ProductID, EndDate, ParentCategory) AS (
 SELECT p.ProductID, p.SellEndDate, pc.ParentProductCategoryID
 FROM SalesLT.Product AS p
 JOIN SalesLT.ProductCategory AS pc ON p.ProductCategoryID = pc.ProductCategoryID
)
UPDATE ProductSellDate
SET EndDate=CURRENT_TIMESTAMP
OUTPUT INSERTED.ProductID, DELETED.EndDate AS EndDateBefore,
 INSERTED.EndDate AS EndDateAfter
WHERE ParentCategory=4;
GO

ProductID EndDateBefore EndDateAfter
----------- ----------------------- -----------------------
707 NULL 2011-07-20 18:24:58.450
708 NULL 2011-07-20 18:24:58.450
711 NULL 2011-07-20 18:24:58.450
842 2003-06-30 00:00:00.000 2011-07-20 18:24:58.450
843 2003-06-30 00:00:00.000 2011-07-20 18:24:58.450

Changing Values by Using SSMS
To change values in tables by using SSMS, perform the following procedure:

 1. In the SSMS Object Explorer, right-click the desired table, and then in the context
menu, click Edit Top 200 Rows.

 2. In the work area, scroll to the desired row. Click the column that you want to change
and enter the new value.

You can press the Tab key to move to the next column. Press the Enter key to save the
changes to the row in the database.

 3. If the row is not located in the range of the 200 displayed rows, you can change the
range in two ways (see step 1 in Figure 11-2).

● Show the criteria by clicking the Show Criteria Pane icon

● Show the SQL query by clicking the Show SQL Pane icon

 Chapter 11 Working with SQL Server 271

1

2

3

4

3

2

4

FIgURE 11-2 Changing the editing area in SSMS.

 4. Enter the criteria for the editing area (step 2 in Figure 11-2), and then click the Run SQL
icon (step 3).

 5. You can now change columns as usual in the result pane by clicking them and adding
them to the database by pressing the Enter key (step 4 in Figure 11-2).

The DELETE Command
The T-SQL DELETE command is used to delete data from a table. DELETE has a syntax similar
to UPDATE:

DELETE [FROM] <object> [<OUTPUT Clause>]
[FROM <table_source> [,...n]]
[WHERE <search_condition>]
[;]

Listing 11-22 shows how to use the DELETE command to delete a customer from the table
SalesLT.Customer.

272 Part II SQL Server

LISTINg 11-22 Deleting a dataset by using DELETE.

DELETE FROM SalesLT.Customer
WHERE CustomerID = 474;
GO

Caution Once datasets are deleted, they are gone for good. They can only be restored if you
have performed a database backup beforehand (or partially via transaction logs with special
tools). You cannot directly undo the action.

During a delete operation, you can specify multiple tables by using the FROM clause (as with
UPDATE) or define CTEs by using WITH.

Errors During Deletion
The deletion of rows can fail due to constraints (for example, foreign keys in a different table).
In this case, the dependent rows in the other tables must be deleted beforehand or the refer-
ence to the row that you want to delete must be removed (by setting it to NULL or another
valid value). Foreign keys offer three options for automatic deletion: SET NULL, SET DEFAULT,
and CASCADE (see the section “Foreign Keys,” in Chapter 10, “Databases and Tables”).

Listing 11-23 shows how deleting can fail due to a foreign key relationship: a customer
(CustomerID=29906) cannot be deleted because there is an associated address, as the
SELECT command shows. When trying to delete the data record, an error message is
displayed.

LISTINg 11-23 The deletion of a dataset fails due to a foreign key relationship.

SELECT CustomerID, AddressID FROM SalesLT.CustomerAddress WHERE CustomerID=29906;
GO

CustomerID AddressID
----------- -----------
29906 600
(1 rows affected)

DELETE FROM SalesLT.Customer WHERE CustomerID = 29906;
GO

Msg 547, Level 16, State 0, Line 1
The DELETE statement conflicted with the REFERENCE constraint "FK_CustomerAddress_
Customer_CustomerID". The conflict occurred in database "AdventureWorksLT2008", table
"SalesLT.CustomerAddress", column 'CustomerID'.
The statement has been terminated.

 Chapter 11 Working with SQL Server 273

If you choose the foreign key relationship in such a way that, for example, during deletion
linked data records are also deleted, no error occurs. Listing 11-24 shows the old foreign key
being deleted by using ALTER TABLE and the new one created exactly the same way, but
instead using ON DELETE CASCADE.

Note If you specify WITH NOCHECK, the constraint for existing rows is not checked. The newly
created foreign key relationship is identical to the old one. This saves resources, because existing
rows no longer need to be checked. Newly inserted or changed rows are not affected.

If you now delete the customer from the table SalesLT.Customer, the entry in the table
SalesLT.CustomerAddress is also deleted.

LISTINg 11-24 Cascading deletion of datasets.

ALTER TABLE SalesLT.CustomerAddress
DROP CONSTRAINT [FK_CustomerAddress_Customer_CustomerID];

ALTER TABLE SalesLT.CustomerAddress
WITH NOCHECK ADD CONSTRAINT [FK_CustomerAddress_Customer_CustomerID]
FOREIGN KEY (CustomerID)
REFERENCES SalesLT.Customer (CustomerID)
ON DELETE CASCADE;
GO

DELETE FROM SalesLT.Customer WHERE CustomerID = 29906;
GO

Deleting All Rows of a Table
If you don’t specify a WHERE clause when deleting a table, all rows are deleted. To com-
pletely delete all rows, you can use the TRUNCATE TABLE command:

TRUNCATE TABLE table_name;

The advantage of the TRUNCATE command is that it is more efficient and uses fewer resources
than the DELETE command. The counter for IDENTITY columns is reset to the start value (or 1).

Deleting by Using SSMS
With SSMS, you can delete datasets from a table, as long as they are not subject to a con-
straint, or referenced by a foreign key. To delete datasets, perform the following procedure:

 1. Start SSMS.

 2. In Object Explorer, right-click the desired table, and then in the context menu, click Edit
Top 200 Rows.

274 Part II SQL Server

 3. Select the rows that you want to delete by clicking them (or using Ctrl+click) in the gray
area to the left of the rows.

 4. In the Edit menu, click Delete. Click Yes to confirm the dialog box (see Figure 11-3).

FIgURE 11-3 Deleting rows by using SSMS.

If the rows you want to delete are not displayed in the result pane, you can define the criteria
according to the sections “Changing Values by Using SSMS,” earlier in the chapter, to achieve
the desired row selection in the result pane.

Querying Metadata
When working with databases and tables, you frequently need information about data types
as well as the types, names, number of table columns, and other information about the
database schema. SQL Server provides two possibilities to retrieve these metadata: via pre-
defined T-SQL procedures, and via querying the tables of the information schema.

Listing Databases
You can use the sp_databases procedure to retrieve a list of all databases of the SQL Server
instance, including their size, as shown in the following:

EXECUTE sp_databases;
GO

DATABASE_NAME DATABASE_SIZE REMARKS
--------------------- ------------- -------
AdventureWorksLT2008 9016 NULL
master 5376 NULL
model 3072 NULL
msdb 18752 NULL
tempdb 8704 NULL

 Chapter 11 Working with SQL Server 275

The size of the current database can also be queried by using sp_spaceused. You can retrieve
more information about databases, such as the exact status and owners, by using the com-
mand sp_helpdb:

EXECUTE sp_helpdb;
GO

name db_size owner dbid created
--------------------- ------- ----------------------- ---- -----------
AdventureWorksLT2008 8.80 MB WEBSRV\Administrator 9 Jun 14 2011
...
status

Status=ONLINE, Updateability=READ_WRITE, UserAccess=MULTI_USER, Recovery=SIMPLE,
Version=655, Collation=SQL_Latin1_General_CP1_CI_AS, SQLSortOrder=52, IsAnsiNullsEnabled,
IsAnsiPaddingEnabled, IsAnsiWarningsEnabled, IsArithmeticAbortEnabled,
IsAutoCreateStatistics, IsAutoUpdateStatistics, IsFullTextEnabled, IsNullConcat,
IsQuotedIdentifiersEnabled
...

Alternatively, you can retrieve names and status of databases from the sysdatabases table:

SELECT name, status, status2 FROM master..sysdatabases;
GO

Listing Tables
You can use the sp_tables procedure to list all tables in a database:

EXECUTE sp_tables;
GO

TABLE_QUALIFIER TABLE_OWNER TABLE_NAME TABLE_TYPE REMARKS
--------------------- ----------- ---------------- ---------- -------
AdventureWorksLT2008 SalesLT Address TABLE NULL
AdventureWorksLT2008 SalesLT Customer TABLE NULL
AdventureWorksLT2008 SalesLT CustomerAddress TABLE NULL
...

The list with sp_tables, however, contains all system tables and views as well. If you want to
display only the custom tables, you can use the following SELECT query:

SELECT name, crdate, USER_NAME(uid) AS username FROM sysobjects WHERE type='U';
GO

276 Part II SQL Server

Alternatively, you can fall back on the information schema:

SELECT * FROM INFORMATION_SCHEMA.TABLES;
GO

TABLE_CATALOG TABLE_SCHEMA TABLE_NAME TABLE_TYPE
--------------------- ------------ --------------- ------------
AdventureWorksLT2008 dbo BuildVersion BASE TABLE
AdventureWorksLT2008 SalesLT Address BASE TABLE
AdventureWorksLT2008 SalesLT Customer BASE TABLE
...

Retrieving Table Information
Detailed information about tables can be retrieved by using the sp_help procedure. For
example:

EXECUTE sp_help [SalesLT.Product];
GO

The output is distributed into several result lists:

■ Specifications about table owner and creation date

■ Description of the columns

■ Use of IDENTITY and GUID

■ File groups used by the table

■ Indexes

■ Constraints (CONSTRAINT)

■ References of foreign keys and views

You can retrieve the size of tables by using sp_spaceused, as demonstrated in the following:

EXECUTE sp_spaceused [SalesLT.SalesOrderHeader];
GO

name rows reserved data index_size unused
----------------- ---- -------- ------ ---------- ------
SalesOrderHeader 32 64 KB 8 KB 56 KB 0 KB

 Chapter 11 Working with SQL Server 277

Listing the Columns of a Table
To list the columns of a table, you can run the command sp_help, as illustrated here:

EXECUTE sp_help [SalesLT.Product];
GO

An alternative procedure is sp_columns:

EXECUTE sp_columns @table_name='Product', @table_owner='SalesLT';
GO

sp_help and sp_columns provide very comprehensive information. To only list the column
names of a table, you can use the following SELECT command:

SELECT name FROM syscolumns WHERE id=OBJECT_ID('SalesLT.Product');
GO

Alternatively, you can fall back on the information schema:

SELECT COLUMN_NAME, DATA_TYPE, COLUMN_DEFAULT, IS_NULLABLE
FROM INFORMATION_SCHEMA.COLUMNS
WHERE TABLE_NAME=N'Address' AND TABLE_SCHEMA=N'SalesLT';
GO

Listing Constraints
You can use the sp_helpconstraint command to display all constraints of a table:

EXECUTE sp_helpconstraint [SalesLT.Product]; GO

The command returns three result lists:

■ Name of the object

■ Constraints (UNIQUE, CHECK, PRIMARY KEY, and FOREIGN KEY, among others)

■ Foreign keys which reference this table

Alternatively, you can query the information schema for constraints:

SELECT CONSTRAINT_NAME, CONSTRAINT_TYPE
FROM INFORMATION_SCHEMA.TABLE_CONSTRAINTS
WHERE TABLE_SCHEMA=N'SalesLT' AND TABLE_NAME=N'CustomerAddress';
GO

278 Part II SQL Server

Listing Keys and Indexes
To list the primary key columns in a table, you can use the sp_pkeys procedure:

EXECUTE sp_pkeys @table_owner='SalesLT', @table_name='Product';
GO

TABLE_QUALIFIER TABLE_OWNER TABLE_NAME COLUMN_NAME KEY_SEQ PK_NAME
-------------------- ----------- ---------- ----------- ------- --------------------
AdventureWorksLT2008 SalesLT Product ProductID 1 PK_Product_ProductID

You can also use the sp_fkeys procedure for listing foreign keys:

EXECUTE sp_fkeys @fktable_owner='SalesLT', @fktable_name='Product';
GO

You can also retrieve information about the keys from the information schema:

SELECT CONSTRAINT_SCHEMA, CONSTRAINT_NAME, COLUMN_NAME
FROM INFORMATION_SCHEMA.KEY_COLUMN_USAGE
WHERE TABLE_SCHEMA=N'SalesLT' AND TABLE_NAME=N'Product';
GO

The sp_helpindex procedure lists indexes in a table, including the indexes belonging to keys:

EXECUTE sp_helpindex [SalesLT.Product];
GO

index_name index_description index_keys
------------------------ -- --------------
AK_Product_Name nonclustered, unique, unique key located on PRIMARY Name
AK_Product_ProductNumber nonclustered, unique, unique key located on PRIMARY ProductNumber
AK_Product_rowguid nonclustered, unique, unique key located on PRIMARY rowguid
PK_Product_ProductID clustered, unique, primary key located on PRIMARY ProductID

Summary
In this chapter, you were introduced to the four basic T-SQL statements for data manipula-
tion and data query: SELECT, INSERT, UPDATE, and DELETE. You also learned about advanced
features, such as the CTEs, paging through data, and the OUTPUT clause. For querying meta-
data of the database schema, you learned how to access information such as foreign keys,
table definitions, and memory requirements of databases by using stored procedures and
system tables.

Chapter 12, “PHP and SQL Server,” builds upon this chapter and the statements, functions,
and features described in Chapter 10, and will teach you about SQL Server programming
with PHP. You will learn how to build a database connection, how to start database queries,
and how to convert data types between PHP and SQL Server.

 279

Chapter 12

PHP and SQL Server

In this chapter, you will learn how to access data in Microsoft SQL Server from PHP. We will
describe how the basic functions of an SQL Server PHP extension are processed, how your
choice of the user who connects to the database affects the connection pooling, and how
you can prevent SQL injection with parameterized statements. You will also learn how the
conversion of different data types between PHP and SQL Server functions. Starting with ver-
sion 2.0, the SQL Server extension also supports PHP Data Objects (PDO). We will discuss
PDO toward the end of the chapter, but first we have a look at the native applications pro-
gramming interface (API), because it provides a richer and more powerful set of options and
commands.

Approach and Process
Accessing SQL Server from PHP always follows the same process: open the database connec-
tion, send a Transact-SQL (T-SQL) statement, read and retrieve results, and finally, close the
database connection again. We’ll be using a sample program to describe this process and the
required functions.

Preparations
To be able to run the sample program successfully, you must have the SQL Server PHP
extension and the AdventureWorksLT2008 sample database installed on your computer (see
Chapter 9, “Setting Up SQL Server”).

In this chapter:
Approach and Process . 279
Database Connections . 285
Database Queries . 291
Data Types . 304
Summary . 317

280 Part II SQL Server

You also need a valid logon for the sample database. In the example, the logon is done
by the current Windows user of the PHP application. The various authentication methods
are described in the section “Authentication,” later in this chapter. Chapter 14, “Users and
Permissions,” shows you how to set up users and logons in SQL Server and grant rights.

If the database is not located on the computer that runs the PHP script, you also need to
ensure that you have set up remote access to SQL Server and that it works properly (see
Chapter 9).

The Sample Program
Listing 12-1 shows the sample program product_list.php. This program contains all the essen-
tial steps for using SQL Server from PHP:

■ Opening the database connection

■ Sending a T-SQL command; retrieving the reply

■ Closing the database connection

The section “An Overview of the Individual Steps,” later in the chapter, describes the func-
tionality of the individual program steps in more detail. You can find the PHP script we are
using (utils.php) in the section “Supporting Script,” also later in the chapter.

LISTINg 12-1 product_list.php—listing the Adventure Works products.

<!DOCTYPE html>
<html>
<head>
 <title>Adventure Works : Products</title>
 <style type="text/css">
 th { font-size: 110%; border-bottom: 2px solid black; }
 td { padding: 3px; border-bottom: 1px solid #aaa }
 </style>
</head>
<body>
<h1>Adventure Works : Products</h1>
<table>
<?php
require './utils.php';
// Connect via Windows authentication
$server = '(local)';
$connectionInfo = array('Database' => 'AdventureWorksLT2008',
 'CharacterSet' => 'UTF-8');
$db = sqlsrv_connect($server, $connectionInfo);
if ($db === false) {
 exitWithSQLError('Database connection failed');
}

 Chapter 12 PHP and SQL Server 281

// Select products by name, list price, and category
$query = "SELECT p.ProductID, p.Name AS ProductName, p.ListPrice,
 pc.Name AS CategoryName
 FROM SalesLT.Product AS p
 JOIN SalesLT.ProductCategory AS pc
 ON p.ProductCategoryID = pc.ProductCategoryID
 ORDER BY p.Name";
// Run query
$qresult = sqlsrv_query($db, $query);
if ($qresult === false) {
 exitWithSQLError('Query of product data failed.');
}
echo '<tr><th>ID</th><th>Product</th><th>Category</th><th>List price</th></tr>';
// Retrieve individual rows from the result
while ($row = sqlsrv_fetch_array($qresult)) {
 echo '<tr><td>', htmlspecialchars($row['ProductID']),
 '</td><td>', htmlspecialchars($row['ProductName']),
 '</td><td>', htmlspecialchars($row['CategoryName']),
 '</td><td>', htmlspecialchars($row['ListPrice']),
 "</td></tr>\n";
}
// null == no further rows, false == error
if ($row === false) {
 exitWithSQLError('Retrieving product data entry failed.');
}
// Release statement resource and close connection
sqlsrv_free_stmt($qresult);
sqlsrv_close($db);
?>
</table>
</body>
</html>

Figure 12-1 shows the output of product_list.php. The products, their identification numbers,
names, categories, and list prices are returned as a sorted list.

Note If you receive an error message from SQL Server, verify that you meet all the require-
ments for the PHP/SQL Server binding. Missing rights frequently cause errors.

282 Part II SQL Server

FIgURE 12-1 The Adventure Works product output with product_list.php.

An Overview of the Individual Steps
Let’s take a look at the individual steps of the sample program from Listing 12-1 in a bit more
detail. Each PHP program that reads or writes data from SQL Server basically goes through
the steps shown in Figure 12-2. First, the database connection is opened. Next, one or several
commands are sent to SQL Server via this connection; the result is evaluated and returned.
Finally, the database connection is closed again.

Open database
connection

Send
T-SQL statement

Read result

Free statement
resources

Close database
connection

sqlsrv_connect()

sqlsrv_query()

sqlsrv_fetch_array()

sqlsrv_free_stmt()

sqlsrv_close()

FIgURE 12-2 Steps of a typical database query process.

 Chapter 12 PHP and SQL Server 283

Opening the Database Connection
The first step is to establish a connection to the SQL Server database. The connection is made
by using the sqlsrv_connect() function. This function has two parameters: the name of the
server to which you want to connect, and the connection parameters; most important is the
database that you want to select as database context of the connection.

In the sample program from Listing 12-1, a connection to the local running SQL Server is
established and the AdventureWorksLT2008 database is selected:

// Connect using Windows authentication
$server = '(local)';
$connectionInfo = array('Database' => 'AdventureWorksLT2008', 'CharacterSet' => 'UTF-8');
$db = sqlsrv_connect($server, $connectionInfo);

If, as in this case, no user name or password is passed along with the connection parameter,
PHP authenticates itself with the current Windows user of the PHP application pool (for
example, IIS AppPool\DefaultAppPool). The benefit of this is that no passwords need to be
saved in the PHP scripts.

Sending the Query
In the next step, the sqlsrv_query() function sends the query to the database. This function
has two parameters in this case: the database connection ($db) to use and the T-SQL com-
mand ($query) that is sent to the database:

// Select products by name, list price, and category
$query = "SELECT p.ProductID, p.Name AS ProductName, p.ListPrice,
 pc.Name as CategoryName
 FROM SalesLT.Product AS p
 JOIN SalesLT.ProductCategory AS pc ON p.ProductCategoryID = pc.ProductCategoryID
 ORDER BY p.Name";
// Run query
$qresult = sqlsrv_query($db, $query);

The SELECT query retrieves the information via a JOIN of the tables SalesLT.Product and
SalesLT.ProductCategory.

As the result of the sqlsrv_query() call, a statement resource object is returned (saved in
$qresult). It can now be used to fetch the results of the SELECT query.

284 Part II SQL Server

Retrieving the Result
After the T-SQL command has been sent to the database, the rows of the SELECT result
can be read by using the returned statement structure ($qresult) with sqlsrv_fetch_array().
sqlsrv_fetch_array() generates an associated array in which the names correspond to the
column names of the SELECT statement:

// Read individual rows from the result
while ($row = sqlsrv_fetch_array($qresult)) {
 echo '<tr><td>', htmlspecialchars($row['ProductID']),
 '</td><td>', htmlspecialchars($row['ProductName']),
 '</td><td>', htmlspecialchars($row['CategoryName']),
 '</td><td>', htmlspecialchars($row['ListPrice']),
 "</td></tr>\n";
}

If no further rows are available, sqlsrv_fetch_array() returns null as a result, and the while loop
is ended.

Caution If an error occurs, sqlsrv_fetch_array() returns the Boolean value false. To be able
to differentiate between an error and the end of a result list, you can check the identity with
$row === false. Other tests, such as !$row or empty($row) don’t allow a differentiation.

Freeing the Result Resource and Closing the Database Connection
After the data has been retrieved, you should free the statement resources belonging to the
query. Unless you have activated the multiple active result sets (MARS) option (see the sec-
tion “Connection Options,” later in the chapter), a SQL Server connection can handle only
one active query at a time. Therefore, before you issue the next query, you must ensure that
either all results from the previous query are read or that you close the query result set by
using sqlsrv_free_stmt().

Finally, you should close the database connection before ending the script.

In SQL Server, you use sqlsrv_free_stmt() for freeing the statement resource and sqlsrv_close()
for closing the database connection, as shown here:

// Free result list and close connection
sqlsrv_free_stmt($qresult);
sqlsrv_close($db);

 Chapter 12 PHP and SQL Server 285

Supporting Script
The sample program also embeds the utility script utils.php from Listing 12-2, which contains
the support function exitWithSQLError() for returning error messages. The function is called
when errors occur during the communication with SQL Server.

LISTINg 12-2 utils.php—supporting functions for error handling and data output.

<?php
/**
 * End program, return SQL Server error message
 * @param string $txt Description of the error context
 */
function exitWithSQLError($txt) {
 $errors = sqlsrv_errors();
 echo '<h1>Database error</h1>';
 echo "<p>Error: $txt</p>";
 foreach ($errors as $error) {
 echo '<p>SQL-Status: ', htmlspecialchars($error['SQLSTATE']), '
',
 'Code: ', htmlspecialchars($error['code']), '
',
 'Message: ',
 // Error messages are transferred in ISO-8859-1 format
 htmlspecialchars(iconv('ISO-8859-1', 'UTF-8', $error['message'])),
 '</p>';
 }
 echo '<p>Program ended with errors.</p>';
 exit;
}
?>

As Listing 12-2 shows, error information can be retrieved with the function sqlsrv_errors(). It
returns an array with status, code, and text description of the errors that occurred.

Database Connections
Establishing a connection to SQL Server is the first step to sending queries and statements to
the database. The connections are made by using the sqlsrv_connect() function. This function
has two parameters: the server name or the instance to which you want to connect, and the
specifications of the connection properties.

286 Part II SQL Server

Server Names
SQL Server allows you to establish a connection in various ways. The three most important are:

■ Shared memory The default connection when SQL Server and PHP are running on
the same server. Shared memory is usually the most efficient way to connect.

■ TCP/IP A connection to a certain port is established via the network.

■ Named pipe A type of inter-process communication via pipes with a defined name.

When setting up a connection, you can use the first parameter not only to specify the server
and the instance, but also the type of connection. The generic form of a server name is:

[<Protocol>:] <Server name> [,<Port>]

The following abbreviations are used as protocol identifiers:

■ lpc for shared memory connections

■ tcp for TCP/IP connections

■ np for named pipes connections

Table 12-1 shows a few examples of server names for different types of connections.

Important Connections to SQL Server are only possible when corresponding end points are
configured (see Chapter 9). External access is only possible if it is not blocked by the Windows
Firewall or external firewalls.

TABLE 12-1 Examples for server names, depending on the connection type

Connection type Example Description
Named pipes np:\\.\pipe\sql\query Connects to the default instance on the local

computer

np:\\db.xmp.site\pipe\
MSSQL$AdvWorks\sql\query

Connects to the instance AdvWorks on the
server db.xmp.site using the default pipe

np:\\db.xmp.site\pipe\php\app Connects to the default instance on the
server db.xmp.site via the pipe php/app

Shared memory lpc:localhost Connects to the default instance on the
local server

lpc:webhost.local\AdvWorks Connects to the instance AdvWorks on the
server webhost.local, which must be equal to
the local server

(local) Connects to the default instance on the local
server

 Chapter 12 PHP and SQL Server 287

Connection type Example Description
TCP/IP tcp:localhost Connects to the default instance on the local

server

tcp:db.xmp.site,2566 Connects to the default instance on the server
db.xmp.site on port 2566

tcp:10.12.24.48 Connects to the default instance on the
server with the IP address 10.12.24.48 via
the default port (1443)

Authentication
If configured correctly, SQL Server allows two different types of connection authentication:

■ Windows authentication The Windows user account that is run by the PHP program
is also used as SQL Server login. The logon information of the process is reused.

■ SQL Server authentication A user who is (exclusively) set up for SQL Server is used
for logon. User name and password must be specified for the connection.

Both methods have advantages and disadvantages. An advantage of the Windows authen-
tication is that you can use it to centralize the entire user management, which aids general
administration and the implementation of rights. Additionally, the PHP script does not
require passwords in this case. Windows authentication is recommended when working with
intranet applications.

SQL Server user accounts can be especially powerful if you are working with publicly accessi-
ble web applications that are consumed mainly by anonymous access or have self-registered
accounts that are managed in the PHP application: a few SQL Server accounts serve as roles
for various types of web users or for separating different areas of the PHP application.

Windows Authentication
Windows authentication is the default option for connecting to SQL Server. You don’t need
to specify additional parameters. To establish a connection to the default instance of the
locally running SQL Server by using Windows authentication, use sqlsrv_connect() as follows:

$db = sqlsrv_connect('');

The empty string stands for the default instance on your local computer. Alternatives are
(local), “.” (point), (localhost) or localhost. Because no other parameters were specified, the
database context is set to the user’s default database, or to the system database master, if
the user has not specified a default database. You can specify the database you want to use
with parameters:

$db = sqlsrv_connect('.', array ('Database' => 'AdventureWorksLT2008'));

288 Part II SQL Server

The Windows user who is used for authentication against SQL Server depends on the con-
figuration of IIS and PHP, as described in Chapter 5, “Security”:

■ fastcgi.impersonate=0 If the identity transfer of the application user is turned off,
the user of the IIS application pool; for example, IIS AppPool\DefaultAppPool is used.

■ fastcgi.impersonate=1, anonymous web user The anonymous user NT-AUTHORITY\
IUSR of IIS is used.

■ fastcgi.impersonate=1, authenticated web user The identity of the PHP web user
is applied, and with this user account, the authentication with SQL Server is performed.

■ fastcgi.impersonate=1, path log-on information The path credentials defined for
the IIS application or virtual directory are used for authentication against SQL Server.

Depending on your situation, you need to set the rights in SQL Server.

Tip After a successful authentication, you can use the following statement to find out the current
user of the database connection and the selected database:

SELECT SYSTEM_USER AS CurrentUser, DB_NAME() AS CurrentDatabase

SQL Server Authentication
The SQL Server authentication is independent of the Windows user who is running PHP: user
name and password are directly specified when establishing the connection with sqlsrv_
connect(), as shown in Listing 12-3. The user name is passed on with the connection param-
eter UID, and the password with the parameter PWD.

LISTINg 12-3 Building a connection with SQL Server authentication.

// Connect via SQL Server authentication
$server = '(local)';
$connectionInfo = array('UID' => 'Tony', // SQL Server user name
 'PWD' => 'top-secret', // Password
 'Database' => 'AdventureWorksLT2008',
 'CharacterSet' => 'UTF-8');
$db = sqlsrv_connect($server, $connectionInfo);

The obvious disadvantage is that the password is contained in the PHP script as plain text,
and that users cannot be centrally administered (for example, via Microsoft Active Directory).
The advantages of this authentication method are the separation of database user and
executing PHP user as well as the simple way of switching between different SQL Server users
within the same PHP application.

SQL Server authentication (or using database users instead of operating system users) is the
most common authentication method for PHP applications.

 Chapter 12 PHP and SQL Server 289

Connection Pooling
Connection pooling means reusing existing database connections. To establish a connec-
tion and authenticate, it can mean a lot more work when compared to the execution of a
T-SQL statement. Connection pooling helps you perform database queries by reusing already
authenticated connections. It is not necessary to establish the connection again.

By default, connection pooling is enabled for the SQL Server PHP driver: if there is already a
connection in the pool that you are trying to reestablish with sqlsrv_connect(), it is applied,
and the connection status is reset. sqlsrv_close() does not close the connection completely;
instead, it returns the connection to the connection pool.

Caution Because connections are being reused, you should not use T-SQL statements or SQL
Server procedures to make changes to the basic settings of the connections themselves. This
would apply the changes to any subsequent use of the connection, which could lead to unwant-
ed consequences. You should also avoid using application roles (with sp_setapprole()).

Fragmenting
Connection pooling does not immediately close a connection. Rather, it is first returned to
the pool and only closed after a defined period of inactivity. Whether a connection can be
reused or a new connection is established (possibly in a new pool) depends on the param-
eters of sqlsrv_connect().

If the user or database is different, a new connection in a new pool is created. This is some-
thing you should be aware of when designing web applications.

If a web application has many different authenticated users, and the users are also used for
the communication with SQL via Windows authentication, a connection pool is generated for
each user. If the number of simultaneously active users rises, this leads to fragmentation of
the connection pools and might have an impact on performance.

If this is the case, you should modify the design of your PHP application to accommodate
very few (role-independent) database users so that it can be used for all web users. You can
do so by:

■ Switching to SQL Server authentication.

■ Using Windows authentication to configure PHP by using fastcgi.impersonate=0.

■ Defining a fixed user for the application with IIS path credentials.

In general, in your PHP script, database connections should be opened as late as possible and
closed as early as possible to save resources.

290 Part II SQL Server

Connection Options
When establishing a connection with sqlsrv_connect(), you can use the parameter Connection
Pooling to specify whether you want to use connection pooling (true) or not (false). By default,
connection pooling is used. Listing 12-4 shows how to prevent connection pooling for an
open connection. If this is the case, sqlsrv_close() closes the connection immediately. There is
no return to a pool and no time-delayed closing.

LISTINg 12-4 Establishing a connection without connection pooling.

// Connect via Windows Authentication without connection pooling
$server = '(local)';
$connectionInfo = array('ConnectionPooling' => false,
 'Database' => 'AdventureWorksLT2008',
 'CharacterSet' => 'UTF-8');
$db = sqlsrv_connect($server, $connectionInfo);

More Connection Options
SQL Server provides many more connection options that can be set in the $connectionInfo
parameter array, when calling sqlsrv_connect(). Table 12-2 gives an overview of the most
important options not discussed so far.

TABLE 12-2 Additional connection options

Option Description
CharacterSet Defines the character set. Possible values are SQLSRV_ENC_BINARY for

binary encoding, SQLSRV_ENC_CHAR for using the current code page
active on the server (this is the default), and UTF-8.

Encrypt Specifies whether the connection to SQL Server should be encrypted
(1) or unencrypted (0). Only useful if PHP and SQL Server are not on
the same server. Bear in mind that encryption might have an impact on
performance.

Failover_Partner If you have configured a failover server, you can specify it with this option
and the driver will switch transparently in case of an error.

LoginTimeout Specifies the number of seconds, before failing the logon attempt.

MultipleActiveResultSets Enable (1) or disable (0) MARS. MARS can be used to execute queries on
a connection that has an open active result set. If disabled, you either
need to cancel or free the previous result statement or finish fetching all
results, before starting a new query.

ReturnDatesAsStrings Specifies whether to return SQL date types as strings (1) or as objects (0).
For a more comprehensive discussion, see the section “Data Types,” later
in this chapter.

 Chapter 12 PHP and SQL Server 291

Option Description
TraceOn
TraceFile

If TraceOn=1, ODBC tracing is enabled and written into TraceFile. With
the additional options WSID and APP, you can set the computer and
application name for tracing.

TransactionIsolation Defines the transaction isolation level. See Chapter 13, “Advanced
Database Functions,” for a discussion of the different levels.

TrustServerCertificate Specifies whether a self-signed server certificate should be trusted (1) or
rejected (0).

Database Queries
SQL Server provides you with different possibilities for creating database queries from PHP
and retrieving results. In the following subsection, you will be introduced to parameterized
statements that permit a secure transfer of parameters to the T-SQL statement, and you will
learn about prepared statements that allow for an efficient execution of multiple statements.
You will also be introduced to two additional methods for retrieving results: retrieving datas-
ets as objects, and retrieving individual columns of the datasets.

Note The following examples use two different scripts that you can find in Appendix A,

”Example Scripts and Data”:

■ DatabaseConnection.php Opens and closes the database connection and returns SQL
Server error messages.

■ HTMLPage.php Creates an HTML page and securely outputs data as HTML.

Parameterizing Statements
Web application security is mainly based on the correct use of user input data. The filter-
ing and masking of this data is essential if you don’t want to jeopardize your application or
your users. Unfiltered data can lead to an SQL injection. Apart from filters, the parameterized
statements offer a solution to this problem.

SQL Injection
SQL injection—the malicious insertion and execution of SQL statements—is a common
problem in web applications. The reason for it is missing validation and masking of user-
dependent input data. Listing 12-5 shows a program snippet of a typical situation.

292 Part II SQL Server

LISTINg 12-5 Program with errors, which permits SQL injection.

$productID = $_GET['id'];
$query = "SELECT Name, Color FROM SalesLT.Product WHERE ProductID=$productID";
$stmt = sqlsrv_query($db, $query)

The program expects a number (the product number), as input value. The problem is that
$GET['id'] can contain any kind of string, for example:

-1 UNION SELECT CompanyName, EmailAddress FROM SalesLT.Customer;

If the PHP program is executed, $query has the following content:

SELECT Name, Color FROM SalesLT.Product
WHERE ProductID=-1 UNION SELECT CompanyName, EmailAddress FROM SalesLT.Customer;

The combined statement represents a valid query, but instead of the product name and
color, the company name and the customer’s email address are returned.

SQL injection can also be used to insert values (for example, users with increased rights), to
change values, to delete rows or tables, to call procedures, and much more. SQL injection
represents a serious threat to web applications.

Filtering and Masking Data
Your first approach is to filter for dangerous characters or to mask the transfer to SQL Server.
Table 12-3 gives you an overview of the most important characters typically used for SQL
injection. If at all possible, these characters should not be permitted.

TABLE 12-3 Dangerous characters and strings used for SQL injection

Character Meaning
; (semi-colon) Separates a T-SQL statement from the next statement

' (apostrophe) Delimits strings

-- Indicates a comment (valid until the end of the line)

/* and */ Delimits comments

Possible number filters, such as for ProductID, can look as follows:

// Variant 1: cast to integer
$productID = (int)$_GET['id'];
// Variant 2: filter out anything that is not a number
$productID = preg_replace('/[^0-9]/', '', $_GET['id']);
// Variant 3: use filter_input function of PHP
$productID = filter_input(INPUT_GET, 'id', FILTER_SANITIZE_NUMBER_INT);

 Chapter 12 PHP and SQL Server 293

If you want to pass strings as input data—for instance, to look for a product by name—you
should keep the filter as tight as possible. For example, if only letters and spaces are allowed,
you could use the following function:

mb_regex_encoding('UTF-8');
if (!mb_check_encoding($_GET['product'], 'UTF-8')) {
 die('Character coding with errors at input value.');
}
$name = mb_ereg_replace('[^[:alpha:]]', '', $_GET['product']);

Caution If you are working with Unicode input data (as in the examples in this book), you
should only use multi-byte string functions (mb_*). PCRE functions (preg_*) and other simple
character operations can yield false results or destroy the string coding.

If you want to allow the apostrophe, you need to double it, as shown here:

$name = mb_ereg_replace("[^[:alpha:]']", '', $_GET['product']);
$name = mb_ereg_replace("'", "''", $name);

You can now use $name for T-SQL queries.

Important Security against SQL injection and related security weaknesses can only be guar-
anteed if you use the same character coding for the entire processing chain (HTML, PHP, SQL
Server). Otherwise, the different interpretations of data during transfer can lead to security prob-
lems. Therefore, in this book, we use only UTF-8.

Parameterizing Statements
SQL Server provides the simple alternative of parameterized queries to ensure that data is
masked correctly. sqlsrv_query() can take additional parameters when called, as displayed in
the following:

sqlsrv_query($DBConnection, $T-SQL [,$parameter [,$options]])

$parameter is an array of values that are added to the T-SQL statement instead of ques-
tion marks. $options specify additional query options such as a time limit for processing
the query. For example, to query the number of a certain product, use the sqlsrv_query() as
follows:

sqlsrv_query($db, 'SELECT ProductID FROM SalesLT.Products WHERE Name=?', array($name));

The question mark in Name=? is replaced with the value of $name. sqlsrv_query() and ensures
that the value is passed in such a way that no SQL injection can take place.

294 Part II SQL Server

The advantage of parameterized queries is that the SQL Server PHP driver automatically
selects the correct coding for the database connection to insert the value into the SQL state-
ment, and it can take care of the masking according to the data type.

Sample Program
Listing 12-6 and Listing 12-7 show the sample program for a product name search. It uses a
parameterized query and removes unwanted characters from the entry data.

Note The search_products.php file (Listing 12-6) takes care of input and output.

An HTMLPage object is created and a form inserted into the page.

If a search term has been entered, the input data is cleaned up with sanitizeName(), as
described in the section “Filtering and Masking Data,” earlier in the chapter.

After getProductsByName() has retrieved the data from the database, the results are inserted
as a table into the HTML script and the HTML page is returned.

Note The PHP extension for the multi-byte functions (mb_*) is not enabled in the default instal-
lation of PHP. To enable the extension, either use the PHP Manger or insert extension=php_
mbstring.dll into php.ini, and then restart the associated IIS application pools.

LISTINg 12-6 search_products.php—a product name search.

<?php
namespace net\xmp\phpbook;

require './DatabaseConnection.php';
require './HTMLPage.php';
require './search_products_db.php';

$html = new HTMLPage('AdventureWorks : Product Search');
$form = <<<EOF
<form action="" method="get">
Product name: <input name="product" />
<input type="submit" value="Search" />
</form>

EOF;
$html->addHTML($form);
if (isset($_GET['product'])) {
 $name = sanitizeName($_GET['product']);
 $products = getProductsByName($name);
 if ($products) {
 $html->addTable($products);

 Chapter 12 PHP and SQL Server 295

 } else {
 $html->addElement('p', 'No products found.');
 }
}
$html->printPage();
exit;

/**
 * Check string for correct coding and filter out forbidden characters
 */
function sanitizeName($txt) {
 if (!mb_check_encoding($txt, 'UTF-8')) {
 die('Character coding with errors at input value.');
 }
 mb_regex_encoding('UTF-8');
 return mb_ereg_replace("[^-[:alnum:]',]", '', $txt);
}
?>

Note The file search_products_db.php (Listing 12-7) contains the functions for the database
query.

At first, a DatbaseConnection object is created and the database connection is opened.

The SQL statement is parameterized; in the WHERE clause, $query contains the placeholder
(question mark), which is replaced by the parameters ($params, only one value).

Next, sqlsrv_fetch_array() retrieves the data and to writes it into an array for HTML output.

Finally, sqlsrv_free_stmt() frees the resource of the query and the database connection is
closed.

LISTINg 12-7 search_products_db.php—database function for the name search.

<?php
namespace net\xmp\phpbook;

/**
 * Query of all products whose name starts with $name.
 * @return array Data for the HTML table
 */
function getProductsByName($name) {
 $db = new DatabaseConnection();
 $db->connect();
 // Select products by name and list price
 $query = 'SELECT ProductID, Name, ListPrice
 FROM SalesLT.Product WHERE Name LIKE ?
 ORDER BY Name';
 $params = array($name . '%');

296 Part II SQL Server

 // Run query
 $stmt = sqlsrv_query($db->handle, $query, $params);
 if ($stmt === false) {
 $db->exitWithError('Product data query failed.');
 }
 if (!sqlsrv_has_rows($stmt)) {
 return false; // No hits in the database (empty result)
 }
 // Retrieve individual rows from the result
 $table = array(array('ID', 'Product', 'List Price'));
 while ($row = sqlsrv_fetch_array($stmt)) {
 $table[] = array($row['ProductID'], $row['Name'],
 $row['ListPrice']);
 }
 // null == no more rows, false == Error
 if ($row === false) {
 $db->exitWithError('Retrieving product data entry failed.');
 }
 sqlsrv_free_stmt($stmt);
 $db->close();
 return $table;
}
?>

Tip Using the sqlsrv_has_rows() function, you can query whether result rows exist. In Listing 12-
7, the function is used to determine whether there were any hits for the search term.

As an alternative, you can use the sqlsrv_num_rows() function, which returns the number of
rows in the result. However, this function cannot be used with the default cursor type of SQL
Server queries.

Figure 12-3 shows the result of the product search for “Men‘s”.

 Chapter 12 PHP and SQL Server 297

FIgURE 12-3 Result of the product name search when using a parameterized T-SQL statement.

Retrieving Results
After SQL Server has received a request, the statement resource is returned, from which the
results can be retrieved. So far, you have been using sqlsrv_fetch_array() to retrieve results. In
the next sections, you will learn about two other methods: retrieving results as objects, and
retrieving individual object fields.

Retrieving as Object
To retrieve the result rows of a T-SQL query as an object, use the sqlsrv_fetch_object() func-
tion. You can also use this function to specify a class that you want to instantiate for the
result object.

Listing 12-8 shows a program snippet (without error handling). The properties of the gener-
ated object have the names of the selected field of the SELECT expression.

LISTINg 12-8 Querying data by using the sqlsrv_fetch_object() function.

$stmt = sqlsrv_query($db, 'SELECT DISTINCT TOP(10) FirstName, LastName, EmailAddress
 FROM SalesLT.Customer ORDER BY LastName, FirstName');
while ($obj = sqlsrv_fetch_object($stmt)) {
 printf("%s %s <%s>\n", htmlspecialchars($obj->FirstName),
 htmlspecialchars($obj->LastName), htmlspecialchars($obj->EmailAddress));
}
sqlsrv_free_stmt($stmt);

298 Part II SQL Server

In case of an error, sqlsrv_fetch_object() returns false (just like sqlsrv_fetch_array()), and when
there are no more result rows, it returns the value null.

Result columns must have a name so that they can be assigned as object properties.
Columns without names lead to a warning or an error. Calculated columns, such as count(*),
max(ListPrice), and SubTotal+TaxAmt must be assigned an alias so that they can be set as
object properties, such as count(*) AS amount.

Important The column names are case-sensitive; therefore, the object property names are
used exactly as specified in the T-SQL statement. If you use a different case later on, you are
accessing undefined object properties.

To instantiate a result object in a certain class, you need to specify an additional parameter,
as shown in Listing 12-9.

LISTINg 12-9 Instantiating a certain class by using the sqlsrv_fetch_object() function.

class Customer
{
 function printData() {
 printf("%s %s <%s>\n", htmlspecialchars($obj->FirstName),
 htmlspecialchars($obj->LastName), htmlspecialchars($obj->EmailAddress));
 }
}
$stmt = sqlsrv_query($db, 'SELECT DISTINCT TOP(10) FirstName, LastName, EmailAddress
 FROM SalesLT.Customer ORDER BY LastName, FirstName');
while ($obj = sqlsrv_fetch_object($stmt, 'Customer')) {
 $obj->printData();
}
sqlsrv_free_stmt($stmt);

If the class is located in a PHP 5.3 namespace, you must specify the complete class name. For
example, if the class Customer is located in the namespace net\xmp\phpbook, it would look
as follows:

$obj = sqlsrv_fetch_object($stmt, 'net\\xmp\\phpbook\\Customer');

If the constructor of a class requires parameters, you can add them to sqlsrv_fetch_object() as
an array, for example:

$obj = sqlsrv_fetch_object($stmt, 'Customer', array($param1, $param2, $param3));

 Chapter 12 PHP and SQL Server 299

Retrieving Individual Fields
You can use a combination of the two functions, sqlsrv_fetch() and sqlsrv_get_field(), to
retrieve individual fields. sqlsrv_fetch() retrieves a result row; sqlsrv_get_field() can then read
the individual columns.

In Listing 12-10, sqlsrv_fetch($stmt) retrieves the next result row after the T-SQL statement has
been sent. If the row reads successfully, the function returns true; if there are errors, it returns
false, and if there are no further rows, it returns the value null. You use sqlsrv_get_field() to
read the individual columns. You must access the columns with an index, because column
names cannot be used.

LISTINg 12-10 Retrieving results by using the functions sqlsrv_fetch() and sqlsrv_get_field().

$stmt = sqlsrv_query($db, 'SELECT DISTINCT TOP(10) FirstName, LastName, EmailAddress
 FROM SalesLT.Customer ORDER BY LastName, FirstName');
while (sqlsrv_fetch($stmt)) {
 printf("%s %s %s\n", sqlsrv_get_field($stmt, 0),
 sqlsrv_get_field($stmt, 1),
 sqlsrv_get_field($stmt, 2));
}
sqlsrv_free_stmt($stmt);

It depends on your personal programming style whether you prefer to use sqlsrv_fetch_
array() or sqlsrv_fetch_object(). The combination of sqlsrv_fetch() and sqlsrv_get_field(), how-
ever, has two important distinguishing features. First, only the very column that is being
requested is loaded into PHP’s process memory, whereas sqlsrv_fetch_array() and sqlsrv_
fetch_object() transfer the entire row into the PHP process memory. This can have an impact
when working with large columns (nvarchar(MAX), varbinary(MAX)). The second feature is
that you can specify the PHP type of the column you want to read, and—again important
for large columns—read the column as stream. You can read more about this in the section
“Data Types,” later in the chapter

Prepared Statements
If a T-SQL statement is run multiple times in a PHP program, you can use prepared state-
ments to simplify programming and increase performance. For prepared statements,
sqlsrv_query() is divided into two steps:

■ sqlsrv_prepare() Analyzes the T-SQL statement and prepares it for execution. The
statement does not yet contain parameters.

■ sqlsrv_execute() Adds the parameters and runs the statement. This step can happen
multiple times (each time with new data). Because there is no analysis and no execution
preparation, the performance is increased and the resource consumption decreased.

300 Part II SQL Server

The small sample application that follows shows you how to program with prepared state-
ments. The binding of parameters is especially important. With a prepared T-SQL statement,
the sample application updates the order quantity and the discount for individual products
on an invoice. You can find the associated data in the table SalesLT.SalesOrderDetail.

Listing 12-11 contains the database class, the constructor, and a method called getByHeader(),
which is used for listing the content before and after the update. getByHeader() follows a
structure with which you are already familiar: execute a parameterized T-SQL statement by
using sqlsrv_query(), read the result rows with sqlsrv_fetch_array(), and finally, free the state-
ment resource with sqlsrv_free_stmt().

The prepare() method prepares the T-SQL statement by using sqlsrv_prepare(). At first glance,
it looks like a parameterized statement, as the placeholders in T-SQL indicate. However, it
is essential that the parameters are bound as references (&$...) and not as values ($...). This
applies all later changes of the variables to the locations where references were used.

The update() method then runs sqlsrv_execute(). The parameters are not set directly with
sqlsrv_execute(). Instead, the current values of the bound variables are automatically applied
when the T-SQL statement is executed.

The free() method finally frees the used statement resource.

Tip With the sqlsrv_rows_affected() function, you can determine the number of affected rows
for UPDATE, INSERT, and DELETE operations. If no rows were changed, the function returns 0. If
there is no information (for example, after a SELECT), the function returns -1, and if there is an
error, it returns false.

LISTINg 12-11 update_salesorder_db.php—a database class for updating order data with prepared
T-SQL statements.

<?php
namespace net\xmp\phpbook;

class UpdateOrders
{
 protected $db;
 protected $stmt;
 // Variables bound to statement
 protected $sql_qty, $sql_discount, $sql_id;

 /**
 * Constructor sets database connection
 */
 function __construct($db) {
 $this->db = $db;
 }

 Chapter 12 PHP and SQL Server 301

 /**
 * Read relevant data from the table and write it to HTML array.
 * @param int $id Number of SalesOrder
 */
 function getByHeader($id) {
 $query = 'SELECT SalesOrderDetailID, OrderQty, UnitPriceDiscount
 FROM SalesLT.SalesOrderDetail WHERE SalesOrderID = ?';
 $params = array($id);
 $stmt = sqlsrv_query($this->db->handle, $query, $params);
 if ($stmt === false) {
 $this->db->exitWithError('Data query has failed.');
 }
 // Read individual result rows
 $table = array(array('ID', 'Amount', 'Discount'));
 while ($row = sqlsrv_fetch_array($stmt)) {
 $table[] = array($row['SalesOrderDetailID'], $row['OrderQty'],
 $row['UnitPriceDiscount']);
 }
 if ($row === false) {
 $this->db->exitWithError('Retrieving data has failed.');
 }
 sqlsrv_free_stmt($stmt);
 return $table;
 }

 /**
 * Prepare update statement.
 */
 function prepare() {
 $query = 'UPDATE SalesLT.SalesOrderDetail
 SET OrderQty = ?, UnitPriceDiscount = ?
 WHERE SalesOrderDetailID = ?';
 // Parameters must be used as references (&$...)n.
 // This way all later changes to the variables are
 // applied to the prepared T-SQL statement
 $params = array(&$this->sql_qty, &$this->sql_discount, &$this->sql_id);
 // Prepare statement
 $this->stmt = sqlsrv_prepare($this->db->handle, $query, $params);
 if ($this->stmt === false) {
 $this->db->exitWithError("Statement preparation failed.");
 }
 }

 /**
 * Run prepared statement.
 * The updated values are passed as parameters.
 */

302 Part II SQL Server

 function update($id, $qty, $discount) {
 // Variable update is applied to T-SQL statement,
 // because the variables are bound as references.
 $this->sql_id = $id;
 $this->sql_qty = $qty;
 $this->sql_discount = $discount;
 if (sqlsrv_execute($this->stmt) === false) {
 $this->db->exitWithError('Update failed.');
 }
 }

 function free() {
 sqlsrv_free_stmt($this->stmt);
 }
}
?>

Listing 12-12 contains the required framework for running the update:

n	 The new updated values are hard-coded in the script. In an actual application, they
would be set with the input data ($_GET, $_POST).

n	 Next, the database connection is opened, the UpdateOrders class is instantiated,
and the table values are read before the update (getByHeader()) and displayed
($html->addTable()).

n	 The multiple execution of the prepared statement takes place as follows: the statement
is prepared with prepare(), update() is used in a loop for all datasets, and then finally,
the statement is released with free(). Here, you can see how prepared statements can
simplify programming.

As a final demonstration, the updated table data is read again (getByHeader()) and displayed.

LISTINg 12-12 update_salesorder.php—updating order data with prepared T-SQL statements.

<?php
namespace net\xmp\phpbook;
require './DatabaseConnection.php';
require './HTMLPage.php';
require './update_salesorder_db.php';

// Firmly defined for demonstration purposes
$updateOrderHeader = 71915;
$updateOrders = array(array(113089, 6, 0.10), array(113090, 1, 0.0),
 array(113091, 10, 0.20), array(113093, 3, 0.035));
$html = new HTMLPage('AdventureWorks : Order Amount and Discount Correction');
$db = new DatabaseConnection();
$db->connect();
$orders = new UpdateOrders($db);

 Chapter 12 PHP and SQL Server 303

// Read and display data before update
$before = $orders->getByHeader($updateOrderHeader);
$html->addHTML('<div style="position:absolute;top:4em">');
$html->addElement('h2', 'Before Update');
$html->addTable($before);

// Prepare query and run multiple times
$orders->prepare();
foreach ($updateOrders as $order) {
 list($id, $qty, $discount) = $order;
 $orders->update($id, $qty, $discount);
}
$orders->free();

// Read and display data after update
$after = $orders->getByHeader($updateOrderHeader);
$html->addHTML('</div><div style="position:absolute;top:4em;left:15em">');
$html->addElement('h2', 'After update');
$html->addTable($after);
$html->addHTML('</div>');
$db->close();
$html->printPage();
?>

Figure 12-4 shows the result of one iteration: the changes were applied as appropriate.

FIgURE 12-4 The sample program for updating order amounts and discounts.

304 Part II SQL Server

Data Types
SQL Server and PHP have their own data types. When data is transferred, those data types
need to be converted accordingly. Frequently, strings or numbers are used for this purpose:
for example, a PHP floating-point number becomes a string (between apostrophes) in a
T-SQL statement, but in SQL Server it becomes a smallmoney type. When data is converted in
such a way, the conversion is implicit, which means that SQL Server and PHP use the default
conversions.

Converting from PHP to SQL Server
The default conversion of data types can be controlled with parameterized statements
for which explicit data types are specified. In Listing 12-13, the parameters $sellEnd and
$maxPrice are converted into the SQL Server data types datetime and money. In $params,
an array is passed (instead of individual variables), whose last entry is the desired SQL Server
data type.

LISTINg 12-13 Specifying SQL Server data types for a parameterized query.

$query = 'SELECT ProductID, Name
 FROM SalesLT.Product
 WHERE ProductCategoryID = ? AND SellEndDate >= ? AND ListPrice <= ?';
$categoryID = 6;
$sellEnd = '2003-01-01';
$maxPrice = 799.90;
$params = array($categoryID,
 array($sellEnd, null, null, SQLSRV_SQLTYPE_DATETIME),
 array($maxPrice, null, null, SQLSRV_SQLTYPE_MONEY));
$stmt = sqlsrv_query($db, $query, $params);

You can find the complete list of constants, SQLSRV_SQLTYPE_*, in the documentation of the
SQL Server PHP driver. The rule of thumb is to append the data type name in capital letters;
for example, the constant SQLSRV_SQLTYPE_DATETIMEOFFSET names the SQL Server type
datetimeoffset.

Converting from SQL Server to PHP
The other way around, you can specify the desired PHP data types of the result rows when
querying with sqlsrv_get_field(). In Listing 12-14, the desired PHP data type is specified as the
third parameter of sqlsrv_get_field().

 Chapter 12 PHP and SQL Server 305

LISTINg 12-14 Specifying the PHP data type when querying with sqlsrv_get_field().

$query = 'SELECT ProductID, Weight, ListPrice, SellEndDate
 FROM SalesLT.Product';
$stmt = sqlsrv_query($db, $query);
while (sqlsrv_fetch($stmt)) {
 echo sqlsrv_get_field($stmt, 0, SQLSRV_PHPTYPE_INT), ' ',
 sqlsrv_get_field($stmt, 1, SQLSRV_PHPTYPE_FLOAT), ' ',
 sqlsrv_get_field($stmt, 2, SQLSRV_PHPTYPE_FLOAT), ' ',
 sqlsrv_get_field($stmt, 3, SQLSRV_PHPTYPE_STRING(SQLSRV_ENC_CHAR)), "\n";
}

Table 12-4 lists possible PHP data types. A direct conversion to Boolean or arrays and objects
is not possible, but the objects can be instantiated by using sqlsrv_fetch_object().

TABLE 12-4 PHP data types into which you can convert

PHP data type Constant Notes
DateTime SQLSRV_PHPTYPE_DATETIME By default, date types are converted into PHP

DateTime.

Float SQLSRV_PHPTYPE_FLOAT Works for all number types with decimal places.

Integer SQLSRV_PHPTYPE_INT Only integer SQL Server data types can be con-
verted into Integer. An automatic conversion of
money to Integer is not possible, for example.

Stream
String

SQLSRV_PHPTYPE_STREAM()
SQLSRV_PHPTYPE_STRING()

A coding must be specified as parameter:

■ SQLSRV_ENC_BINARY: data is passed on
without being processed.

■ SQLSRV_ENC_CHAR: data is converted
according to the current 8-bit Windows
character set; unconvertible characters are
replaced by question marks.

■ UTF-8: data is passed on coded in UTF-8.

A frequent source of errors—especially for developers coming from other databases—is the
fact that by default the SQL Server PHP driver returns the date and time types as a DateTime
PHP data type and not as a string. As Listing 12-14 shows, you can use sqlsrv_get_field() to
convert the data type explicitly to string. Alternatively, you can specify directly when you are
establishing a connection that data types must be returned as string:

$serverName = "(local)";
$connectionInfo = array('Database' => 'AdventureWorksLT2008',
 'ReturnDatesAsStrings' => true);
$db = sqlsrv_connect($serverName, $connectionInfo);

306 Part II SQL Server

Streams
The SQL Server PHP driver offers you the possibility to treat data as streams. This is especially
interesting for binary data types (binary, varbinary) and large data volume (for example, with
varchar(MAX)).

Retrieving Data as Stream
If data is retrieved by using sqlsrv_get_field(), the named types are always returned as stream
by default. An essential advantage is that not all of the data must be kept in PHP’s memory,
but can be read and returned in snippets via the stream.

We will illustrate this process by using the example for product search from the section
“Parameterizing Statements,” earlier in the chapter. The product search is extended with
thumbnail photos of the products.

Listing 12-15 shows the associated script for reading and displaying the pictures. After open-
ing the database connection, the column ThumbNailPhoto of SalesLT.Products is queried. The
column has the type varbinary(MAX) and is used as stream by default. Therefore, $stream
can be returned directly with the function fpassthru().

LISTINg 12-15 get_image.php—reading the picture from the database as stream and displaying it.

<?php
namespace net\xmp\phpbook;
require './DatabaseConnection.php';
require './HTMLPage.php';

// Establish database connection
$db = new DatabaseConnection();
$db->connect();

// Query picture for product
$query = 'SELECT ThumbNailPhoto FROM SalesLT.Product WHERE ProductID = ?';
$params = array((int) $_GET['id']);
$stmt = sqlsrv_query($db->handle, $query, $params);
if (!sqlsrv_fetch($stmt)) {
 $db->exitWithError('The query of the photo has failed.');
}
// varbinary() is returned as stream with direct output
$stream = sqlsrv_get_field($stmt, 0);
header('Content-type: image/gif');
fpassthru($stream);
// Free statement; close database
sqlsrv_free_stmt($stmt);
$db->close();

 Chapter 12 PHP and SQL Server 307

Note Ensure that your editor does not insert any UTF-8 coding (byte order mark [BOM]) at the
beginning of your PHP script; otherwise, header() won’t work or the additional bytes will make
the graphic format unreadable.

Because space characters at the end of the file might also cause problems, the ending PHP
tag ?> was left out. This is a common and valid practice in such cases.

If you don’t want the image to be returned as stream, but instead as a string, you need to
specify the coding directly:

// varbinary() is returned as a string
$img = sqlsrv_get_field($stmt, 0, SQLSRV_PHPTYPE_STRING(SQLSRV_ENC_BINARY));
header('Content-type: image/gif');
echo $img;

The file get_image.php from Listing 12-15 only provides the image display. If you want
to include the image display into the search result, you need to modify Listing 12-6.
Listing 12-16 shows the changed script search_products_img.php. The table now also embeds
 items whose source is the PHP script from Listing 12-15.

LISTINg 12-16 search_products_img.php—a product search with images.

<?php
namespace net\xmp\phpbook;
require './DatabaseConnection.php';
require './HTMLPage.php';
require './search_products_db.php';

$html = new HTMLPage('AdventureWorks : Product Search');
$form = <<<EOF
<form action="" method="get">
Product name: <input name="product" />
<input type="submit" value="Search" />
</form>

EOF;
$html->addHTML($form);
if (isset($_GET['product'])) {
 $name = sanitizeName($_GET['product']);
 $products = getProductsByName($name);
 if ($products) {
 addImageColumn($products);
 $html->addTable($products, array(false, false, false, true));
 } else {
 $html->addElement('p', 'No products found.');
 }
}

308 Part II SQL Server

$html->printPage();
exit;

function sanitizeName($txt) { ... } // Same as before

/**
 * Adds a column with a product photo to the table
 */
function addImageColumn(&$products) {
 $products[0][] = 'Photo ';
 for ($i = 1; $i < count($products); $i++) {
 $products[$i][] = '<img src="get_image.php?id='
 . $products[$i][0]
 . '" alt="Product photo" />';
 }
}
?>

Figure 12-5 shows the result: in the fourth column, the product pictures from the column
ThumbNailPhoto are displayed.

FIgURE 12-5 A product search with images from the database.

Inserting Data as Stream
Streams can be used for more than just reading data from the database. You can also use
them when inserting data into the database. In this case, an open stream is passed for
parameterized queries.

 Chapter 12 PHP and SQL Server 309

Listing 12-17 demonstrates how you can use streams to insert a picture into the database.
The handler for the open file is transferred in the variable $params. Because the database
connection has been opened as UTF-8, it is recommended that you specify the data type
(binary, no recoding necessary) for $params. This ensures a correct data transfer.

LISTINg 12-17 upload_product_img.php—inserting an image via stream into a database.

<?php
namespace net\xmp\phpbook;
require './DatabaseConnection.php';
require './HTMLPage.php';

$html = new HTMLPage('AdventureWorks : Upload Product Photo');
$form = <<<'EOF'
<form action="" enctype="multipart/form-data" method="post">
ProductID: <input name="productID" />

File: <input type="file" name="productPhoto" />

<input type="submit" value="Upload" />
</form>

EOF;
$html->addHTML($form);

if (isset($_POST['productID'])) {
 // Connect to database
 $db = new DatabaseConnection();
 $db->connect();
 // Prepare query
 $query = 'UPDATE SalesLT.Product
 SET ThumbNailPhoto = ?, ThumbnailPhotoFileName = ?
 WHERE ProductID = ?';
 $id = (int) $_POST['productID'];
 $filename = filter_var($_FILES['productPhoto']['name'],
 FILTER_SANITIZE_STRING, FILTER_FLAG_STRIP_LOW);
 // Open file
 $file = fopen($_FILES['productPhoto']['tmp_name'], 'rb');
 // Set coding and data type
 $params = array(array($file, null, SQLSRV_PHPTYPE_STREAM(SQLSRV_ENC_BINARY),
 SQLSRV_SQLTYPE_VARBINARY('MAX')),
 $filename, $id);
 $stmt = sqlsrv_query($db->handle, $query, $params);
 // Close file
 fclose($file);
 if ($stmt === false) {
 $db->exitWithError('Phote updoad failed.');
 }
 if (sqlsrv_rows_affected($stmt) != 1) {
 $db->exitWithError('Did you specify the wrong ID?');
 }
 $html->addElement('p', 'Upload successful.');
 // Close database connection
 sqlsrv_free_stmt($stmt);
 $db->close();
}
$html->printPage();
?>

310 Part II SQL Server

PDO and SQL Server
Starting with version 2.0 of the Microsoft Drivers for PHP for SQL Server, PDO support has
been added. PDO provides a consistent object-oriented interface for accessing databases
from different vendors. PDO has gained popularity with PHP frameworks because it pro-
vides a lightweight data-access abstraction layer. Complete coverage of PDO is beyond the
scope of this book; therefore, we will focus our discussion on the most important differences
between the native driver and PDO, and special features of the SQL Server PDO driver. The
following discussion assumes that you already have some precursory knowledge of PDO.

PDO Database Access Lifecycle
Similar to the native driver, the typical database access lifecycle comprises opening the con-
nection, sending the query or queries, reading the results, freeing result sets if necessary, and
then eventually closing the connection. Listing 12-18 shows the relevant parts of Listing 12-1
rewritten with PDO.

LISTINg 12-18 Querying data with PDO.

try {
 $dbh = new PDO("sqlsrv:server=(local); Database=AdventureWorksLT2008”, "", "");
 $dbh->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
 // Select products by name, list price, and category
 $query = "SELECT p.ProductID, p.Name AS ProductName, p.ListPrice,
 pc.Name AS CategoryName
 FROM SalesLT.Product AS p
 JOIN SalesLT.ProductCategory AS pc
 ON p.ProductCategoryID = pc.ProductCategoryID
 ORDER BY p.Name";
 // Run query
 $stmt = $dbh->query($query);
 // Retrieve individual rows from the result
 while ($row = $stmt->fetch(PDO::FETCH_ASSOC)) {
 // ... output $row in desired format ...
 }

 // Release resources and close connection
 $stmt->closeCursor(); // alternatively, you could use $stmt = null;
 $dbh->close();
}
catch(Exception $e) {
 die(print_r($e->getMessage()));
}

 Chapter 12 PHP and SQL Server 311

Connecting to SQL Server
PDO opens a connection to the database when you create a new PDO object. The construc-
tor takes three arguments: the data source name (DSN), username, and password.

The DSN string is comprised of the prefix “sqlsrv:” followed by the specification of the server
and connection attributes, typically the database. The SQL Server driver additionally supports
the connection options given in Table 12-2, earlier in the chapter, except for CharacterSet,
ReturnDateAsString (PDO always returns dates as strings), and UID and PWD (they are passed
as parameters to the constructor). A typical call to the constructor would look this:

$dbh = new PDO('sqlsrv:server=(local); Database=AdventureWorksLT2008', 'sqluser',
'confidential');

If you specify username and password, then SQL Server authentication mode is used. If you
would like to use the active Windows user for connecting, just leave username and password
empty:

$dbh = new PDO("sqlsrv:server=(local); Database=AdventureWorksLT2008");

The same benefits and drawbacks of SQL Server authentication versus Windows authentica-
tion discussed in section “Database Connections,” earlier in the chapter, also apply to PDO.

Direct Queries and Prepared Statements
Apart from the direct execution of queries with PDO::query(), prepared statements can be
executed with PDO::prepare() and PDOStatement::execute(). Prepared statements improve
performance if you execute the same query multiple times, and prevent SQL injection security
problems, because parameters are automatically masked as necessary. Listing 12-19 shows
how values and parameters are bound to the statement with PDOStatement::bindParam()
and PDOStatement::bindValue(). The third parameter is optional and specifies the preferred
data type. By default, PDO::PARAM_STR is used. The bound variables are evaluated when
PDOStatement()::execute() is called. Therefore, we can change these variables in a loop and
get new query results each time.

312 Part II SQL Server

LISTINg 12-19 Binding parameters and values with prepared statements.

$search = array('Brown' => 1000, 'Miller' => 500, 'Lee' => 600);
$stmt = $dbh->prepare("SELECT EmailAddress FROM SalesLT.Customer "
 . "WHERE LastName = ? AND CustomerID < ? AND EmailAddress LIKE ?");
$stmt->bindParam(1, $name, PDO::PARAM_STR);
$stmt->bindParam(2, $maxId, PDO::PARAM_INT);
$stmt->bindValue(3, '%@adventure-works.com');
foreach ($search as $name => $maxId) {
 $stmt->execute();
 while ($addr = $stmt->fetchColumn(0)) {
 echo "<p>$name: $addr\n";
 }
}

Internally, the SQL Server PDO driver always executes queries in a prepared query context,
even queries run with PDO::query(). If you do not execute a query multiple times, this
might actually have a slight performance impact. In this case, you can use the attribute
PDO::SQLSRV_ATTR_DIRECT_QUERY to disable the use of prepared statements, as shown in
the following:

$dbh->setAttribute(PDO::SQLSRV_ATTR_DIRECT_QUERY, true);

The preceding statement disables prepared statements for the connection, even for prepare()/
execute(), too. You can also use this attribute to get the equivalent of parameterized queries.
Listing 12-20 gives an example. An alternative to setting the attribute on the connection
level, is to pass it to PDO::prepare(), as shown in the listing.

LISTINg 12-20 Parameterized query using PDO::SQLSRV_ATTR_DIRECT_QUERY.

$stmt = $dbh->prepare("SELECT EmailAddress FROM SalesLT.Customer WHERE LastName = ?",
 array(PDO::SQLSRV_ATTR_DIRECT_QUERY => true));
$stmt->bindValue(1, 'Brown');
$stmt->execute();

Enabling the direct query mode also enables the use of temporary tables across multiple
queries and the setting of database options. Listing 12-21 shows a complete example of how
to set the language of the connection. The result is shown in Figure 12-6.

 Chapter 12 PHP and SQL Server 313

LISTINg 12-21 Setting the database language option by using PDO::SQLSRV_ATTR_DIRECT_QUERY.

<?php
require './HTMLPage.php';
$page = new \net\xmp\phpbook\HTMLPage('PDO Direct Query Example');
$page->addElement('p', 'Name of the current month in different languages.');

$dbh = new PDO("sqlsrv:server=(local)");
$dbh->setAttribute(PDO::SQLSRV_ATTR_DIRECT_QUERY, true);
$stmt = $dbh->query('SET LANGUAGE Greek');
$stmt = $dbh->query("SELECT DATENAME(month, CURRENT_TIMESTAMP)");
$page->addElement('p', 'Greek: ' . $stmt->fetchColumn(0));
$stmt = $dbh->query('SET LANGUAGE Finnish');
$stmt = $dbh->query("SELECT DATENAME(month, CURRENT_TIMESTAMP)");
$page->addElement('p', 'Finnish: ' . $stmt->fetchColumn(0));
$stmt = $dbh->query("SET LANGUAGE 'Traditional Chinese'");
$stmt = $dbh->query("SELECT DATENAME(month, CURRENT_TIMESTAMP)");
$page->addElement('p', 'Traditional Chinese: ' . $stmt->fetchColumn(0));
$page->printPage();
?>

FIgURE 12-6 Setting the database language option.

314 Part II SQL Server

Retrieving Results
PDO offers several different methods to retrieve your results, such as an associative array or
object. Table 12-5 provides an overview of the most commonly used fetch modes. You can
either set the mode directly, when calling PDOStatement::fetch() like this:

$result = $pdo_stmt->fetch(PDO::FETCH_OBJ);

Or you can set the fetch mode for the statement by using setFetchMode() and later on call
fetch() without parameters, as shown here:

$pdo_stmt->setFetchMode(PDO::FETCH_INTO, $myObj);
$pdo_stmt->fetch(); // result columns are set as properties in $myObj

TABLE 12-5 The most commonly used fetch modes in PDO

Mode Description
PDO::FETCH_ASSOC Returns an associative array indexed by column names. If two columns

have the same name, only one value is returned. Note that all columns have
to have names—use column aliases if needed.

PDO::FETCH_BOTH Returns combined array of PDO::FETCH_ASSOC and PDO::FETCH_NUM.
This is the default mode.

PDO::FETCH_BOUND Does not return the results, but instead writes them to the PHP variables
previously bound with PDOStatement::bindColumn($var).

PDO::FETCH_CLASS Returns the results as properties of a newly instantiated object of the
named class. Mode has to be set with PDOStatement::setFetchMode
(PDO::FETCH_CLASS, $classname, $constr_args_array). The arguments for
the class constructor are optional. This is equivalent to using PDOStateme
nt::fetchObject($classname, $constr_args_array).

PDO::FETCH_COLUMN Returns the single column specified by the additional argument. Mode
has to be set with PDOStatement::setFetchMode(PDO::FETCH_COLUMN,
$num). This is equivalent to using PDOStatement::fetchColumn($num).

PDO::FETCH_INTO Returns the results as properties set in an existing object. Mode has to be
set with PDOStatement::setFetchMode(PDO::FETCH_INTO, $object).

PDO::FETCH_LAZY Similar to PDO::FETCH_OBJ, but an instance of the PDORow class is
returned and its properties are only populated when accessed. This can be
a good choice, if the result is comprised of many columns.

PDO::FETCH_NAMED Same as PDO::FETCH_ASSOC, but if two or more columns have the same
name, the array entry contains an array of all values.

PDO::FETCH_NUM Returns an array index by column number. Columns do not necessarily
have to have names.

PDO::FETCH_OBJ Returns the results as properties of a newly instantiated object of the
stdClass class. Equivalent to using PDOStatement::fetchObject().

 Chapter 12 PHP and SQL Server 315

If you know that you are going to process all result rows and that the complete result set
fits into memory, you can use PDOStatement::fetchAll() instead of fetch(). Combined with
PDO::FETCH_COLUMN, this is especially useful if you construct selection lists from database
tables. By providing the special PDO::FETCH_GROUP flag, you can group the result by the
specified column. For example, to get a list of all supported languages of SQL Server and
their IDs, you would write:

$stmt = $dbh->query("SELECT msglangid, name FROM master.sys.syslanguages");
$res = $stmt->fetchAll(PDO::FETCH_COLUMN|PDO::FETCH_GROUP);

The result would be an array that looks similar to the following (output from var_dump()):

array(32) {
 [1033]=> array(2) { [0]=> string(10) "us_english"
 [1]=> string(7) "British" }
 [1031]=> array(1) { [0]=> string(7) "Deutsch" }
 [1036]=> array(1) { [0]=> string(9) "Français" }
 [1041]=> array(1) { [0]=> string(9) "日本語" }
...
}

Data Types and Streams
Compared to the granularity with which you can control conversion between the different
PHP and SQL Server data types using the SQLSRV driver, the PDO driver is somewhat limited.
Table 12-6 shows the supported parameter types. Any type not listed is automatically treated
as string data type. An important implication (compared to SQLSRV) is that PDO handles
date and time types as strings.

TABLE 12-6 Parameter data types in PDO

Parameter data type Description
PDO::PARAM_BOOL Boolean data type

PDO::PARAM_INT Generic SQL integer data type

PDO::PARAM_LOB Large Object data type, used for streaming

PDO::PARAM_NULL SQL NULL data type

PDO::PARAM_STR SQL char(), nchar(), varchar(), nvarchar() datatype. Fallback for all other
types.

When binding a parameter PDOStatement::bindParam() or a column of an output result set
by using PDOStatement::bindColumn(), you can specify the data type. Both statements also
provide the possibility to set the parameter encoding. Table 12-7 shows the four different
possible values for parameter encoding. The encoding can also be set connection wide by
using PDO::setAttribute(), or query wide by using PDOStatement::setAttribute() or as param-
eter to PDO::prepare().

316 Part II SQL Server

TABLE 12-7 Encoding types in PDO

Encoding type Description
PDO::SQLSRV_ENCODING_BINARY No encoding takes place, raw byte stream.

PDO::SQLSRV_ENCODING_DEFAULT Either the connections encoding or if specified during
connection, the system encoding.

PDO::SQLSRV_ENCODING_SYSTEM 8-Bit encoding according to the code page of the
Windows system. Data may be transcoded during trans-
mission. Characters that are out of range (for example,
multi-byte characters) are replaced by a question mark.

PDO::SQLSRV_ENCODING_UTF8 Default encoding: all character data is handled as UTF-8.

Listing 12-22 shows how to read an image from the database and display it. This is the PDO
version of Listing 12-15. For the output column, both parameter type and encoding are
specified. There is one important distinction to how the SQLSRV driver handles this: the value
returned is not a stream, but just a string. This is why at the end the resulting variable is just
output with echo. Note that this behavior is not as defined in the PDO documentation, which
would also suggest that a stream handle is returned. Oddly enough, in the reverse direction—
that is when uploading a file to the database—the PDO driver expects a file stream handle,
just as described in the PDO documentation.

LISTINg 12-22 Displaying an image directly from the database using PDO.

<?php
try {
 // Establish database connection
 $dbh = new PDO("sqlsrv:server=(local); Database=AdventureWorksLT2008");
 $dbh->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

 // Query picture for product
 $query = 'SELECT ThumbNailPhoto FROM SalesLT.Product WHERE ProductID=:prodId';
 $stmt = $dbh->prepare($query);
 $stmt->bindValue('prodId', $_GET['id'], PDO::PARAM_INT);
 $stmt->execute();
 $stmt->bindColumn(1, $blob, PDO::PARAM_LOB, 0, PDO::SQLSRV_ENCODING_BINARY);
 $stmt->fetch(PDO::FETCH_BOUND);
}
catch(Exception $e) {
 die(print_r($e->getMessage()));
}

header('Content-type: image/gif');
echo $blob;

 Chapter 12 PHP and SQL Server 317

Summary
Working with the SQL Server PHP extension is easy for PHP programmers: the basic functions
for structuring a connection as well as sending T-SQL statements and reading the data are
similar to other database PHP extensions.

The possibility to instantiate proper classes while reading results simplifies the mapping
between application logic with PHP objects and the database. The granular control of the
data types you want to use on the PHP and SQL Server side is a helpful feature during the
development of applications.

As with other database-specific drivers, however, its use makes the later support of other
database systems more difficult. With version 2.0 of SQLSRV the driver supports PHP Data
Objects (PDO), which allows for a transparent access to SQL Server and other databases. The
PDO driver’s robust and feature rich implementation, especially the possibility of executing
direct queries that preserve context, make it an ideal choice for application developers. But
if you need to handle corner cases, need more control, or output large database objects as
streams, the native driver still is your first choice.

In the following chapter, you will learn more about advanced SQL Server features, among
them the full-text search, stored procedures, and triggers.

 319

Chapter 13

Advanced Database Functions

Today, a web application without generic search function is no longer imaginable. In addition
to the navigation features, users also expect to be able to take advantage of the website search
to quickly find the content in which they’re interested. With the full text search, Microsoft
SQL Server provides the tool to search and find data saved in a database. SQL Server is also
ideal for international websites because it supports more than 50 languages.

This chapter also describes transactions and the programming of databases using stored pro-
cedures, custom functions, and triggers. The transfer of the data logic of a PHP application
into the database not only increases the performance and security but also the quality and
accuracy of the data.

Full-Text Search
You can use the full-text indexes of SQL Server to search for text. A full-text index is a data
structure optimized for text queries to search for words in a fast and efficient way. To use the
full-text search, perform the following steps:

 1. Create a full-text catalog The catalog is the structure in which the full text indexes
are created.

 2. Create the full-text index within the catalog The index is created for specific table
columns.

 3. Search the full-text index SQL Server offers four different methods to search the
index.

In this chapter:
Full-Text Search . 319
Transactions . 326
Stored Procedures . 331
Custom Functions . 338
Triggers . 340
Summary . 342

320 Part II SQL Server

The methods using SQL Server Management Studio (SSMS) as well as Transact-SQL (T-SQL)
statements are described below.

Installing the Module
If your SQL Server installation doesn’t include the full-text search module, perform the fol-
lowing steps to install it:

 1. Start the SQL Server setup from the installation media.

 2. Select Installation | New SQL Server Stand-Alone Installation.

Warning The installation support files must have been installed successfully before con-
tinuing with the rest of this procedure.

 3. Select the Add Features To An Existing Instance Of SQL Server 2008 R2 option as instal-
lation type, and then click Next.

 4. In the Instance Features section, under Database Engine Services, select the Full-Text
Search check box, and then click Next. In the Ready To Install dialog box, click Install.

 5. When the installation is complete, click Close to exit setup.

The full-text module is now installed; you might need to restart SQL Server.

Language Selection
The full-text search in SQL Server 2008 R2 supports about 50 languages. The selected lan-
guage impacts the recognition of word boundaries, words, and root words, as well as the
stop words and the thesaurus (if applicable). Therefore, it is important to select the appropri-
ate language for indexing while creating a full-text index.

You can find a list of all supported languages in the sys.fulltext_languages system table:

select * from sys.fulltext_languages;

If you don’t specify a language, SQL Server uses the default setting, which you can query by
using the following statement:

SELECT sc.value_in_use, fl.name FROM sys.configurations AS sc
JOIN sys.fulltext_languages AS fl ON sc.value=fl.lcid
WHERE sc.name=N'default full-text language';

 Chapter 13 Advanced Database Functions 321

Creating the Catalog and the Index by Using SSMS
The following sections describe how to create the catalog and the index by using SSMS to
perform a full-text search.

Creating the Catalog
To create a full-text catalog, perform the following steps:

 1. In Object Explorer, click Storage, and then right-click Full Text Catalogs. In the context
menu that opens, click New Full-Text Catalog.

 2. Enter the name of the full-text catalog in the text box and optionally select an owner
for the catalog.

 3. Select the accent sensitivity option that meets your requirements.

 4. Click OK to confirm your settings.

Creating the Index
To create a full-text index by using SSMS, perform the following steps:

 1. In Object Explorer, right-click the desired table. In the context menu that opens, select
Full-Text Index, and then click Define Full-Text Index.

The Full-Text Indexing Wizard opens.

 2. On the second page of the wizard, select the associated index used to map the full-text
search results to the corresponding table rows. It is best practice to select the primary
table key. Click Next to confirm.

 3. On the Select Table Columns page, select the columns for the full-text index.

For each column, specify the Language For Word Breaker, and for a binary or varbinary()
column, select the Type Column, which is required so that SQL Server can recognize the
data type of the column.

 4. On the Change Tracking page, you can specify whether table changes are applied to
the full-text index manually or automatically.

Unless you have special requirements, it is OK to enable automatic change tracking.

 5. Assign the full-text catalog or create a new catalog and specify a stop list with words
that should be excluded from the index.

For larger indexes, you can configure the times at which the index is filled on the
Population Schedules page.

 6. Verify your settings. Click Finish to create the index.

322 Part II SQL Server

Creating the Catalog and the Index by Using T-SQL
The following sections describe how to create the catalog and the index by using T-SQL
statements.

Creating the Catalog
To create the full-text catalog, run the CREATE FULLTEXT CATALOG command:

CREATE FULLTEXT CATALOG catalog_name
 [WITH ACCENT_SENSITIVITY = {ON|OFF}]
 [AS DEFAULT]
 [AUTHORIZATION owner_name]

The ACCENT_SENSITIVITY option indicates if letters with accents are incorporated or the
basic form of a letter is used. A full-text catalog groups indexes but doesn’t use disk space.
For example, to create a full-text catalog for the AdventureWorksLT2008 database, run the
following command:

USE AdventureWorksLT2008
CREATE FULLTEXT CATALOG FT_Products
GO

Creating the Index
After the catalog is created, run the CREATE FULLTEXT INDEX command to create a full-text
index in this catalog:

CREATE FULLTEXT INDEX ON table_name
 [({ column_name [TYPE COLUMN column_name] [LANGUAGE language_term]
 } [,...n])] KEY INDEX index_name
 [ON <catalog_filegroup_option>]
 [WITH [(] <with_option> [,...n] [)]]
[;]
<with_option> ::= {
 CHANGE_TRACKING [=] { MANUAL | AUTO | OFF [, NO POPULATION] }
 | STOPLIST [=] { OFF | SYSTEM | stoplist_name } }

Each table can only have one full-text index, but the index can have several columns. A full-
text index requires a unique index (KEY INDEX) to map the full-text search results to table
rows. In addition to the full-text catalog, you can specify a FILEGROUP by using the ON
keyword if the full-text index is saved in a different location. With CHANGE_TRACKING, you
specify when table changes are applied to the full-text index.

To create a full-text index for the Description column in the SalesLT.ProductDescription table,
run the following command:

 Chapter 13 Advanced Database Functions 323

CREATE FULLTEXT INDEX ON SalesLT.ProductDescription
 (Description LANGUAGE 0)
 KEY INDEX PK_ProductDescription_ProductDescriptionID ON FT_Products
 WITH CHANGE_TRACKING AUTO, STOPLIST SYSTEM
GO

In this command, the language is set to LANGUAGE 0 (neutral) because the table contains
descriptions in different languages. For example, the locale ID (LCID) for German is 1031, for
English UK, 2057, and for English US, 1033.

Search with Full-Text Index
SQL Server offers two methods for the search with a full-text index: the exact search with
operators and weights (CONTAINS), and the free text search (FREETEXT), which can be speci-
fied within a WHERE clause (CONTAINS/FREETEXT) or return a temporary table for JOIN
(CONTAINSTABLE/FREETEXTTABLE).

Exact Search (CONTAINS/CONTAINSTABLE)
The exact search queries words precisely as indicated in the search clause. Listing 13-1 shows
how to search for the word “aerodynamic” in a product description. This search finds only the
entries containing the exact word.

LISTINg 13-1 Full-text search for the word “aerodynamic” with CONTAINS.

SELECT ProductDescriptionID, Description
FROM SalesLT.ProductDescription
WHERE CONTAINS(Description, N'lightweight')
GO

ProductDescriptionID Description
-------------------- ---
375 Cross-train, race, or just socialize on a sleek, aerodynamic
 bike. Advanced seat technology provides comfort all day.
376 Cross-train, race, or just socialize on a sleek, aerodynamic
 bike designed for a woman. Advanced seat technology provides
 comfort all day.

You can use the results returned by CONTAINSTABLE() as a temporary table. Listing 13-2
shows that this table consists of two columns: the value of the key that is used to find the row
in the table (in this example, SalesLT.ProductDescription), and a relative priority to sort the
result list.

324 Part II SQL Server

LISTINg 13-2 The result of the search with CONTAINSTABLE.

SELECT * FROM CONTAINSTABLE (SalesLT.ProductDescription, Description, N'road')
GO

KEY RANK
---- ----
 8 32
 64 32
170 48
...
(13 rows affected)

Listing 13-3 shows how to sort a search with CONTAINSTABLE. The temporary table with the
search results is linked with the other tables by JOIN. This example shows why a key index is
required for the table entries when defining a full text index.

LISTINg 13-3 Full text search for the word “road” with CONTAINSTABLE.

SELECT p.ProductID, p.Name, pd.Description
FROM SalesLT.Product AS p
JOIN SalesLT.ProductModelProductDescription AS pmpd
 ON pmpd.ProductModelID = p.ProductModelID
JOIN SalesLT.ProductDescription AS pd
 ON pd.ProductDescriptionID = pmpd.ProductDescriptionID
JOIN CONTAINSTABLE (SalesLT.ProductDescription, Description, N'road') AS ft
 ON ft.[KEY] = pd.ProductDescriptionID
WHERE pmpd.Culture = N'en'
ORDER BY ft.[RANK] DESC
GO

ProductID Name Description
--------- ---------------------- --
808 LL Mountain Handlebars All-purpose bar for on or off-road
818 LL Road Front Wheel Replacement road front wheel for entry-level cyclist
803 ML Fork Composite road fork with an aluminum steerer tube
...
(25 rows affected)

CONTAINS/CONTAINSTABLE doesn’t only search for single words. Table 13-1 lists an over-
view of the search expressions.

 Chapter 13 Advanced Database Functions 325

TABLE 13-1 Search expressions for the full-text search with CONTAINS

Search expression Description
word Searches for the specified word.

“text phrase” Searches for a phrase that appears in the exact order in the
text.

wor* / “text phra*” The * placeholder searches for words (or phrases) beginning
with certain letters.

phrase1 AND phrase2
phrase1 AND NOT phrase2
phrase1 OR phrase2

Boolean operators to link search expressions.

FORMSOF (INFLECTIONAL, word)
FORMSOF (THESAURUS, word)

Searches for word forms (for example, plural) or similar
words.
Tip Note the index language and verify that the thesaurus
exists.

word1 NEAR word2
word1 ~ word2

Searches for words close in the text, which need not neces-
sarily be consecutive words.

ISABOUT (phrase1 WEIGHT (n),
phrase2 WEIGHT (m))

Weighting of search expressions.

Free-Text Search (FREETEXT/FREETEXTTABLE)
You pass the searched text to the free-text search with FREETEXT. FREETEXT searches for cor-
responding entries in the full-text index. The search considers word forms and the thesaurus
and phrases are automatically weighted.

Listing 13-4 shows an example in which the search criteria are based on the text “entry level
mountain bike” and the search returns the five best results.

LISTINg 13-4 Free-text full-text search with FREETEXTTABLE.

SELECT pd.ProductDescriptionID, pd.Description
FROM SalesLT.ProductDescription AS pd
JOIN FREETEXTTABLE(SalesLT.ProductDescription, Description,
 N'entry level mountain bike', 5) AS ft
 ON ft.[KEY] = pd.ProductDescriptionID
GO

ProductDescriptionID Description
-------------------- --
 686 Replacement mountain wheel for entry-level rider.
 867 Replacement rear mountain wheel for entry-level rider.
1981 Replacement mountain wheel for entry-level rider.
 689 Replacement road front wheel for entry-level cyclist.
 703 Unique shape reduces fatigue for entry level riders.
(5 rows affected)

326 Part II SQL Server

Tip The fourth parameter of CONTAINSTABLE/FREETEXTTABLE specifies how many search re-
sults are returned. If this parameter is set, the results are automatically sorted by relevance. In
Listing 13-4, the five best results are returned.

Transactions
An important characteristic of relational database systems is that database operations are
atomic and isolated—that is to say, the operations don’t interact. These separate operations
are called transactions. SQL Server also supports transactions. By default, each T-SQL state-
ment is a separate transaction (auto commit mode).

T-SQL Transactions
You can combine several T-SQL statements in a single transaction. For this purpose, SQL
Server offers the following commands:

■ BEgIN TRANSACTION Starts a transaction

■ COMMIT TRANSACTION Completes a transaction and saves changes in the
database

■ ROLLBACK TRANSACTION Completes a transaction and discards all changes

■ SAVE TRANSACTION Saves the current transaction status; future rollback commands
discard changes up to this point

Transactions can be named and nested. If transactions are nested, a ROLLBACK rolls back
all transactions. It is not possible to only roll back an inner transaction. Listing 13-5 shows
the functionality of transactions based on a temporary table (if the table name starts with
a pound sign [hash], the corresponding table is automatically saved as a temporary table).
SELECT returns the values 1, 2, 3, and 6 because 4, 5, and 7 were rolled back.

LISTINg 13-5 T-SQL transactions based on a temporary table.

CREATE TABLE #testTable (number int); -- Create temporary table
GO
BEGIN TRANSACTION; -- Starts the first transaction
INSERT INTO #testTable VALUES (1);
BEGIN TRANSACTION T_Two; -- Starts the second nested transaction
INSERT INTO #testTable VALUES (2);
COMMIT TRANSACTION T_Two; -- Note that T_Two can still be rolled
INSERT INTO #testTable VALUES (3); -- back together with first transaction
SAVE TRANSACTION Protection_point; -- Defining a protection point

 Chapter 13 Advanced Database Functions 327

INSERT INTO #testTable VALUES (4);
INSERT INTO #testTable VALUES (5);
ROLLBACK TRAN Protection_point; -- Roll back up to the protection point
INSERT INTO #testTable VALUES (6);
COMMIT TRANSACTION; -- Complete the first transaction
BEGIN TRAN -- Starts the third transaction
INSERT INTO #testTable VALUES (7);
ROLLBACK TRAN; -- Roll back the third transaction
SELECT * FROM #testTable; -- Returns the values 1,2,3,6
GO
DROP TABLE #testTable;
GO

Transaction Isolation Levels
Transactions not only ensure the atomicity of the executed statements in the transaction
(either all or none are applied), but also isolate changes from other concurrent users (this is
the “I” of the ACID model). Isolation comes at a price: other users might be locked out until
the current transaction has completed. Without isolation, concurrent transactions might run
into one of the following issues:

■ Dirty reads A transaction might read data written by another, yet uncommitted
transaction. If the latter rolls back its changes, the former transaction is left with dirty
data.

■ Non-repeatable reads If a transaction reads the same data twice, another transac-
tion might change the data in between. Reading the same data thus renders two differ-
ent results.

■ Phantom reads Closely related to non-repeatable reads, phantom reads occur when
another transaction inserts or deletes data records. If this happens between two reads
of the same range, then so-called phantom rows seem to appear and disappear.

■ Lost updates This happens, when two concurrent transactions that are unaware of
each other consecutively update the same record. The update of the first transaction
might be lost.

SQL Server provides five different isolation levels, each with its distinct advantages and dis-
advantages. You should choose the isolation level suitable for your application needs:

■ READ UNCOMMITTED This level offers no isolation between transactions. Every one
of the aforementioned problems mentioned above can occur. It is the fastest of all levels,
as transactions do not block each other, and lock contention cannot occur.

■ READ COMMITTED This is the default isolation level. It prevents dirty reads of
uncommitted data, but not phantom and non-repeatable reads, as transactions that
are committed can change data between two reads.

328 Part II SQL Server

■ REPEATABLE READ As the name suggests, this ensures repeatable reads. In addi-
tion to the restrictions of the read-committed level, other transactions are forbidden
to modify records the current transaction has read, until it finishes. To ensure this, SQL
Server uses shared locks. If your application has a high transaction volume, this could
pose performance problems. Phantom reads are still possible, as newly inserted records
by other transactions are not affected by the locking mechanism.

■ SNAPSHOT This isolation level protects against all four problems, because it makes
a snapshot of all data requested by the transaction. Thus, each statement has the same
consistent view, from start until the end of the transaction, unaffected by other trans-
actions. Under the hood, SQL Server uses row-level versioning for this level. Again this
is resource intensive, so performance is not as good as for the first two levels, but it
operates without locks, so lock contention does not occur. However, a transaction can
fail if another transaction modified the same data at the same time. This approach is
sometimes called optimistic concurrency control.

■ SERIALIZEABLE This level also protects against all four problems, but uses range
locks to prevent phantom reads (see the Note that follows). It employs a pessimis-
tic approach to concurrency control. Range locks can cover quite a lot of records, so
depending on circumstances, this isolation level has very low performance and lock
contention, possibly even deadlocks, occur.

Note Craig Freedman wrote a good explanation regarding the difference between the
SNAPSHOT and SERIALIZEABLE isolation levels on his SQL Server blog, which you can
access at http://blogs.msdn.com/b/craigfr/archive/2007/05/16/serializable-vs-snapshot-
isolation-level.aspx.

The transaction level is set by using the T-SQL command:

SET TRANSACTION ISOLATION LEVEL (isolation level) [;]

The transaction isolation level should be set before the transactions starts. Within certain
limits, it is possible to change the isolation level within a transaction. Go to MSDN for a
more in-depth discussion of the various levels at http://msdn.microsoft.com/en-us/library/
ms173763.aspx.

PHP Transactions
T-SQL transactions should only be used for stored procedures. In PHP, you should use the
functions of the PHP SQL Server extension, because the extension needs to know the trans-
action status to ensure the correct behavior. The following functions are available:

http://blogs.msdn.com/b/craigfr/archive/2007/05/16/serializable-vs-snapshot-isolation-level.aspx
http://blogs.msdn.com/b/craigfr/archive/2007/05/16/serializable-vs-snapshot-isolation-level.aspx
http://msdn.microsoft.com/en-us/library/ms173763.aspx
http://msdn.microsoft.com/en-us/library/ms173763.aspx

 Chapter 13 Advanced Database Functions 329

■ sqlsrv_begin_transaction() Starts a transaction.

■ sqlsrv_commit() Completes a transaction and saves changes.

■ sqlsrv_rollback() Completes a transaction and discards changes.

There is no equivalent to SAVE TRANSACTION because PHP and transactions cannot be
nested. Listing 13-6 shows the effect of transactions: The values 1, 2, and 5 are returned
because the values 3 and 4 are inserted into a transaction that is rolled back.

LISTINg 13-6 PHP transactions based on a temporary table.

sqlsrv_query($db, "CREATE TABLE #testTable (number int);");
sqlsrv_begin_transaction($db);
 sqlsrv_query($db, "INSERT INTO #testTable VALUES (1);");
 sqlsrv_query($db, "INSERT INTO #testTable VALUES (2);");
sqlsrv_commit($db);
sqlsrv_begin_transaction($db);
 sqlsrv_query($db, "INSERT INTO #testTable VALUES (3);");
 sqlsrv_query($db, "INSERT INTO #testTable VALUES (4);");
sqlsrv_rollback($db);
sqlsrv_query($db, "INSERT INTO #testTable VALUES (5);");
$stmt = sqlsrv_query($db, "SELECT * FROM #testTable;");
while ($o = sqlsrv_fetch_object($stmt)) {
 echo $o->number, '
';
}
sqlsrv_free_stmt($stmt);

If you would like to specify the transaction isolation level, you specify it as the connection
attribute TransactionIsolation when connecting to SQL Server. There, you can use one of the
following self-explanatory constants:

■ SQLSRV_TXN_READ_UNCOMMITTED

■ SQLSRV_TXN_READ_COMMITTED

■ SQLSRV_TXN_REPEATABLE_READ

■ SQLSRV_TXN_SNAPSHOT

■ SQLSRV_TXN_SERIALIZABLE

Here is an example of setting the isolation level to REPEATABLE READ:

$connectionInfo = array(
 'Database' => 'AdventureWorksLT2008',
 'CharacterSet' => 'UTF-8',
 'TransactionIsolation' => SQLSRV_TXN_REPEATABLE_READ
);
$dbh = sqlsrv_connect(‘(local)’, $connectionInfo);

330 Part II SQL Server

Transactions Using PHP Data Objects
If you are using PHP Data Objects (PDO), then you can use the following functions for SQL
transactions:

■ PDO::beginTransaction() Starts a transaction.

■ PDO::commit() Completes a transaction and saves any changes made.

■ PDO::rollBack() Completes a transaction and discard changes.

Listing 13-7 shows how you would use PDO transactions in your programs. Again the result is
1, 2, and 5, just as in Listing 13-6, because the other values are rolled back.

LISTINg 13-7 PHP transactions with PDO.

try {
 $dbh->exec("CREATE TABLE #testTable (number int);");
 $dbh->beginTransaction();
 $dbh->exec("INSERT INTO #testTable VALUES (1);");
 $dbh->exec("INSERT INTO #testTable VALUES (2);");
 $dbh->commit();
 $dbh->beginTransaction();
 $dbh->exec("INSERT INTO #testTable VALUES (3);");
 $dbh->exec("INSERT INTO #testTable VALUES (4);");
 $dbh->rollBack();
 $dbh->exec("INSERT INTO #testTable VALUES (5);");
 foreach ($dbh->query("SELECT * FROM #testTable;") AS $row) {
 echo $row['number'], '
';
 }
 $dbh = null;
} catch (Exception $e) {
 echo "Failed: " . $e->getMessage();
}

To specify the transaction isolation level, you add the TransactionIsolation keyword to the
connection string. The same predefined constants are used, just as with the native driver, but
this time inside the PDO class; thus, they are named PDO::SQLSRV_TXN_*:

$dbh = new PDO('sqlsrv:server=(local); Database=AdventureWorksLT2008;' .
 'TransactionIsolation=' . PDO::SQLSRV_TXN_READ_UNCOMMITTED, "", "");

Both PHP SQL Server extensions, sqlsrv and PDO, will automatically roll back any open trans-
actions at the end of the script. This ensures that the database is left in a consistent state if
the PHP script exits unexpectedly. Note that you actually should ensure that the begin trans-
action commands succeeds; otherwise, SQL Server will remain in auto commit mode.

 Chapter 13 Advanced Database Functions 331

Stored Procedures
With stored procedures, you can program SQL Server with T-SQL statements. T-SQL state-
ments correspond to a T-SQL batch with input and output variables. Stored procedures are
powerful tools for optimizing the performance, comfort, and the security of databases. The
following sections describe variables, control structures, and procedures. Unlike custom func-
tions, procedures can change the data in tables as well as the database structure. Chapter 14,
“Users and Permissions,” explains the permissions of stored procedures in more detail.

Variables
In T-SQL, variables are defined by using the DECLARE statement and specified and changed
with the SET statement. Listing 13-8 shows an example.

LISTINg 13-8 Declaring and calculating variables.

DECLARE @a int = 3;
DECLARE @b int;
SET @b = @a + 2;
PRINT @b;
PRINT 'A:' + CAST(@a AS varchar) + ', B:' + CAST(@b AS varchar);
GO

5
A:3, B:5

Note The CAST statements for the second PRINT are required because the plus operator adds
strings as well as numbers, and the addition would take priority.

Variables are only valid within a function, a procedure, or a T-SQL batch. The following example
causes an error because the PRINT statement is outside of the batch:

DECLARE @a int = 3;
GO
PRINT @a;

Valid data types for variables are all data types that can be used for table columns (see
Chapter 10, “Databases and Tables”), except varchar(max), nvarchar(max), and varbinary(max).
Variables can also contain tables, as is demonstrated in Listing 13-9.

332 Part II SQL Server

LISTINg 13-9 Defining a variable containing a table.

DECLARE @friends TABLE (name nvarchar(30));
INSERT INTO @friends VALUES (N'Doris'), (N'Tony'), (N'Julia');
SELECT name FROM @friends;
GO

name

Doris
Tony
Julia

Defining Procedures
To define a procedure, use the CREATE PROCEDURE (short CREATE PROC) statement. Listing
13-10 shows an example procedure, followed by an explanation of the steps. The procedure
is created in the AdventureWorksLT database.

LISTINg 13-10 Defining a stored procedure.

IF OBJECT_ID('SalesLT.getProducts', N'P') IS NOT NULL
 DROP PROC SalesLT.getProducts;
GO
CREATE PROC SalesLT.getProducts
 @category nvarchar(50),
 @color nvarchar(15) = N'Blue'
AS
 SELECT p.ProductId, p.Name
 FROM SalesLT.Product AS p JOIN SalesLT.ProductCategory AS pc
 ON p.ProductCategoryID = pc.ProductCategoryID
 WHERE p.Color=@color AND pc.Name=@category;
GO

The example consists of three sections. OBJECT_ID() checks if the procedure exists. If it does,
the procedure is deleted with DROP PROCEDURE.

IF OBJECT_ID('SalesLT.getProducts', N'P') IS NOT NULL DROP PROC SalesLT.getProducts;
GO

The next section defines the procedure and the parameters. The procedure is in the SalesLT
schema, has the name getProducts, and expects the two parameters: @category and @color.

@color has a default value (N’Blue’) and doesn’t need to be specified.

CREATE PROC SalesLT.getProducts
 @category nvarchar(50),
 @color nvarchar(15) = N'Blue'

 Chapter 13 Advanced Database Functions 333

The third section contains the procedure body starting with the keyword AS. This includes
the T-SQL statements that should run when the procedure is called. The procedure can be
understood as a T-SQL batch that accepts parameters and (optional) returns results. The
batch in the example consists of a single SELECT statement, and the WHERE clause checks for
parameters:

AS
 SELECT p.ProductId, p.Name
 FROM SalesLT.Product AS p JOIN SalesLT.ProductCategory AS pc
 ON p.ProductCategoryID = pc.ProductCategoryID
 WHERE p.Color=@color AND pc.Name=@category;
GO

Calling Procedures
Stored procedures are called by using EXECUTE (short EXEC), and the parameters are passed
during the call, as shown in the following example:

EXECUTE SalesLT.getProducts @category=N'Helmets', @color=N'Red';
GO

ProductId Name
--------- ---------------------
707 Sport-100 Helmet, Red

You don’t need to enter the parameter names if the parameters are specified in the same
order as defined in the procedure:

EXECUTE SalesLT.getProducts N'Helmets', N'Red';

To call a procedure, the user must have EXECUTE permission (see Chapter 14).

Output Parameters and Return Values
Stored procedures can return values in output parameters or a return value with the RETURN
statement. The return value should not be used to pass data; use it instead to pass status
codes.

Listing 13-11 shows an example. In the listing, the getLowestPrice procedure returns the low-
est product price in a category in the @lowestPrice output parameter marked with the key-
word OUTPUT. The RETURN statement at the end of the procedure returns the value 0 if
@lowestPrice=NULL; otherwise, it returns a value of 1.

334 Part II SQL Server

LISTINg 13-11 A stored procedure with output parameter and return value.

IF OBJECT_ID('SalesLT.getLowestPrice', 'P') IS NOT NULL
 DROP PROC SalesLT.getLowestPrice;
GO
CREATE PROC SalesLT.getLowestPrice
 @category nvarchar(50),
 @lowestPrice money OUTPUT
AS
SET @lowestPrice = (
 SELECT MIN(p.ListPrice) FROM SalesLT.Product AS p
 JOIN SalesLT.ProductCategory AS pc ON p.ProductCategoryID = pc.ProductCategoryID
 WHERE pc.Name=@category);
RETURN ISNULL(@lowestPrice,0) / ISNULL(@lowestPrice,1);
GO

Listing 13-12 shows how the procedure is called. In this example, the return value is saved
in @status and the @lowestPrice output parameter is saved in the @lp variable. The output
parameter must also have the keyword OUTPUT (short OUT) when called.

LISTINg 13-12 Calling a procedure with output parameter and return value.

DECLARE @lp money;
DECLARE @status bit;
EXEC @status = SalesLT.getProducts2 @category=N'Helmets', @lowestPrice=@lp OUT;
SELECT @status, @lp;

Control Structures
T-SQL provides known control structures for procedures: queries with IF/ELSE and CASE
queries as well as loops with WHILE, which can be controlled with BREAK and CONTINUE.
Because control structures always refer to a statement, you can define statement blocks with
BEGIN and END.

Listing 13-13 shows how to use structures based on the getCreditPrice procedure. The proce-
dure calculates the product price for a credit purchase. This example also shows how to use
comments: single-line comments begin with two hyphens “--”, and multiline comments are
enclosed in /* … */.

 Chapter 13 Advanced Database Functions 335

LISTINg 13-13 A procedure with T-SQL control structures.

/* getCreditPrice:
 * Calculates the product price for a credit purchase
 */
CREATE PROC SalesLT.getCreditPrice
 @id int, -- SalesLT.Product.ProductId
 @rate real, -- Monthly interest rate
 @months int = 12, -- Number of months
 @listPrice money OUTPUT,
 @price money OUTPUT
AS
 DECLARE @fee money; -- Definition of a local variable for fees
 SET @price = (
 SELECT ListPrice FROM SalesLT.Product
 WHERE ProductID = @id);
 SET @listPrice = @price;
 SET @fee = CASE -- Fees depend on product price
 WHEN @price < 10.0 THEN 0.50
 WHEN @price < 50.0 THEN 1.00
 ELSE 2.00
 END;
 IF (@months >= 24) BEGIN -- If credit period is over 2 years, the fee
doubles
 SET @fee *= 2;
 END
 WHILE (@months > 0) BEGIN -- Calculating the interest and compound interest
 SET @price = @price * (1+@rate);
 SET @months -= 1;
 END
 SET @price += @fee;
GO

Note If you use the CASE statement to check for equivalency, the syntax is simpler because the
variable is located next to the keyword CASE, as demonstrated in the following:

SET @fee = CASE @color -- Fees depend on product color
 WHEN 'Blue' THEN 0.50
 WHEN 'Red' THEN 1.00
 ELSE 2.00
END;

336 Part II SQL Server

Calls from PHP
In PHP, stored procedures are called by using the sqlsrv_query() function. To call the proce-
dure in Listing 13-10, enter the following command:

$stmt = sqlsrv_query($db, "EXEC SalesLT.getProducts N'Helmets'");
while ($obj = sqlsrv_fetch_object($stmt)) {
 ...
}
sqlsrv_free_stmt($stmt);

Using prepared statements, you can easily access output parameters of stored procedures.
When binding parameters to a prepared statement, you can indicate the parameter direction
as follows:

■ SQLSRV_PARAM_IN Defines an input parameter.

■ SQLSRV_PARAM_INOUT Defines a bidirectional parameter, used for input and
output.

■ SQLSRV_PARAM_OUT Defines an output parameter.

To set these options, you pass the PHP variable inside an array to sqlsrv_prepare():

array(&$phpvar [, $param_direction [, $phpType [, $sqlType]]])

You should always pass PHP variables by reference (&$phpvar) instead of by value ($phpvar).
Also, ensure that the variable is not NULL if you use it as bidirectional or output parameter.
An error might occur otherwise.

Listing 13-14 shows how to execute the SalesLT.getCreditPrice stored procedure from Listing
13-13. The variables $listPrice and $creditPrice are used as output parameters. Note that the
sqlsrv driver infers the data type from the current value of the variable. Because SalesLT.get
CreditPrice returns money values, you should use the PHP float data type. There are two ways
to ensure this: one is to state the PHP data type explicitly with SQLSRV_PHPTYPE_FLOAT as is
done with $listPrice. The other (less secure) way is to have the PHP variable hold a float value
when it is bound to the statement, as is done with $creditPrice=0.0.

 Chapter 13 Advanced Database Functions 337

LISTINg 13-14 Retrieving output parameters in PHP.

$listPrice = 0;
$creditPrice = 0.0;
$stmt = sqlsrv_prepare($db, "EXECUTE SalesLT.getCreditPrice ?, ?, ?, ?, ?;",
 array(
 711, 0.01, 24, // first three parameters
 array(&$listPrice, SQLSRV_PARAM_OUT, SQLSRV_PHPTYPE_FLOAT),
 array(&$creditPrice, SQLSRV_PARAM_OUT)
)
);
sqlsrv_execute($stmt);
sqlsrv_free_stmt($stmt);
echo "List price: $listPrice
";
echo "Price for credit purchase: $creditPrice
";

Calling Stored Procedures from PDO
Using PDO, it is possible to call stored procedures with output parameters, as well. You
should keep in mind though that PDO does not support as many data types as the native
SQL Server driver. PDO does not provide pure output parameters but only input or bidirec-
tional parameters.

Bidirectional parameters are indicated with the option PDO::PARAM_INPUT_OUTPUT. There
is one important caveat when using bidirectional parameters with PDO: you need to define
the maximum result size (in bytes) while binding the parameter. If the result is larger, the
query will return an error.

Listing 13-15 shows how to call the stored procedure SalesLT.getCreditPrice from Listing 13-13.
Both $listPrice and $creditPrice are bound as bidirectional parameters with a maximum result
size of 20 bytes. Other than the native SQL Server driver, PDO does not require you to pass
PHP variables by reference, as you can see in the bindParam() calls. As PDO does not provide
any special money or float type, we have to define the data type as string (PDO::PARAM_
STR). Note that PDO rounds the money type to two decimal places. If you require all four
decimal places of the money SQL data type, then you need to use a decimal SQL data type
for the parameters of your stored procedure, instead.

338 Part II SQL Server

LISTINg 13-15 Retrieving output parameters with PDO.

try {
 $stmt = $dbh->prepare("EXECUTE SalesLT.getCreditPrice ?, ?, ?, ?, ?;");
 $stmt->bindValue(1, 711);
 $stmt->bindValue(2, 0.01);
 $stmt->bindValue(3, 24);
 $listPrice = 0;
 $creditPrice = 0;
 $stmt->bindParam(4, $listPrice, PDO::PARAM_STR|PDO::PARAM_INPUT_OUTPUT, 20);
 $stmt->bindParam(5, $creditPrice, PDO::PARAM_STR|PDO::PARAM_INPUT_OUTPUT, 20);
 $stmt->execute();
 echo "List price: $listPrice
";
 echo "Price for credit purchase: $creditPrice
";
}
catch(Exception $e) {
 die(print_r($e->getMessage()));
}

Custom Functions
You create custom functions by using CREATE FUNCTION. Functions are similar to stored
procedures; however, custom functions are limited because you can’t use them to change
data and the function must not have any side effects. For example, you cannot call the
NEWID or RAND functions. But you can use functions in queries and other T-SQL statements.

Scalar Functions
The return value of a scalar function is a basic data type, such as int, datetime, or nchar, but
not timestamp, cursor, or table. Listing 13-16 shows an example function. Like PHP functions,
the parameters are enclosed in parentheses, the return value is defined with RETURNS and
the function body is encapsulated within a BEGIN/END block.

LISTINg 13-16 A custom function to calculate the gross margin in percent.

IF OBJECT_ID('SalesLT.margin') IS NOT NULL
 DROP FUNCTION SalesLT.margin;
GO
CREATE FUNCTION SalesLT.margin (@cost money, @listprice money)
RETURNS float
BEGIN
 RETURN (@listprice/@cost)-1;
END
GO

 Chapter 13 Advanced Database Functions 339

The function can be called within a SELECT statement:

SELECT ProductID, Name FROM SalesLT.Product
WHERE SalesLT.margin(StandardCost, ListPrice) < 0.30;

Table-Valued Functions
Table-valued functions return a table as return value. You could use the results in the FROM
section of a SELECT statement. There are two types of table-valued functions: inline functions
and multistatement functions.

Inline Table-Valued Functions
An inline table-valued function is basically an encapsulated SELECT statement (see
Listing 13-17). The return data type is RETURNS TABLE.

LISTINg 13-17 Defining an inline table-valued function.

CREATE FUNCTION SalesLT.TopSalesPersons(@persons)
RETURNS TABLE
RETURN (
 SELECT TOP (@persons) c.SalesPerson FROM SalesLT.Customer AS c
 JOIN SalesLT.SalesOrderHeader AS soh ON c.CustomerID=soh.CustomerID
 GROUP BY c.SalesPerson
 ORDER BY SUM(soh.SubTotal) DESC
);

To view all regions with customers of the top three sellers, you would run the following state-
ment using the TopSalesPersons(3) function as table in JOIN, as shown in Listing 13-18.

LISTINg 13-18 Calling an inline table function.

SELECT DISTINCT a.StateProvince, a.CountryRegion
FROM SalesLT.Address AS a
JOIN SalesLT.CustomerAddress AS ca ON a.AddressID=ca.AddressID
JOIN SalesLT.Customer AS c ON ca.CustomerID=c.CustomerID
JOIN SalesLT.Top3SalesPersons(3) AS t3sp ON c.SalesPerson=t3sp.SalesPerson;

Multi-Statement Table-Valued Functions
A multi-statement table-valued function creates the table within a variable and returns this
variable. Listing 13-19 shows an example function. In the example, the function in Listing 13-17
and the query in Listing 13-18 are combined to define the RegionsOfTopSalesPersons() func-
tion to return the regions in which the customers of the best sellers reside.

340 Part II SQL Server

LISTINg 13-19 A multi-statement table-valued function.

CREATE FUNCTION SalesLT.RegionsOfTopSalesPersons (@persons int)
RETURNS @Regions TABLE (StateProvince nvarchar(50),
 CountryRegion nvarchar(50))
BEGIN
 DECLARE @TopSalesPersons TABLE (SalesPerson nvarchar(256));
 INSERT INTO @TopSalesPersons
 SELECT TOP (@persons) c.SalesPerson FROM SalesLT.Customer AS c
 JOIN SalesLT.SalesOrderHeader AS soh ON c.CustomerID=soh.CustomerID
 GROUP BY c.SalesPerson ORDER BY SUM(soh.SubTotal) DESC;
 INSERT INTO @Regions
 SELECT DISTINCT a.StateProvince, a.CountryRegion FROM SalesLT.Address AS a
 JOIN SalesLT.CustomerAddress AS ca ON a.AddressID=ca.AddressID
 JOIN SalesLT.Customer AS c ON ca.CustomerID=c.CustomerID
 JOIN @TopSalesPersons AS t3sp ON c.SalesPerson=t3sp.SalesPerson;
 RETURN;
END;

Triggers
Triggers are useful tools to ensure the consistency of data or to execute T-SQL statements
based on events. Triggers can be initiated if tables are accessed or the data model is
changed. The most common trigger types responding to table data (UPDATE, INSERT,
DELETE) are described below.

Creating a Trigger
Listing 13-20 shows how to create a trigger by using CREATE TRIGGER. The syntax is similar
to the syntax for stored procedures.

LISTINg 13-20 Creating a trigger.

IF OBJECT_ID('SalesLT.CorrectDates','TR') IS NOT NULL
 DROP TRIGGER SalesLT.CorrectDates;
GO
CREATE TRIGGER SalesLT.CorrectDates ON SalesLT.SalesOrderDetail
FOR INSERT, UPDATE
AS
 IF EXISTS (SELECT * FROM inserted AS i
 JOIN SalesLT.Product AS p ON i.ProductID = p.ProductID
 WHERE p.SellEndDate < getdate())
 BEGIN
 RAISERROR ('Product no longer available.', 16, 1);
 ROLLBACK TRANSACTION;
 RETURN
END;
GO

 Chapter 13 Advanced Database Functions 341

You can define several triggers for a table even if they are initiated by the same action. Let’s
have a closer look at each step in Listing 13-20.

Detailed Explanation
First you check if the trigger already exists. If yes, the trigger is deleted. Afterward, you define
the trigger:

CREATE TRIGGER SalesLT.CorrectDates ON SalesLT.SalesOrderDetail

Triggers are linked to table actions. Therefore, the table is specified after the ON keyword.
Next, you specify the actions that initiate the trigger:

FOR INSERT, UPDATE

In this case, the INSERT and UPDATE statements initiate the trigger. The trigger is not initi-
ated by the DELETE statement. You can also use the AFTER keyword instead of FOR.

You can also execute a trigger instead of the action: instead of FOR, use the INSTEAD OF
keyword. For each triggering action, only one alternative trigger is allowed. These triggers
are usually used for views.

Afterward, you define the body:

AS
 IF EXISTS (SELECT * FROM inserted AS i
 JOIN SalesLT.Product AS p ON i.ProductID = p.ProductID
 WHERE p.SellEndDate < getdate())

Within a trigger, two tables are available: inserted and deleted. The inserted table contains the
rows to be added or the rows after a change made by UPDATE. The deleted table contains
the deleted rows or the rows before a change was made by UPDATE. The condition checks if
a product is included in the order that is no longer available (p.SellEndDate < getdate()).

Note The inserted and deleted tables might be empty if the UPDATE function doesn’t change
any rows, because the WHERE clause is too restrictive.

Next follows the action executed if the product is no longer available:

 BEGIN
 RAISEERROR ('Product no longer available.', 16, 1);
 ROLLBACK TRANSACTION;
 RETURN
END;

RAISEERROR generates an error message and ROLLBACK TRANSACTION discards the
changes.

342 Part II SQL Server

Initiating the Trigger
For example, if a new line is added to SalesOrderDetail, SQL Server calls the trigger and
causes an error:

INSERT INTO SalesLT.SalesOrderDetail (SalesOrderID, OrderQty, ProductID, UnitPrice)
 VALUES (71774, 3, 709, 9.50);
GO

Msg 50000, Level 16, State 1, Procedure CorrectDates, Line 8
Product no longer available
Msg 3609, Level 16, State 1, Line 1
The transaction ended in the trigger. The batch has been aborted.

Summary
This chapter introduced the full-text search, transactions, and programming in T-SQL. The
full-text search in PHP applications is useful to search descriptions, comments, pages, titles
and other content. The combination of several columns in an index allows a combined search
in a single query.

With transactions, you can combine several T-SQL statements into an atomic execution unit
to save all changes or to roll back all changes. You should use transactions if a PHP applica-
tion function changes several tables at once. If a change causes an error, you can reset the
tables by using sqlsrv_rollback() or its PDO equivalent.

Stored procedures, custom functions, and triggers are useful tools to perform data-intensive
tasks directly in the database without the detour through the PHP application. By transfer-
ring part of the program logic into the database, you can also ensure the consistency and
accuracy of the data. The next chapter explains how stored procedures can increase the data-
base security.

 343

Chapter 14

Users and Permissions

Data security in Microsoft SQL Server is controlled through users and roles (so-called princi-
pals). The users and roles are granted rights for server objects. Each time data is written, read,
or executed (stored procedures), the required rights of the principal are verified. The principal
can access data only if he has the required permission. The following sections describe princi-
pals, rights, and objects.

SQL Server Principals
SQL Server principals are divided into the following classes:

■ Authentication type Either a Windows user (or group) or a SQL Server user account.
The authentication with asymmetric keys or certificates is also possible.

■ Principal level You can create principals on the server level or database level.

■ Role or login A login is an authenticated user or group. Roles are internal SQL Server
groups. SQL Server provides predefined roles on the database or server level.

Usually, you create a user login on the server level, assign a database user to this login, and
then assign the user roles with the required access rights to database elements. The next sec-
tions describe the SQL Server principals in this order.

Server Principals
You define server principals on the SQL Server level. Server principals can be assigned rights
for all databases. In SQL Server, a user principal is called login. The two login types are
described below in the following subsections.

In this chapter:
SQL Server Principals . 343
Creating SQL Server Principals . 346
Objects and Permissions . 353
Stored Procedures . 358
Summary . 361

344 Part II SQL Server

Login Types
The login types of server principals are based on Windows users and SQL Server users.

From a database administrator’s point of view, Windows users and groups are preferred
to SQL Server users. Password policies and other management functions are managed
outside the database. The use of Windows groups saves the database administrator a lot
of work. If users leave or join the organization or take on a different position, the security
structure of the database is maintained because the group members change but not the
group itself. With that said, SQL Server users offer the advantage that they are independent
from Windows users and ideal for application-oriented logons which are typical for public
websites.

Server Roles
Table 14-1 lists the nine available predefined server roles. Logins can be members of these
roles, but you cannot create your own server roles. Server roles are primarily intended for the
management of SQL Server. Each user is assigned the public role (default role). Therefore, you
should only grant the public role access if you want all users to be able to access the server.

TABLE 14-1 Server roles in SQL Server

Server role Description of the rights
bulkadmin Add data to the database with BULK INSERT

dbcreator Create, change, delete, and restore databases

diskadmin Manage the data files of SQL Server

processadmin Stop, cancel, or restart SQL Server processes

public Default role for all users, only minimum rights

securityadmin Manage access rights, reset passwords

serveradmin Change the server configuration and restart or shut down servers

setupadmin Add or remove connected servers

sysadmin Full access, has all rights

Database Principals
Database principals are only valid for the database in which they are defined. There are also
roles on the database level. On this level, you can define your own roles.

 Chapter 14 Users and Permissions 345

Database Users
To grant access to database objects for server principals, you need to create a user for
this login in the database. A database user represents the login within the database that is
assigned permissions for database elements.

You can also create database users without assigned server login. A user without login is
typically used to access elements as this user (EXECUTE AS). The combination of login, server
role, (database) user, and database role allows more flexibility in the design of security con-
cepts. Usually, users without login are used only by applications.

Database Roles
You can assign roles to users on the database level. A role consists of database users, and you
can assign permissions for elements to a role. It is best practice to not grant users permis-
sions directly but to instead assign roles to users and permissions to roles. If users change,
only their role assignments change, and you don’t need to modify the permissions.

Table 14-2 lists the predefined database roles. The roles db_datareader and db_datawriter
are commonly used roles to grant users access to the elements in the database. The roles
db_denydatareader and db_denydatawriter deny access, even if a user has equivalent access
rights somewhere else. In the SQL Server security concept, a restraint always has priority over
a permission.

TABLE 14-2 Predefined database roles in SQL Server

Database role Description of the rights
db_accessadmin Add or remove database users

db_backupoperator Backup databases without access to the database content

db_datareader Read (SELECT) the data in all (custom) tables

db_datawriter Write (INSERT, UPDATE, DELETE) data in all (custom) tables

db_ddladmin Run DDL commands (data definition language)—for example, CREATE
TABLE, ALTER TABLE, DROP TABLE, CREATE INDEX

db_denydatareader Deny read rights (SELECT) for all table data

db_denydatawriter Deny write rights for all table data

db_owner All rights for all database elements and permission to delete the database
(DROP DATABASE)

db_securityadmin Manage roles and permissions

Contrary to roles on the server level, you can define your own database roles to ensure a
granular security concept.

346 Part II SQL Server

Creating SQL Server Principals
The following sections explain how to create logins on the server level by using SQL Server
Management Studio (SSMS) or Transact-SQL (T-SQL) statements and how to assign new users
to these logins on the database level. The assignment of permissions is described in the sec-
tion “Objects and Permissions,” later in the chapter.

Creating Logins
The first step is to create a login to grant access to SQL Server. Depending on whether the
login is a SQL Server user or a Windows user, the passwords are managed by SQL Server.

Creating Logins by Using SSMS
To create a new login on the server level by using SSMS, perform the following steps:

 1. Start SSMS, and then connect to the desired server instance.

 2. In Object Explorer, select the desired server, click Security, and then right-click Logins.
In the context menu that opens, select New Login.

The Login - New dialog box opens, as shown in Figure 14-1.

FIgURE 14-1 Creating a new login on the server level.

 Chapter 14 Users and Permissions 347

 3. Activate the desired Windows authentication for Windows users or groups, or the SQL
Server authentication.

 4. Enter the user name in the Login Name text box, and then click Search to search for
that name on the server (or in the Windows domain).

Note You cannot add Internet Information Services (IIS) application pool users by clicking
Search; you must enter them into the Login name text box manually. When the users are
found, they are added erroneously into the text box. The default user of the standard IIS
application pool is IIS AppPool\DefaultAppPool.

 5. For an SQL Server login, enter the password in the text box, and then select the check
boxes next to the password properties that you want to enable.

 6. Use the drop-down lists to specify the default database and the default language.

 7. To assign the login to a server role, select the check box for the desired roles on the
Server Roles page.

Unless the login is used for administration purposes, you should not assign additional
roles here.

 8. Click OK to create the login. The login is created on the server level.

Creating Logins by Using T-SQL
To create a new login on the server level by using T-SQL- Data Definition Language (DDL),
run the CREATE LOGIN command.

To create the login for a Windows user, run the following command:

CREATE LOGIN loginName FROM WINDOWS
WITH [DEFAULT_DATABASE = database | DEFAULT_LANGUAGE = language [,...]]

To create a login for the default user of the standard IIS application pool, run the following
command:

CREATE LOGIN [IIS AppPool\DefaultAppPool] FROM WINDOWS
CREATE LOGIN is also used to create a SQL Server user:
CREATE LOGIN loginName
WITH PASSWORD = 'password' [HASHED] [MUST_CHANGE]
[, { SID = sid
 | DEFAULT_DATABASE = database
 | DEFAULT_LANGUAGE = language
 | CHECK_EXPIRATION = { ON | OFF}
 | CHECK_POLICY = { ON | OFF}
 | CREDENTIAL = credential_name
 } [,...]]

348 Part II SQL Server

CHECK_POLICY ensures that the password complies with the Windows password policies on
the computer running SQL Server. CHECK_EXPIRATION indicates that the login is locked after
several failed attempts, and MUST_CHANGE forces the user to change his password at the
first login.

To create a login for the user doris with a password complying with the local password policy,
run the following command:

CREATE LOGIN [doris] WITH PASSWORD 'hamster lover' MUST_CHANGE, CHECK_POLICY_ON
GO

To assign server roles to a login, use the sp_addsrvrolemember procedure:

EXEC master..sp_addsrvrolemember @loginame = N'doris', @rolename = N'dbcreator'
GO

To remove a server role, use the sp_dropsrvrolemember procedure:

EXEC master..sp_dropsrvrolemember @loginame = N'doris', @rolename = N'dbcreator'
GO

Creating Users
After you create the logins on the server level, you need to create the users on data-
base level. The following sections describe how to create users by using SSMS or T-SQL
statements.

Creating Users by Using SSMS
To create a new database user by using SSMS, perform the following steps:

 1. Start SSMS, and then connect to the server.

 2. In Object Explorer, select the desired database, click Security, and then right-click Users.
In the context menu that opens, select New User.

The Database User - New dialog box opens, as illustrated in Figure 14-2.

 Chapter 14 Users and Permissions 349

FIgURE 14-2 Creating a new database user via SSMS.

 3. Select the login names that you want to assign on the server level, and then click the
[…] button located at the right of the text box to search for logins.

 4. Enter the user name in the User name text box.

You can enter any user name but it is best practice to use the same name for the data-
base user and the login.

 5. You can assign a default schema to the user in the appropriate text box. Click the but-
ton to the right of the text box to search the database for schemas.

The default schema is used if a database element is used without schema name.

 6. In the Database Role Membership pane, you can assign database roles to the user by
selecting the appropriate check boxes.

 7. Click OK to create the user.

350 Part II SQL Server

You also can create database users by using SSMS and assigning a login directly in the login
properties:

 1. In Object Explorer, select the desired server, click Security, and then right-click Logins.
In the context menu that opens, click Properties.

The Login Properties dialog box opens.

 2. Select User Mapping.

 3. In the login table, you can assign a user and a default schema to each database. In the
bottom section, specify the database role memberships for the database user, as dem-
onstrated in Figure 14-3.

FIgURE 14-3 Assigning database users to a login.

 4. Click OK to confirm your settings. If the assigned database users don’t exist, they are
created automatically and assigned to the desired database roles.

 Chapter 14 Users and Permissions 351

Creating Users by Using T-SQL
To create a database user via T-SQL-DDL, run the CREATE USER command, as follows:

CREATE USER user_name
 [{ FOR | FROM } LOGIN login_name | WITHOUT LOGIN]
 [WITH DEFAULT_SCHEMA = schema_name]

You must run the command within the database context. To create the user doris in the
AdventureWorksLT2008 database, for the XMP\doris login, run the following command:

USE AdventureWorksLT2008
CREATE USER [doris] FOR LOGIN [XMP\doris] WITH DEFAULT_SCHEMA=[SalesLT]
GO

To assign database roles to a user use the sp_addrolemember procedure:

USE AdventureWorksLT2008
EXEC sp_addrolemember N'db_datareader', N'doris'
EXEC sp_addrolemember N'db_datawriter', N'doris'
GO

To remove an assigned role, use the sp_droprolemember procedure:

USE AdventureWorksLT2008
EXEC sp_droprolemember N'db_datawriter', N'doris'
GO

Creating Database Roles
You can define your own roles on the database level and assign members and rights to these
roles. Because roles can have other roles as members, you can create a role hierarchy for
your permission concept. If you use more than one application user and pass several user
logins for the PHP application to SQL Server, you should use roles with permissions to reduce
the administration effort.

Creating Database Roles by Using SSMS
To create a new database role by using SSMS, perform the following steps:

 1. In Object Explorer, select the desired database, click Security | Roles, and then right-
click Database roles. In the context menu that opens, click New Database Role.

The Database Role - New dialog box opens.

 2. In the dialog box, enter the role name of the database role, and then in the Owner text
box, select a user (see Figure 14-4). Click the […] button to the right of the text box to
search for database users.

352 Part II SQL Server

FIgURE 14-4 Creating a new database role by using SSMS.

 3. Click the Add button to add members (users or other database roles) to the role.

 4. Click OK to create the database role.

Creating Database Roles by Using T-SQL
In T-SQL, you can create database roles by using the CREATE ROLE command:

CREATE ROLE role_name [AUTHORIZATION owner_name]

To create the CallCenterRep role in the AdventureWorksLT2008 database, run the following
command:

USE AdventureWorksLT2008
CREATE ROLE CallCenterRep
GO

Members are added by using the sp_addrolemember procedure sp_droprolemember to
remove them:

USE AdventureWorksLT2008
EXEC sp_addrolemember N'CallCenterRep', N'Bonnie'
EXEC sp_droprolemember N'CallCenterRep', N'XMP\tony'
GO

 Chapter 14 Users and Permissions 353

Objects and Permissions
Objects are the core SQL Server elements for which permissions are granted. Each object has
an owner with full control over the object. The database owner dbo is the default owner of
database objects. For other users to access objects, these users are granted object-specific
permissions. The permissions are divided into read, write, and manage rights for objects. For
web applications, the read and write permissions for object data are important.

You can assign permissions not only to users but also to database roles. It is best practice to
not grant users permissions directly and to keep the user management and the permission
structure separated.

Note The objects in databases always belong to a schema. Since SQL Server 2005, schemas
are user independent: a schema has an owner and includes objects defined independently from
users. The naming of objects—for example, tables—independent from the table owner simplifies
the management of users and permissions.

Permissions
Table 14-3 lists the permissions you can grant in SQL Server. Depending on the object type,
not all permissions might be relevant; for example, only stored procedures have executions
rights but not tables. As shown in the table, the permissions are granular, especially for tables
and views. Almost all T-SQL statements have their own permission.

TABLE 14-3 Common permissions for objects

Permission Description
UPDATE Change the data in a table or view

ALTER Change and delete objects

EXECUTE Execute stored procedures

SELECT Select data in tables or views

TAKE OWNERSHIP Take over ownership of an object

VIEW DEFINITION Display the definition of an object—for example, a stored procedure or a
table

INSERT Add data to a table

IMPERSONATE Impersonate another user

DELETE Delete data from a table or view

CONTROL Full control over an object

REFERENCES Query to control foreign key restrictions

354 Part II SQL Server

These permissions can be granted (GRANT), denied (DENY), or granted with the authoriza-
tion to pass the permission to other principals (GRANT WITH GRANT OPTION).

Effective Permissions
The effective permission for an object is calculated from the rights of all roles assigned to
the user and the user rights for this object and all parent objects. For example, to retrieve
data from the SalesLT.Customer table with SELECT, the user julia needs one of the following
permissions:

■ julia has select permission for the SalesLT.Customer table

■ julia has select permission for the SalesLT schema

■ The CallCenterRep database role of which julia is a member has select permission for
the SalesLT schema

■ julia is a member of the predefined db_datareader database role

If the user or one of their roles is explicitly denied permission, that user cannot access the
object. DENY always has priority over the permissions granted with GRANT.

Ownership Chains
If data objects have the same owner and are processed consecutively in a command, the
permission is checked in a different way; if the calling and the called object have the same
owner, the permissions are not checked.

Figure 14-5 shows an example in which the Procedure P in a database accesses View V.
View V combines data of Tables T1 and T2. If Tony has permission to call Procedure P, his
permissions for View V are not checked because P and V have the same owner (Doris). If the
View retrieves the data from Table T1, Tony’s permissions are not checked because V and T1
have the same owner. This is different for Table T2: V and T2 have different owners (Doris,
Julia), so Tony’s access permission for T2 is checked.

Tony

Procedure P
Owner: Doris

View V
Owner: Doris

Table T2
Owner: Julia

Table T1
Owner: Doris

FIgURE 14-5 Linking permissions based on ownership chains.

Because the permissions are chained together based on the owner, Tony might not be able
to directly access Table T1 and View V, but he can run the procedure P because he has
execute permission for P. Tony needs access rights only for Table T2. Ownership chains, there-
fore, provide a powerful tool in restricting access to certain data. See the section “Stored
Procedures,” later in the chapter, for more on this topic.

 Chapter 14 Users and Permissions 355

Permissions can be linked based on the owner only for SELECT, INSERT, UPDATE, and DELETE.

Note The objects must be called as shown in Figure 14-5; that is, they must be called with a
stored procedure, a trigger, or a view. A simple JOIN statement doesn’t trigger the ownership
chain mechanism.

Managing Permissions by Using SSMS
There are two ways to use SSMS to grant permissions for security-enabled elements (usually
database objects and databases): define the permission for the object entry, or for the user
or login.

Defining Permissions Through Objects
To specify the permissions through the object, perform the following steps:

 1. In Object Explorer, right-click the desired object (for example, a table), and then from
the context menu that appears, select Properties.

 2. In the dialog box that appears, select the Permissions page.

 3. Click the Search button (step 1 in Figure 14-6), and then in the dialog box that
opens, click Browse (step 2). You can select the users and roles in a list including all
users and database roles. Click OK to confirm your selection.

1

2

3

4

FIgURE 14-6 Granting access rights to a table.

356 Part II SQL Server

 4. Select the principal granting rights (step 3 in Figure 14-6), and then grant the required
permissions (step 4).

 5. Click OK to confirm your settings.

Note Figure 14-6 illustrates that you can define table permissions by column. Click the
Column Permissions button on the right to grant rights for the selected columns.

Defining Permissions Through Principals
You also can assign permissions directly through database users or roles by performing the
following steps:

 1. In Object Explorer, right-click the user or the database role, and then from the context
menu, select Properties.

 2. In the dialog box that appears, click the Securables page.

 3. Click the Search button to select the desired objects. Click OK to confirm your selection.

 4. In the Securables list, select the desired object, and then assign the permissions in the
bottom pane in the Explicit tab. Repeat these steps for all objects for which you want to
grant permissions.

 5. Click OK to confirm your settings.

Managing Permissions by Using T-SQL
To manage permissions with T-SQL, you can use the commands GRANT, DENY, and REVOKE.
GRANT grants permissions, DENY denies permissions, and REVOKE revokes the permissions
assigned with GRANT or DENY.

Granting Permissions (GRANT)
With GRANT, you can grant permissions for all SQL Server securables. The syntax to grant
permissions for database objects or schemas is as follows:

GRANT <permission> [,...n] ON
 { [OBJECT ::][schema_name]. object_name [(column [,...n])]
 | SCHEMA :: schema_name }
 TO <database_principal> [,...n]
 [WITH GRANT OPTION]

Table 14-3 lists the names of the permissions. You can also use the (obsolete) ALL keyword
to specify the permissions required to edit data. ALL includes the table permissions DELETE,
INSERT, REFERENCES, SELECT, and UPDATE.

 Chapter 14 Users and Permissions 357

WITH GRANT OPTION grants the user (or the role) the right to pass these rights on to others.

To grant the CallCenterRep role read permission for all tables in the SalesLT schema as well
as write permission for the tables SalesLT.Customer, SalesLT.CustomerAddress, and SalesLT
.Address, run the following command:

USE AdventureWorksLT2008
GRANT SELECT ON SCHEMA::SalesLT TO CallCenterRep
GRANT SELECT,UPDATE,DELETE,INSERT ON OBJECT::SalesLT.Customer TO CallCenterRep
GRANT SELECT,UPDATE,DELETE,INSERT ON SalesLT.CustomerAddress TO CallCenterRep GRANT
SELECT,UPDATE,DELETE,INSERT ON SalesLT.Address TO CallCenterRep
GO

Explicitly Denying Rights (DENY)
With DENY, you can explicitly deny permissions. The syntax is similar to the GRANT
statement:

DENY <permission> [,...n] ON
 { [OBJECT ::][schema_name]. object_name [(column [,...n])]
 | SCHEMA :: schema_name }
 TO <database_principal> [,...n]
 [CASCADE]

The CASCADE option indicates that the restraint not only applies to the specified principal
but also for all users and roles authorized by this principal.

To deny the user XMP\tony the right to delete or change the data in the tables of the SalesLT
schema as well as the right to change the dbo.ErrorLog table, run the following command:

USE AdventureWorksLT2008
DENY DELETE,UPDATE ON SCHEMA::SalesLT TO [XMP\tony]
DENY INSERT,UPDATE,DELETE ON OBJECT::dbo.ErrorLog TO [XMP\tony]
GO

Revoking Permissions (REVOKE)
Use the T-SQL REVOKE statement to revoke or delete permissions. The syntax is similar to the
DENY statement:

REVOKE [GRANT OPTION FOR] <permission> [,...n] ON
 { [OBJECT ::][schema_name]. object_name [(column [,...n])]
 | SCHEMA :: schema_name }
 { FROM | TO } <database_principal> [,...n]
 [CASCADE]

If you specify the GRANT OPTION FOR keyword, the permission is not revoked but only the
right to grant other principals the permission. CASCADE revokes the permission not only for
the specified principal but for all users and roles granted this permission by that principal.

358 Part II SQL Server

To revoke the permissions that are granted in the sections “Granting Permissions (GRANT),”
and “Explicitly Denying Rights (DENY),” run the following command:

USE AdventureWorksLT2008
REVOKE SELECT ON SCHEMA::SalesLT TO CallCenterRep
REVOKE SELECT,UPDATE,DELETE,INSERT ON OBJECT::SalesLT.Customer TO CallCenterRep
REVOKE SELECT,UPDATE,DELETE,INSERT ON SalesLT.CustomerAddress TO CallCenterRep
REVOKE SELECT,UPDATE,DELETE,INSERT ON SalesLT.Address TO CallCenterRep
REVOKE DELETE,UPDATE ON SCHEMA::SalesLT TO [XMP\tony]
REVOKE INSERT,UPDATE,DELETE ON OBJECT::dbo.ErrorLog TO [XMP\tony]
GO

Stored Procedures
Stored procedures can also be used to improve security. You can grant users the right to run
procedures but deny other permissions.

Security Through Permissions
The table AccessLog in Listing 14-1 shows how stored procedures can improve the security of
a database. This table is used to log access attempts. You want to save the user name, time of
the last access, and the number of access attempts in a table. However, you want to ensure
that the users don’t enter wrong data or manipulate the data. Therefore, you deny the public
role (all users) the INSERT, UPDATE, and DELETE permissions.

LISTINg 14-1 Creating the AccessLog table.

CREATE TABLE xmp.AccessLog (
 Username nvarchar(256) NOT NULL DEFAULT user_name() PRIMARY KEY,
 LastAccess datetime NOT NULL DEFAULT getdate(),
 AccessCount int NOT NULL DEFAULT 1
);
GO
DENY INSERT, UPDATE, DELETE ON xmp.AccessLog TO public
GO

Listing 14-2 shows the associated stored logAccess procedure. In this example, the proce-
dure increases the access value by 1 and sets the current time (getdate() function) as the
last access date for the current user (user_name() function). If UPDATE fails because no entry
for the user exists (@@ROWCOUNT contains the number of the affected lines in the last
statement), a new line is added, instead. The public role is granted the right to execute the
procedure.

 Chapter 14 Users and Permissions 359

LISTINg 14-2 A stored procedure to add a log entry.

CREATE PROC xmp.logAccess AS
 UPDATE xmp.AccessLog SET AccessCount=AccessCount+1, LastAccess=getdate()
 WHERE Username=user_name();
 IF @@ROWCOUNT != 1 BEGIN
 INSERT INTO xmp.AccessLog DEFAULT VALUES;
 END;
GO
GRANT EXECUTE ON xmp.logAccess TO public
GO

All users can now log their access attempts by calling the procedure (EXEC xmp.logAccess;);
for example, they can manipulate the data in the specified way. However, the users cannot
manipulate or delete data in any way.

You can also limit the read access to certain entries (see Listing 14-3). Again, public is granted
the right to run the procedure but cannot retrieve the table content.

LISTINg 14-3 A stored procedure and access rights for restricted read permissions.

CREATE PROC xmp.getAccessLog AS
 SELECT AccessCount, LastAccess
 FROM xmp.AccessLog
 WHERE Username=user_name();
GO
GRANT EXECUTE ON xmp.getAccessLog TO public;
DENY SELECT ON xmp.AccessLog TO public;
GO

Note You can also use custom functions to create this permission concept; however, functions
cannot change data, they can only retrieve it. Functions also don’t have execute permission
(EXECUTE). The select permission (SELECT) indicates if a table function can be used.

If the public role includes all users, why can the users run INSERT, UPDATE, and SELECT within
the procedure, but not as a T-SQL statement? The answer is because the permissions are
linked, as described in the section “Ownership Chains.”

360 Part II SQL Server

Execute as User
SQL Server allows users to impersonate other users. You control the impersonation for the
active connection by using the EXECUTE AS and REVERT statements. Because of the connec-
tion pooling in PHP applications, you should use this function with caution. Stored proce-
dures can also be executed as another user. This is an interesting method for PHP
applications; it is introduced in the following section.

Defining the User
While creating a procedure, you can specify the user to execute the procedure. The following
options are available:

■ EXECUTE AS CALLER The stored procedure is executed as calling user (default
behavior).

■ EXECUTE AS OWNER The stored procedure is executed with the user account of the
owner of the procedure.

■ EXECUTE AS ’user name’ The stored procedure is executed as the specified user.

■ EXECUTE AS SELF A simpler form of EXECUTE AS ’user name’. The user is the user
defining or changing the procedure.

Listing 14-4 shows how the user running a procedure WITH EXECUTE AS is specified.

LISTINg 14-4 A procedure executed as another user.

CREATE PROC runAsJulia
WITH EXECUTE AS 'Julia'
AS
 SELECT user_name() AS DatabaseUser;
GO

When the user Doris calls this procedure with EXEC runAsJulia, the result is Julia, because the
procedure runs as the user Julia.

Required Permissions
Sometimes the impersonation requires special permissions. Listing 14-4 illustrates that Doris
only needs execute permission for the runAsJulia procedure.

If Julia creates the runAsJulia procedure, she doesn’t need any other permissions, except for
creating the procedure (CREATE PROCEDURE).

 Chapter 14 Users and Permissions 361

If Tony were to create the procedure, he would need the right to impersonate Julia:

GRANT IMPERSONATE ON USER::julia TO tony

No special permissions are required for EXECUTE AS CALLER and EXECUTE AS SELF. Usually
EXECUTE AS OWNER doesn’t require special permissions either, because most of the time a
procedure is created and owned by the same user.

Summary
This chapter explained how to create logins, users, and roles in SQL Server and how to assign
permissions for database objects. With stored procedures and ownership chains or imper-
sonation, you can design a granular security concept based on the minimum permissions
required.

Important decisions you need to make when designing your PHP application and the permis-
sion structure are:

■ Under which account does PHP run? (See Chapter 5, “Security.”)

■ Should you pass the executing PHP/Windows user or should the application use SQL
Server logins? (See Chapter 12, “PHP and SQL Server.”) In the latter case, should you use
a SQL Server login for the PHP application or should you manage users in SQL Server?

■ How can you divide tables into useful schemas?

■ Who should own the tables and other objects? How can you apply PHP application
roles to database roles and users?

■ Where can you improve data access security with stored procedures?

There is no universal policy, although usually for PHP applications, developers choose SQL
Server logins over Windows logins. In this case, analyze your PHP application to determine if
you can create different database roles for the application roles (for example, for anonymous
users, authenticated users, and application administrators).

This concludes the topics for SQL Server. In the next part, you will look at Microsoft Active
Directory.

 363

Part III

Active Directory
In this part:
Chapter 15: Setting up Active Directory . 365
Chapter 16: LDAP Basics . 389
Chapter 17: Searching in Active Directory . 413
Chapter 18: Writing in Active Directory . 451

 365

Chapter 15

Setting Up Active Directory

Microsoft Active Directory is a directory service that you can use to save and manage users,
groups, printers, and network device data. Active Directory is the central information source
for users and objects in an organization and plays an essential role for the authentication of
users and permissions.

This chapter explains the installation of the Active Directory Domain Services (AD DS) and
how to create users, groups, computers, and organizational units from the management
interface.

It also describes the installation of the Active Directory Certificate Services, which you can
use to run your own certificate authority. In this book, we use certificates of this service to
protect the connections between PHP, Active Directory, and Microsoft Exchange Server.

Overview
System-critical data for users, computers, and other entries are saved in Active Directory. This
can include account names, passwords and access rights, as well as general information—for
example, the office number of a user.

Unlike a database (for example, Microsoft SQL Server), Active Directory is designed to man-
age static information that is retrieved on a regular basis. The underlying data model isn’t
relational, and the entries in the directory are organized hierarchically. Active Directory is
optimized for replicating data between servers, and there is no master to handle the data.

In this chapter:
Overview . 365
Installing Active Directory . 367
First Steps . 372
Setting Up Active Directory Certificate Services . 381
Working with Certificates . 384
Summary . 388

366 Part III Active Directory

Domains
Entries in Active Directory are combined in domains, and the directory service to save data in
the domain is called a domain controller. A domain defines its own namespace. All entries in
a domain have a common root name to avoid conflicts between different domains. The root
names of domains follow the Internet-standard Domain Name System (DNS); contoso.com,
sales.en-ca.adventureworks, or xmp.site are examples of valid domain names.

Using Active Directory, you can manage several domains and create trust relationships
between different domains; for example, a user in domain A can log on to a computer in
domain B. If you combine domains in this way, you create a forest of domains. The term for-
est is used because of the hierarchic structure of the directory entries, which are also called
directory trees.

A domain forest serves as security and trust boundary: programs and services within the
forest trust each other but services outside the forest are not trusted by default. Figure 15-1
shows a graphic representation of a forest. The arrows between the domains illustrate trust
relationships. Users in the domain support.adventure.works can use a printer in the domain
region.contoso.com but not the printer in the domain other.domain, because other.domain
doesn’t belong to the forest; therefore, it resides outside the trust boundary.

Forest Root Domain

Trust Boundary

service.intern adventure.works

support.adventure.works

contoso.com

region.contoso.comsales.contoso.com

bikes.support.adventure.works

other.domain

FIgURE 15-1 Active Directory domains and forest.

The first domain generated in a forest is the forest root domain, which performs necessary
management tasks in the forest. Other than that, the root domain isn’t particularly special
from the users’ point of view.

You should keep the number of domains in an organization as low as possible; as the number
of domains increase, so too does the management effort. Because of the hierarchical struc-
ture of the directory entries, delegated management is possible within a domain instead of
within different domains.

 Chapter 15 Setting Up Active Directory 367

Domain controllers can include a global catalog to improve the replication and scalability. In
a global catalog, not only are the entries from within its own domain saved, but all entries
from all domains are saved, as well. This means that not all domain controllers have to be
contacted to search the forest; in most cases, searching the global catalog is sufficient.

Entries
The entries in Active Directory are hierarchically sorted and can have parent and child entries.
Entries include three different types of information:

■ Name and identity of the entry Each entry has a unique name, which you can use
to search and retrieve entries.

■ Attribute The entry information is saved in attributes and is subject to defined syntax
and structure rules to simplify the usage in programs. The set of all these rules is called
a scheme.

■ Metadata Each entry has metadata such as the access rights to entries.

Note The access rights to entries are independent of the rights of the objects to which these
entries apply. For example, a user cannot change the entry for a computer in Active Directory,
but he can change data on the computer, change its local settings, and so on.

Because of the capability to organize entries hierarchically and the granular access rights, you
can structure and manage the directory according to the requirements and structure of your
organization.

The entries of all domains and the associated attributes within a forest are subject to the
same syntax and structure rules; in other words, they use the same scheme. The scheme also
determines which attributes are replicated in the global catalog. To ensure that the global
catalog doesn’t use too much storage, only the attributes needed for frequent searches are
copied.

Installing Active Directory
Because Active Directory is very extensive, you need to plan the domain structure and forest,
and consider the basic requirements and parameters. A detailed description is beyond the
scope of this book.

The installation described is mainly used to create a suitable environment for PHP develop-
ment. For this reason, a separate domain is created in a new forest, independent of other
domains and forests. Because the main focus is on reading and editing the domain objects,
the replication, the global catalog, and the forest are also not explained in detail.

368 Part III Active Directory

Preparation
Together with the Active Directory Domain Services, a DNS server is installed on the domain
controller to resolve the domain names for computers and other network devices. Even though
installation of the DNS server is optional, it is recommended because it simplifies the han-
dling of device names and addresses.

A DNS server should have a static IP address that is registered with the network adapters of
the devices in the domain. Therefore, you should assign at least one static IP address to the
computer on which the DNS server is installed. If the computer has several network adapters,
select the adapter connected to the network that contains the computers and devices in the
future domain.

You only need one static IP address because not all network adapters require static addresses.
Depending on your network, a static IP address for IPv4 but not for IPv6 (or vice versa) might
also be sufficient.

Do not begin the installation until you have assigned at least one static IP address, because it
might be necessary to reboot the computer to apply the changes.

Important If the computer was installed with a pre-configured image, ensure that the com-
puter (the domain controller) has a unique security ID (SID). Depending on the image software,
this might not be the case. Identical SIDs can cause problems at a later time. You can query the
SID of your computers by using PsGetSID, which is available at http://technet.microsoft.com/
en-us/sysinternals/bb897417.aspx.

Installing the Role
To install the Active Directory server role, perform the following steps:

 1. Start the Server Manager, and then select Roles | Add Roles.

The Add Roles Wizard starts up.

 2. On the Server Roles page, select the Active Directory Domain Services option.

If the required Microsoft .NET Framework feature is not installed, the dialog box illus-
trated in Figure 15-2 appears, and you are prompted to add this feature. Click Add
Required Features to confirm.

http://technet.microsoft.com/en-us/sysinternals/bb897417.aspx
http://technet.microsoft.com/en-us/sysinternals/bb897417.aspx

 Chapter 15 Setting Up Active Directory 369

FIgURE 15-2 Adding the .NET Framework 3.5.1 Features.

 3. Click Next twice to confirm, and then click Install to start the installation.

After the installation finishes successfully (see Figure 15-3), click Close to exit the wizard.

FIgURE 15-3 The Active Directory role was successfully installed.

370 Part III Active Directory

Installing the Domain Services
To continue the installation of the AD DS, launch dcpromo.exe:

 1. In the Server Manager, click Roles | Active Directory Domain Services.

A message is displayed stating that the domain services are not active because first you
need to perform the installation with the Active Directory Domain Services Installation
Wizard (dcpromo.exe). Click the link to start the installation with dcpromo.exe (see
Figure 15-4).

FIgURE 15-4 Installing the Active Directory Domain Services with dcpromo.exe.

The Active Directory Domain Services Installation Wizard opens.

 2. On the Choose A Deployment Configuration page, select the Create A New Domain In
A New Forest option.

 3. On the Name The Forest Root Domain page, enter the fully-qualified domain name
(FQDN) in the text box.

The FQDN should consist of at least two levels: contoso.com or development.internal.
In this book, we use xmp.site as domain.

 4. On the Set Forrest Functional Level page, use the drop-down box to select the operat-
ing system versions with which your domain controller needs to be compatible.

If you don’t need to consider older versions because you configure the controller only
for your development environment, you can select the newest version (Windows Server
2008 R2) for the functional level of the forest.

Tip If you select Windows Server 2008 R2 as the functional level for the forest, you can
(later) activate the recycle bin feature to simplify the recovery of deleted users and other
objects.

 Chapter 15 Setting Up Active Directory 371

 5. On the Additional Domain Controller Options page, select the DNS Server option.

This allows you to manage and assign computer names within the domain by using
your domain controller and to resolve the computer names with DNS.

 6. If you still have dynamic IP addresses, the dialog box shown in Figure 15-5 appears. If you
have assigned static IP addresses to a network adapter for the internal network, you
can ignore the warning and select Yes.

FIgURE 15-5 A warning message about dynamic IP addresses.

 7. When no parent authorizing zone is found, a dialog box with a corresponding message
appears. This usually happens if you create a root domain without a parent zone (for
example, development.internal or xmp.site) or the automatic integration with the exist-
ing DNS infrastructure is not possible. In this case, you must perform the integration or
delegation manually. Select Yes to continue.

 8. On the Location For Database, Log Files, And SYSVOL page, specify the folder in which
to save the Active Directory data.

If there are no special requirements for the location, you can keep the standard settings.

 9. Enter the administrator password for the recovery mode. This administrator password is
different from the password for the administrator account.

Tip Because this password is only required for rarely occurring recoveries, the chances are
good that you’ll forget it. However, you need the password to perform a recovery. In case
of an emergency, you would need to reinstall Active Directory, which can result in data
loss. For this reason you should note the password and keep it at a safe place.

 10. After the Summary page, click Finish to start the installation.

 11. When the installation completes successfully, you need to reboot the server.

The AD DS are available upon reboot. The next steps involve adding computers to the
domain and creating users within this domain.

372 Part III Active Directory

First Steps
Chapter 16 “LDAP Basics,” introduces the programming and information model of Active
Directory. But before you get there, this section provides a short overview of the important
entry types and shows you how to edit entry types with the AD DS snap-in for the Microsoft
Management Console (MMC). The first steps are not intended to explain the entire adminis-
tration of Active Directory; rather, they’re designed to serve as a general guideline.

Active Directory Domain Services
To perform administration tasks for users and computers, use the MMC snap-in Active
Directory Users and Computers.

 1. Start the snap-in by clicking Start | Administrative Tools | Active Directory Users And
Computers.

You can also open the Management Console and add the snap-in by clicking File, and
then clicking Add/Remove Snap-In.

The left navigation pane lists the Active Directory hierarchy and the right navigation
pane lists the content of the actual containers, as shown in Figure 15-6.

FIgURE 15-6 Managing users and computers with the Microsoft Management Console.

 2. The existing (visible) hierarchy includes:

● Builtin Predefined known groups with standard permissions for different tasks
in Windows and the domain.

 Chapter 15 Setting Up Active Directory 373

● Computers All computers in the domain.

● Domain Controllers These computers are domain controllers in the current
domain.

● ForeignSecurityPrincipals Users and other security principals from a trusted
domain outside the forest.

● Managed Service Accounts Principals for services automatically managed by
Active Directory.

● Users Standard container for users and groups.

It is good practice to create your own organizational units for users and groups as well as
computers. You can use organizational units to structure and separate the principals accord-
ing to the requirements of your organization. You can also then use group policies to man-
age the principals.

Among other things, group policies are used to define and manage access rights, approved
applications, standard folders, and entries in the Windows registry for a group of entries.
Group policies are inherited in the directory hierarchy and can override and supplement each
other. They are an important administration tool for domain administrators.

Organizational Units
In Active Directory, organizational units serve as containers for entries. They are the most
important building blocks for the directory hierarchy (see Figure 15-7). Organizational units
are not part of a group and don’t have their own security principals. However, you can apply
group policies to organizational units to manipulate child entries.

FIgURE 15-7 Organizational units hierarchy.

Creating an Organizational Unit
To create a new organizational unit, perform the following steps:

 1. In the navigation pane of the MMC, select the container in which you want to create
the organizational unit.

 2. In the Action menu, select New, and then click the Organizational Unit command.

374 Part III Active Directory

 3. In the dialog box that opens, enter the name for the organizational unit.

To protect the container against inadvertent deletion, select the appropriate check box.

 4. Click OK to confirm your settings and create the organizational unit.

Defining Additional Properties
To assign additional informative properties to organizational units, perform the following
steps:

 1. In the navigation pane of the MMC, select the organizational unit.

 2. In the Action menu, click the Properties command.

A dialog box opens, in which you can enter a description of the organizational unit and
an address (see Figure 15-8).

 3. On the Managed By tab, you can delegate the administration of an organizational unit
and its child elements to other users.

FIgURE 15-8 The properties dialog box for an organizational unit.

 4. Click OK to confirm your settings.

 Chapter 15 Setting Up Active Directory 375

Deleting an Organizational Unit
To delete an organizational unit, select it in the navigation pane of the MMC. On the menu
bar, click Action, and then click Delete. The organizational unit is deleted when you confirm
the security question.

Caution If the organizational unit has child entries, those entries are also deleted. Therefore,
you should be certain that it is OK for any child entries to be deleted before you perform this
action.

If an organizational unit is protected against accidental deletion, do the following:

 1. In the MMC, in the View menu, click Advanced Features.

 2. In the navigation pane, select the organizational unit that you want to delete, and then
in the Action menu, click Properties.

 3. On the Object tab, clear the Protect Object From Accidental Deletion check box, and
then click OK.

 4. In the Action menu, click Delete.

 5. Confirm the security questions to delete the organizational unit.

Users
Users are primary security principals that represent programs and services or users who want
to use computers or services. You can create, change, and delete users in the same way that
you create, change, and delete organizational units.

Creating a User
You can create users almost everywhere in the directory hierarchy by performing the follow-
ing steps.

 1. In the navigation pane of the MMC, select the container in which you want to create
the user.

 2. In the Action menu, select New, and then click the User command.

The New Object - User dialog box opens, as illustrated in Figure 15-9.

 3. Enter the names and user logon names (the name to log on to services and computers)
in the associated fields.

The User Logon Name must be unique to the domain, and the pre-Windows 2000
name should be identical with the User logon Name. Click Next.

376 Part III Active Directory

Note For Windows versions prior to Windows 2000, user names cannot exceed
20 characters.

FIgURE 15-9 Creating a new user.

 4. Enter a password for the user, enable or disable the password options as necessary, and
then click Next.

 5. Click Finish to create the user.

Changing the User Properties
To change the user properties, select the user in the list pane of the MMC, and then in the
Action menu, click Properties. Figure 15-10 illustrates that there are many ways to specify
additional information (for example, address, phone number, organization) or to change
system-relevant data (on the Account tab) and to manage group memberships (the Member
Of tab).

FIgURE 15-10 The array of tabs in the user’s Properties dialog box.

Deleting a User
To delete a user, select the user in the list pane of the MMC. In the Action menu, click Delete,
and then click Yes to confirm the security question.

 Chapter 15 Setting Up Active Directory 377

Use caution when deleting a user because this action cannot always be undone. The re-
creation of a user with the same name and logon name is not always possible. Users are dif-
ferentiated by their SIDs, but a new user with the same name has a different SID; therefore,
the new user will be treated as an independent user.

Tip In Windows Server 2008 R2, a recycle bin feature was introduced in Active Directory to
make it easier to restore deleted objects. For more information about the Active Directory
recycle bin, go to http://technet.microsoft.com/en-us/library/dd392261%28WS.10%29.aspx.

Groups
Groups are independent security principals. They can be the destination of permissions for
file access or logons to services and computers. Groups have other principals (users, groups,
computers) as members which inherit their permissions. Because groups can be members
of groups, you can create a group hierarchy that is different from the hierarchy of the Active
Directory entries. While a group hierarchy is a permission hierarchy, the directory hierarchy in
Active Directory is primarily an administration and organization hierarchy. In addition, princi-
pals can be members of any number of groups, whereas an entry in Active Directory only has
one parent entry.

Creating a Group
Groups vary in type and scope. If a group has the type Distribution, it isn’t a security principal
but only serves for grouping its members—for example, for an email distributor in Exchange.
A group with the type Security is a principal that can be assigned access rights and other
permissions.

The group scope determines the members and permissions of a group. Universal groups
differ from global groups insofar that they can have members from all domains of the for-
est and can be assigned rights in all domains. Global groups can contain only members of
their own domain, can be only a group member in other domains, and may be assigned
rights only in their own domain. Groups of scope Domain Local can have members from all
domains within the forest but can be assigned rights only within their own domain.

Global groups are often the best choice because they ensure the balance between the func-
tionality and replication effort across domains.

To create a new group, perform the following steps:

 1. In the navigation or list pane of the MMC, select the container in which you want to
create the group. In the Actions menu, select New, and then click Group.

The New Object - Group dialog box opens, as shown in Figure 15-11.

378 Part III Active Directory

 2. Enter the name of the group in the text box (the pre-Windows 2000 name should be
the same). Select the desired options in the Group Scope and the Group Type areas.

FIgURE 15-11 Creating a new group.

 3. Click OK to create the group.

Setting Members and Memberships
To manage the members and memberships of a group, in the MMC, in the Action menu, click
Properties, and then in the Properties dialog box, perform the following steps.

 1. Click the Members tab.

 2. To add new members to the group, click Add (see Figure 15-12).

 3. In the dialog box that opens, you can enter the names of the users (or of other objects)
in the text box.

Click the Check Names button to find and assign users. You can limit the search path by
clicking the Locations button to select the locations to be searched.

 Chapter 15 Setting Up Active Directory 379

FIgURE 15-12 Managing the members of a group.

 4. Click the Advanced button to search for users.

In the dialog box that opens, you can click the Columns button to set the properties.
Click Find Now to start the search. The list field below the Find Now field shows the
search results that you can use to select a user.

 5. After you’ve entered the users (or other objects), click OK to add the users to the group.
Click OK to close the Properties dialog box.

You can use the Member Of tab in the same way to specify the membership of the group.

380 Part III Active Directory

Computer
Computers joining the domain also have entries in Active Directory that identify them to
other computers and users as a domain member. To enter a computer in the domain, per-
form the following procedure:

 1. On the computer that you want to enter, open the Control Panel via the Windows Start
button.

 2. In the Control Panel, select System And Security | System.

The System Properties dialog box opens.

 3. Click the Change Settings link, as illustrated in Figure 15-13.

FIgURE 15-13 Joining a domain from the control panel.

 Chapter 15 Setting Up Active Directory 381

 4. On the Computer Name tab, click the Change button.

 5. In the dialog box that appears, select the Member Of Domain option, and then enter
the name of the domain in the text box. Click OK to confirm.

 6. In another dialog box, you are prompted to enter the user name and password of an
authorized domain user (usually the domain administrator).

A message should appear informing you that the computer was successfully added to
the domain.

 7. Reboot your computer to apply the changes.

At the same time, an entry for the computer is created in the Active Directory container
Computer. In the MMC snap-in, you can drag this entry into another container.

Setting Up Active Directory Certificate Services
Using Active Directory Certificate Services (AD CS), you can run your own certification
authority to issue certificates. Certificates are used to assign the identities of users, services,
or computers to a cryptographic key pair used to encrypt HTTP or Lightweight Directory
Access Protocol (LDAP) connections. Certificates are also used to identify and authenticate
the communication partner (usually the server).

You can obtain certificates from different providers or run your own certification authority by
using AD CS. Development environments are best suited for running your own certification
authority. The installation of a certification authority is described in the following procedure
list. For a production environment, you should consider the advantages and disadvantages of
running your own certification authority and whether sufficient knowledge about Public Key
Infrastructure (PKI) tasks and processes should be available in your organization.

To install AD CS, perform the following steps:

 1. Start the Server Manager, and then in the Action menu, click Add Roles.

The Add Roles Wizard starts up.

 2. On the Server Roles page in the wizard, select the Active Directory Certificate Services
option.

Caution Remember that after the installation is complete, you cannot change the name
and the domain settings of the computer. For this reason, you should install the certificate
services on a single computer that is already configured with the required properties.

382 Part III Active Directory

 3. On the Role Services page, select the Certification Authority option.

Even though the Certification Authority Web Enrollment option provides a comfortable
web user interface, it requires that Internet Information Services (IIS) be installed. This
book assumes that you don’t want to install IIS on the certificate services computer;
therefore, don’t select the Certification Authority Web Enrollment option.

 4. On the Setup Type page, you can choose the Enterprise or Standalone option.

If you mainly issue certificates for users in your own domain, you should select the
Enterprise option. In this case, the required proof of identity can take place based on
the user credentials to simplify the process of issuing certificates. In this book, we select
the Enterprise option.

 5. On the CA Type page, select the Root CA option.

 6. Select the Create A New Private Key if you don’t already have a key pair prepared that
you want to use.

 7. Set the cryptographic parameters for the key pair and the certificate (see Figure 15-14).
You can use the standard settings (RSA, 2048 Bit, SHA-1 hash algorithm).

Note The alternative algorithms—elliptic curves (elliptic curve cryptography, ECC) or
SHA-256/SHA-512—offer better performance and security but are not as widely used and
could cause interoperability problems at a later time. If you know the application of the
certificates, you can use alternative settings. The security provided by 2048-Bit RSA with
SHA-1 is sufficient for issuing certificates.

 Chapter 15 Setting Up Active Directory 383

FIgURE 15-14 Setting the cryptographic parameters.

 8. Give the certification authority a name.

The name should be descriptive and can contain spaces and other characters. The suf-
fix should match the Active Directory domain name context. In this book, the full name
CN=my-CA,DC=xmp,DC=site is used.

 9. Select the validity period for the root certificate, and then click Next. (After the root
certificate expires, you need to issue a new root certificate.)

 10. On the Certificate Database page, you can specify the location for the certificate data-
base and the log files. Click Next to confirm.

 11. Before the installation starts, the selected configuration is shown again, as illustrated in
Figure 15-15. Click the Install button to start the installation.

384 Part III Active Directory

FIgURE 15-15 Configuration overview before the certificate services are installed.

 12. When the installation is finished, click Close to exit the wizard.

The AD CS are now installed.

To check if the root certificate from the certification authority is published in Active
Directory, run the following command at the command prompt:

certutil -viewstore "ldap:///CN=my-CA,CN=Certification Authorities,CN=Public Key
Services,CN=Services,CN=Configuration,DC=xmp,DC=site?cACertificate?base?objectClass=
certificationAuthority"

Replace CN=my-CA and DC=xmp,DC=site with the name of your certificate authority.

Working with Certificates
Similar to directory services, you can organize certification authorities hierarchically. A root
certification authority confirms the identity of a child certification authority, which in turn
confirms the identity of a service or user. The identity is confirmed based on certificates.
Therefore, at least two certificates need to be checked for each authentication operation: the
user or service certificate to determine the identity of a service or user, and the certificate of
the root certification authority to ensure the correct (known or trusted) certification author-
ity issued the user certificate.

 Chapter 15 Setting Up Active Directory 385

In the following subsection, you learn how to issue a certificate for the AD DS and how to
export the root certificate of the certificate authority (for example, to configure a known and
trusted root certificate from the certification authority) in a PHP application.

Issuing a Certificate for Active Directory
If you want to establish an encrypted LDAP connection to Active Directory (perhaps to
change a password), the AD DS need a certificate.

Issuing a Certificate
Using the MMC, you can issue a certificate for Active Directory and import the certificate
easily and quickly. The following description assumes that the domain controller and the
certificate services run on the same computer. If this is not the case for your installation, you
must select these when choosing the connection.

To issue the certificate for AD DS, perform the following steps:

 1. In the MMC, in the File menu, select Add/Remove Snap-In, and then click Add to add
the Certificates Snap-in.

 2. In the dialog box that opens, select the Computer Account option, and then click Next.

 3. Select the Local Computer option, click Finish, and then click OK.

 4. In the Console Root, select the Certificates (Local Computer) node, and then in the con-
text menu, select All Tasks | Automatically Enroll And Retrieve Certificates.

 5. On the information page of the Register Certificate dialog box, click Next. On the
Request Certificates page, select the Domain Controller enrollment policy. If the enroll-
ment policy for the domain controller isn’t available, select the Show All Templates
check box, and then select the domain controller template.

 6. Click Enroll to create the certificate and to install it on the computer.

There is no need to perform other tasks, such as authenticating or providing proof of
identity, because the certification authority has the type Enterprise; thus the authenti-
cation occurs automatically.

 7. Click Finish to close the dialog box.

Note On the Server Manager page Roles/Active Directory Domain Services, an event
(level: Information) should appear in the list confirming the availability of an encrypted
connection along with the message “LDAP over Secure Sockets Layer (SSL) is now available.”

386 Part III Active Directory

Checking the Encrypted LDAP Access
To check if the encrypted access to LDAP works, you can use the LDP tool, which is further
explained in Chapter 16.

 1. In the Windows Start menu, enter LDP in the Search Programs And Files text box to
start LDP.

 2. In the Connection menu, click Connect. Enter localhost in the Server text box, and then
click OK.

 3. In the Connection menu, click Bind, and then select the Encrypt Traffic After Bind check
box (see Figure 15-16). Click OK, and then check in the results if the encryption option
is set, as demonstrated in the following:

0 = ldap_set_option(ld, LDAP_OPT_ENCRYPT, 1)
res = ldap_bind_s(ld, NULL, &NtAuthIdentity, NEGOTIATE (1158)); // v.3
{NtAuthIdentity: User='NULL'; Pwd=<unavailable>; domain = 'NULL'}
Authenticated as: 'XMP\Administrator'.

FIgURE 15-16 Encrypting the connection by using LDP.

Note Encrypting the traffic at the point of binding (LDAP protocol element Start TLS) is
preferred to a generic connection over SSL (on port 636 instead of port 389).

Exporting the Root Certificate
The root certificate of the certification authority is distributed automatically as a trusted cer-
tificate to all domain computers through Active Directory. For this reason, you can perform
the following steps directly on a domain computer. To export the root certificate of the certi-
fication authority, perform the following steps:

 1. In the MMC, in the File menu, click Add/Remove Snap-In to add the Certificates
snap-in.

 Chapter 15 Setting Up Active Directory 387

 2. In the dialog box that appears, select Computer Account, and then click Local
Computer.

 3. In the Console Root, select Certificates | Trusted Root Certification Authorities |
Certificates. In the list area, right-click your own certification authority, and then in
the context menu that appears, select All Tasks | Export (see Figure 15-17).

FIgURE 15-17 Exporting the root certificate from your own certification authority.

 4. In the Certificate Export Wizard, select the Base-64 Encoded X.509 (CER) format.

 5. Select a location, and then click Finish to export the certificate.

The root certificate of your certification authority is now successfully exported. Among other
things, you need the root certificate to configure the PHP LDAP extension (see Chapter 16)
and for accessing the Exchange server web services, if you use a certificate issued by your
AD CS for the encrypted connection.

Exporting Other Certificates
To export the certificates of other services, perform the same steps you used to export
the root certificate. However, instead of Trusted Root Certification Authorities in the
Management Console, navigate to Personal | Certificates, and then right-click the desired
certificate. In the context menu that appears, select the All Tasks | Export option to export
the certificate.

If you cannot find the certificate you are looking for, export the certificate directly from the
certificate authority by performing the following steps:

 1. Start the Management interface by clicking Start | Administrative Tools | Certification
Authority.

 2. Browse to Certification Authority | <name> | Issued Certificates.

388 Part III Active Directory

 3. Double-click the desired certificate.

 4. In the Certificate dialog box, click the Details tab.

 5. Click Copy To File to start the Certificate Export Wizard.

 6. Select the Base-64 Encoded X.509 (CER) format.

 7. Select a location, and then click Finish to export the certificate. The export operation is
completed, and you can use the certificate file.

Summary
Active Directory is an important pillar of the IT infrastructure, especially for enterprises and
companies. It allows the centralized management of users, groups, and computers, as well as
delegating administrative tasks and creating a tree across all domains. Because of its granular
permission model, the hierarchically-structured inheritance of group policies and the identity
management features, Active Directory is an important building block in the security strategy
in an organization.

The short overview of the most important entry types in Active Directory and how to
create these entries gives you some information of the directory structure. The next chapter
explains this and the LDAP interface, which allows access to Active Directory, in more detail.

 389

Chapter 16

LDAP Basics

There are two ways to work with Microsoft Active Directory by using PHP: Active Directory
Service Interface (ADSI) and Lightweight Directory Access Protocol (LDAP). ADSI is an inter-
face specified by Microsoft, which, despite its name, can be used for other directory services
than Active Directory. ADSI is controlled by PHP through Component Object Model (COM)
objects.

LDAP is the most common and platform-independent interface for directory services. LDAP
provides extensive interoperability between programs, platforms, and directory services. In
this book, Active Directory is used through LDAP because LDAP is widely available and can
be easily implemented in Active Directory.

The structure of LDAP directories is explained in the following sections in more detail. The
structure described applies to the entries within a domain or the entries in a forest for the
LDAP scheme. Two tools are installed with the Active Directory Domain Services (AD DS),
which are also explained because they are useful for developing LDAP PHP programs.

LDAP Basics
LDAP is a protocol for querying and writing entries in directory services. It has its origin in
the X.500 specification family developed by the International Telecommunication Union (ITU)
in the 1980s. LDAP was developed as a lightweight, alternative protocol based on TCP/IP
to access directory services data. Since then, LDAP has become the standard protocol for
interoperable access to directory services.

In this chapter:
LDAP Basics . 389
Utilities . 392
Configuring the PHP LDAP Extension . 398
Authenticating Users . 403
Querying Entries . 405
Summary . 412

390 Part III Active Directory

Hierarchical Structure
An LDAP directory consists of entries that are hierarchically sorted in a tree structure. Each
entry has a distinguished name (DN) and consists of named attributes with one or more val-
ues. A DN is made up of the local part of the name (Relative Distinguished Name [RDN]) and
parts of the parent entries (similar to a full path of a file).

Figure 16-1 shows part of a LDAP tree in Active Directory. Next to the entries is the attribute
that is part of the RDN. For example, the RDN for the entry Tony equals CN=Tony H. Hamster.
The DN consists of all RDNs for the preceding entries: CN=Tony H. Hamster,CN=Users,DC=xmp,
DC=site.

...

...

DC=xmp.DC=site

CN=computers

CN=Agnes B. Barstow

CN=users

CN=Tony H. Hamster

FIgURE 16-1 LDAP tree with the RDNs of the entries.

Listing 16-1 shows the attributes of an entry with the DN CN=WEBSRV,CN=Computers,DC=xmp,
DC=site for a computer in the Active Directory domain. Notice that some attributes have
several values such as the objectClass or servicePrincipalName attributes.

LISTINg 16-1 Selected attributes of the Active Directory entry for the computer websrv.xmp.site.

Dn: CN=WEBSRV,CN=Computers,DC=xmp,DC=site;
cn: WEBSRV;
dNSHostName: WEBSRV.xmp.site;
objectCategory: CN=Computer,CN=Schema,CN=Configuration,DC=xmp,DC=site;
objectClass (5): top; person; organizationalPerson; user; computer;
operatingSystem: Windows Server 2008 R2 Enterprise;
operatingSystemVersion: 6.1 (7600);
primaryGroupID: 515 = (GROUP_RID_COMPUTERS);
servicePrincipalName (11): MSSQLSvc/WEBSRV.xmp.site:1433; MSSQLSvc/WEBSRV.xmp.site;
WSMAN/WEBSRV; WSMAN/WEBSRV.xmp.site; HTTP/auth.phpdemo.site; TERMSRV/WEBSRV; TERMSRV/
WEBSRV.xmp.site; RestrictedKrbHost/WEBSRV; HOST/WEBSRV; RestrictedKrbHost/WEBSRV.xmp.
site; HOST/WEBSRV.xmp.site;
userAccountControl: 0x1000 = (WORKSTATION_TRUST_ACCOUNT);
whenChanged: 7/13/2011 8:39:42 AM W. Europe Daylight Time;
whenCreated: 6/4/2011 10:07:55 PM W. Europe Daylight Time;

 Chapter 16 LDAP Basics 391

Active Directory defines several structure rules to ensure the integrity of the directory. Entries
can only have certain types of parent entries; for example, user accounts cannot be included
in the program data (CN=program data).

Classes and Inheritance
LDAP not only sorts entries hierarchically, it also defines what entry types are allowed in a
directory, the attributes for these entries, and the valid values for the attributes. These entry
types are called classes.

Classes can be derived from each other and inherit their definitions. Figure 16-2 shows part
of the class hierarchy in Active Directory. At the beginning of the hierarchy is always the top
class. This class defines four attributes each entry must have and more than 100 optional
attributes. Each class extends the preceding class by additional mandatory and optional attri-
butes. This way, more than 370 attributes can be defined for computer entries.

Top

Group

Residential-Person

Contact

Computer

Person

Organizationl-Person

User

InetOrgPerson

FIgURE 16-2 Part of the class hierarchy in Active Directory.

Protocol Elements
Similar to HTTP, the LDAP protocol consists of a series of requests and responses. The LDAP
client establishes a connection to the server and is authenticated (also called Directory System
Agent or DSA). One or more requests are sent subsequently. However, it is not necessary to
wait for the answers before new requests are sent. The server can respond to the requests
in random order, because each request can take a different amount of time. The server can
also send messages without a request, such as when the connection is closed because of a
timeout.

392 Part III Active Directory

LDAP provides operations for querying and changing entries and attributes. These opera-
tions are listed in Table 16-1. The PHP LDAP extension provides a function for each of them.

TABLE 16-1 LDAP Operations

LDAP operation Description
abandon Cancels the previous request

add, delete, modify Adds, deletes, or changes an entry

bind Authenticates the client (at this point, the connection is already open)

compare Verifies if an entry has an attribute with a certain value

extended operation Generic method to define more operations

modify DN Changes the DN and thus moves the entry in the tree

search Searches for entries and returns the results

start TLS Encrypts the connection with LDAP version 3

unbind Closes the connection

Utilities
Active Directory includes several utilities with which you can access the directory data directly.
Two of these utilities are LDP and ADSI Edit. LDP works well for testing LDAP queries and
ADSI Edit is a user-friendly data editor for Active Directory. You can find additional tools in
the Server Manager by clicking Roles | Active Directory Domain Services.

Both LDP and ADSI Edit are installed with the AD DS and are therefore only available on the
domain controller. To use these programs on other computers, you must install them on
those computers by following these instructions:

■ Windows Server 2008 R2 Start the Server Manager, select Features | Add Features,
and then install the Remote Server Administration Tools | Role Administration Tools/AD
DS and AD LDS Tools

■ Windows 7 Install the remote server administration tools for Windows 7. The tools
and installation instructions can be found on the Microsoft website at http://www
.microsoft.com/download/en/details.aspx?displaylang=en&id=7887.

Caution Both programs work directly with the data in Active Directory. If you have the required
permissions, all changes are applied directly and immediately even if they are made to system-
critical entries. There is no Undo function. Therefore, you should proceed with caution.

http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=7887
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=7887

 Chapter 16 LDAP Basics 393

LDP
LDP is mostly an LDAP browser, even though it provides functions for editing entries and
managing access permissions to LDAP objects. With LDP, you can perform single steps
(queries or attribute changes) on the same technical level with the PHP programming. For
this reason, LDP is a very useful developer tool.

Working with LDP
To work with LDP, perform the following procedure:

 1. To start LDP, click the Windows Start button, and then in the Search Programs And Files
text box, enter LDP.

 2. In the Connection menu, click Connect. In the Server text box, enter the server name,
and then click OK. Enter localhost to access the local server.

 3. In the Connection menu, click Bind. You can use the Bind As Currently Logged On User
setting or specify a different user. Click OK to confirm.

In the result window, you should see the message “Authenticated as: <user>”.

Note If the connection or logon fails in step 3, try to establish a connection without
encryption (clear the Encrypt Traffic After Bind option). If you access Active Directory from
another computer, ensure that a network connection to the Active Directory server is
active and port 389 is not blocked by a firewall. Also, in the Server Manager, verify if the
AD DS are started and running without problems.

 4. To use the tree navigation, in the View menu, click Tree.

In the dialog box that opens, enter the basic DN for your domain (for example,
DC=xmp,DC=site) or another known DN. You can also select a DN in the drop-down
list or leave the text field empty.

 5. When you click OK, the tree navigation displays in the left pane (see Figure 16-3).
Double-click an entry to open its child entries. You can also double-click to display the
attributes of an entry.

394 Part III Active Directory

FIgURE 16-3 LDP tree navigation displays in the left pane and result messages display in the
right pane.

Searching by Using LDP
To start an LDAP search, in the Browse menu, click Search. In the dialog box that opens, you
can specify the following settings (also see Figure 16-4):

■ Base DN The first entry where the directory search starts.

■ Filter LDAP filter to search for objects (see the section “LDAP Filter,” later in the
chapter).

■ Area Select the Subtree option to search all entries below the basic entry. Select One
Level to search only the direct child entries of the basic entry. Select Base to only search
for the base entry.

■ Attributes Specify the desired attributes. If you enter an * (asterisk), all attributes of
an entry are listed.

 Chapter 16 LDAP Basics 395

FIgURE 16-4 The LDP Search dialog box.

Click Run to start the search. The right pane of the LDP window contains status messages and
the results.

Changing Entries by Using LDP
The Browse menu also contains commands that you can use to change entries and attributes.

■ Add Child Creates a new entry.

■ Delete Deletes an entry.

■ Modify Deletes, adds, or changes a single entry attribute.

■ Modify DN Changes the DN of an entry and moves the entry in the directory tree.

For all commands, you must enter the DN of the object that you want to edit. However,
changes are not as easily performed as with ADSI Edit. But LDP can be useful to find errors
because LDP uses the LDAP interface in the same way PHP does, and the user can be
selected while the bind operation is performed.

Note Active Directory supports changes through LDAP only for encrypted connections.

ADSI Edit
ADSI Edit is a snap-in for the Microsoft Management Console (MMC). You can use the editor
to change, add, and delete entries in Active Directory. Similar to LDP, ADSI Edit provides
instant access to the data model on which Active Directory is based.

396 Part III Active Directory

Working with ADSI Edit
Perform the following steps to work with ADSI Edit:

 1. To start the editor, click the Windows Start button, and then in the Search Programs
And Files text box, Enter ADSI Edit. You can also add the editor in the MMC by clicking
the File menu, and then clicking Add/Remove Snap-In.

 2. In the Action menu, click Connect To.

The Connection Settings dialog box opens, as shown in Figure 16-5. In this dialog box,
you can set the connection parameters. Click the Advanced button to log on as a dif-
ferent user. You can enter a DN as connection point or select one of the predefined
name contexts. Typically, you would use the Default naming context option. Click OK
to confirm.

FIgURE 16-5 Connection settings for ADSI Edit.

 3. In the left navigation pane, you can browse in the directory tree (see Figure 16-6).
Simply select an entry to display its child entries in the list pane in the center.

 Chapter 16 LDAP Basics 397

FIgURE 16-6 Browsing the directory tree in the ADSI Edit window.

 4. To check the attributes of an entry, right-click the entry, and then in the context menu
that appears, click Properties.

A dialog box opens that lists the attributes.

 5. To edit an attribute, double-click it (or select it, and then click Edit).

In the dialog box that opens, you can change the value or click the Clear button to
delete the attribute.

 6. To add a new attribute to the entry, in the Properties dialog box, click Filter and clear
the Show Only Attributes That Have Values check box.

The listing shows all possible entry attributes. You can now click Edit to set the value for
an attribute.

 7. On the Security tab, you can change the access rights to this Active Directory entry. The
access rights apply to the entry in Active Directory, not to the referenced object itself
(for example, a group or a computer).

398 Part III Active Directory

Creating New Entries
To create a new entry, perform the following steps:

 1. Right-click the parent entry, and then in the context menu that appears, select
New | Object.

 2. In the dialog box that opens, select the desired object class (entry type).

 3. The next pages prompt you to enter the mandatory fields for the entry such as the
common name (CN).

 4. On the last page, click the More Attributes button to define more attributes.

 5. Click Finish to save the entry in Active Directory.

 The Action menu and the context menu for the entry contain more editing functions, which
are described here.

■ Move Moves the entry to another location in the directory structure.

■ Rename Changes the RDN of the entry.

■ Delete Deletes the entry and possibly all child entries.

Configuring the PHP LDAP Extension
PHP provides an extension for LDAP with which you can work with LDAP-compatible direc-
tories. The extension has functions for all LDAP protocol operations.

Activating the LDAP Extension
The LDAP extension is precompiled but not integrated. To activate the LDAP extension, per-
form the following steps:

 1. Open the php.ini file in an editor (default path C:\PHP\php.ini).

 2. Add the following line and save the file:

extension=php_ldap.dll

 3. Restart the associated Internet Information Services (IIS) application pool by using
appcmd, as follows:

appcmd recycle apppool "DefaultAppPool"

 4. Call phpinfo.php to check the configuration.

You should see the ldap section depicted in Figure 16-7.

 Chapter 16 LDAP Basics 399

FIgURE 16-7 Output of the PHP LDAP extension with phpinfo().

You can also enable the PHP LDAP extension through the PHP Manager:

 1. Start the IIS Manager, and then in the Connections pane, select the server or desired site.

 2. Go to the PHP Manager by double-clicking its icon.

 3. Click PHP Extensions | Enable Or Disable An Extension.

 4. Select php_ldap.dll from the list, and then in the Actions pane, click Enable.

PHP Manager automatically restarts the associated application pool, so the extension
should be immediately available.

Communication Process
To establish communication with an LDAP server, you must perform the following:

■ Establish the connection by using ldap_connect().

■ Set the optional connection parameters by using ldap_set_option().

■ Authenticate the connection via ldap_bind().

■ Submit the specified LDAP operations.

■ Close the connection by using ldap_unbind().

The ldap_* functions return false if an error occurs and another value if the command was
successful.

Note If an error occurs, the ldap_* functions also generate a warning. In a production environ-
ment, you should redirect these warnings into a log file (see Chapter 8, “Error Messages and Error
Search”). Otherwise, IIS might prevent the page from displaying (depending on the configuration).

400 Part III Active Directory

To establish and authenticate the connection in the sample applications, a separate
LDAPConnection class is created that takes care of these standard steps and the output
of error messages.

Caution Because Windows PHP binaries don’t support the LDAP Simple Authentication and
Security Layer (SASL) authentication, the user name and the password are submitted to Active
Directory in clear text. For security reasons, even in a secure network, passwords should not be
sent in clear text. Therefore, it is recommended to encrypt the connection, which is explained in
the section “Establishing an Encrypted Connection,” later in the chapter.

Supporting Script
The supporting LDAPConnection.php script in Listing 16-2 is used to open and close the
connection and to return error messages. The LDAPConnection class provides the following
methods and properties:

■ $handle The LDAP connection resource.

■ connect() Establishes the connection to the LDAP server. ldap_connect() initializes
the connection resource, ldap_set_option() sets the LDAP protocol version 3, and ldap_
bind() opens and authenticates the connection. If you want to use a secure connection,
encrypt the connection by using ldap_start_tls(). You should use the full principal name
as user name.

■ close() Closes the connection with ldap_unbind().

■ exitWithError() Returns the error code with ldap_errno() and the error message with
ldap_error(), and then terminates the connection process.

LISTINg 16-2 The LDAPConnection class for LDAP connections.

<?php
namespace net\xmp\phpbook;
require_once './HTMLPage.php';

class LDAPConnection {

 public $handle = null;

 /**
 * Connect with LDAP directory.
 *
 * @param string $server Name of the LDAP server
 * @param string $username User name
 * @param string $password Password
 * @param boolean $secure Specifies if a connection is encrypted with TLS

 Chapter 16 LDAP Basics 401

 */
 function connect($server, $userName, $password, $secure=false) {
 $this->handle = ldap_connect($server);
 ldap_set_option($this->handle, LDAP_OPT_PROTOCOL_VERSION, 3);
 ldap_set_option($this->handle, LDAP_OPT_REFERRALS, 0);
 if ($secure) {
 if (!ldap_start_tls($this->handle)) {
 $this->exitWithError('TLS start failed');
 }
 }
 if (!ldap_bind($this->handle, $userName, $password)) {
 $this->exitWithError('Binding of LDAP connection failed');
 }
 }

 /**
 * Close connection to LDAP directory.
 */
 function close() {
 if ($this->handle) {
 ldap_unbind($this->handle);
 $this->handle = null;
 }
 }

 /**
 * Exit program, show error message from LDAP directory
 * @param string $txt Description of the error context
 */
 function exitWithError($txt) {
 $html = new HTMLPage('LDAP error');
 $html->addElement('p', $txt);
 $table = array(array('Number', 'Message'),
 array(ldap_errno($this->handle), ldap_error($this->handle)));
 $html->addTable($table);
 $html->printPage();
 $this->close();
 exit;
 }
}
?>

Establishing an Encrypted Connection
To create an encrypted connection to Active Directory from PHP, you need to configure the
LDAP extension. In OpenLDAP (an open source LDAP implementation on which the PHP LDAP
extension is based), you have to define the root certificate of the certification authority as
trusted. The following instructions assume that you already issued a certificate for Active
Directory (see Chapter 15, “Setting Up Active Directory”).

402 Part III Active Directory

Configuring PHP and OpenLDAP
For OpenLDAP, the basic library of the PHP LDAP extension, to trust the certificates from
LDAP servers, the root certificate from the associated certification authority must be included
in the OpenLDAP configuration. To do so, perform the following steps:

 1. Create the directory C:\openldap\sysconf.

 2. In this directory, save the ldap.conf file with the following text:

TLS_CACERT C:\openldap\sysconf\rootcertificate.cer
TLS_REQCERT demand

 3. Give the base-64 encoded X.509 root certificate of the certification authority the name
rootcertificate.cer and copy it to C:\openldap\sysconf.

 4. Restart the IIS application pool associated with the LDAP application.

The configuration is now complete and will be applied. Next, you should test the connection.

Testing the Encrypted LDAP Connection
Create the test_ldap_tls.php file shown in Listing 16-3, and then call the file from the com-
mand line or IIS. If you see the success message, the connection encrypted with the LDAP
protocol element Start TLS works.

LISTINg 16-3 test_ldap_tls.php—testing the encrypted LDAP connection.

<?php
namespace net\xmp\phpbook;
require './LDAPConnection.php';

// Optionally enable debugging for LDAP
// ldap_set_option(NULL, LDAP_OPT_DEBUG_LEVEL, 7);

// Open secure connection
$ad = new LDAPConnection();
$ad->connect('doco-exch.xmp.site', 'arno@xmp.site', 'confidential', true);
// This point is only reached if the connection works
echo 'LDAP with START_TLS works.';
// Close connection
$ad->close();
?>

The secure connection is started by using the PHP function ldap_start_tls($ldapLink). If the
certificate from Active Directory is not issued by a trusted certificate authority (root certifi-
cate in C:\openldap\sysconf\), the function returns false.

 Chapter 16 LDAP Basics 403

Note If you enable LDAP debugging in the script, the debug output is written to stderr, but not
caught in IIS and therefore not displayed on the HTML page. Thus you should start PHP from the
command line when debugging.

Verifying the Connection Certificate
Use TLS_REQCERT in C:\openldap\sysconf\ldap.conf to determine the behavior of
PHP/OpenLDAP if the certificate for the encrypted connection doesn’t match. Alternative
configuration options for TLS_REQCERT are:

■ never Ensures that a certificate is never requested from the server.

■ allow Requests the server certificate. Even when the server doesn’t have a certificate
or the associated root certificate isn’t configured, the connection is resumed.

■ try Requests the server certificate. Even when the server doesn’t have a certificate,
the connection is resumed. If the server has a certificate that was issued by an unknown
certificate authority, the connection is terminated.

■ demand Requests the server certificate and the connection is only resumed if a valid
certificate is available.

For security reasons, you should select demand for TLS_REQCERT.

Authenticating Users
Active Directory plays a vital role in authenticating domain users. You can use the ldap_bind()
authentication method to check user names and passwords. Depending on whether ldap_bind()
returns a success or error message, the credentials you enter are correct and the authentica-
tion is successful or the credentials are wrong and the authentication fails. If the authentication
fails, you should check the error code (49: Invalid credentials), because the LDAP connection
can also fail for other reasons.

Listing 16-4 shows how the authenticate() function could look: when ldap_bind() returns false,
error code 49 is checked, and the corresponding value is returned.

404 Part III Active Directory

LISTINg 16-4 Authenticating a user through LDAP.

<?php
namespace net\xmp\phpbook;

// Exception class
class LDAPException extends Exception { }

/**
 * Authenticating a user in Active Directory
 * @param string $server Name of the server
 * @param string $username User name
 * @param string $password Password
 * @param boolean $secure Specifies if the connection is encrypted
 * @return boolean True if successful, false if not successful
 * @throws LDAPConnectionException
 */
function authenticate($server, $username, $password, $secure=true) {
 $handle = ldap_connect($server);
 if ($secure) {
 if (!ldap_start_tls($handle)) {
 throw new LDAPException('LDAP connection error');
 }
 }
 if (!ldap_bind($handle, $username, $password)) {
 $code = ldap_errno($handle);
 ldap_unbind($handle);
 if ($code != 49) {
 throw new LDAPException('LDAP connection error');
 }
 return false;
 }
 ldap_unbind($handle);
 return true;
}

Important If possible the connection should be encrypted with ldap_start_tls(); otherwise, the
user name and password are sent to Active Directory in clear text.

ldap_bind() and ldap_start_tls() generate a warning if an error occurs. For this reason error mes-
sages should be redirected into a log file when working in a production environment (see the
PHP configuration options in Chapter 8).

 Chapter 16 LDAP Basics 405

Querying Entries
Searching for entries in the LDAP directory is a basic function. PHP provides different functions
to search or query entries. These functions are the ldap_read(), ldap_list(), and ldap_search().
Three parameters are passed to all three functions: a DN, a filter string, and several attributes.
The difference between the functions is the hierarchical directory structure.

■ ldap_read() Only reads the entry identified by the DN.

■ ldap_list() Searches all direct children of the entry identified by the DN.

■ ldap_search() Searches the whole tree (child and descendant entries) of the entry
identified by the DN, including the entry itself.

The filter string that is passed contains the actual search criteria. This is explained in more
detail in the section “LDAP Filter,” later in the chapter. You must always specify a filter string,
because in LDAP an empty filter is not allowed.

The attribute list contains the attributes that are to be returned in the search result. For
efficiency reasons, not all attributes of an entry should be retrieved but only the required
attributes.

Sample Program: Searching for Domain Users
Listing 16-5 shows how a search for domain users in Active Directory with LDAP can look.
First, the connection to Active Directory is established. Because only read access is required,
you can specify any domain user, as all users in the domain have read access to the entries in
the directory.

Important Enter the user name in the user@domain format shown in the listing, or else the
authentication might fail.

User entries typically are located under the entry Users of the domain—for example,
CN=Users,DC=xmp,DC=site.

The defined filter searches for new users and excludes system users.

406 Part III Active Directory

Only the attributes name, userPrinicpalName, and sAMAccountName should be retrieved.
The names are not case sensitive.

After the search with ldap_search() is completed, ldap_get_entries() retrieves the results. The
required attributes can be retrieved as associated array and the DN of the entry can always
be queried with the index dn. The names of attributes in the array are always lowercase.

Caution Entries also contain optional attributes. If an entry doesn’t have an attribute, the index
in the associated result array is also not set. Because it cannot be assumed that attributes exist,
you should check by using isset() or empty() if the array contains the entry that you’re looking for.

Because an attribute can have several values, ldap_get_entries() returns the values as an array.
If the first value is required, it must be accessed with [0].

Afterward, the memory for the search result is released by using ldap_free_result() and the
connection is closed. The explicit release of the memory is not mandatory because the mem-
ory is freed up after the PHP script is completed. However, if a script runs several queries that
are returning extensive results, you should release the memory from time to time.

LISTINg 16-5 ldap_search_ad.php—searching for domain users.

<?php
namespace net\xmp\phpbook;
require './HTMLPage.php';
require './LDAPConnection.php';
$html = new HTMLPage('LDAP User Search');

// Connect
$ad = new LDAPConnection();
$ad->connect('doco-exch.xmp.site', 'arno@xmp.site', 'confidential');
// Query Users
$baseDN = "CN=users,DC=xmp,DC=site";
// Filter looks for user objects with the userPrincipalName attribute
$filter = "(&(objectcategory=Person)(userPrincipalName=*))";
// Definition of the attributes to retrieve
$attributes = array('name', 'userPrincipalName', 'sAMAccountName');
// Start search
$qresult = ldap_search($ad->handle, $baseDN, $filter, $attributes);
if (!$qresult) {
 $ad->exitWithError('LDAP search failed.');
}
// Retrieve entries ...
$entries = ldap_get_entries($ad->handle, $qresult);
if (!$entries) {
 $ad->exitWithError('Reading of LDAP failed.');

 Chapter 16 LDAP Basics 407

}
// ... and write in table
$table = array(array('Name', 'Principal', 'DN', 'Account Name'));
for ($i = 0; $i < $entries['count']; $i++) {
 $table[] = array($entries[$i]['name'][0], $entries[$i]['userprincipalname'][0],
 $entries[$i]['dn'], $entries[$i]['samaccountname'][0]);
}
$html->addTable($table);

// Share result, close connection
ldap_free_result($qresult);
$ad->close();
$html->printPage();
?>

Figure 16-8 shows the result of a query. System users such as administrators or guests are not
displayed because they are excluded by the filter.

FIgURE 16-8 Searching for domain users by using ldap_search_ad.php.

LDAP Filter
An LDAP search is always designated by two parameters: the position in the tree at which
the search begins, and the values that the attributes must have to ensure that the associated
entries are not excluded. The definition of the LDAP filter is based on attribute values and the
Boolean logic to link expressions.

An LDAP filter consists of two basic building blocks: a filter expression, and linked filter
expressions.

filter := '(' { <operator> filter [,...n] | filter expression } ')'
filter expression := { <attribute> <comparator> <value>
 | <attribute> ':' <comparison rule> ':=' <value> }

408 Part III Active Directory

Operators
Table 16-2 lists the valid operators, comparators, and comparison rules for LDAP filters.
Comparison rules are specified with standardized object identifiers (OID). If an attribute has
several values, at least one value must meet the defined conditions. Note that not all attri-
bute types support all comparators; for example, only the identity of the objectClass attribute
can be checked.

TABLE 16-2 Operators and comparators for LDAP filters

Type Expression Description

Operator & AND operator: all filters must apply.

| OR operator: only one filter must apply.

! NOT operator: the filter must not apply.

Comparison operator = The attribute value equals the specified value.

~= The attribute value is about the same as the
specified value.

>= The attribute value is greater or equal to the
specified value.

<= The attribute value is less or equal to the speci-
fied value.

= …*… The asterisk is a placeholder for any character
in the specified value and can only be used with
the equal operator.

Comparison rule 1.2.840.113556.1.4.803 Bit-by-bit AND operator: only true if all set bits
of the specified value are also set for the attri-
bute value.

1.2.840.113556.1.4.804 Bit-by-bit OR operator: only true if at least one
set bit is also set for the attribute value.

1.2.840.113556.1.4.1941 Only for the comparison of attributes containing
a DN. Verifies not only the current entry but also
all referenced entries recursively.

Escape (Masking) Characters
To use special characters for a filter string value, you need to replace them with an escape
sequence. Table 16-3 lists the escape sequences for characters that need to be replaced.

 Chapter 16 LDAP Basics 409

TABLE 16-3 Escape sequences for LDAP filter strings

Character Escape sequence

(\28

) \29

* \2a

/ \2f

\ \5c

NUL (00hex) \00

Examples
The filter syntax is shown in the following few examples.

To find an entry with the CN Doris:

(cn=Doris)

It’s also no problem if the attribute value contains spaces:

(cn=Doris D. Lass)

To find all entries beginning with “A”, use a placeholder, as shown here:

(cn=A*)

To find entries with an operating system version less than or equal to 5 (operatingSystem
Version) or to search for entries created before January 1st 2011 (whenCreated), the two filter
expressions are linked with OR, as demonstrated in the following:

(|(operatingSystemVersion<=5)(whenCreated<=20110101000000.0Z))

More complex combinations are also possible:

(&(|(objectClass=User)(objectClass=Computer))(!(mail=*xmp.site)))

This filter searches for user or computer entries not containing an email address (mail attribute)
that ends with xmp.site.

Caution This also excludes all entries without a mail attribute because it cannot be determined
if they meet the condition.

410 Part III Active Directory

To check if an attribute exists, the value is specified as “*”, shown below:

(mail=*)

This filter returns all entries with a mail attribute. The following filter returns all entries with-
out a mail attribute:

(!(mail=*))

Because in LDAP a filter string must be specified, you need a filter that doesn’t filter but lets
all entries pass through:

(objectClass=*)

Since each entry is derived from the top class for which the objectClass attribute is manda-
tory, all entries are found because each entry has an objectClass attribute.

The attribute type is important for comparison operations: placeholders and comparators
(<=, >=, ~=) can only be used for attributes containing strings. objectClass and other attri-
butes, for example memberOf for group memberships, aren’t strings—even though they are
displayed in clear text—and cannot be filtered with these comparators. For example, the fol-
lowing filters never return a result:

(objectClass=Pers*)
(objectClass<=Z)

The syntax for comparison rules appears as follows:

(&(objectClass=User)(userAccountControl:1.2.840.113556.1.4.804:=18))

This filter finds all user entries that are locked (LOCKOUT=16) or deactivated
(ACCOUNTDISABLE=2).

Iterating Through Search Results
ldap_get_entries() returns all search results as array (see Listing 16-5). An alternative is to
incrementally retrieve the attributes and results.

Incremental Entry Queries
The functions ldap_first_entry() and ldap_next_entry() retrieve entries incrementally. To
retrieve the attributes of an entry, use ldap_get_attributes().

Listing 16-6 demonstrates how these functions are used. After the search with ldap_search()
is completed, ldap_first_entry() retrieves the first entry returned in the search results. In the
loop, ldap_get_attributes() retrieves the attributes of the current entry. To get the next entry,
call ldap_next_entry(), which returns the next entry or false if no more entries exist.

 Chapter 16 LDAP Basics 411

LISTINg 16-6 The entries of a search result are retrieved incrementally.

$result = ldap_search($ldapLink, $baseDN, $filter, $attributes);
if (!$result) {
 // Error occurred
}
$entry = ldap_first_entry($ldapLink, $result);
if (!$entry) {
 // Error occurred
}
do {
 $attr = ldap_get_attributes($ldapLink, $entry);
 if (!$attr) {
 // Error occurred
 }
 // ...
} while ($entry = ldap_next_entry($ldapLink, $entry));
ldap_free_result($result);

Caution Unlike ldap_get_entries(), the names of attributes for ldap_get_attributes() are not low-
ercase, but the capitalization rules are identical with the corresponding rules in Active Directory.

Incremental Attribute Queries
Like entries, attributes can also be retrieved incrementally. For this purpose, the ldap_first_
attribute() and ldap_next_attribute() functions are used to iterate through the attributes of an
entry. These functions return the name of the next attribute as a string. (Again, the capitaliza-
tion rules are the same as in Active Directory.) You can retrieve the values for a certain attri-
bute as an array with ldap_get_values(). Listing 16-7 shows how these functions are used.

LISTINg 16-7 The attributes of an entry in the search result are incrementally retrieved.

// $ldapLink, $entry are set according to the query.
// $entry point to an entry in the search result
$attr = ldap_first_attribute($ldapLink, $entry);
if (!$attr) {
 // Error occurred
}
do {
 $values = ldap_get_values($ldapLink, $entry, $attr);
 if (!$values) {
 // Error occurred
 }
 // ...
} while ($attr = ldap_next_attribute($ldapLink, $entry));
// ...

412 Part III Active Directory

You can use ldap_get_values() without ldap_first_attribute()/ldap_next_attribute(). To retrieve
binaries, use the ldap_get_values_len() function.

Note At least for the platforms and program versions described in this book, you can use
ldap_get_values(), ldap_get_attributes(), and ldap_get_entries() to query binaries such as the
GUID and SID of a user.

Summary
Filters and the DN are the foundation for interactions with Active Directory through the
LDAP interface: the data model hierarchy is reflected in the hierarchic syntax of the DN and
the filters allow specific queries based on entry attributes. You can use the PHP functions for
connecting to Active Directory and retrieving entries explained in this chapter to query all
required information about users, groups, organizational units, and computers.

The next chapter explains the differences between these entries as well as the corresponding
syntax and structure rules. The PHP LDAP sample browser developed in the next chapter is
useful for application development because it allows you to quickly browse between linked
objects and entries and attributes.

 413

Chapter 17

Searching in Active Directory

This chapter explains the schema of Microsoft Active Directory in more detail as well as
the structure of the directory information tree (DIT) and the important object types (user,
groups, and organizational units). In this chapter, you create a PHP Lightweight Directory
Access Protocol (LDAP) browser that you can use to search and view data in Active Directory.
The browser also includes several useful routines that you can use with Active Directory to
convert a Security ID (SID) to a string, convert a Global Unique Identifier (GUID), and to con-
vert PHP and Windows timestamps.

The PHP LDAP Browser
In this chapter, the PHP LDAP Browser (PLB) serves as a sample program. This browser pro-
vides a simple extensible search interface and converts binary data to a readable format for
attributes. The following sections describe the most important PLB components: the user
interface, the class for formatting LDAP entries, and the structure of search definitions and
type information.

Main Program and User Interface
The main program of the PLB controls the activities and the user interaction. The program is
divided up and presented in Listings 17-1 to 17-5, which make up the complete PHP script.

In this chapter:
The PHP LDAP Browser . 413
The Directory Information Tree and Naming Contexts . 421
Active Directory Schema . 422
Domain Objects . 431
Concrete Search Examples . 442
Summary . 450

414 Part III Active Directory

Entry Form
Listing 17-1 shows the structure of the entry form. The page is created by using the HTMLPage
class (for more information, see Appendix A, “Example Scripts and Data”). The options in the
drop-down list are dynamically composed of the existing search definitions ($objectClasses
from browse_ldap_types.php). At the end, the routine checks if both input parameters
($_GET[‘type’] and $_GET[‘name’]) are set. If not, the form is displayed and the script is fin-
ished. The type variable specifies which search is performed, and the name variable specifies
a parameter for the search filter.

LISTINg 17-1 browse_ldap.php—the entry form.

<?php
namespace net\xmp\phpbook;

require './HTMLPage.php';
require './LDAPConnection.php';
require './LDAPEntryFormatter.php';
require './browse_ldap_types.php';
require './AD_util.php';

$html = new HTMLPage('LDAP Browser');
$form = <<<EOF
<form action="" method="get">
Name: <input name="name" />
<select name="type">
EOF;
foreach ($objectClasses as $name => $config) {
 $form .= sprintf('<option value="%s">%s</option>', htmlspecialchars($name),
 htmlspecialchars($config['name']));
}
$form .= <<<EOF
</select>
<input type="submit" value="search" />
</form>

EOF;
$html->addHTML($form);
// Check if parameters exist
if (!isset($_GET['name']) || !isset($_GET['type'])) {
 $html->printPage();
 exit;
}

 Chapter 17 Searching in Active Directory 415

LDAP Search
In the next step, you create and authenticate the LDAP connection by using the LDAP
Connection class (for more information, see Chapter 16, “LDAP Basics”), as shown in Listing
17-2. Depending on the search type you use, one of the following two PHP functions is used:

■ Search for distinguished name (DN) with ldap_read() Because each DN is unique,
only a single entry is found in Active Directory. ldap_read() retrieves only the specified
entry instead of searching the entire directory. Because you must specify a filter with
LDAP, you can use (objectClass=*) as a filter that applies to all objects.

■ general search with ldap_search() The other queries always start at the basic DN
and search the entire underlying directory tree. The filter and basic DN come from the
search definitions in $objectClasses in browse_ldap_types.php.

LISTINg 17-2 browse_ldap.php—creating the connection and sending the query.

// Establish connection
$ad = new LDAPConnection();
$ad->connect('doco-exch.xmp.site', 'arno@xmp.site', 'confidential');
// Filter parameters
if (!isset($objectClasses[$_GET['type']])) {
 $ad->exitWithError('Invalid entry type!');
}
$class = $objectClasses[$_GET['type']];
// Two different search types: Search for object DN ...
if (isset($_GET['getDN'])) {
 $result = ldap_read($ad->handle, $_GET['name'], '(objectClass=*)',
$class['attributes']);
}
// ... or search for baseDN with filter
else {
 $name = preg_replace($class['filterchars'], '', $_GET['name']);
 $filter = sprintf($class['filter'], $name);
 $result = ldap_search($ad->handle, $class['baseDN'], $filter,
$class['attributes']);
}
if (!$result) {
 $ad->exitWithError('LDAP search failed.');
}

Evaluating the Search Results
After the search is complete, the result is evaluated and displayed (see Listing 17-3). The
ldap_count_entries() function returns the number of search results. The listSingleEntry() and
listEntries() functions process the search results. Afterward, the search results are released by
using ldap_free_result() and the connection is closed.

416 Part III Active Directory

LISTINg 17-3 browse_ldap.php—the search results are evaluated and returned.

// The displayed information depends on the number of hits
$cnt = ldap_count_entries($ad->handle, $result);
if (!$cnt) {
 $html->addElement('p', 'No matches found.');
} elseif ($cnt == 1) {
 list($heading, $table) = listSingleEntry($ad, $result, $_GET['type']);
 $html->addElement('h2', $heading);
 $html->addTable($table, array(true, true));
} else {
 $list = listEntries($ad, $result, $_GET['type']);
 $html->addElement('h2', 'Search result');
 $html->addList($list, true);
}
// Free result buffer, close connection
ldap_free_result($result);
$ad->close();
$html->printPage();

Viewing the Results
To prepare the result output, you use two different functions, depending on whether you
want to display the information for a single result or a result list.

Listing 17-4 shows the search results displayed by the listEntries() function. The ldap_get_
entries() function returns all results in a single array. Because the object classes of the entries
are unknown, only the DN of the search results is displayed. The DN of an entry in the array
is retrieved by using $entries[$i][‘dn’]. For the generated link, the getDN=1 parameter is set to
use the corresponding search.

LISTINg 17-4 browse_ldap.php—lists more search results.

/**
 * Returns several search hits and displays them
 */
function listEntries($ad, $result, $class) {
 $entries = ldap_get_entries($ad->handle, $result);
 if (!$entries) {
 $ad->exitWithError('Reading the LDAP search results failed.');
 }
 $list = array();
 for ($i = 0; $i < $entries['count']; $i++) {
 $list[] = '<a href="browse_ldap.php?name=' . rawurlencode($entries[$i]['dn'])
 . '&type=' . rawurlencode($class)
 . '&getDN=1">' . htmlspecialchars($entries[$i]['dn']) . '';
 }
 return $list;
}

 Chapter 17 Searching in Active Directory 417

Listing 17-5 shows the listSingleEntry() function that displays the details of an entry. Since
the case sensitivity for the attributes should be maintained, ldap_first_entry() and ldap_get_
attributes() are used instead of ldap_get_entries(). The ldap_get_dn() function returns the DN
of the entry. The LDAPEntryFormatter class formats the output.

LISTINg 17-5 browse_ldap.php—returns a single hit.

/**
 * Reads a single search hit and formats it for viewing
 */
function listSingleEntry($ad, $result, $class) {
 $entry = ldap_first_entry($ad->handle, $result);
 if (!$entry) {
 $ad->exitWithError('Reading the LDAP entry failed.');
 }
 $attr = ldap_get_attributes($ad->handle, $entry);
 $ef = new LDAPEntryFormatter($attr, $class, 'browse_ldap.php');
 $table = $ef->getAttributes();
 $title = $class . ': ' . ldap_get_dn($ad->handle, $entry);
 return array($title, $table);
}
?>

Formatting an LDAP Entry
The LDAPEntryFormatter class together with HTMLPage formats and processes the output
(Listing 17-6). The type and attributes of the entry are passed to the constructor.

LISTINg 17-6 LDAPEntryFormatter—this class generates a detailed view of the LDAP entries.

<?php
namespace net\xmp\phpbook;

class LDAPEntryFormatter {

 protected $attr;
 protected $type;
 protected $url;

 function __construct($attributes, $type, $url) {
 $this->attr = $attributes;
 $this->type = $type;
 $this->url = $url;
 }

 function getAttributes() { ... }
 function getValue($name, $link) { ... }
 function link($value, $link) { ... }
}
?>

418 Part III Active Directory

Listing 17-7 shows the LDAPEntryFormatter->getAttributes() method. This method generates
an array that can be passed to HTMLPage->addTable(). The entry attributes are processed
step by step in a loop and converted with a conversion routine in AD_util.php, if an entry
exists in $attributeConversion (from browse_ldap_types.php).

LISTINg 17-7 LDAPEntryFormatter->getAttributes()—iterating through attributes.

/**
 * Returns the attributes of the LDAP entry
 * in an array compatible with HTMLPage->addTable()
 */
function getAttributes() {
 global $attributeConvertion;

 $table = array(array('attribute', 'value'));
 for ($i = 0; $i < $this->attr['count']; $i++) {
 $attr = $this->attr[$i];
 $link = isset($attributeConvertion[$attr]) ? $attributeConvertion[$attr] :
false;
 $table[] = array($this->link($attr, 'attributeSchema'),
 $this->getValue($attr, $link));
 }
 return $table;
}

The LDAPEntryFormatter->getValue() method handles the list of attribute values and aggre-
gates the values in a single string (Listing 17-8).

LISTINg 17-8 LDAPEntryFormatter->getValue()—returns the attribute values.

/**
 * Returns the linked and converted values of an attribute
 */
function getValue($name, $link=false) {
 if (!($cnt = $this->attr[$name]['count'])) {
 return '(empty)';
 }
 if ($cnt == 1) {
 return $this->link($this->attr[$name][0], $link);
 }
 $val = "($cnt) ";
 for ($i = 0; $i < $cnt; $i++) {
 $val .= $this->link($this->attr[$name][$i], $link) . '; ';
 }
 return $val;
}

 Chapter 17 Searching in Active Directory 419

The LDAPEntryFormatter->link() method in Listing 17-9 links and converts the attributes:
if $link is set, the routine checks if a conversion function with the same name exists (in the
namespace net\xmp\phpbook). If the function exists, it is called; otherwise, a link for the entry
type is generated.

LISTINg 17-9 The LDAPEntryFormatter->link() method—linking and converting values.

/**
 * Links a single attribute value
 */
function link($value, $link=false) {
 $txt = htmlspecialchars($value);
 // No information -> clear text
 if ($link === false) {
 return $txt;
 }
 // Does the conversion function exist?
 elseif (function_exists('net\\xmp\\phpbook\\' . $link)) {
 $func = 'net\\xmp\\phpbook\\' . $link;
 return htmlspecialchars($func($value));
 }
 // Otherwise it is an object class
 else {
 $getdn = '';
 if (substr($link, 0, 3) === 'DN-') {
 $link = substr($link, 3);
 $getdn = '&getDN=1';
 }
 return "url . '?name=' . rawurlencode($value)
 . "&type=$link$getdn'>$txt";
 }
}

Type Information and Search Definitions
The file browse_ldap_types.php contains the definitions for the LDAP object classes and
searches (see Listing 17-10). The two main arrays are:

■ $objectClasses An associative array that contains the following entries for each entry
type or for each search:

● name The text for the drop-down list.

● baseDN Basic DN for the directory tree search.

● filter LDAP filter string, %s is a placeholder for user entries.

420 Part III Active Directory

● attributes An array of the attributes to be listed; an empty array means that all
attributes are listed.

● filterchars A regular expression to filter out unwanted characters in the user
input.

■ $attributeConvertion An associative array that displays attribute names for function
names or entry types. In the first case, the function converting the attributes is called;
in the latter case, the entry is linked accordingly.

LISTINg 17-10 browse_ldap_types.php—type information and search definitions.

<?php
namespace net\xmp\phpbook;

$rootDN = 'DC=xmp,DC=site';

/**
 * Definition for search operations and object classes
 */
$objectClasses = array(
 // ...
);

// Sets the default values
foreach ($objectClasses as &$oc) {
 if (isset($oc['base'])) { // Copies from another definition
 foreach ($objectClasses[$oc['base']] as $name => $val) {
 if (!isset($oc[$name])) {
 $oc[$name] = $val;
 }
 }
 }
 if (!isset($oc['filterchars'])) {
 $oc['filterchars'] = "/[^-_ a-z0-9*.']/i";
 }
}

/**
 * Linking and converting attributes
 */
$attributeConvertion = array(
 // ...
);
?>

 Chapter 17 Searching in Active Directory 421

Conversion Functions
The conversion functions for attribute values are saved in the file AD_util.php. Listing 17-11
uses the dec2hex() function to convert a decimal number to a hexadecimal number.

LISTINg 17-11 AD_util.php—conversion functions.

<?php
namespace net\xmp\phpbook;

/**
 * Converts a number to the hexadecimal format.
 * @param int $dec Number
 */
function dec2hex($dec) {
 return '0x' . dechex($dec);
}
?>

The Directory Information Tree and Naming Contexts
The directory information tree (DIT) of a directory service (for example, Active Directory) is
the sum of all information saved in the directory: not only do the data objects belong to the
DIT but so does the schema. A DIT is divided into several naming contexts. The referenced
objects belong to different partitions of the DIT.

The DIT (the directory structure) in Active Directory is divided into at least three different
naming contexts. Some naming contexts are specific to a domain and others are uniform for
an Active Directory forest. The naming contexts are:

■ Domain context For example, DC=xmp,DC=site: in this context the domain objects—
for example, computer, user, groups, and so on—are saved. You usually work in this
naming context. The Active Directory forest can include many domain contexts.

■ Configuration context For example, CN=Configuration,DC=xmp,DC=site: the config-
uration context includes information to the Active Directory forest, such as the domains
in the forest and the domain controllers and services in the domains.

■ Schema context For example, CN=Schema,CN=Configuration,DC=xmp,DC=site: the
schema contains the definition of all object and attribute classes as well as the structure
and content rules for the directory tree. Entries and attributes in Active Directory can
only be created and changed according to the specified rules.

422 Part III Active Directory

■ Optional application contexts For example, DC=DomainDnsZones,DC=xmp,DC=site:
applications in Active Directory, such as the Active Directory DNS service, have their
own naming contexts. These application contexts save application information but no
user accounts or other principals.

An LDAP search can only be performed in one naming context at a time, and an overall
search is not possible. When searching in Active Directory, the first step is the selection of the
appropriate naming context using the basic DN.

Important Although the DN of the naming context suggests that the schema is included in the
configuration and the domain includes the schema and the configuration, this is not the case. A
naming context is always autonomous.

Active Directory Schema
The Active Directory schema is extensive: it consists of more than 200 object classes and
more than 1,200 attribute definitions with about 30 different syntaxes for values. The most
important properties of the schema are described in the following subsections.

Note For a complete description of the Active Directory schema, see the MSDN website at
http://msdn.microsoft.com/en-us/library/ms675085.aspx.

The Active Directory schema is saved in the schema naming context of the DIT (usually the
basic DN CN=Schema,CN=Configuration,DC=…,DC=…). The schema naming context doesn’t
have a deep hierarchy. The object and attribute classes important for the schema exist one
level below the basic DN.

Object Classes
Object classes define content and structure rules for entries: for example, which attributes
are mandatory or optional, and what object class has to be the parent object in the directory
tree? Listing 17-12 shows the entry of the top object class that serves as base for all other
object classes in Active Directory.

 Chapter 17 Searching in Active Directory 423

LISTINg 17-12 Attributes of the top object class.

Dn: CN=Top,CN=Schema,CN=Configuration,DC=xmp,DC=site
cn: Top;
defaultHidingValue: TRUE;
defaultObjectCategory: CN=Top,CN=Schema,CN=Configuration,DC=xmp,DC=site;
distinguishedName: CN=Top,CN=Schema,CN=Configuration,DC=xmp,DC=site;
instanceType: 0x4 = (WRITE);
lDAPDisplayName: top;
mayContain (4): msSFU30PosixMemberOf; msDFSR-ComputerReferenceBL; [...]
name: Top;
objectCategory: CN=Class-Schema,CN=Schema,CN=Configuration,DC=xmp,DC=site;
objectClass (2): top; classSchema;
objectClassCategory: 2 = (ABSTRACT);
objectGUID: db474ff7-44d0-486c-988f-6cab04cd9be8;
schemaIDGUID: bf967ab7-0de6-11d0-a285-00aa003049e2;
subClassOf: top;
systemFlags: 0x10 = (SCHEMA_BASE_OBJECT);
systemMayContain (104): description; createTimeStamp; cn; [...]
systemMustContain (4): objectClass; objectCategory; nTSecurityDescriptor;
instanceType;
systemOnly: TRUE;
systemPossSuperiors: lostAndFound;
whenChanged: 2/11/2009 6:37:20 PM W. Europe Daylight Time;
whenCreated: 2/11/2009 6:37:20 PM W. Europe Daylight Time;

Attributes of Object Classes
Table 17-1 lists interesting attributes for object class entries in the schema. These attributes
help you to arrange the classes and to get an overview of the valid attributes.

TABLE 17-1 Attributes of the object class description (classSchema)

Attribute Description
adminDescription Includes a short description of the object class (not for all

classes).

auxiliaryClass, systemAuxiliaryClass List of additional classes whose attributes are also used.

defaultHidingValue If TRUE the object of this class is not displayed in the
Microsoft Management Console (MMC) and in other pro-
grams by default.

defaultObjectCategory DN of the objectCategory attribute for entries of this class.

lDAPDisplayName Name of the class used for LDAP queries.

mayContain, systemMayContain List of the optional class attributes.

mustContain, systemMustContain List of the mandatory class attributes.

name Name and relative distinguished name (RDN) of the object
class.

objectClassCategory Object class category (see Table 17-2).

424 Part III Active Directory

Attribute Description
possibleInferiors Automatically generated list of the classes that can have chil-

dren of an object of this class.
(read-only structure rule)

possSuperiors, systemPossSuperiors List of the classes that need a parent object of this class
(structure rule).

subClassOf Class hierarchy: specifies from which classes attributes are
inherited.

systemOnly If TRUE the generated object can only be changed by Active
Directory.

Not all classes are associated with class categories. Only structure classes can instantiate objects
directly in the directory. Table 17-2 lists an overview of the class categories. With only a few
exceptions, the object classes in Active Directory are structure classes.

TABLE 17-2 Object class categories

Name Value Description
88 0 Classes existing before class categories were introduced. Example: person,

country.

Abstract 2 Abstract object classes cannot be directly instantiated and are only used for
the inheritance hierarchy. Examples: top, domain.

Auxiliary 3 Auxiliary classes can pass their attributes to abstract and structure classes but
cannot be instantiated. Examples: mailRecipient, securityPrincipal.

Structural 1 Structural category classes are concrete classes allowing instantiation of the
object in the directory. Example: user, group.

PLB: Finding and Viewing Object Classes
To use the PLB to search and view object classes, you need to extend the definitions in
browse_ldap_types.php, as shown in Listing 17-13. The Schema: Object Class option is added
to the LDAP search. You can use this to search for classes by LDAP name. Figure 17-1 shows
an example search for the User class.

LISTINg 17-13 browse_ldap_types.php—object class extension.

$objectClasses = array(
 // ...
 'classSchema' => array(
 'name' => 'Schema: Object Class',
 'baseDN' => "CN=Schema,CN=Configuration,$rootDN",
 'filter' => '(&(lDAPDisplayName=%s)(objectClass=classSchema))',
 'attributes' => array(

 Chapter 17 Searching in Active Directory 425

 'name', 'lDAPDisplayName', 'subClassOf', 'defaultObjectCategory',
 'objectCategory', 'systemPossSuperiors', 'possSuperiors',
 'auxiliaryClass', 'systemAuxiliaryClass', 'mustContain',
 'systemMustContain', 'mayContain', 'systemMayContain',
 'systemOnly', 'possibleInferiors', 'defaultHidingValue',
 'adminDescription')
),
);

$attributeConvertion = array(
 // ...
 'subClassOf' => 'classSchema',
 'possSuperiors' => 'classSchema',
 'systemPossSuperiors' => 'classSchema',
 'possibleInferiors' => 'classSchema',
 'auxiliaryClass' => 'classSchema',
 'systemAuxiliaryClass' => 'classSchema',
 'mustContain' => 'attributeSchema',
 'systemMustContain' => 'attributeSchema',
 'mayContain' => 'attributeSchema',
 'systemMayContain' => 'attributeSchema',
);

FIgURE 17-1 PLB—a detailed view of the User object class.

426 Part III Active Directory

Object Classes vs . Object Categories
Each entry in Active Directory has two attributes to provide information to an object class:
objectClass and objectCategory. The difference between the two attributes is that objectClass
contains the object identifier (OID) of all classes, whereas objectCategory only contains a DN
(usually of the most specific class). For this reason, the objectClass attribute includes about
four to five values, and the objectCategory attribute has only a single value.

If you want to select object types as specific as possible for the search, you should look for
objectCategory in the LDAP filter. For example, the User class has the following attribute
values:

objectClass (4): top; person; organizationalPerson; user;
objectCategory: CN=Person,CN=Schema,CN=Configuration,DC=xmp,DC=site;

If you use an LDAP filter with (objectClass=user), you find not only users but also computers,
because they are a subclass of the User class:

objectClass (4): top; person; organizationalPerson; user; computer;
objectCategory: CN=Computer,CN=Schema,CN=Configuration,DC=xmp,DC=site;

Note Active Directory simplifies the search with objectClass and objectCategory because in
addition to being able to find an OID (objectClass) or a DN (objectCategory), it also inserts the
LDAPDisplayName of the class as value into the filter. Active Directory searches the schema and
replaces LDAPDisplayName with the corresponding OID or DN (from defaultObjectCategory).

For example, if you specify (objectCategory=computer) in the filter, Active Directory will search
for (objectCategory=CN=Computer,CN=Schema,CN=Configuration,DC=xmp,DC=site).

Attribute Classes
Attribute classes define the attributes of entries. If the attribute can have one or more values,
what is the syntax for the attribute value? Listing 17-14 shows selected definitions of the
userPrincipalName attribute class that includes the full account name of a user.

LISTINg 17-14 Attributes of the userPrincipalName attribute class.

Dn: CN=User-Principal-Name,CN=Schema,CN=Configuration,DC=xmp,DC=site
attributeID: 1.2.840.113556.1.4.656;
attributeSecurityGUID: e48d0154-bcf8-11d1-8702-00c04fb96050;
attributeSyntax: 2.5.5.12 = (UNICODE);
cn: User-Principal-Name;
distinguishedName: CN=User-Principal-Name,CN=Schema,CN=Configuration,DC=xmp,DC=site;
instanceType: 0x4 = (WRITE);
isMemberOfPartialAttributeSet: TRUE;
isSingleValued: TRUE;
lDAPDisplayName: userPrincipalName;

 Chapter 17 Searching in Active Directory 427

name: User-Principal-Name;
objectCategory: CN=Attribute-Schema,CN=Schema,CN=Configuration,DC=xmp,DC=site;
objectClass (2): top; attributeSchema;
objectGUID: 32fc1ed7-466e-40e6-a989-881ec2b5cc1f;
oMSyntax: 64 = (UNICODE_STRING);
rangeUpper: 1024;
schemaFlagsEx: 1;
schemaIDGUID: 28630ebb-41d5-11d1-a9c1-0000f80367c1;
searchFlags: 0x1 = (INDEX);
showInAdvancedViewOnly: TRUE;
systemFlags: 0x12 = (ATTR_REQ_PARTIAL_SET_MEMBER | SCHEMA_BASE_OBJECT);
systemOnly: FALSE;
whenChanged: 2/11/2009 6:37:17 PM W. Europe Daylight Time;
whenCreated: 2/11/2009 6:37:17 PM W. Europe Daylight Time;

Attributes of Attribute Classes
Table 17-3 lists interesting attributes for attribute class entries in the schema. These details
help to retrieve important information to the attribute, such as the number of values and the
syntax for the values.

TABLE 17-3 Attributes of the attribute class description (classSchema)

Attribute Description
adminDescription Includes a short description of the attribute class (not for all classes).

attributeSyntax, oMSyntax Syntax for the attribute values; for example, if it is a DN, an OID, a
number or a string. oMSyntax specifies the sub types.

isMemberOfPartialAttributeSet If TRUE the attribute is part of the global catalog.

isSingleValued Specifies if the attribute can have only one value (TRUE) or any
number of values (FALSE).

lDAPDisplayName Name of the class used for LDAP queries.

name Name and RDN of the attribute class.

searchFlags Bitmask for search settings. If (searchFlags & 1)==1, the attri-
bute values are indexed to enable a fast search. If (searchFlags
& 4)==4, the attribute is included in Ambiguous Name Resolution
(ANR).

systemFlags Bitmask for settings. If (systemFlags & 2)==2, the attribute is
part of the global catalog.

systemOnly The attribute can only be set while the associated entry is gener-
ated. Afterward, only Active Directory can change the attribute.

428 Part III Active Directory

PLB: Finding and Viewing Attribute Classes
To use the PLB to search and view attribute classes, you need to extend the definitions in
browse_ldap_types.php as shown in Listing 17-15. The option “Schema: Attribute Class” is
added to the search. You can use this to look up attributes by their LDAP name.

LISTINg 17-15 browse_ldap_types.php—attribute class extension.

$objectClasses = array(
 // ...
 'attributeSchema' => array(
 'name' => 'Schema: Attribute Class',
 'baseDN' => "CN=Schema,CN=Configuration,$rootDN",
 'filter' => '(&(lDAPDisplayName=%s)(objectClass=attributeSchema))',
 'attributes' => array(
 'name', 'lDAPDisplayName', 'objectCategory', 'isSingleValued',
 'attributeID', 'attributeSyntax', 'oMSyntax', 'systemOnly',
 'isMemberOfPartialAttributeSet','systemFlags', 'searchFlags',
 'adminDescription')
),
);

Attribute Syntax
The syntax of an attribute specifies which syntax rules apply to the attribute values, how
these values are saved, and how a comparison in an LDAP filter works.

The syntax is controlled by two attributes of the associated attribute class: attributeSyntax
(main type) and oMSyntax (sub type).

Table 17-4 shows the main syntax variations in Active Directory.

Including the sub types, there are about 30 different syntax variations in Active Directory.

The general rule is that in an LDAP filter, only the equal comparator (=) can be used, unless
the value is a number or a string.

TABLE 17-4 Attribute syntax of active directory

Name OID Description
Distinguished Name (DN) 2.5.5.1 A DN for another object in Active Directory. If the referenced

object is moved or renamed, the attribute is automatically
updated.
In a filter, you always need to enter the complete DN.
Placeholders and comparators (<=, >=, ~=) are not allowed.

OID 2.5.5.2 String containing an OID. In a filter, you always have to enter
the complete OID. Only the equal comparator (=) is allowed.

Case sensitive string 2.5.5.3 The string is case sensitive (seldom used syntax).

 Chapter 17 Searching in Active Directory 429

Name OID Description
Case insensitive string 2.5.5.4 The string is not case sensitive and uses the Teletex character

set.

Printable string, IA5 String 2.5.5.5 String with a character set similar to US-ASCII.

Numeric string 2.5.5.6 String only containing numbers (seldom used syntax), not the
same as the integer syntax.

DN with octet string, OR
name

2.5.5.7 Contains the DN and binary data. The DN is updated auto-
matically (seldom used syntax).

Boolean 2.5.5.8 Boolean value similar to TRUE or FALSE in filters.

Integer, Enumeration 2.5.5.9 Integers and special enumeration types which can also be
used as integer.

Octet string 2.5.5.10 Binary data.

Time string 2.5.5.11 Time in Coordinated Universal Time (UTC), often used for the
whenCreated attribute.

Case insensitive Unicode
string

2.5.5.12 A case insensitive Unicode string and the most commonly
used string syntax in Active Directory.

OSI Presentation address 2.5.5.13 Presentation address for the OSI layer model (seldom used).

DN with Unicode string 2.5.5.14 Contains the DN and a string. The DN is updated automati-
cally (seldom used syntax).

NT security descriptor 2.5.5.15 NT security definition.

Large integer
Interval

2.5.5.16 64-bit integer or time interval (the accuracy depends on the
attribute).

SID string 2.5.5.17 Security ID (SID).

To display the description in the PLB, add the oidInfo() function to the AD_util.php file
(Listing 17-16).

LISTINg 17-16 AD_util.php/oidInfo()—additional information for OID.

/**
 * Returns additional information for known OIDs (Object Identifier).
 * @param string $oid OID as string
 */
function oidInfo($oid) {
 static $info = array(
 '2.5.5.1' => 'Distinguished Name (DN)',
 '2.5.5.2' => 'OID',
 '2.5.5.3' => 'Case sensitive string',
 '2.5.5.4' => 'Case insensitive string',
 '2.5.5.5' => 'Printable string / IA5 String',
 '2.5.5.6' => 'Numeric string',
 '2.5.5.7' => 'DN with octet string / OR name',
 '2.5.5.8' => 'Boolean',
 '2.5.5.9' => 'Integer / Enumeration',
 '2.5.5.10' => 'Octet string',

430 Part III Active Directory

 '2.5.5.11' => 'Time string (UTC)',
 '2.5.5.12' => 'Unicode string',
 '2.5.5.13' => 'OSI presentation address',
 '2.5.5.14' => 'DN with Unicode string',
 '2.5.5.15' => 'NT security descriptor',
 '2.5.5.16' => 'Large integer / Interval',
 '2.5.5.17' => 'SID',
);
 return empty($info[$oid]) ? $oid : "$oid ($info[$oid])";
}

You also have to assign the conversion routine in $attributeConvertion (Listing 17-17).

LISTINg 17-17 browse_ldap_types.php—linking with oidInfo().

$attributeConvertion = array(...
 // attributeSchema
 'attributeSyntax' => 'oidInfo',
 ...
);

Figure 17-2 shows how oidInfo() is used to add additional information to the attribute syntax
of an attribute class.

FIgURE 17-2 PLB—a detailed view of the Object-Sid attribute class.

 Chapter 17 Searching in Active Directory 431

Domain Objects
For the most part, PHP web applications use objects in the domain naming context to man-
age users with the Group and Organizational Unit object classes. In the following subsections,
three entry types and their attributes are explained in more detail and the PLB is extended
with searches and definitions for these objects classes.

General Attributes for Domain Objects
All objects are derived from the top object class. This class already has more than 100 attri-
butes, four of which are mandatory (objectClass, objectCategory, nTSecurityDescriptor, and
instanceType). Table 17-5 lists several attributes.

TABLE 17-5 Attributes that can be used for all objects

Attribute Description
cn Common name of the object.

description Description of the object.

displayName Display name of the object in programs. For example, the complete name of
user objects consisting of first name, middle initial, and last name.

distinguishedName DN of the object; Active Directory automatically adds the DN as attribute to
objects.

instanceType Contains status information as bitmask. The value 4 indicates that the object
can be changed.

isCriticalSystemObject If TRUE the entry is replicated on other domain controllers in the domain.

name RDN of the object.

nTSecurityDescriptor NT security definition.

objectCategory DN of the object category.

objectClass Object class of the entry. The attribute contains all object classes in the
inheritance hierarchy.

objectGUID GUID of the object.

systemFlags Bitmask for native flags.

whenChanged Time the object was last changed.

whenCreated Time the object was created.

PLB: General Search for Domain Objects
To use the PLB to search for any objects in the domain naming context, the user can define
the filter string. Instead of only one attribute, all attributes of the object are displayed.
Listing 17-18 shows the required extensions that you need to add to browse_ldap_types.php.

432 Part III Active Directory

LISTINg 17-18 browse_ldap_types.php—general object search.

$objectClasses = array(
 // ...
 'object' => array(
 'name' => 'Definable Filter',
 'baseDN' => $rootDN,
 'filter' => '%s',
 'filterchars' => '/\x00/',
 'attributes' => array()
),
);

$attributeConvertion = array(
 // ...
 'objectCategory' => 'DN-classSchema',
 'objectClass' => 'classSchema',
 'objectGUID' => 'guid2str',
 'systemFlags' => 'dec2hex',
 'instanceType' => 'dec2hex',
);

PLB: Converting the Object GUID
The object GUID is a binary LDAP string and needs to be converted to the corresponding text
format. Listing 17-19 shows the conversion of a GUID into a text string (guid2str() function) and
vice versa (str2guid() function).

LISTINg 17-19 AD_util.php—conversion functions for GUIDs.

/**
 * Converts the binary GUID to a string
 * @param string $guid binary GUID
 */
function guid2str($guid) {
 $last = substr(bin2hex($guid), 20);
 $x = unpack('Vhead/v2mid/nmid3', $guid);
 return sprintf("%08x-%04x-%04x-%04x-%s", $x['head'], $x['mid1'],
 $x['mid2'], $x['mid3'], $last);
}

/**
 * Converts the string to a binary GUID
 * @param string $guidstr GUID as string
 */
function str2guid($guidstr) {
 $v = explode('-', $guidstr);
 return pack('VvvnH*', hexdec($v[0]), hexdec($v[1]), hexdec($v[2]),
 hexdec($v[3]), $v[4]);
}

 Chapter 17 Searching in Active Directory 433

Users
Active Directory contains user account entries from the Person object category and the User
object class that are derived from the Top, Person, and OrganizationalPerson object classes.
User attributes can be divided into four groups: personal information (name, organization),
contact information (email, web, phone, address), user account, and system specific informa-
tion. The attributes for the first three groups are explained in more detail in the sections that
follow.

Personal Information
Personal information includes the name, a general description, and information about the
company that the user works for. Table 17-6 lists these attributes.

TABLE 17-6 Organization name and information

Attribute Description
company Name of the company

department Name of the department

description General description field

displayName Display name (first name, middle initial, and last name)

givenName First name

initials Middle initial

name (cn) RDN of the object, usually the same as displayName

sn Last name

title Position within an organization

Contact Information
Contact information includes electronic data such as email addresses, websites, and
phone numbers, as well as postal addresses. Table 17-7 lists the contact information. The
wWWHomePage and telephoneNumber attributes can be found in the Properties dialog
box of a user in the MMC, on the General tab; the other phone numbers are located on the
Phone Numbers tab.

TABLE 17-7 Email address, web addresses, and phone numbers

Attribute Description
facsimileTelephoneNumber Fax number

homePhone Private phone number

mail Email address

mobile Cell phone number

telephoneNumber Primary phone number

url Additional website address

wWWHomePage Primary website

434 Part III Active Directory

Table 17-8 shows the attributes for a postal address. The postal address is divided into the
usual address fields (street, postal code, location, state, country).

TABLE 17-8 Postal address

Attribute Description
c, co, countryCode Country/region: c is the two-letter code (for example, AT), co is

the full name (for example, Austria), countryCode is the country
code (for example, 40)

l Location

postalCode ZIP (or postal) code

postOfficeBox PO box

st State

streetAddress Street

User Account Information
Table 17-9 shows several attributes for a user account including logon name, account state,
and the time different user activities were performed.

TABLE 17-9 User account information

Attribute Description
accountExpires Date on which the account is deactivated

badPasswordTime Time of the last failed logon

badPwdCount Number of failed logon attempts

lastLogoff Time of the last logout

lastLogon, lastLogonTimestamp Time of the last successful logon on the queried domain con-
troller (lastLogon) or of the last successful logon on the domain
(lastLogonTimestamp)

memberOf DN of the groups the account is a (direct) member of

objectSid SID in binary format

sAMAccountName Logon name with domain

userAccountControl Bitmask for the account state.

userPassword Password for the user account (write-only)

userPrincipalName Domain logon name in name@domain syntax

PLB: Searching for Users
To use the PLB to look up user objects, add the entries in Listing 17-20 to browse_ldap_types
.php. The default setting lists only a few account attributes but no other data such as the
email address or postal address. To view all attributes of a user object, replace the attributes
array with an empty array.

 Chapter 17 Searching in Active Directory 435

LISTINg 17-20 browse_ldap_types.php—searching for user objects.

$objectClasses = array(
 // ...
 'user' => array(
 'name' => 'User',
 'baseDN' => $rootDN,
 'filter' => '(&(objectClass=User)(objectCategory=Person)(name=%s))',
 'attributes' => array(
 'name', 'displayName', 'userPrincipalName', 'memberOf', 'lastLogon',
 'userAccountControl', 'accountExpires', 'objectCategory',
 'objectClass', 'objectGUID', 'objectSid')
),
);

$attributeConvertion = array(
 // ...
 'lastLogon' => 'winStamp2str',
 'lastLogonTimestamp' => 'winStamp2str',
 'badPasswordTime' => 'winStamp2str',
 'userAccountControl' => 'accountControl2str',
 'accountExpires' => 'winStamp2str',
 'objectSid' => 'sid2str',
 'memberOf' => 'DN-group',
);

Figure 17-3 shows a detailed view of a user object in PLB if all conversions in $attribute
Conversion (Listing 17-20) are performed by user attributes.

FIgURE 17-3 PLB—a detailed view of a user object with converted attributes.

436 Part III Active Directory

PLB: SID Conversion
The SID is passed as binary data and needs to be converted to a string. Listing 17-21 shows
the conversion of a SID into a text string (sid2str() function) and vice versa (str2sid() function).

LISTINg 17-21 AD_util.php—a SID is converted to a string and vice versa.

/**
 * Converts the binary SID to a string
 * @param string $sid binary SID
 */
function sid2str($sid) {
 $v = unpack('Crev/Ccnt/Sx/Nauth/V*sub', $sid);
 $str = "S-$v[rev]-$v[auth]";
 for ($i = 1; $i <= $v['cnt']; $i++) {
 $str .= '-' . $v["sub$i"];
 }
 return $str;
}

/**
 * Converts the string to a binary SID
 * @param string $sidstr SID as string
 */
function str2sid($sidstr) {
 $v = explode('-', $sidstr);
 $cnt = count($v) - 3;
 $sid = pack('CCSN', $v[1], $cnt, 0, $v[2]);
 for ($i = 0; $i < $cnt; $i++) {
 $sid .= pack('V', $v[$i + 3]);
 }
 return $sid;
}

PLB: Converting a Windows Timestamp in PHP
Windows timestamps used in Active Directory have a higher resolution (100 nanoseconds
instead of 1 second) and an earlier zero point (1601 instead of 1970) than PHP timestamps.
Listing 17-22 shows the conversion of a timestamp. Because PHP integers are 32-bit numbers
but the Windows timestamp has 64 bits, the subtraction or addition is performed by using
the BCMath maths library included in the Windows version of PHP.

 Chapter 17 Searching in Active Directory 437

LISTINg 17-22 AD_util.php—converting a Windows timestamp.

/**
 * Converts the Windows timestamp to a string
 * @param string $stamp Windows timestamp
 */
function winStamp2str($stamp) {
 if (!$stamp) {
 return 'unknown';
 } elseif ($stamp == '9223372036854775807') {
 return 'never';
 }
 $stamp = substr($stamp, 0, -7); // 100ns -> s
 $stamp = bcsub($stamp, '11644473600'); // 1601 -> 1970
 return date('Y-m-d H:i:s O', $stamp);
}

/**
 * Converts the Unix time (time()) to a Windows timestamp
 * @param int $stamp Unix time (seconds since 1970)
 */
function time2winStamp($stamp) {
 if (!$stamp) {
 return '0';
 } elseif ($stamp == 0xffffffff) {
 return '9223372036854775807';
 }
 $stamp = bcadd($stamp, '11644473600'); // 1970 -> 1601
 return $stamp . '0000000'; // s -> 100ns
}

PLB: Viewing the Account State
The userAccountControl attribute of a user entry contains important information regarding
the type and status of the user account. This attribute is a bitmask, and the bits depend on the
status. Listing 17-23 shows a function returning additional information for some interesting
flags.

438 Part III Active Directory

LISTINg 17-23 AD_util.php—information for the userAccountControl attribute.

/**
 * Returns additional information for UserAccountControl.
 * @param int $ac Value of UserAccountControl
 */
function accountControl2str($ac) {
 // List of a few flags, not complete
 static $flags = array(
 'ACCOUNTDISABLE' => 0x0002,
 'LOCKOUT' => 0x0010,
 'PASSWD_NOTREQD' => 0x0020,
 'PASSWD_CANT_CHANGE' => 0x0040,
 'NORMAL_ACCOUNT' => 0x0200,
 'INTERDOMAIN_TRUST_ACCOUNT' => 0x0800,
 'WORKSTATION_TRUST_ACCOUNT' => 0x1000,
 'SERVER_TRUST_ACCOUNT' => 0x2000,
 'DONT_EXPIRE_PASSWORD' => 0x10000,
 'PASSWORD_EXPIRED' => 0x800000);
 $info = array();
 foreach ($flags as $name => $value) {
 if ($ac & $value) {
 $info[] = $name;
 }
 }
 return dec2hex($ac) . ' (' . join(', ', $info) . ')';
}

Groups
Groups (Group object class) combine other objects (such as users) to process these objects
simultaneously. There are two types of groups: security groups and distribution groups.
You can grant security groups permissions to access files and websites. Distribution groups
cannot have access rights, because they are mainly used to create email distribution lists in
Active Directory.

Because groups can contain other groups as members, you can create a group hierarchy.
Unlike organizational units, the group hierarchy is expressed by the member and memberOf
attributes rather than in the structural hierarchy of the directory.

Table 17-10 shows the important attributes for a group.

 Chapter 17 Searching in Active Directory 439

TABLE 17-10 Attributes of groups in Active Directory

Attribute Description
cn, name Name of the group (the name is the RDN)

description General description

groupType Bitmask:
80000000hex set: security group (SECURITY_ENABLED), otherwise distribu-
tion group (for email)
02hex set: global group scope (ACCOUNT_GROUP)
04hex set: local group scope (RESOURCE_GROUP)
08hex set: universal group scope (UNIVERSAL_GROUP)

mail email address of the distribution group

member DN of the (direct) members of the group

memberOf DN of the groups the group is a (direct) member of

objectSid SID in binary format

sAMAccountName Group name (pre-Windows 2000), can differ from cn/name

PLB: Searching for Groups
To use the PLB to look up groups, add the entries in Listing 17-24 to browse_ldap_types.php.

LISTINg 17-24 browse_ldap_types.php—searching for group objects.

$objectClasses = array(
 // ...
 'group' => array(
 'name' => 'Group',
 'baseDN' => $rootDN,
 'filter' => '(&(objectCategory=Group)(name=%s))',
 'attributes' => array(
 'name', 'sAMAccountName', 'member', 'memberOf', 'objectCategory',
 'objectClass', 'groupType', 'objectGUID', 'objectSid', 'mail')
),
);

$attributeConvertion = array(
 // ...
 'member' => 'DN-object',
 'groupType' => 'groupType2Str',
);

440 Part III Active Directory

PLB: Viewing the Group Type
The groupType attribute contains important information to the group type. The function
in Listing 17-25 adds additional attribute information to the PLB, based on the properties in
Table 17-10.

LISTINg 17-25 AD_util.php—information to the group type.

/**
 * Returns additional information for groupType.
 * @param int $type Value of the groupType attribute
 */
function groupType2str($type) {
 static $flags = array(
 'SECURITY_ENABLED' => 0x80000000,
 'ACCOUNT_GROUP' => 0x02,
 'RESOURCE_GROUP' => 0x04,
 'UNIVERSAL_GROUP' => 0x08,
);
 $info = array();
 foreach ($flags as $name => $value) {
 if ($type & $value) {
 $info[] = $name;
 }
 }
 return dec2hex($type) . ' (' . join(', ', $info) . ')';
}

Organizational Units
Organizational units (OrganizationalUnit class) are generic structural elements in Active
Directory. Unlike groups, organizational units create a hierarchy in the directory tree. The
name of the organizational unit becomes a part of the DN of all underlying entries (DN name
part ou).

Organizational units together with organizations (Organization object class) and coun-
tries (Country object class) form the classic X.500 hierarchy of directory services. In Active
Directory, organizational units become more important: they can be the target of group
policies. Therefore, they can be of particular importance for the administration and security
configuration.

Table 17-11 lists several attributes for an organizational unit. The most important attribute
is ou because it determines the name of the organizational unit and appears in the DN of all
entries under an organizational unit.

 Chapter 17 Searching in Active Directory 441

TABLE 17-11 Attributes of an organizational unit

Attribute Description
Description General description.

ou, name Name of the organizational unit (the name is the RDN).

street, postOfficeBox, postalCode, l, st, c,
co, countryCode

Same postal address as in Table 17-8, but the attribute for
the street is street not streetAddress.

To use the PLB to look up organization units, add the entries in Listing 17-26 to browse_ldap_
types.php. Figure 17-4 shows the result of an organizational unit search.

LISTINg 17-26 browse_ldap_types.php—searching for organizational units.

$objectClasses = array(
 // ...
 'organizationalUnit' => array(
 'name' => 'Organizational Unit',
 'baseDN' => $rootDN,
 'filter' => '(&(objectClass=organizationalUnit)(ou=%s))',
 'attributes' => array(
 'ou', 'name', 'description', 'objectCategory',
 'objectClass', 'objectGUID')
),
);

FIgURE 17-4 Detailed view of an organizational unit.

442 Part III Active Directory

Concrete Search Examples
This section includes several concrete search examples especially for users and groups and
the ANR that combines the most important attributes.

Add the appropriate entries to browse_ldap_types.php to use these examples in the PHP
LDAP browser.

Schema
A search in the schema should always start at the basic DN CN=Schema,CN=Configuration,
DC=…,DC=…. Because the hierarchy is flat (all attribute and object classes are one level
below), use ldap_list() instead of ldap_search().

You can configure a schema search for the PLB as follows:

$objectClasses = array(
 // ...
 '<typ_name>' => array(
 'name' => '<description>',
 'filter' => '<filter>',
 'base' => '< classSchema | attributeSchema >',
),
);

Set the base parameter according to the expected results (attribute or object classes). If you
use the base parameter, you don’t need to specify the attribute list and the basic DN.

Attributes
Object classes specify which attributes an object can or must have through the mayContain
and mustContain attributes and the associated system pendants. A search has to be performed
conversely.

Search Find all object classes that must have a certain attribute:

(&(objectCategory=classSchema)(|(mustContain=%s)(systemMustContain=%s)))

Explanation Because the desired attribute can be specified in mustContain or system
MustContain, the OR operator is used. The objectCategory is not essential because only
object classes have the associated attributes.

Search Find all object classes that can have a certain attribute:

(&(objectCategory=classSchema)
 (|(mayContain=%s)(systemMayContain=%s)(mustContain=%s)(systemMustContain=%s)))

 Chapter 17 Searching in Active Directory 443

Explanation This format is identical to the previous search but uses the mayContain and
systemMayContain attributes.

Note Both queries find only the object classes for which the attribute is set. Because of the in-
heritance, other object classes can also use this attribute. An LDAP search including these classes
is not possible.

Search Find all possible attributes for a certain object:

ldap_read($ldaplink, $objectDN, '(objectClass=*)', array('allowedAttributes'));

Explanation Active Directory allows this search with the calculated allowedAttributes attri-
bute. The search is not performed in the schema but for the desired (domain) object, as
shown in the example search with ldap_read().

Search Find all attributes that can be set for a certain object:

ldap_read($ldaplink, $objectDN, '(objectClass=*)', array('allowedAttributesEffective'));

Explanation Unlike allowedAttributes, allowedAttributesEffective lists only writeable attri-
butes. For example, user entries can have 350 attributes. The domain administrator can set
or change 285 of these attributes, and more than 50 attributes can be set or changed by the
user. Users without special permission cannot change the attributes.

Search Find all attributes that are part of the global catalog:

(&(objectCategory=attributeSchema)
 (|(isMemberOfPartialAttributeSet=TRUE)(systemFlags:1.2.840.113556.1.4.804:=2)))

Explanation Attributes are saved in the global catalog if the isMemberOfPartialAttributeSet
attribute is set or the flag in the systemFlags attribute has the value 2.

Search Find all attributes that are calculated automatically:

(&(objectCategory=attributeSchema)(systemFlags:1.2.840.113556.1.4.804:=4))

Explanation Some attributes are not saved in the directory but instead are automatically
calculated from other attributes. An example is allowedAttributes. Don’t confuse calculated
attributes with automatically-set attributes (for example, lastLogonTimestamp) whose values
are saved in Active Directory.

Object Classes
For object classes, the structure rules (what object can have another object as parent or child)
can be directly retrieved with the possSuperiors, systemPossSuperiors, and possibleInferiors
attributes. For the inheritance hierarchy, the subClassOf attribute specifies from what class
the current object class is derived. Otherwise, a search is necessary.

444 Part III Active Directory

Search Find all object classes that are derived directly from an object class:

(&(objectCategory=classSchema)(subClassOf=%s))

Explanation Even though directly derived classes are easy to find, there is no appropriate
pendant to list all derived classes in the hierarchy. The only way is to search the tree recursively
(the recursive operator 1.2.840.113556.1.4.1941 cannot be used, because the objectClass isn’t
a DN but an OID).

Search Find all abstract (=2) or auxiliary (=3) or 88 classes (=0):

(objectClassCategory=%s)

ANR
With ANR, Active Directory offers a simple method to quickly search the most important
name fields. This includes the name, sn, displayName, givenName, and sAMAccountName
attributes.

A search with ambiguous name resolution is started with the virtual anr filter attribute, as
shown here:

(anr=Tony Hamster)

The search in ANR attributes is performed as follows:

■ A prefix search with Tony Hamster* is performed in all attributes.

■ For the first name and last name (givenName, sn), the search term is broken up at the
space, and the following additional search is performed:

(|(&(givenName=Tony*)(sn=Hamster*))(&(givenName=Hamster*)(sn=Tony*)))

You can create simple and efficient search filters by using the virtual anr filter attribute.

To find all attributes that are part of the ANR, use the following filter:

(&(objectCategory=attributeSchema)(searchFlags:1.2.840.113556.1.4.803:=5))

This filter uses the bitwise AND operator and checks the searchFlags attribute to deter-
mine if the attribute has an index (1) and is part of the ANR attributes (4). In Windows Server
2008 R2, the following attributes are included in ANR: name, sn, displayName, givenName,
sAMAccountName, legacyExchangeDN, physicalDelivery-OfficeName, proxyAddresses, msDS-
AdditionalSamAccountName, msDS-PhoneticCompanyName, msDS-PhoneticDepartment,
msDS-PhoneticDisplayName, msDS-PhoneticFirstName, msDS-PhoneticLastName.

 Chapter 17 Searching in Active Directory 445

Users
User entries in Active Directory are always queried in the domain naming context
(DC=xmp,DC=site).

You can configure a user search for the PLB as follows:

$objectClasses = array(
 // ...
 '<typ_name>' => array(
 'name' => '<description>',
 'filter' => '<filter>',
 'base' => 'user',
),
);

Search Find users created before a certain date:

(&(objectCategory=Person)(objectClass=user)(whenCreated<=%s)

Explanation Active Directory sets the whenCreated attribute automatically when the user
entry is specified. The syntax for the used timestamp is YYYYMMDDhhmmss.0Z (Y=year,
M=month, D=day, h=hour, m=minute, s=second, Z=UTC time zone).

Search Find users changed after a certain date:

(&(objectCategory=Person)(objectClass=user)(whenChanged>=%s)

Explanation Active Directory sets the whenChanged attribute automatically when the user
entry is changed. The syntax for the timestamp is identical to whenCreated.

Search Find users or computers not requiring a password or with a password that never
expires:

(&(objectClass=user)(userAccountControl:1.2.840.113556.1.4.804:=65568))

Explanation The filter uses the bitwise OR operator to look for two indicators in the user
AccountControl attribute: If passwords are not necessary (32) or if passwords never expire
(65536). This search also finds computers because they are derived from the object class user.

Note The numbers in LDAP filters always must be decimal. The hexadecimal values of flags
need to be converted.

Search Find users with locked or deactivated accounts:

(&(objectCategory=Person)(objectClass=user)(userAccountControl:1.2.840.113556.1.4.804:=18))

446 Part III Active Directory

Explanation The filter uses the bitwise OR operator to look for a locked (16) or deactivated
(2) user account.

Search Find all users who have not logged on since a certain time:

(&(objectCategory=Person)(objectClass=user)(lastLogonTimestamp<=%s))

Explanation The lastLogonTimestamp attribute is set automatically. However, a Windows
timestamp must be used for the time. You can use the time2winStamp() function in List-
ing 17-22 to convert a PHP time() timestamp to a Windows timestamp.

Note The lastLogon attribute also saves the time of the last logon, but unlike lastLogonTime
stamp, it is not replicated to other domain controllers in the domain.

Search Find all users who have never logged on:

(&(objectCategory=Person)(objectClass=user)(!(lastLogonTimestamp=*)))

or

(&(objectCategory=Person)(objectClass=user)(lastLogon=0))

Explanation If a user never logged on, the value for the lastLogon attribute is 0 or the
lastLogonTimestamp attribute is not set. If you create a corresponding entry in browse_ldap_
types.php, the result looks similar to that in Figure 17-5.

FIgURE 17-5 PLB—a list of all users who have never logged on.

Groups
Groups in Active Directory are always queried in the domain naming context
(DC=xmp,DC=site).

 Chapter 17 Searching in Active Directory 447

You can configure a user search for the PLB as follows:

$objectClasses = array(
 // ...
 '<typ_name>' => array(
 'name' => '<description>',
 'filter' => '<filter>',
 'base' => 'group',
),
);

Search Find all distribution groups:

(&(objectCategory=Group)(!(groupType:1.2.840.113556.1.4.803:=2147483648)))

Explanation The bitwise operator checks if the security group bit
(80000000hex=2147483648) is set. If the bit is not set, it is a distribution group.

Membership Through member/memberOf
You can query group memberships with the member and memberOf attributes.

Search Find groups without members:

(&(objectCategory=Group)(!(member=*)))

Explanation The member attribute contains the members of a group. member=* checks
whether the attribute exists; (!(member=*)) checks whether the attribute doesn’t exist (there
are no group members).

Search Find all groups containing a certain member:

(&(objectCategory=Group)(member:1.2.840.113556.1.4.1941:=%s))

Explanation To look up the groups of which the user is a direct member, you can query
the member attribute. If you want to find all groups, including the groups the user is only an
indirect member through other groups (group hierarchy), you need to search the directory
tree recursively. The specified recursion operator performs this task. The operator checks
the values of the member attribute and tracks the corresponding objects recursively. If the
required user object is found in the member attribute, the groups in the search path are
returned. However, the recursion operator works only for attributes with a DN. The search
parameter (%s) also must be the full DN of the user—for example, CN=Agnes B. Barstow,OU
=Technology,OU=AdventureWorks,DC=xmp,DC=site.

Tip For efficiency reasons, the basic DN shouldn’t be the domain context but the parent entry
of the wanted groups.

448 Part III Active Directory

Search Find all members of a group:

(&(objectCategory=Person)(memberOf:1.2.840.113556.1.4.1941:=%s))

Explanation You can also search for all members, including indirect members, by using the
recursion operator for the memberOf attribute. You must specify the full DN of the group as
parameter. Together with objectCategory=Person, the result is limited to users. Computers or
other groups are not displayed. To look up all members of any type, exclude this part of the
filter.

(memberOf:1.2.840.113556.1.4.1941:=%s)

Tip For efficiency reasons the basic DN shouldn’t be the domain context but the parent entry of
the wanted members.

Search Determine if users are members of a group:

$r = ldap_read($ldapLink, $userDN, "(memberOf:1.2.840.113556.1.4.1941:=$groupDN)");
if (ldap_count_entries($ldapLink, $r)) {
 // The user is a member
}

Explanation This search is identical with the search already described. But for efficiency
reasons, the basic DN is set for the user, and only the user is retrieved with ldap_read()
instead of searching the whole subtree with ldap_search(). If the search returns a result, the
user ($userDN) is a member of the group ($groupDN).

Membership Through primaryGroupID
The group membership can also be indicated through the primaryGroupID attribute. For
example, system groups such as domain users and domain computers use this method for
group membership. For this reason, groups can have many members and exceed the maxi-
mum number of attribute values.

The primaryGroupID attribute for members is set to the Relative Identifier (RID) of the group.
The RID is the last number of the SID:

User SID: S-1-5-21-1465576585-1264251571-1973391373-1108
Domain RID: S-1-5-21-1465576585-1264251571-1973391373
User RID: 1108

The domain RID is identical for all objects within a domain. Membership through the primary
GroupID is only possible within the same domain. Armed with this knowledge, you should be
able to write search queries (in the interest of clarity, error handling is skipped).

 Chapter 17 Searching in Active Directory 449

Search Listing 17-27 demonstrates how to find all members with a group as primary group.

LISTINg 17-27 Find all members with a group as primary group.

// Retrieving the group SID
$result = ldap_read($ldapLink, $groupDN, '(objectSid=*)', array('objectSid'));
$entry = ldap_first_entry($ldapLink, $result);
$attr = ldap_get_attributes($ldapLink, $entry);
// Retrieving the RID
$sid = sid2str($attr['objectSid'][0]);
preg_match('/(\d+)$/', $sid, $match);
$rid = $match[1];
// Find all members
$result = ldap_search($ldapLink, $baseDN, '(primaryGroupID=$rid)', $attributeList);

Explanation First, the SID of the specified group is retrieved. If the SID is already known, the
first steps can be skipped. The sid2str() function in Listing 17-21 converts the SID to a string
and the RID is identified by using preg_match(). With this information, you can perform a
normal LDAP search. You can set the filter and the basic DN to meet your requirements.

Search Listing 17-28 shows how to find the primary group of an entry:

LISTINg 17-28 Searching for the primary group of an object.

// Retrieving the SID and primaryGroupID of the entry ($entryDN)
$result = ldap_read($ldapLink, $entryDN,
 '(objectSid=*)', array('objectSid','primaryGroupID'));
$entry = ldap_first_entry($ldapLink, $result);
$attr = ldap_get_attributes($ldapLink, $entry);
$sid = sid2str($attr['objectSid'][0]);
$pgid = $attr['primaryGroupID'][0];
// Retrieving the SID of the group
$grSidStr = preg_replace('/\d+$/', $pgid, $sid);
// Prepare for LDAP search filter
$grSid = str2sid($grSidStr);
$searchsid = preg_replace('/(..)/', '\\\\$1', bin2hex($grSid));
// Search for group
$result = ldap_search($ldapLink, $baseDN, "(objectSid=$searchsid)", $attributeList);

Explanation First the SID and the primaryGroupID of the entry are retrieved. With preg_
replace(), this becomes the full SID of the wanted group. To use the SID in the LDAP filter, you
must convert it to the binary format by using the str2sid() function presented in Listing 17-21.
Because the binary data can contain invalid characters, simply mask the entire SID ($searchsid).
With the SID masked, you can perform a normal LDAP search.

450 Part III Active Directory

Summary
Active Directory provides an extensive schema to save user, group, and principal informa-
tion. This chapter introduced object and attribute classes as well as naming contexts and
the syntax for attributes. The description of users, groups, and organizational units, as well
as the introduced conversion functions should give you a sound basis to develop your own
Active Directory applications. The next chapter explains how to write data in Active Directory.

 451

Chapter 18

Writing in Active Directory

This chapter explains how to change, create, and delete entries and entry attributes. With
this knowledge, you can handle the normal events occurring in an organization, such as
employees joining or leaving the company, name changes, reorganizations, promotions,
address changes, or the replacement of computers and printers. However, the user who
owns the Lightweight Directory Access Protocol (LDAP) connection must have the necessary
permissions.

Preparation
Before you use a PHP application to make changes, in Microsoft Active Directory, you must
grant the PHP user the necessary permissions, unless the user should only be able to change
his own entries. If you write code, you should also activate the server-side error logging. You
also need to make some changes to the sample scripts if you want to use the examples in this
chapter to write your own code.

Access Rights
While authenticated users are able to read (almost) all objects in Active Directory, only cer-
tain users have permissions to change these objects. The write access to Active Directory
objects has far-reaching consequences: in Active Directory, the rights for all principals are
managed in a single domain; therefore, full write permissions amount to the permission of a
domain administrator.

For this reason, users can change only the attributes of their own entries; they cannot change
the object attributes of other users or object owners.

In this chapter:
Preparation . 451
Writing Attributes . 458
Practical Examples for Changing Attributes . 463
Writing Entries . 467
Practical Examples . 471
Summary . 475

452 Part III Active Directory

Administrator Groups
The installation of Active Directory creates several administrator groups with different access
rights, which are described in the following:

■ Account operators Create, change, or delete users, groups, and computers.

■ Administrators Full access to all objects in the domain. Members of this group are,
for example, the Domain Admins and Enterprise Admins groups.

■ Print operators Create, change, or delete printers.

■ Domain administrators Full access to all objects in the domain.

■ Enterprise administrators Full access to all objects in the Active Directory forest.

To grant a PHP user write access, you can add that user to one of the preceding groups (for
example, to the account operators group). Alternatively, you can grant access rights directly
to an entry.

Changing the Access Rights to an Entry
To grant a PHP user (or a defined group) rights to only a certain entry or section of the Active
Directory hierarchy, use the access control list (ACL) for that entry. Here’s the process to
change access rights:

 1. Click the Windows Start button, select Administrative Tools, and then start ADSI Edit or
start the Microsoft Management Console (MMC) with the Active Directory Users And
Computers snap-in.

 2. In the MMC, in the View menu, click Advanced Features.

 3. Browse to the entry that you want to edit, right-click it, and then in the context menu
that appears, click Properties.

 4. On the Security tab, click Add to add a user or a group. Select the principal in the dia-
log box, and then click OK.

 5. In the Permissions list box, select the write or full access rights for the entry.

 6. To grant granular rights or to ensure that the rights are inherited by all child objects,
click Advanced.

The Advanced Security Settings dialog box opens, as shown in Figure 18-1.

 Chapter 18 Writing in Active Directory 453

FIgURE 18-1 Editing the access rights for Active Directory objects.

 7. Select the entry for the user to be added, and then click Edit.

The Permission Entry dialog box opens, in which you can grant granular permissions.

 8. In the Apply To drop-down box, select the objects for which you want to grant rights:
only for the current object or for the selected (or all) child objects.

 9. Click OK to close all dialog boxes and to apply the changes.

Note Only grant the essential rights (such as the ability to write all properties) that are required
by your application. Normally you shouldn’t grant full access.

Error Logging
The messages returned by ldap_errno() and ldap_error() are sometimes not sufficient to iden-
tify the cause of an error. In this case, you can activate error logging in Active Directory by
performing the procedure that follows.

 1. Click the Windows Start button, and then in the Search Programs And Files text box,
enter regedit.

454 Part III Active Directory

 2. In the registry editor, browse to HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\
Services\NTDS\Diagnostic.

 3. Enter one of the following values for 16 LDAP Interface Events:

● 0 (None) The default setting logs only critical events and errors

● 1 (Minimal) Also logs important events

● 2 (Basic) Logs important events and warnings

● 3 (Extensive) Logs the steps to be followed to complete a request

● 4 (Verbose) Even more information

● 5 (Internal) Logs all events, sometimes with additional information

To search for errors, level 3 is usually sufficient.

To review the events, open the event viewer (click Start | Administrative Tools | Event Viewer),
and then select Event Viewer | Custom Views | Server Roles | Active Directory Domain
Services. As illustrated in Figure 18-2, the viewer contains a list of recent events and a short,
detailed description of the event (General tab and Details tab, respectively).

FIgURE 18-2 An event viewer with an error message from the LDAP interface.

 Chapter 18 Writing in Active Directory 455

Supporting Scripts
The examples in this chapter use supporting scripts to ensure a concise output. Functions are
also added to existing scripts, the LDAPConnection class, and the AD_util.php file.

Main Program
The general program (modify_ldap.php) for the examples in this chapter is shown in
Listing 18-1. The program includes the example scripts that make the changes in Active
Directory.

The program creates the connection as administrator with the required permissions. It could
also use any other account that has the required privileges. To make the changes visible, the
program retrieves the entry from Active Directory before and after it calls the modify() func-
tion (modify() is part of the integrated scripts). Afterward, it displays the changes.

The formatChangedEntry() function merges the before/after entries.

LISTINg 18-1 modify_ldap.php—the general program for the examples in this chapter.

<?php
namespace net\xmp\phpbook;

require './HTMLPage.php';
require './LDAPConnection.php';
require './browse_ldap_types.php';
require './LDAPEntryFormatter.php';
require './AD_util.php';
// Load the script to make changes
require './________.php';

$html = new HTMLPage('Writing in Active Directory');
// Establish connection
$ad = new LDAPConnection();
$ad->connect('doco-exch.xmp.site', 'administrator@xmp.site', 'confidential');
$ad->baseDN = 'DC=xmp,DC=site';

// Make changes
$before = $ad->getAccount($accountName, $attributes);
modify($ad, $before);
$after= $ad->getAccount($accountName, $attributes);

// and output
$table = formatChangedEntry($before, $after);
$html->addElement('h2', $before['dn']);
$html->addTable($table, array(true, true, true));
$html->printPage();

456 Part III Active Directory

function formatChangedEntry($beforeEntry, $afterEntry)
{
 // Format entries
 $bf = new LDAPEntryFormatter($beforeEntry, 'object', 'browse_ldap.php');
 $beforeHTML = $bf->getAttributes();
 $af = new LDAPEntryFormatter($afterEntry, 'object', 'browse_ldap.php');
 $afterHTML = $af->getAttributes();
 // Merge entries
 $values = array();
 for ($i=1; $i<count($beforeHTML); $i++) {
 $values[$beforeHTML[$i][0]]['before'] = $beforeHTML[$i][1];
 }
 for ($i=1; $i<count($afterHTML); $i++) {
 $values[$afterHTML[$i][0]]['after'] = $afterHTML[$i][1];
 }
 $table = array(array('Attribute', 'Before', 'After'));
 $notset = '<i>not set</i>';
 foreach ($values as $attribute => $value) {
 $before = isset($value['before']) ? $value['before'] : $notset;
 $after = isset($value['after']) ? $value['after'] : $notset;
 $table[] = array($attribute, $before, $after);
 }
 return $table;
}
?>

LDAPConnection
Two methods and one attribute are added to the LDAPConnection class, as shown in
Listing 18-2. Because data in existing entries often need to be queried to make changes,
the getOneEntry() method takes over the search and error handling, and returns the attribute
either as an array or false. getAccount() is an auxiliary method that creates the filter if you
look up a Security Accounts Manager (SAM) account name (for users, groups, or computers).
If you set the $baseDN attribute from now on both methods, use this value as the default
value.

LISTINg 18-2 Extension of the LDAPConnection class.

class LDAPConnection {

 // ...
 public $baseDN = '';
 // ...

 /**
 * Retrieving an entry with the SAM account name
 * @param string $account SAM account name

 Chapter 18 Writing in Active Directory 457

 * @param array $attributes Wanted attribute
 * @param string $baseDN Basic DN for the search
 */
 function getAccount($account, $attributes=array(), $baseDN='') {
 $filter = '(sAMAccountName=' . escapeLDAP($account) . ')';
 $account = $this->getOneEntry($filter, $attributes, $baseDN);
 if (!$account) {
 $this->exitWithError('Account not found.');
 }
 return $account;
 }

 /**
 * Retrieving a search entry
 * @param string $filter Filter string
 * @param array $attributes Wanted attribute
 * @param string $baseDN Basic DN for the search
 */
 function getOneEntry($filter, $attributes=array(), $baseDN='') {
 if (empty($baseDN)) {
 $baseDN = $this->baseDN;
 }
 $result = ldap_search($this->handle, $baseDN, $filter, $attributes);
 if (!$result) {
 return false;
 }
 $entry = ldap_first_entry($this->handle, $result);
 if (!$entry) {
 return false;
 }
 $attr = ldap_get_attributes($this->handle, $entry);
 if (!$attr) {
 return false;
 }
 $attr['dn'] = ldap_get_dn($this->handle, $entry);
 return $attr;
 }
}

The AD_util .php Script
The escapeLDAP() function from Listing 18-2 that masks critical characters in a filter string is
added to the AD_util.php script shown in Listing 18-3. The asterisk placeholder is not masked.

458 Part III Active Directory

LISTINg 18-3 AD_util.php—a function to mask critical filter characters.

/**
 * Mask the filter string for the search (conservative)
 * @param string $str Filter string to mask
 */
function escapeLDAP($str) {
 return preg_replace_callback('/[^-\w\s=,.*]/',
 function($m) {
 return '\\' . bin2hex($m[0]);
 },
 $str);
}

Writing Attributes
The first changes made to the information saved in Active Directory deal with changing,
adding, and deleting attributes. With PHP, you can adapt the entry properties such as the
address of a user after he has moved.

Adding Attributes
To add attributes or attribute values to an existing entry, use the ldap_mod_add() function. In
addition to the connection resource, the distinguished name (DN) of an entry as well as an
associative array containing the new attributes is passed to the function.

Listing 18-4 shows an example. In the listing, the street (streetAddress), postal code (postal
Code), and location (l) as well as several web addresses must be added to the user. If several
values are passed for an attribute, these values are included in an array.

LISTINg 18-4 ldap_add_attributes.php—adding attributes to an entry.

<?php
namespace net\xmp\phpbook;

$accountName = 'doris';
$attributes = array('streetAddress', 'postalCode', 'l', 'url');

function modify($ad, $entry) {
 $newattr = array();
 $newattr['streetAddress'] = 'At the Dwarfs 7';
 $newattr['postalCode'] = '12345';

 Chapter 18 Writing in Active Directory 459

 $newattr['l'] = 'Sevenmountainville';
 $newattr['url'] = array('http://snow.xmp.site/',
 'http://dwarf.xmp.site/',
 'http://prince.xmp.site/');
 $success = ldap_mod_add($ad->handle, $entry['dn'], $newattr);
 if (!$success) {
 $ad->exitWithError('Adding attributes failed.');
 }
}
?>

Figure 18-3 shows the result if the function was successful: the streetAddress, postalCode and
l attributes are now set, and new values are added to the url attribute that can have multiple
values.

FIgURE 18-3 Adding attributes to the user.

ldap_mod_add() cannot add attributes and attribute values if:

■ An attribute that can only have a single value is already set.

■ The new value for an attribute with multiple values is already set.

■ The new value doesn’t comply with the syntax rules for the attribute.

You can check these conditions by loading and running the example script again. In the sec-
ond cycle, ldap_mod_add() returns an error.

Deleting Attributes
To delete attributes or attribute values from an existing entry, use the ldap_mod_del() func-
tion. The parameters are similar to ldap_mod_add(): they include the connection resource
and the DN of the entry as well as an associative array containing the attributes and attribute
values to be deleted.

460 Part III Active Directory

Listing 18-5 shows how to delete attributes. You must specify the value of the attribute you
want to delete. If the specified value is not identical with the value in Active Directory, ldap_
mod_del() fails. In this case, none of the attributes are deleted because the delete action is an
atomic operation. If you want to delete an attribute independently of its value, specify array()
as value.

LISTINg 18-5 ldap_del_attributes.php—deleting the attributes of an entry with ldap_mod_del().

<?php
namespace net\xmp\phpbook;

$accountName = 'doris';
$attributes = array('streetAddress', 'postalCode', 'l', 'url');

function modify($ad, $entry) {
 $delattr = array();
 $delattr['streetAddress'] = 'At the Dwarfs 7';
 $delattr['postalCode'] = array();
 $delattr['l'] = 'Sevenmountainville';
 $delattr['url'] = array('http://snow.xmp.site/',
 'http://dwarf.xmp.site/');
 $success = ldap_mod_del($ad->handle, $entry['dn'], $delattr);
 if (!$success) {
 $ad->exitWithError('Deleting attributes failed.');
 }
}

?>

Figure 18-4 shows the result if ldap_mod_del() were successfully completed. You can also
delete a single attribute value: only two of the four values for the web address attribute (url)
are deleted.

FIgURE 18-4 Deleting attributes.

 Chapter 18 Writing in Active Directory 461

ldap_mod_del() cannot delete attributes and attribute values if:

■ An attribute is not set.

■ The attribute has a different value in Active Directory than in ldap_mod_del().

Run the example script again to check the conditions: in the second cycle, ldap_mod_del()
returns the error that there are no attributes to delete.

Changing Attributes
To change the attributes or attribute values for an existing entry, use the ldap_mod_replace()
function. The function parameters are the connection resource and the DN of the entry as
well as an associative array containing the new values for the changed attributes.

Note To change entries, PHP provides the alternative ldap_modify() function. Even though the
PHP documentation suggests there is a difference, both functions are identical. In this book, we
use ldap_mod_replace() because the function name better describes the action.

Listing 18-6 shows an example. In the listing, the new attribute values are written into an
associative array, and ldap_mod_replace() is called with the appropriate DN.

LISTINg 18-6 ldap_change_attributes.php—changing attributes with ldap_mod_replace().

<?php
namespace net\xmp\phpbook;

$accountName = 'doris';
$attributes = array('streetAddress', 'postalCode', 'l', 'url', 'postOfficeBox');

function modify($ad, $entry) {
 $changeattr = array();
 $changeattr['streetAddress'] = array();
 $changeattr['postOfficeBox'] = 'Palace 1';
 $changeattr['postalCode'] = '12345';
 $changeattr['l'] = 'Fairycapital';
 $changeattr['url'] = array('http://happy.xmp.site/',
 'http://end.xmp.site/');
 $success = ldap_mod_replace($ad->handle, $entry['dn'], $changeattr);
 if (!$success) {
 $ad->exitWithError('Changing attributes failed.');
 }
}
?>

462 Part III Active Directory

Figure 18-5 shows the result of this function call:

■ l Attributes with basic values are simply replaced with the new value.

■ postalCode The old and the new value can be identical; no error is generated.

■ streetAddress If the new value is an empty array, the attribute is deleted.

■ url The old values of attributes with multiple values are replaced with the new values.

■ postOfficeBox New attributes can be set.

FIgURE 18-5 Changing attributes by using ldap_mod_replace().

ldap_mod_replace() is the most versatile of the three attribute functions. Regardless of whether
the values match or attributes already exist or need to be deleted, ldap_mod_replace() can
perform all tasks. However, watch out for attributes with multiple values: all old values are
replaced with the new values. If you only want to change a single value in the list, create
a new value list by retrieving the attribute first. Alternatively, you can make the change by
using ldap_mod_add() and ldap_mod_del().

Encoding and Character Sets
Attribute functions not only expect the values in the correct syntax but also in the correct
encoding (in the proper character set). Until now, the example listings ignored this fact.

The encoding is especially important for attributes that expect a string. Active Directory
knows five different attribute syntaxes for common strings. Basically, all attributes that
might contain characters outside the US ASCII range consist of Unicode characters (attribute
Syntax=2.5.5.12, oMSyntax=64).

 Chapter 18 Writing in Active Directory 463

Active Directory expects that the values for Unicode strings are passed as UTF-8. However,
PHP uses the ISO-8859-1 character set. To pass the values properly, you need to convert
them. For this purpose, PHP provides two functions: iconv() and mb_convert_encoding().

You can use either one of the following two calls to convert values to UTF-8, but the latter
call requires the mbstring extension in PHP:

$utf8 = iconv('ISO-8859-1', 'UTF-8', $isoText);
$utf8 = mb_convert_encoding($isoText, 'UTF-8');

Practical Examples for Changing Attributes
Attributes must be changed for a lot of reasons when managing users. Users change their
addresses, names, and phone numbers. In PHP, you can quickly make these changes if you
know the corresponding attribute names. The examples in the following sections show how
you can change system-relevant attributes.

The listings use the method described in the section “Writing Attributes,” earlier in the chapter.
The listings are not complete; they only show the most important parts. The examples don’t
include error handling or a preamble with the namespace declaration and the definition for
the $account variable.

Note Some examples require that the current values of certain attributes are known. The $entry
parameter passed to modify() contains the information on the user or group account.

Unlocking an Account
If a user exceeds the allowed maximum number of failed logon attempts, the account can
be locked automatically for security reasons. The msDS-User-Account-Control-Computed
attribute specifies if an account is locked: if the 0x10 flag is set, the account is locked. You can
unlock the account by using the userAccountControl attribute to delete the corresponding
bit, as shown in Listing 18-7.

LISTINg 18-7 Unlocking an account.

$attributes = array('userAccountControl', 'msDS-User-Account-Control-Computed');
function modify($ad, $entry) {
 $changeattr = array();
 $changeattr['userAccountControl'] = $entry['userAccountControl'] & ~0x10;
 ldap_mod_replace($ad->handle, $entry['dn'], $changeattr);
}

464 Part III Active Directory

Activating and Deactivating Accounts
If an account is temporarily disabled, the user cannot log on. The 0x02 flag specifies the
deactivation in the userAccountControl attribute. If you delete this flag, the account is acti-
vated, and if you set this flag the account is deactivated. Listing 18-8 shows how the account
is activated.

LISTINg 18-8 Activating an account.

$attributes = array('userAccountControl');
function modify($ad, $entry) {
 $changeattr = array();
 $changeattr['userAccountControl'] = $entry['userAccountControl'] & ~0x02;
 ldap_mod_replace($ad->handle, $entry['dn'], $changeattr);
}

To deactivate the account userAccountControl must be specified as follows:

$changeattr['userAccountControl'] = $entry['userAccountControl'] | 0x02;

Group Memberships
The group membership is controlled by the member attribute. The associated memberOf
attribute is set automatically.

Adding a User to a Group
Use ldap_mod_add() to add a user to a group. Enter the DN of the user in the member attri-
bute. In Listing 18-9, the DN of the user is added to the attribute array. To query the DN of
the group necessary for the ldap_mod_add() function, you retrieve the group entry by using
the auxiliary getAccount() method.

LISTINg 18-9 Adding a user to a group.

$attributes = array('memberOf');
function modify($ad, $entry, $group='gruppenname') {
 $attr = array();
 $attr['member'] = $entry['dn'];
 $group = $ad->getAccount($group);
 ldap_mod_add($ad->handle, $group['dn'], $attr);
}

 Chapter 18 Writing in Active Directory 465

Note You cannot add users who are already members of the group. Therefore, you should first
check if the user you want to add is already a group member.

Removing a User from a Group
To delete a user from a group, use ldap_mod_del(). Listing 18-10 shows how to remove a user
from all groups. In the listing, the memberOf attribute of the user contains the DNs of the
groups, and the user is removed from one group after the other.

LISTINg 18-10 Removing a user from a group.

$attributes = array('memberOf');
function modify($ad, $entry, $group='gruppenname') {
 $attr = array();
 $attr['member'] = $entry['dn'];
 for ($i=0; $i < $entry['memberOf']['count']; $i++) {
 ldap_mod_del($ad->handle, $entry['memberOf'][$i], $attr);
 }
}

Note Users deleted in this manner are not deleted from the primary group (usually the domain
user group) because the primary group is set with the primaryGroupID attribute.

Forced Password Change
To force the users to change their passwords at the next logon, use ldap_mod_replace() to set
the pwdLastSet attribute to 0, as demonstrated in Listing 18-11.

LISTINg 18-11 Forcing users to change their passwords at the next logon.

$attributes = array('pwdLastSet');
function modify($ad, $entry) {
 $changeattr = array();
 $changeattr['pwdLastSet'] = 0;
 ldap_mod_replace($ad->handle, $entry['dn'], $changeattr);
}

466 Part III Active Directory

Changing Passwords
To change the user password in PHP through LDAP, two conditions must be met: the LDAP
connection must be encrypted, and the LDAP user must have permission to change the pass-
words for other accounts (usually a domain administrator).

Note Because of the limitations of the PHP LDAP extension and the procedure required by
Active Directory, users cannot change their own passwords; the LDAP connection must be del-
egated to a domain administrator (or a user with permission to change the passwords of other
users).

Active Directory requires a server certificate so that ldap_start_tls() can create an encrypted
connection between PHP and Active Directory. The configuration of certificates for Active
Directory and PHP to accept a certificate is explained in Chapter 15, “Setting Up Active
Directory.”

To create an encrypted connection with the LDAPConnection class used in the examples, pass
true as the fourth parameter to the connect() method:

$ad = new LDAPConnection();
$ad->connect($server, $user, $password, true);

Afterward, you can use ldap_mod_replace() for the unicodePwd attribute to specify the pass-
word, as shown in Listing 18-12. You need to encode the password as UTF-16 (or UCS-2) and
put it in quotes. The following listing does this by using the mb_convert_encoding() function.
You don’t need to mask the quotes and other special characters in the password. However,
due to a bug, you do need to call ldap_mod_replace() two times or both the old and the new
password will be valid; you can still use the old password to log on to Active Directory, but
the password cannot be used to log on to a computer.

LISTINg 18-12 Changing the password for a user account.

$attributes = array('pwdLastSet');
function modify($ad, $entry, $password) {
 $newpwd = array();
 $newpwd['unicodePwd'] = mb_convert_encoding('"'.$password.'"', 'UCS-2LE');
 ldap_mod_replace($ad->handle, $entry['dn'], $newpwd);
 ldap_mod_replace($ad->handle, $entry['dn'], $newpwd); // Has to be done two times!
}

 Chapter 18 Writing in Active Directory 467

Writing Entries
Not only can you change attributes with the LDAP interface, you can also create new entries
and delete or move existing entries in the directory hierarchy.

You will need a new supporting script for these examples.

So that the supporting script can process new or deleted entries, copy modify_ldap.php
(from Listing 18-1) into modify_ldap_entry.php, and then replace the following lines:

// Make changes
$before = $ad->getAccount($accountName, $attributes);
modify($ad, $before);
$after= $ad->getAccount($accountName, $attributes);

with this code:

// Make changes
list($before, $after) = modify($ad);

The modify() function now has full control over the entries.

Adding New Entries
To add a new entry, use the ldap_add() function. An associative array corresponding to the
add and change functions for attributes is passed to this function. The DN passed as param-
eter specifies the location of the object in the directory hierarchy.

Depending on the entry type, you need to set different attributes. Independent of the entry
type, you must specify the objectClass attribute that determines the object class for the entry.

Listing 18-13 shows how to add an organizational unit. The LDAP display name of the OU class
is specified as object class organizationalUnit. Also, a number of additional (optional) attributes
(description, c, st) are set. Because the DN is OU=Hamster,OU=Test-OU,DC=xmp,DC=site, the
organizational unit is a child of the OU=Test-OU,DC=xmp,DC=site object in Active Directory.
ldap_add() creates the organizational unit.

Note The DN of an organizational unit has to start with OU= (the RDN is ou), or the organiza-
tional unit cannot be added. With only a few exceptions, the DN of the entries for all other object
classes starts with CN= (the RDN is cn).

468 Part III Active Directory

LISTINg 18-13 ldap_add_entry.php—creating a new organizational unit.

<?php
namespace net\xmp\phpbook;

function modify($ad) {
 $attr = array();
 $attr['objectClass'] = 'organizationalUnit';
 $attr['description'] = 'OU of the hamster lovers';
 $attr['c'] = 'UK';
 $attr['st'] = 'Yorkshire';
 $dn = 'OU=Hamster,OU=Test-OU,DC=xmp,DC=site';

 $success = ldap_add($ad->handle, $dn, $attr);
 if (!$success) {
 $ad->exitWithError("Couldn't create new OU");
 }
 $before = array('dn' => $dn, 'count' => 0);
 $after = $ad->getOneEntry("(distinguishedName=$dn)");
 return array($before, $after);
}
?>

Figure 18-6 shows the attributes of the new entry. Notice that Active Directory automatically
added more attributes while the entry was created. These include the GUID (Attribute object
GUID), structural attributes such as ou, name, and distinguishedName, and information on the
time created and object classes.

FIgURE 18-6 Creating a new entry with ldap_add().

 Chapter 18 Writing in Active Directory 469

Active Directory also created more object information. These are attributes that are not listed
automatically but have to be queried (for example, nTSecurityDescriptor, createTimeStamp,
allowedAttributes, canonicalName, and so on), and information on the creator and owner of
the object as well as access rights to the object (ACLs).

Deleting Entries
You delete entries by using ldap_delete(), passing the DN of the entry to be deleted as a
parameter. You can only delete entries that have no child entries. Therefore, you must first
delete all child objects from the hierarchy before you can delete the desired entry.

Listing 18-14 shows how to recursively delete entries. The ldap_delete_recursive() function
uses ldap_list() and ldap_get_entries() to retrieve all objects on the next level. If entries are
found, the function is called recursively with the DN of the child entries in a loop. If the func-
tion reaches a directory node without child entries, it cancels the recursion and deletes the
node.

LISTINg 18-14 ldap_del_entry.php—deleting an entry recursively.

<?php
namespace net\xmp\phpbook;

function modify($ad) {
 $dn = 'OU=test,OU=Hamster,OU=Test-OU,DC=xmp,DC=site';
 $success = ldap_delete_recursive($ad, $dn);
 if (!$success) {
 $ad->exitWithError("Couldn't delete OU");
 }
 // No output
 $before = array('dn' => "Deleted recursive: $dn", 'count' => 0);
 $after = array('count' => 0);
 return array($before, $after);
}

function ldap_delete_recursive($ad, $dn) {
 $result = ldap_list($ad->handle, $dn, '(objectClass=*)', array('name'));
 if (!$result) {
 return false;
 }
 $entries = ldap_get_entries($ad->handle, $result);
 ldap_free_result($result);
 if (!$entries) {
 return false;
 }
 for ($i = 0; $i < $entries['count']; $i++) {
 $result = ldap_delete_recursive($ad, $entries[$i]['dn']);
 if (!$result) {
 return false;
 }
 }
 return ldap_delete($ad->handle, $dn);
}
?>

470 Part III Active Directory

Moving Entries
Use ldap_rename() to rename an entry—for example, to change its DN. Because the DN also
specifies the position of the entry in the directory hierarchy, you can use ldap_rename() to
move an entry to another position in the hierarchy. This function accepts three parameters:

■ $oldDN The DN of the entry to be renamed.

■ $newRDN The new RDN of the entry.

■ $newParentDN The DN of the new parent object can be zero if the entry is only
renamed (but not moved) in the hierarchy.

Note The $deleteOldRDN parameter of the function always must be true because Active
Directory requires that the old RDN be deleted.

Listing 18-15 shows an example: the entry OU=Relatives,OU=Hamster,OU=Test-OU,DC=xmp,
DC=site must be renamed (OU=Relatives changes to OU=Relatives and friends) and moved to
a different position in the hierarchy (OU=People,OU=Hamster,OU=Test-OU,DC=xmp,DC=site).

LISTINg 18-15 ldap_move_entry.php—moving and renaming an entry.

<?php
namespace net\xmp\phpbook;

function modify($ad) {
 $attributes = array('name', 'ou', 'distinguishedName',
 'whenChanged', 'objectGUID');
 $oldDN = 'OU=Relatives,OU=Hamster,OU=Test-OU,DC=xmp,DC=site';
 $newRDN = 'OU=Relatives and Friends';
 $newParentDN = 'OU=People,OU=Hamster,OU=Test-OU,DC=xmp,DC=site';
 $before = $ad->getOneEntry('(ou=Relatives)', $attributes);

 $success = ldap_rename($ad->handle, $oldDN, $newRDN, $newParentDN, true);
 if (!$success) {
 $ad->exitWithError("Couldn't rename OU");
 }

 $after = $ad->getOneEntry("($newRDN)", $attributes);
 return array($before, $after);
}
?>

Caution Moving entries within the hierarchy can impact the security. An example of this would
be if different group policies for entries apply on the old and the new position.

 Chapter 18 Writing in Active Directory 471

The new DN of the entry is OU=Relatives and friends, OU=People,OU=Hamster,OU=Test-OU,
DC=xmp,DC=site (consisting of the $newRDN and $parentDN). The associated attributes ou
and name also reflect the new names. The objectGUID indicates that the entry is still the
same. Figure 18-7 shows the result.

FIgURE 18-7 Moving and renaming an entry.

Important Active Directory allows you to move entries even if they contain child entries. In this
case, the entire tree section is moved and the DN of all child entries changes.

If an object is protected against accidental deletion, it is also protected against renaming
its DN. To rename such an object, the protection against accidental deletion must first be
removed.

Practical Examples
The tasks of an administrator include keeping up with staff and organization changes.
Employees and guests join or leave the organization and departments as well as organiza-
tional units and groups change. The examples in the section “Writing Entries,” earlier in the
chapter, involve organizational units. The next sections cover four more important use cases:
creating and deleting users or groups.

Note The listings for these examples are not complete; they show only the most important
parts. In addition, the examples don’t include error handling or a preamble with the namespace
declaration.

472 Part III Active Directory

Creating a New Group
To create a new group, use the ldap_add() function. You should specify at least the following
attributes:

■ Object class (group)

■ Type and scope of the group (distribution or security group, local, global, or universal
group scope)

■ SAM account name: the name of the group (usually identical with the RDN of the
group)

Listing 18-16 shows how to create a group by calling ldap_add() after the array is filled. The
value of the sAMAccountName attribute is identical to the RDN (CN=AdventureWorks).

LISTINg 18-16 Creating a new group.

// Values for the groupType attribute
const GT_SECURITY_ENABLED = 0x80000000;
const GT_ACCOUNT_GROUP = 0x02;
const GT_RESOURCE_GROUP = 0x04;
const GT_UNIVERSAL_GROUP = 0x08;

function modify($ad) {
 $attr = array();
 $attr['objectClass'] = 'group';
 $attr['groupType'] = GT_ACCOUNT_GROUP | GT_SECURITY_ENABLED;
 $attr['sAMAccountName'] = 'AdventureWorks';
 $dn = 'CN=AdventureWorks,OU=Test-OU,DC=xmp,DC=site';
 ldap_add($ad->handle, $dn, $attr);
}

Active Directory automatically sets additional attributes, including objectSid (the security ID
of the group).

Note If you don’t specify sAMAccountName, the SAM account name is generated auto-
matically. If you don’t specify groupType, a security group is created in the global scope
(groupType=0x80000002).

Creating a New User
To use ldap_add() to create a new user, set objectClass to user. All other attributes are
optional; however, you should specify the following attributes:

■ User name in givenName, initials, sn, displayName

 Chapter 18 Writing in Active Directory 473

■ Logon name in sAMAccountName, userPrincipalName

■ The RDN (CN= at the beginning of the DN) should be the same as displayName

You can also specify the password in unicodePwd while creating the user. The userAccount
Control attribute cannot be set when the user is created; it must be specified in a separate
step.

Note The group membership cannot be specified either, because the group membership is
controlled by the member attribute of the group instead of the memberOf attribute of the user.

Listing 18-17 shows how to create a user. The attributes for the name and account are set and
displayName is composed of givenName, initials, and sn. The RDN is identical to displayName
and the slash (\), equal (=) and comma (,) characters are masked to meet the DN syntax.
ldap_add() adds the entry.

Important This listing doesn’t consider the character set. Because the values for the name
attributes follow the Unicode string syntax, the encoding must be in UTF-8 (see the section
“Encoding and Character Sets,” earlier in the chapter).

Active Directory creates the user and assigns him attributes. The userAccountControl attribute
is set to 222hex (normal account, no password required, account deactivated). The primary
GroupID attribute automatically adds the user to the domain user group.

In the second step, use ldap_mod_replace() to set the password and userAccountControl to
activate the account. Now the account can be used and the user can log on.

LISTINg 18-17 Creating a new user.

// Values for the userAccountControl attribute
const UAC_ACCOUNTDISABLE = 0x0002;
const UAC_LOCKOUT = 0x0010;
const UAC_PASSWD_NOTREQD = 0x0020;
const UAC_PASSWD_CANT_CHANGE = 0x0040;
const UAC_NORMAL_ACCOUNT = 0x0200;
const UAC_INTERDOMAIN_TRUST_ACCOUNT = 0x0800;
const UAC_WORKSTATION_TRUST_ACCOUNT = 0x1000;
const UAC_SERVER_TRUST_ACCOUNT = 0x2000;
const UAC_DONT_EXPIRE_PASSWORD = 0x10000;
const UAC_PASSWORD_EXPIRED = 0x800000;

function modify($ad) {
 $attr = array();
 $attr['objectClass'] = 'user';
 $attr['sAMAccountName'] = 'doris';

474 Part III Active Directory

 $attr['userPrincipalName'] = $attr['sAMAccountName'] . '@xmp.site';
 $attr['givenName'] = 'Doris';
 $attr['initials'] = 'D';
 $attr['sn'] = 'Lass';
 $attr['displayName'] = "$attr[givenName] $attr[initials]. $attr[sn]";
 $rdn = 'CN=' . preg_replace('/[\\\\=,]/', '\\\\$0', $attr['displayName']);
 $dn = $rdn . ',OU=Test-OU,DC=xmp,DC=site';
 ldap_add($ad->handle, $dn, $attr);

 $attr = array();
 $attr['userAccountControl'] = UAC_NORMAL_ACCOUNT;
 $attr['unicodePwd'] = mb_convert_encoding('"confidential"', 'UCS-2LE');
 ldap_mod_replace($ad->handle, $dn, $attr);
}

Note The conditions that must be met before you can create or change a password are de-
scribed in the section “Changing Passwords,” earlier in the chapter. If no password exists, the
20hex flag (no password required for account) needs be set in the userAccountControl attribute or
the password change fails.

Deleting a User or a Group
You can delete users and groups by using ldap_delete() without considering any conditions.
Listing 18-18 shows this function consisting of two steps:

■ It reads the entry to determine the DN (the search is performed by using
sAMAccountName)

■ It deletes the user or the Group

LISTINg 18-18 Deleting a user or a group.

function modify($ad, $accountName) {
 $account = $ad->getAccount($accountName, array('name'));
 ldap_delete($ad->handle, $account['dn']);
}

Note Users and groups can have child entries (for example, classStore or ms-net-ieee-80211-
GroupPolicy). For this reason, the deletion with ldap_delete() might fail. In this case, use the
ldap_delete_recursive() function from Listing 18-14.

 Chapter 18 Writing in Active Directory 475

Because Active Directory automatically updates the membership status of users and groups,
you don’t need to set the member and memberOf attributes.

Deleting a user from Active Directory doesn’t affect the user’s profile data. You must delete
the profile separately.

Summary
This chapter explained how you can change the information saved in Active Directory by
adding, deleting, and changing attributes and entries. Some examples of things you can do
include changing the group membership, creating a new user, or changing the phone num-
ber of a user.

A requirement is that the PHP user has the necessary permissions, either because he is the
owner of the object to be changed, he is a member of the administrator group, or he is
granted explicit rights in the ACL.

This chapter concludes the programming of Active Directory with PHP. Active Directory
provides several more object and attribute types which are beyond the scope of this book.
However, with the knowledge obtained here, you should be able to program most Active
Directory tasks.

The next part explains how to program Exchange Server through the SOAP XML interface of
Exchange Web Services.

 477

Part IV

Exchange Server
In this part:
Chapter 19 Setting Up Exchange Server . 479
Chapter 20 Exchange Web Services . 491
Chapter 21 Email and Exchange Web Services Basics . 509
Chapter 22 Contacts and Search . 539
Chapter 23 Calendar and Impersonation . 559

 479

Chapter 19

Setting Up Exchange Server

Microsoft Exchange Server 2010 is a sophisticated platform for workgroups and organiza-
tions to manage messages, task, and appointments. The user policies, the restructured
rights management with Role-Based Access Control (RBAC), and the tight integration with
Microsoft Active Directory simplify the administration, especially in bigger organizations.
Users can access their mailboxes over the web by using Microsoft Outlook Web Access, a
client for (almost) all Exchange functions. You can use the Exchange Web Services (EWS) to
control Exchange with PHP applications.

The chapters in this part of the book explain, among other things, how to invite participants
to conferences, how to retrieve emails, and how to search for contacts.

This chapter describes the installation of Exchange Server 2010 SP1 in a development envi-
ronment. It also explains how to configure the encryption certificate and how to set up
mailboxes for users.

Setting Up Required Services and Features
The installation and configuration of Exchange Server 2010 SP1 is straightforward, provided
that the required services and features are installed. A typical installation takes less than an
hour. The general requirements and the installation of Internet Information Services (IIS)
required for web services and Outlook Web Access as well as the configuration of several
other features are described in the following sections.

Note For more information on complex installations in a production environment, consult the
TechNet at http://technet.microsoft.com/en-us/library/bb124558.aspx.

In this chapter:
Setting Up Required Services and Features . 479
Installing Exchange Server . 482
Configuration After the Installation . 484
Creating a Mailbox . 489
Summary . 490

480 Part IV Exchange Server

General Requirements
To support the functionality and power of Exchange Server 2010 SP1, you need a powerful
and modern infrastructure. To run Exchange, the following requirements must be met:

■ Processor: 64 bit

■ Operating system: At least Windows Server 2008 SP2 or R2

■ RAM: At least 4 GB; 8 GB is recommended to install multiple roles on a computer

■ Active Directory

● Forest functional level: Windows Server 2003 or higher

● Domain functional level: Windows Server 2003 or higher

● Schema master, global catalog, and domain controller: Windows Server 2003
SP1 or higher; Windows Server 2008 or higher

You can continue to install the required services and features if these prerequisites are met.
These requirements assume that you install all roles on a computer in a development
environment.

Configuring IIS
Exchange requires the IIS web server for the Client Access role. To configure this, perform the
steps described in Chapter 1, “Setting Up the Work Environment”:

 1. In the Server Manager, select Add Roles, and then click Web Server (IIS) role.

 2. Add the role services listed in Table 19-1 to the web server.

TABLE 19-1 IIS role services

Section Role services
Web Server | Common HTTP features Static Content, Default Document, Directory Browsing,

HTTP Errors, HTTP Redirection

Web Server | Application Development ASP.NET, .NET Extensibility, ISAPI Extensions, ISAPI
Filters

Web Server | Health and Diagnostics HTTP Logging, Logging Tools, Request Monitor, Tracing

Web Server | Security Basic Authentication, Windows Authentication,
Digest Authentication, Client Certificate Mapping
Authentication, Request Filtering

Web Server | Performance Static Content Compression, Dynamic Content
Compression

Management Tools IIS Management Console

Management Tools | IIS 6 Management
Compatibility

IIS 6 Metabase Compatibility, IIS 6 Management
Console

 Chapter 19 Setting Up Exchange Server 481

 3. Confirm to install dependent features and start the installation.

You can also run the installation from Windows PowerShell:

Import-Module ServerManager
Add-WindowsFeature Web-Server, Web-Net-Ext, Web-ISAPI-Ext, Web-Basic-Auth, Web-Windows-Auth,
 Web-Digest-Auth, Web-Dyn-Compression, Web-Metabase, Web-Lgcy-Mgmt-Console

Configuring Features
In addition to IIS, you also need to install several features.

In the Server Manager, select Features, click Add Features, and then select the features listed
in Table 19-2.

Confirm the installation of dependencies.

TABLE 19-2 Features required for Exchange Server

Section Features

.NET Framework 3.5.1 Features .NET Framework 3.5.1, WCF Activation/HTTP Activation

Remote Server Administration Tools | Role
Administration Tools

AD DS and AD LDS Tools/AD DS Tools, Web Server (IIS)
Tools

RPC over HTTP Proxy

Windows Process Activation Service Process Model, .NET Environment, Configuration APIs

You can also run the installation from PowerShell:

Import-Module ServerManager
Add-WindowsFeature NET-Framework, WAS-Process-Model, RSAT-ADDS, RSAT-Web-Server,
 NET-HTTP-Activiation, RPC over HTTP Proxy

After the additional features are installed, you need to restart your computer.

Configuring Shared Ports
You need to enable shared ports for Exchange. To do so, start PowerShell, and then run the
following command:

Set-Service NetTcpPortSharing -StartupType Automatic

After the requirements (IIS, features, port usage) for Exchange Server are met, you can install
Exchange.

482 Part IV Exchange Server

Installing the Office System Converter
To allow Exchange to search Microsoft Office documents, you need to install the converter
that provides the filters to index these documents.

 1. Download the Microsoft Office 2010 Filter Packs from http://www.microsoft.com/
download/en/details.aspx?id=17062.

 2. Start the installer.

 3. Accept the license agreement to start the installation.

Configuring DNS Entries
To configure other domain names for Exchange, add the appropriate DNS entries to the
DNS servers. Usually Exchange has two names: a name within the Windows domain, and
a DNS domain name for external access to the domain.

This book uses doco-exch.xmp.site as the internal name and mail.phpdemo.site as an external
name for the Exchange installation. It also uses the autodiscover.phpdemo.site domain for the
Autodiscover service.

If you use the DNS Server provided by Windows Server 2008 R2:

 1. Start the DNS Manager by clicking the Windows Start button. Select Administrative
Tools, and then click DNS.

 2. Select the domain in <Server> | Forward Lookup Zones | <Domain>.

 3. In the Action menu, click either the New Host (A or AAAA) or New Alias (CNAME) com-
mand to add the desired domain names.

Installing Exchange Server
After all preparation tasks are completed, Exchange Server can be installed and configured
in just a few steps. The following installation process includes all required roles and assumes
Exchange Server is the first server installed within the domain.

To install Exchange Server 2010 SP1, perform the following steps:

 1. Run setup.exe from the Exchange installation media.

 2. Because Steps 1 and 2 of the installation assistant should already be done, you can con-
tinue with Step 3 and select the desired languages. Select the Install Only Languages
From The DVD option.

http://www.microsoft.com/download/en/details.aspx?id=17062
http://www.microsoft.com/download/en/details.aspx?id=17062

 Chapter 19 Setting Up Exchange Server 483

 3. Click Step 4 in the setup assistant to copy the installation files and to start setup.

The Exchange Server 2010 Setup Wizard opens.

 4. On the License Agreement page, accept the license agreement.

 5. On the Error Reporting page, choose if you would like to select the Error Reporting
option.

 6. On the Installation Type page, select Typical Exchange Server Installation, as shown in
Figure 19-1.

This installs the Hub Transport, Client Access, and Mailbox roles, as well as the Exchange
Management Tools on the computer.

FIgURE 19-1 The Exchange Server 2010 Setup Wizard: selecting the installation type.

 7. On the next page, enter the name of the Exchange organization. For the exercises in
this book, use XMP.

 8. If you still run Outlook 2003 on domain computers, select Yes on the Client Settings
page.

 9. If Exchange is not only accessible within the domain, but also externally, enter the
domain name (mail.phpdemo.site) on the external domain page (the domain is
xmp.site).

484 Part IV Exchange Server

 10. The Setup wizard checks the system requirements. Ignore the warning “Organization
Prerequisites” (see Figure 19-2).

No errors should occur (such as missing dependencies) if your system meets the
requirements described earlier in the section “Setting Up Required Services and
Features.” If you install Exchange Server on your domain controller, you will see addi-
tional warnings about elevated privileges, which you can ignore in a development
environment.

FIgURE 19-2 The wizard displays a warning regarding system requirements.

 11. Click Install to start the setup.

 12. After the installation has completed successfully, click Finish to exit the setup.

 13. Returning to the initial setup assistant, you might want to immediately check for critical
updates to Exchange Server in Step 5 of the assistant.

Exchange is now installed. You should restart your computer before you continue the con-
figuration by using the Exchange Management Console.

Configuration After the Installation
After completing the installation, you must configure the required deployment settings
by using the Exchange Management Console. The most important part is the Exchange
Certificate described below. First, you need to enter the product key.

Registering Exchange
To enter the Exchange Server product key, perform the following steps:

 1. Start the Exchange Management Console by clicking the Windows Start button and
then clicking All Programs | Microsoft Exchange Server 2010 | Exchange Management
Console.

 2. In the navigation pane (on the left), select Microsoft Exchange | Microsoft Exchange
On-Premises | Server Configuration, as shown in Figure 19-3.

 Chapter 19 Setting Up Exchange Server 485

FIgURE 19-3 The Exchange Management Console.

 3. In the Actions pane (on the right), click Enter Product Key.

 4. In the dialog box that opens, enter the product key, and then click Enter.

In the next step, you configure the Exchange Server certificate.

Configuring the Exchange Server Certificate
Communication with Exchange Server takes place over Transport Layer Security (TLS)
encrypted connections, which require a certificate for Exchange Server. During the installa-
tion of Exchange, a self-signed certificate was created and registered for the services.

You can use the self-signed certificate in a development environment, but in a production
environment, you should acquire a certificate from a certification authority. Alternatively, you
can use a certificate issued by your own Active Directory certification authority.

This is important for PHP programming, because it requires the associated root certificate
from the certification authority. Therefore, you use the Active Directory certification author-
ity to issue the certificate.

486 Part IV Exchange Server

Requesting the Certificate
First, you need to request the certificate for Exchange by performing the following steps:

 1. Start the Exchange Management Console.

 2. In the navigation pane, select Microsoft Exchange | Microsoft Exchange On-Premises |
Server Configuration (refer to Figure 19-3).

 3. In the Actions pane, click New Exchange Certificate.

The New Exchange Certificate Wizard opens.

 4. Enter the display name for the certificate.

You can choose any name because this name is only used for the internal Exchange
administration. Click Next to confirm.

 5. Exchange allows you to request certificates using placeholders. Usually you don’t need
a placeholder certificate; therefore, you can leave this option disabled (leave the check
box cleared).

 6. On the Exchange Configuration page, enter the domain names for which the certificate
should be issued. You must enable at least the client access for web services and specify
if the certificate is used for the intranet only or also for external access.

● Client Access Server (Outlook Web App) Select the Outlook Web App Is On
The Intranet and Outlook Web App Is On The Internet check boxes, and then
enter the appropriate domain names. Exchange suggests appropriate names.

● Client Access Server (Web Services, Outlook Anywhere, and Autodiscover)
Select the Exchange Web Servives Is Enabled, Outlook Anywhere Is Enabled, and
Autodiscover Used On The Internet check boxes. Select Long URL for Autodiscover,
and then enter the external URL such as autodiscover.phpdemo.site.

● Client Access Server (POP/IMAP) Select these options to secure the access
over POP and IMAP protocols using the certificate.

 7. On the Certificate Domains page, the wizard suggests appropriate domain names, but
you can enter your own names, if you like. Click the associated button to set the exter-
nal domain name as common name of the certificate.

 8. On the Organizations And Location page, enter the information for your organization
and specify the path to the certificate request file. Click Next to confirm.

 9. Before the certificate is created, the settings you selected are displayed on the New
Exchange Certificate page (see Figure 19-4). Click New to generate the certificate
request.

 Chapter 19 Setting Up Exchange Server 487

FIgURE 19-4 The Certificate Configuration page of the New Exchange Certificate Wizard.

You can also use the Exchange Management Shell to create a certificate. To do this, enter the
following command:

New-ExchangeCertificate –GenerateRequest
 -SubjectName “c=AT, o=XMP, ou=Hamster lovers, cn=mail.phpdemo.site”
 -DomainName mail.phpdemo.site,autodiscover.phpdemo.site,doco-exch.xmp.site
 -PrivateKeyExportable $true

Issuing a Certificate
Send the generated certificate request to your certification authority to issue the certificate.
If you run your own certification authority by using the Active Directory certificate services,
copy the certificate request file to the computer on which the certification authority is
installed, and then run the following PowerShell command:

certreq -submit -attrib “CertificateTemplate: WebServer”

Note If you get a “Certificate not issued (Incomplete)” error message, the likely cause is that the
certificate request file was saved with Unicode and not with ANSI encoding. Just open the file in
Notepad, select File | Save As, set the Encoding to ANSI, and then save the file.

If the certificate registration web service is installed, you can alternatively upload the request
and select web server as the certificate template.

488 Part IV Exchange Server

Note If you logged on as administrator and you cannot request a certificate, open the Server
Manager, and then in the navigation pane, click Roles | Active Directory Certificate Services.
Right-click <name of certification authority>, and then in the context menu that appears, select
Properties. Click the Security tab, and then activate the Request Certificates permission for your
administrator group.

After the certificate is issued export the new certificate by using the Server Manager as
explained in Chapter 15, “Setting Up Active Directory.”

Assigning Services to the Certificate
Now you need to import the issued certificate in Exchange and assign services. To do so, per-
form the following steps:

 1. Copy the certificate to the Exchange Server computer.

 2. Start the Exchange Management Console, and then in the navigation pane, click
Microsoft Exchange On-Premises | Server Configuration (refer to Figure 19-3).

 3. Select the pending certificate request on the Exchange Certificates tab (located toward
the bottom of the center work pane), and then in the Actions pane, click Complete
Pending Request.

 4. Select the certificate file and assign it to the Exchange certificate.

 5. After the certificate is imported, in the Actions pane, click Assign Services To Certificate.

The Assign Services To Certificate Wizard opens.

 6. On the first page of the wizard, select your Exchange Server, and then click Next.

 7. On the Select Services page, select the services for which the certificate is used
(Figure 19-5). At a minimum, you must select Internet Information Services (IIS).

FIgURE 19-5 Assigning services to the certificate.

 8. Click Next and Assign to complete the assignment.

You created the certificate request, issued the certificate, imported the certificate in
Exchange, and assigned services to the certificate. Next, you create mailboxes in Exchange
and get started with the Exchange Web Services configuration.

 Chapter 19 Setting Up Exchange Server 489

Creating a Mailbox
The mailboxes for domain users are not automatically created; you create them manually. An
Exchange mailbox includes emails, contacts, task, and calendar entries, all of which are orga-
nized in folders.

To create a user mailbox, perform the following steps:

 1. Start the Exchange Management Console.

 2. In the navigation pane, click Recipient Configuration | Mailbox. In the Actions pane,
click Mailbox | New Mailbox.

The New Mailbox Wizard opens.

 3. On the Introduction page, select User Mailbox, and then click Next, as shown in
Figure 19-6.

FIgURE 19-6 Selecting the mailbox type.

 4. On the User Type page, specify whether to create a new user or a mailbox for an exist-
ing user. Select the Existing Users check box, and then click Add to select one or more
users.

 5. On the Mailbox Settings page (on the User Type page), enter the user alias used for the
primary email address. Because you don’t want to assign any mailbox policies at this
time, click Next.

 6. An overview of the configuration settings appears. Click New to create the mailbox, and
then click Finish to close the wizard.

490 Part IV Exchange Server

The new mailbox is created. In the result pane of the Exchange Management Console, select
the new mailbox, right-click it, and select Properties from the context menu to edit its prop-
erties—for example, to add more email addresses. You can use some tabs (such as User
Information, Address and Phone, or Organization) to access user data in Active Directory.

Summary
This chapter explained the typical installation of Exchange Server and the installation require-
ments. The configuration described installs all important server roles on the same computer.

You also learned how to install and configure a certificate for encrypted communications and
how to create a new mailbox. Of course, Exchange provides many more functions. However,
a detailed description of these functions is beyond the scope of this book.

The next chapter explains programming Exchange with the help of the Exchange Web
Services, especially using Autodiscover to find the URL for the web services.

 491

Chapter 20

Exchange Web Services

With the Microsoft Exchange Web Services (EWS), you can use PHP to control and program
Exchange. The interface provides roughly 50 different operations to create and edit elements
in Exchange (emails, calendar entries, contacts).

The EWS use Simple Object Access Protocol (SOAP), a web standard, to exchange data
between programs. PHP 5 offers a SOAP extension that simplifies EWS configuration signifi-
cantly. This chapter introduces the customized SOAPClient class for HTTPS encryption and
NT LAN Manager (NTLM) authentication.

For a program to communicate with EWS, it must look up the EWS URL for the user. If the
domain includes several Exchange servers, the users can be saved on different servers. Use
the Autodiscover service to determine on which server a user mailbox resides.

Required PHP Extensions
The following PHP extensions are required to control the EWS from PHP:

■ SOAP This extension handles the communication with the EWS by using SOAP mes-
sages based on a Web Services Description Language (WSDL) interface definition.

■ cURL This extension is needed because the PHP SOAP extension cannot process the
NTLM authentication required for EWS.

■ OpenSSL Usually the communication with EWS takes place over HTTPS. The OpenSSL
extension is required for cURL to work with HTTPS URLs.

In this chapter:
Required PHP Extensions . 491
Autodiscover . 492
SOAP and WSDL . 499
SOAP Messages . 501
Information About the Following Chapters . 506
Summary . 508

492 Part IV Exchange Server

Because all extensions are included in the PHP deployment, you only need to activate them
in the php.ini file.

 1. Open the php.ini (C:\PHP\php.ini) file in a text editor.

 2. Add the following lines:

extension=php_curl.dll
extension=php_openssl.dll
extension=php_soap.dll

 3. Save the file.

 4. Restart the associated Internet Information Services (IIS) application pool.

 5. Use phpinfo() to verify that the extensions are active.

Alternatively, if you have PHP Manager installed, you can activate these extensions in the
PHP Extensions section by clicking the Enable Or Disable Extensions link.

The extensions required to program EWS are now installed. However, you need to identify
the appropriate EWS URL, which is described in the next section.

Autodiscover
Exchange Server provides a function to automatically retrieve user configuration data. This
reduces the required administration effort, particularly for large Exchange installations. The
configuration for a user is automatically retrieved.

Exchange Server 2010 includes two versions of Autodiscover: basic XML data (plain old
XML [POX]), and SOAP. Because POX Autodiscover is easier to use with PHP, this book only
explains this version.

How Autodiscover Searches for Configuration Data

To communicate with EWS, you need to use the Autodiscover service to perform the
following:

■ Retrieve the URL for Autodiscover derived from the email address

■ Retrieve the configuration data

■ Connect with EWS, based on the configuration URLs

 Chapter 20 Exchange Web Services 493

The URL for Autodiscover is derived from the email address of the user. For example, the
email address doris.lass@xmp.site results in the following:

Note This following process actually describes the steps performed by Outlook. However, to
retrieve the Autodiscover URL, you should perform the same steps as Outlook. Note that Outlook
also checks in Microsoft Active Directory.

■ The domain name in the email address provides the basis: xmp.site

■ Possible URL 1: https://xmp.site/Autodiscover/Autodiscover.xml

■ Possible URL 2: https://autodiscover.xmp.site/Autodiscover/Autodiscover.xml

■ HTTP redirection: http://autodiscover.xmp.site/Autodiscover/Autodiscover.xml (redirects
to an HTTPS URL to use Autodiscover to retrieve the configuration data)

■ Service Record (SRV) DNS entries: entry for _autodiscover._tcp.xmp.site, including the
domain name for the configuration. For example, if the entry contains the domain
name extern.xmp.site, you can retrieve the configuration from https://extern.xmp.site/
Autodiscover/Autodiscover.xml.

The method used to determine the URL depends on the Exchange server configuration.

Important Because the access takes place over HTTPS, a certificate with the domain name is
required. For small Exchange installations, the server must have several IP addresses to configure
different certificates or the certificate needs to include several names.

Configuration Data
If you know the URL for the Autodiscover service, you can use the service to retrieve the con-
figuration data for a user. Listing 20-1 shows part of the data. The URLs in the ASUrl or EwsUrl
elements are important for using EWS with PHP. The URLs for external access (https://mail
.phpdemo.site/ews/exchange.asmx) as well as for internal intranet access (https://doco-exch
.xmp.site/EWS/Exchange.asmx) are listed.

https://mail.phpdemo.site/ews/exchange.asmx
https://mail.phpdemo.site/ews/exchange.asmx
https://doco-exch.xmp.site/EWS/Exchange.asmx
https://doco-exch.xmp.site/EWS/Exchange.asmx

494 Part IV Exchange Server

You can also find the display name of the user (DisplayName), the email server (Server)
and the distinguished name (DN) of the server for Active Directory (ServerDN) in the XML
response.

LISTINg 20-1 Response from the POX Autodiscover service.

<?xml version="1.0" encoding="utf-8" ?>
<Autodiscover xmlns="http://schemas.microsoft.com/exchange/autodiscover/
responseschema/2006">
<Response xmlns="http://schemas.microsoft.com/exchange/autodiscover/outlook/
responseschema/2006a">
 <User>
 <DisplayName>Doris D. Lass</DisplayName>
 <LegacyDN>/o=XMP/ou=Exchange Administrative Group (FYDIBOHF23SPDLT)
 /cn=Recipients/cn=Doris D. Lass</LegacyDN>
 <DeploymentId>2a4df4d0-8bd0-487d-abc5-1cc233d5500e</DeploymentId>
 </User>
 <Account>
 <AccountType>email</AccountType>
 <Action>settings</Action>
 <Protocol>
 <Type>EXCH</Type>
 <Server>DOCO-EXCH.xmp.site</Server>
 <ServerDN>/o=XMP/ou=Exchange Administrative Group (FYDIBOHF23SPDLT)/cn=Configuration
 /cn=Servers/cn=DOCO-EXCH</ServerDN>
 ...
 <ASUrl>https://doco-exch.xmp.site/EWS/Exchange.asmx</ASUrl>
 <EwsUrl>https://doco-exch.xmp.site/EWS/Exchange.asmx</EwsUrl>
 ...
 </Protocol>
 <Protocol>
 <Type>WEB</Type>
 <Internal>
 <OWAUrl AuthenticationMethod="Basic, Fba">https://doco-exch.xmp.site/owa/</OWAUrl>
 <Protocol>
 <Type>EXCH</Type>
 <ASUrl>https://doco-exch.xmp.site/EWS/Exchange.asmx</ASUrl>
 </Protocol>
 </Internal>
 <External>
 <OWAUrl AuthenticationMethod="Fba">https://mail.phpdemo.site/owa/</OWAUrl>
 <Protocol>
 <Type>EXPR</Type>
 <ASUrl>https://mail.phpdemo.site/ews/exchange.asmx</ASUrl>
 </Protocol>
 </External>
 </Protocol>
 </Account>
</Response>
</Autodiscover>

 Chapter 20 Exchange Web Services 495

Note For a description of all elements in the POX Autodiscover response, go to MSDN at
http://msdn.microsoft.com/en-us/library/bb204082.aspx

Retrieving Configuration Data
The Autodiscover service requires NTLM authentication (Exchange default configuration).
You can choose any user with read access to the associated entries in Active Directory.
The searched email address is passed in an XML structure and sent over HTTP POST to the
Autodiscover URL.

The following function assumes that the URL is an HTTPS URL with NTLM authentication.
HTTP redirection or SVR entries are not considered.

Query with cURL
Listing 20-2 shows how you use the cURL PHP extension to retrieve the configuration data:

■ First the XML request ($request) is generated.

Caution The URL of the AcceptableResponseSchema element cannot contain spaces or
line breaks.

■ curl_setopt_array() configures the parameters for the connection. Important are
CURLOPT_HTTPAUTH, CURLOPT_USERPWD and CURLOPT_CAINFO: the first two
parameters contain the information for the NTLM authentication, and the last param-
eter contains information on the HTTPS certificate. The XML request is passed in
CURLOPT_POSTFIELDS.

■ curl_exec() sends the HTTP request and returns the response to the caller.

Note This function doesn’t include error queries (curl_error() or curl_getinfo()) and doesn’t
evaluate the XML, which can contain an error message. You should consider these facts in a
production environment.

496 Part IV Exchange Server

LISTINg 20-2 autodiscover.php—retrieving the Autodiscover data over TLS with NTLM authentication.

<?php
namespace net\xmp\phpbook;

/**
* Retrieving the Exchange Autodiscover data
* @param string $host Host name of the Exchange Server
* @param string $email Email address of the user
* @param string $login User name
* @param string $password Password
* @param string $CAcert Path to the CA certificate
*/
function autodiscover($host, $email, $login, $password, $CAcert) {
 $email = htmlspecialchars($email);
 $request = <<<EOF
<Autodiscover xmlns="http://schemas.microsoft.com/exchange/autodiscover/outlook/
requestschema/2006">
 <Request>
 <EMailAddress>$email</EMailAddress>
 <AcceptableResponseSchema>http://schemas.microsoft.com/exchange/autodiscover/
 outlook/responseschema/2006a</AcceptableResponseSchema>
 </Request>
</Autodiscover>
EOF;
 $ch = curl_init("https://$host/Autodiscover/Autodiscover.xml");
 curl_setopt_array($ch, array(
 CURLOPT_HTTP_VERSION => CURL_HTTP_VERSION_1_1,
 CURLOPT_POST => true,
 CURLOPT_USERAGENT => 'PHP-cURL/NTLM',
 CURLOPT_HTTPAUTH => CURLAUTH_NTLM,
 CURLOPT_USERPWD => "$login:$password",
 CURLOPT_SSL_VERIFYPEER => true,
 CURLOPT_SSL_VERIFYHOST => 2,
 CURLOPT_CAINFO => $CAcert,
 CURLOPT_HTTPHEADER => array('Content-Type: text/xml; charset=utf-8'),
 CURLOPT_POSTFIELDS => $request,
 CURLOPT_RETURNTRANSFER => true
));
 $response = curl_exec($ch);
 curl_close($ch);
 return $response;
}
?>

The path passed with CURLOPT_CAINFO has to point to the base-64–encoded (PEM, CER)
root certificate of the certification authority (CA) issuing the HTTPS certificate for Exchange.
If the CA is a third-party CA, download the root certificate from its website and save it on a
local drive.

 Chapter 20 Exchange Web Services 497

If you use your own CA operated with the Active Directory Certificate Services, you can
export the root certificate by using the Microsoft Management Console (MMC). You can
also use Microsoft Internet Explorer to export the root certificate to a domain computer. To
do so, click the Tools icon, and then select Internet Options. On the Content tab, click the
Certificates button, and then click the Trusted Root Certification Authorities tab.

The CURLOPT_SSL_VERIFYHOST option specifies whether the Exchange domain name must
be included in the certificate: The recommended value (2) checks whether the name in the
certificate matches the host name.

Evaluating Configuration Data
Listing 20-3 shows how the SimpleXML PHP extension and the built-in XPath support is used
to retrieve the EWS URLs. In the listing, the URLs are retrieved with two XPath expressions.
The search returns an array of URLs for EWS connections because in larger Exchange instal-
lations, multiple URLs can be specified. The scripts returns only the first internal and external
URL (Index 0).

LISTINg 20-3 Retrieving the internal and external EWS URLs.

<?php
namespace net\xmp\phpbook;
require './autodiscover.php';

$response = autodiscover('autodiscover.phpdemo.site', 'doris@xmp.site',
 'xmp\\doris', 'confidential', './my-ca.cer');
$xml = new \SimpleXMLElement($response);
$xml->registerXPathNamespace(
 'ex', 'http://schemas.microsoft.com/exchange/autodiscover/outlook/
responseschema/2006a');
$intern = $xml->xpath('//ex:Internal//ex:ASUrl');
$extern = $xml->xpath('//ex:External//ex:ASUrl');
echo "<p>Internal EWS URL: $intern[0]\n",
 "<p>External EWS URL: $extern[0]\n";
?>

If you are getting errors, first try to open the Autodiscover URL with a web browser to verify
that you can reach the address and that your credentials are correct. If you make it to the
error message “600 Invalid Request”, the URL and credentials are fine. Next, you can get
additional error information from cURL by calling curl_error() and enabling the CURLOPT_
HEADER and CURLINFO_HEADER_OUT options. Print the response of curl_exec(). Exchange is
picky about the content type, even spaces can throw it off.

498 Part IV Exchange Server

Alternative Methods for URL Queries
You can also retrieve the Autodiscovery and EWS URLs in Active Directory or by using the
Exchange Management Shell.

Active Directory
Exchange saves a service connection point (SCP) in the naming context (CN=Configuration,
DC=…,DC=…) of Active Directory.

The entries for servers providing Autodiscover functions are saved in CN=Autodiscover,
CN=Protocols,CN=<CASServer>,CN=Servers,CN=Exchange Administrative Group (<Number>),
CN=Administrative Groups,CN=<Organization>,CN=Microsoft Exchange, CN=Services. The
serviceBindingInformation attribute contains the internal Autodiscover URL.

Note The Autodiscover URL is an intranet URL, because Active Directory is only accessible from
within a domain.

The entry CN=EWS (Default Web Site),CN=HTTP,CN=Protocols,CN=<CASServer>,CN=Servers,
CN=Exchange Administrative Group (<Number>),CN=Administrative Groups,CN=<Organization>,
CN= Microsoft Exchange,CN=Services contains the EWS URLs in the msExchExternalHost
Name and msExchInternalHostName attributes.

Exchange Management Shell
In Exchange Management Shell (EMS), you can query the information in Active Directory by
using the following cmdlets:

■ get-clientAccessServer The AutoDiscoverServiceInternalUri property contains the
internal Autodiscover URL.

■ get-WebServicesVirtualDirectory The InternalUrl and ExternalUrl properties con-
tain the URLs for the EWS services.

■ get-AutodiscoverVirtualDirectory Contains information on the IIS virtual directory
used for Autodiscover.

To list the properties, use the Format-List cmdlet, as follows:

Get-clientAccessServer | fl

You can also set the properties by using Set-clientAccessServer and Set-WebServicesVirtual
Directory. Use the parameter -? to get help for these functions.

 Chapter 20 Exchange Web Services 499

SOAP and WSDL
Now that you know the URL for the EWS, you can send SOAP messages to this URL. SOAP is
an XML-based protocol that ensures a structured data exchange. The WSDL definition con-
tains information on the structure and syntax of messages.

The PHP SOAP extension parses the WSDL definitions to simplify web services programming.
Instead of processing the raw XML SOAP messages, the PHP Soap extension handles the
SOAP message content in the same way as PHP objects or arrays.

WSDL Structure
WSDL defines the structure and syntax for SOAP messages, based on the following:

■ Message A messages defines the elements of a SOAP request or a SOAP response.

■ Operation An operation consists of a request message (input) and a response mes-
sage (output).

■ Endpoints (portType) An endpoint combines all operations available at this endpoint.
EWS only uses a single endpoint.

■ Binding The binding specifies how the elements of a messages are transferred—for
example, in the SOAP header or in the SOAP message body—as well as the SoapAction
for the transfer over HTTP.

■ Service The service definition links an endpoint and a binding and specifies the URL
for the service.

The message elements are not defined in WSDL but are included in XML Schema files. XML
Schema is a syntax description language that defines the content and structure of XML ele-
ments and attributes:

■ Values can be strings, numbers, Boolean expressions, data types, enumeration types,
and other types.

■ The value range can be limited; for example, you can limit the length of a string or the
maximum value of a number.

■ The structure of nested elements can be defined. To specify a sequence of elements
you can use sequence, and choice to specify several elements.

■ The number of elements can be specified by using minOccurs (Minimum) and
maxOcccurs (Maximum).

■ You can use definition inheritance to derive extended or restricted types from existing
types.

EWS defines the message elements in two different files: one file for the message structure
(messages.xsd), and one file for the data types (types.xsd) that comprise the message.

500 Part IV Exchange Server

EWS, WSDL, and PHP
Because Exchange allows variable EWS URLs, or the URL depends on internal and external
host names, the EWS WSDL definition doesn’t include a service definition. This is in line
with the WSDL standard but the PHP SOAP extension cannot process WSDL without service
definition.

To program using WSDL support, you need to download the WSDL file and the associated XML
schema files, save the files on a local drive, and then insert the service definition. Because the
WSDL definition only changes if a new version of Exchange Server is installed this is a reason-
able if not necessarily elegant alternative.

Adding the Service Definition
For PHP to work with EWS WSDL, perform the following steps:

 1. Download the EWS WSDL file from https://<Server>/EWS/Services.wsdl and save the file
on your local drive.

 2. Download both XML schema files from https://<Server>/EWS/Messages.xsd and
https://<Server>/EWS/Types.xsd.

Save the files in the same directory as Services.wsdl.

Note You can also find the three files on the Exchange Server. From the Exchange
Management Shell, run the following cmdlet:

Get-WebServicesVirtualDirectory | fl Path

By default, the specified directory C:\Program Files\Microsoft\Exchange Server\V14\
ClientAccess\exchweb\EWS) contains the files.

 3. Open Services.wsdl in an editor, and then insert the following definition at the end, just
before the end tag </wsdl:definitions> (replace #EWS-URL# with your EWS URL):

<wsdl:service name='ExchangeService'>
 <wsdl:port name='ExchangeServicePortType' binding='ExchangeServiceBinding'>
 <soap:address location='#EWS-URL#'/>
 </wsdl:port>
</wsdl:service>

 4. Save the file.

 Chapter 20 Exchange Web Services 501

Note You can change the EWS URL at a later point in the PHP program while instantiating
the SoapClient class (location parameter).

Testing the Modified EWS WSDL File
Run the test program in Listing 20-4 to confirm that your modifications were successful. For
Exchange Server 2010, more than 50 functions and almost 550 data types are listed.

LISTINg 20-4 test-wsdl.php—functions and data types of the EWS WSDL definition.

<?php
$client = new SoapClient("./Services.wsdl", array('cache_wsdl' => WSDL_CACHE_NONE));
echo '<h1>Functions</h1><pre>';
var_dump($client->__getFunctions());
echo '</pre><h1>Typen</h1><pre>';
var_dump($client->__getTypes());
echo '</pre>';
?>

Important Because parsing WSDL files and the associated schema files is resource-intensive,
PHP caches the results. However, for the test in Listing 20-4, caching is disabled. Based on your
requirements, you can also set the configuration parameters soap.wsdl_cache_enabled or soap
.wsdl_cache_ttl using the php.ini file or the ini_set() function.

In a production environment, caching should be enabled.

SOAP Messages
With the prepared WSDL file, you can start programming the Exchange Web Services.
However, you cannot use the SoapClient class of the PHP SOAP extension because this class
doesn’t provide NTLM authentication for SOAP requests.

For this reason, the defined ExchangeSoapClient class is used. This class also uses the PHP
cURL extension to send requests.

502 Part IV Exchange Server

ExchangeSoapClient .Class
The ExchangeSoapClient class is shown in Listing 20-5. This class uses cURL to send SOAP
requests over HTTPS with NTLM authentication. The following information is important to
understand how this class works:

■ The constructor is overwritten to cache the passed options ($options).

■ The actual work is done by the doRequest() method.

■ Because the connection over HTTPS with NTLM authentication is time-consuming and
resource-intensive, the open connection is cached in $this->curl_handle.

■ While the first connection is created, the (fixed) parameters are set. This includes not
only the user name and password but also the CA root certificate (see the section
“Query with cURL,” earlier in the chapter) as well as the returned response header
(CURLINFO_HEADER_OUT) used for the tests.

■ Afterward, the (variable) parameters are set: SOAPAction header, URL of the service
($location), and SOAP message content ($request).

■ The metadata is retrieved by using curl_getinfo() and is available in the public
$this>curl_info property for troubleshooting.

■ Because the response HTTP header is provided in $response, the XML SOAP message is
separated from the HTTP headers.

The getLastRequestHeaders() and getLastResponseHeaders() methods are overwritten to
return the correct values. Both functions should only be called if the trace option for the
ExchangeSoapClient object is set.

LISTINg 20-5 ExchangeSoapClient—the SoapClient class including HTTPS and NTLM-authentication.

<?php
namespace net\xmp\phpbook;

class ExchangeSoapClient extends \SoapClient {

 const TYPES_NS = "http://schemas.microsoft.com/exchange/services/2006/types";
 const MESSAGES_NS = "http://schemas.microsoft.com/exchange/services/2006/messages";

 protected $options;
 protected $curl_handle;
 public $curl_info;

 function __construct($wsdl, $options=array()) {
 $this->options = $options;
 parent::__construct($wsdl, $options);
 }

 Chapter 20 Exchange Web Services 503

 function __doRequest($request, $location, $action, $version, $one_way=0) {
 if (empty($this->curl_handle)) {
 $this->curl_handle = curl_init();
 curl_setopt_array($this->curl_handle, array(
 CURLOPT_HTTP_VERSION => CURL_HTTP_VERSION_1_1,
 CURLOPT_POST => true,
 CURLOPT_USERAGENT => 'PHP-cURL/NTLM-SOAP',
 CURLOPT_HTTPAUTH => CURLAUTH_NTLM,
 CURLOPT_USERPWD => $this->options['login'] . ':'
 .$this->options['password'],
 CURLOPT_SSL_VERIFYPEER => true,
 CURLOPT_SSL_VERIFYHOST => 2,
 CURLOPT_CAINFO => $this->options['CACert'],
 CURLOPT_RETURNTRANSFER => true,
 CURLINFO_HEADER_OUT => true,
 CURLOPT_HEADER => true));
 }
 curl_setopt_array($this->curl_handle, array(
 CURLOPT_HTTPHEADER => array("SOAPAction: \"$action\"",
 'Content-Type: text/xml; charset=utf-8'),
 CURLOPT_POSTFIELDS => $request,
 CURLOPT_URL => $location));
 $response = curl_exec($this->curl_handle);
 $this->curl_info = curl_getinfo($this->curl_handle);
 if ($response !== false) {
 $xml = strpos($response, '<?xml ');
 if ($xml) {
 $this->curl_info['response_header'] = substr($response, 0, $xml);
 $response = substr($response, $xml);
 } else {
 $this->curl_info['response_header'] = $response;
 $response = false;
 }
 }
 return $response;
 }

 function __getLastRequestHeaders() {
 return $this->curl_info['request_header'];
 }

 function __getLastResponseHeaders() {
 return $this->curl_info['response_header'];
 }
}
?>

504 Part IV Exchange Server

Using the ExchangeSoapClient Class
Listing 20-6 shows how you use the ExchangeSoapClient class. It is important to set the
CACert options, the logon name, and the password during the client instantiation. The trace
option is necessary only for development tasks.

After the instantiation has completed successfully, the GetFolder operation is called. The gen-
erated SOAP message (Listing 20-7) is defined by the $param array. Instead of using arrays,
you can also define classes with appropriate properties and pass instantiated objects of these
classes. If an error occurs, an exception is triggered that is intercepted in the try/catch block.

For testing purposes, the request and the response, including the HTTP header as well as the
response objects, are displayed.

LISTINg 20-6 test-ews.php—testing the EWS with PHP.

<?php
namespace net\xmp\phpbook;
require './ExchangeSoapClient.php';
require './HTMLPage.php';

$options = array('trace' => true, 'CACert' => './my-ca.cer',
 'login' => 'doris', 'password' => 'confidential');
$client = new ExchangeSoapClient("./Services.wsdl", $options);

$param = array('FolderShape' => array('BaseShape' => 'Default'),
 'FolderIds' => array(
 'DistinguishedFolderId' => array(array('Id' => 'inbox'),
 array('Id' => 'drafts'))));
try {
 $response = $client->GetFolder($param);
}
catch (\Exception $e) {
 echo '<h1>Exception</h1>', $e;
 var_dump($client->curl_info);
 exit;
}
$page = new HTMLPage('EWS test');
$page->addElement('h1', 'Request');
$page->addElement('h2', 'Data');
$page->addElement('p', $client->__getLastRequest());
$page->addElement('h2', 'Header');
$page->addElement('pre', $client->__getLastRequestHeaders(), true);
$page->addElement('h1', 'Response');
$page->addElement('h2', 'Data');
$page->addElement('p', $client->__getLastResponse());
$page->addElement('h2', 'Header');
$page->addElement('pre', $client->__getLastResponseHeaders(), true);
$page->addElement('h1', 'Generated response object');
$page->addElement('pre', print_r($response, true), true);
$page->printPage();
?>

 Chapter 20 Exchange Web Services 505

The output of the test program is shown in Figure 20-1.

FIgURE 20-1 Output generated by the test program test-ews.php.

Listing 20-7 shows the generated SOAP request. The relationship between the $param array
in Listing 20-6 and the SOAP message is obvious.

Note The names specified in the $param array must be identical to the element and attribute
names in the SOAP message (the names are also case sensitive).

LISTINg 20-7 A SOAP request from the GetFolder operation.

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ns1="http://schemas.microsoft.com/exchange/services/2006/types"
 xmlns:ns2="http://schemas.microsoft.com/exchange/services/2006/messages">
<SOAP-ENV:Body>
 <ns2:GetFolder>
 <ns2:FolderShape>
 <ns1:BaseShape>Default</ns1:BaseShape>
 </ns2:FolderShape>
 <ns2:FolderIds>
 <ns1:DistinguishedFolderId Id="inbox"/>
 <ns1:DistinguishedFolderId Id="drafts"/>
 </ns2:FolderIds>
 </ns2:GetFolder>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

506 Part IV Exchange Server

Information About the Following Chapters
In the following chapters, the SOAP messages are not given in full, and the PHP listings
mostly show only relevant sections of the request.

Shorter SOAP Messages
The following chapters don’t show full SOAP messages and use the namespace definition in
Listing 20-8.

LISTINg 20-8 Used XML namespaces.

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:t="http://schemas.microsoft.com/exchange/services/2006/types"
xmlns:m="http://schemas.microsoft.com/exchange/services/2006/messages"

The request in Listing 20-7 would look like this:

<m:GetFolder>
 <m:FolderShape>
 <t:BaseShape>Default</t:BaseShape>
 </m:FolderShape>
 <m:FolderIds>
 <t:DistinguishedFolderId Id="inbox"/>
 <t:DistinguishedFolderId Id="drafts"/>
 </m:FolderIds>
</m:GetFolder>

Shorter PHP Listings
The PHP examples are also not listed in their entirety either and show only the structure of
the request and the response. In addition, error-handling has been omitted. The PHP test
program in Listing 20-6 would look like this:

$param = array('FolderShape' => array('BaseShape' => 'Default'),
 'FolderIds' => array(
 'DistinguishedFolderId' => array(array('Id' => 'inbox'),
 array('Id' => 'drafts'))));
$response = $client->GetFolder($param);

 Chapter 20 Exchange Web Services 507

Object-Oriented Alternative for Parameters
The SOAPClient class not only accepts parameters as arrays, but also as nested objects. Thus,
an object-oriented alternative for Listing 20-6 would look like Listing 20-9. Using two simple
classes and the default class, the listing shows how parameters are passed.

LISTINg 20-9 Objects as parameters for SOAP operations.

class FolderShape {
 protected $BaseShape;

 function __construct($shape) {
 $this->BaseShape = $shape;
 }
}

class FolderId {
 protected $Id;

 function __construct($id) {
 $this->Id = $id;
 }
}

$param = new \stdClass;
$param->FolderShape = new FolderShape('AllProperties');
$param->FolderIds = new \stdClass;
$param->FolderIds->DistinguishedFolderId = array(new FolderId('inbox'),
 new FolderId('drafts'));
$response = $client->GetFolder($param);

With one exception (which is explained in Chapter 21, “Email and Exchange Web Services
Basics”), you can choose any method: sometimes you need to use objects instead of arrays
for EWS to work with PHP.

Note This book primarily uses the array syntax.

508 Part IV Exchange Server

Summary
This chapter explained how to use Autodiscover to retrieve the EWS URL. If the URL for
the selected user is known, you can create the connection by using EWS and control it via
Exchange.

For PHP to work with EWS, you need to download the WSDL definition and the schemas and
modify the WSDL file locally. As shown in the next chapter, you have to make more changes
on the types.xsd XML schema. However, controlling the EWS based on WSDL simplifies pro-
gramming with PHP significantly.

The following chapter explains several terms of EWS and how to search, create, and delete
emails in Exchange. The following chapters introduce additional aspects of the EWS, based
on contacts and calendar entries.

 509

Chapter 21

Email and Exchange Web
Services Basics

This chapter explains important Microsoft Exchange Web Services (EWS) operations to find
folders and elements and to create and delete elements. First, you will take a closer look at
the Exchange database structure and the identification of elements.

In addition to EWS operations, important EWS schema changes are also explained to ensure
a trouble-free communication between EWS and PHP.

Structure, IDs, and Views
Exchange saves all elements in an internal database. This database isn’t a relational database
with tables and typed columns; rather, it’s a generic storage for organized data.

For each element, the element data, the element type, a unique ID, and version information
are saved in the Exchange database. Because the version information changes if an element is
modified, Exchange can ensure that only current data is updated, if accessed simultaneously.

Except for search functions, elements are accessed through their ID. At the same time a
change key, aptly named ChangeKey, is passed containing the version and type information
of the element. Although ChangeKey is optional, it should be specified to recognize simulta-
neous changes.

In this chapter:
Structure, IDs, and Views . 509
Finding Folders (FindFolder) . 513
Listing Messages (FindItem) . 516
Viewing a Message (GetItem) . 522
Requesting the Original MIME Content . 524
Sending a Message (CreateItem) . 531
Deleting Messages (DeleteItem) . 536
Summary . 538

510 Part IV Exchange Server

IDs of Labeled Folders
Several labeled folders have well known aliases. Table 21-1 lists several folder aliases.
However, if possible, you should use the real ID of a folder instead of its alias.

TABLE 21-1 IDs for labeled folders

Name ID Description
Drafts drafts New messages the user hasn’t sent yet; used for caching.

Deleted Items deleteditems Deleted messages not removed yet (recycle bin).

Sent Items sentitems Sent messages.

Junk E-mail junkemail Unwanted messages.

Calendar calendar Default folder for calendar entries.

Contacts contacts Default folder for contacts.

Message root folder msgfolderroot The root folder for all message folders.

Outbox outbox Messages are saved in this folder until they are sent.

Inbox inbox New messages are saved in this folder.

Root folder root The top folder in the Exchange mailbox.

Use DistinguishedFolderId to specify the alias IDs for operations to distinguish these IDs from
the real IDs, which are specified in FolderId.

Viewing Elements
Elements in the Exchange database consist of properties with names and values. Properties
are typed. This means syntax and limitations for values are defined.

For search results (for example, FindFolder) or queried elements (GetItem), you can use
BaseShape to specify which properties are included in the results. BaseShape defines profiles
for frequent use cases: Default for the standard properties, IdOnly if only the ID of an ele-
ment is needed, and AllProperties to include all properties of an element in the results.

If you want a view to include additional properties, specify these properties with
AdditionalProperties.

Caution A query returns only the first 256 characters (for Unicode, otherwise 512 characters)
of strings and other large data types. Only a direct query, such as with GetItem, returns all
information.

Calculated properties (properties that are dynamically generated and not saved in the database)
cannot be returned as part of search queries.

 Chapter 21 Email and Exchange Web Services Basics 511

Selected Properties of Elements
Table 21-2 lists selected properties of elements together with a short description.

TABLE 21-2 Selected standard properties of elements

Property Description
Attachments Lists all attachments of an element

Body Text of the element

Categories Categories assigned to the element

DateTimeCreated Specifies when the element was created

DateTimeReceived Specifies when the element arrived in the mailbox

DateTimeSent Specifies when the element was sent

HasAttachments Specifies if the element has attachments

ItemClass Element type of email messages such as IPM.Note

ItemId ID and version (ChangeKey) of the element

LastModifiedName Display name of the user who changed the element last
(read-only)

LastModifiedTime Time the element was last changed (read-only)

ParentFolderId Folder in which the element is saved

ReminderDueBy Time of the reminder, due date

ReminderIsSet Specifies if the reminder function is enabled

ReminderMinutesBeforeStart Specifies the number of minutes before the due date for the
reminder

Size Size of the element in bytes

Subject Subject of the element

Names of Properties
For some operations or parameters of operations, you must specify the property names
these properties have in the Exchange database (not the position or the element names in
XML of the SOAP message—although the XML element name of the property is often very
similar to the name in the database). This might be necessary if you want to sort the search
results by properties or to return additional properties with AdditionalProperties. Exchange
differentiates between three property types: basic properties, property groups, and
extended properties.

512 Part IV Exchange Server

Basic Properties
Basic properties are properties that are only set once per element but can have several values.
The display name of folders (folder:DisplayName) or categories for elements (item:Categories)
are examples of basic properties.

In requests, basic properties are specified by using FieldURI:

<t:AdditionalProperties>
 <t:FieldURI FieldURI="item:Subject"/>
 <t:FieldURI FieldURI="message:IsRead"/>
</t:AdditionalProperties>

For a list of the basic properties, consult the MSDN article at http://msdn.microsoft.com/
en-us/library/aa494315.aspx. A complete list can be found in the types.xsd XML Schema of
the EWS in the definition of the UnindexedFieldURIType data type.

Property Groups
Property groups consist of properties that can be included in an element multiple times.
Typical examples are phone numbers for contacts (contacts:PhoneNumber) or contact infor-
mation (contacts:ImAddress).

In requests, the entries of property groups are specified by using IndexedFieldURI:

<t:AdditionalProperties>
 <t:IndexedFieldURI FieldURI="contacts:PhoneNumber" FieldIndex="MobilePhone"/>
 <t:IndexedFieldURI FieldURI="contacts:PhysicalAddress:Street" FieldIndex="Business"/>
</t:AdditionalProperties>

For a list of property groups, consult the MSDN article at http://msdn.microsoft.com/en-us/
library/aa581079.aspx. A complete list can be found in the types.xsd XML Schema of the EWS
in the definition of the DictionaryURIType data type.

Extended Properties
You can use extended properties (ExtendedFieldURI element) to specify additional MAPI
properties. These properties are addressed by their types and either the predefined names,
their tags, or the IDs.

<t:AdditionalProperties>
 <t:ExtendedFieldURI PropertyTag="0x0037" PropertyType="String"/>
 <t:ExtendedFieldURI DistinguishedPropertySetId="PublicStrings"
 PropertyName="customerPremiumSupport" PropertyType="Boolean"/>
 <t:ExtendedFieldURI PropertySetId="00010397-0000-0200-A020-000001004088" PropertyId="3"
 PropertyType="String"/>
</t:AdditionalProperties>

For a description of the syntax and the predefined names, consult the MSDN article at http://
msdn.microsoft.com/en-us/library/aa564843.aspx.

http://msdn.microsoft.com/en-us/library/aa494315.aspx
http://msdn.microsoft.com/en-us/library/aa494315.aspx
http://msdn.microsoft.com/en-us/library/aa581079.aspx
http://msdn.microsoft.com/en-us/library/aa581079.aspx
http://msdn.microsoft.com/en-us/library/aa564843.aspx
http://msdn.microsoft.com/en-us/library/aa564843.aspx

 Chapter 21 Email and Exchange Web Services Basics 513

Finding Folders (FindFolder)
For the EWS to work with email, you first need to find the folders in which the emails are
saved. This is done by using the FindFolder operation.

Selected Properties
Folders are the only objects in the Exchange database that are not derived from the generic
element type. Therefore, folders have their own set of properties. The most important prop-
erties are listed in Table 21-3.

TABLE 21-3 Selected properties of folders

Property Description
ChildFolderCount Number of folders in the folder

DisplayName Display name of the folder

FolderClass Class of the folder such as IPF.Note for the inbox

FolderId ID and version (ChangeKey) of the folder

ParentFolderId ID of the parent folder

TotalCount Number of elements in the folder

Request
Listing 21-1 shows an example request that uses the FindFolder operation.

LISTINg 21-1 The FindFolder operation—request message.

<m:FindFolder Traversal="Deep">
 <m:FolderShape>
 <t:BaseShape>AllProperties</t:BaseShape>
 </m:FolderShape>
 <m:ParentFolderIds>
 <t:DistinguishedFolderId Id="msgfolderroot"/>
 </m:ParentFolderIds>
</m:FindFolder>

In PHP, the ExchangeSoapClient class generates the operation message as follows:

$param = array('Traversal' => 'Deep',
 'FolderShape' => array('BaseShape' => 'AllProperties'),
 'ParentFolderIds' => array(
 'DistinguishedFolderId' => array('Id' => 'msgfolderroot')));
$response = $client->FindFolder($param);

514 Part IV Exchange Server

The following parameters are passed to FindFolder:

■ Traversal Specifies the search area. Deep searches the entire hierarchy below the
specified folder, and Shallow searches only the direct children.

■ ParentFolderIds Contains one or more folder IDs to be queried.
DistinguishedFolderId specifies alias IDs, and FolderId specifies IDs. For example:

<t:FolderId Id="AQAXAEFu..." ChangeKey="CQAAABYA..."/>

Response
The response from the FindFolder operation contains the data of the folders that were found.
The PHP SOAP extension converts the structure of the SOAP message into a PHP object.

XML Response
Listing 21-2 shows the response from the operation. In addition to the status information
(ResponseClass, ResponseCode), the number of hits is also indicated (TotalItemsInView). It also
shows if the last element is included in the results (IncludesLastItemInRange). The last infor-
mation is useful if search results are paginated. Folders contains the actual folder information.

LISTINg 21-2 The FindFolder operation—response message.

<m:FindFolderResponse>
 <m:ResponseMessages>
 <m:FindFolderResponseMessage ResponseClass="Success">
 <m:ResponseCode>NoError</m:ResponseCode>
 <m:RootFolder TotalItemsInView="18" IncludesLastItemInRange="true">
 <t:Folders>
 <t:Folder>
 <t:FolderId Id="AAAXAEFn..." ChangeKey="AQAAABYA..."/>
 <t:ParentFolderId Id="AQAXAEFn..." ChangeKey="AQAAAAsw..."/>
 <t:FolderClass>IPF.Note</t:FolderClass>
 <t:DisplayName>Inbox</t:DisplayName>
 <t:TotalCount>17</t:TotalCount>
 <t:ChildFolderCount>2</t:ChildFolderCount>
 <t:UnreadCount>0</t:UnreadCount>
 </t:Folder>
 ...
 </t:Folders>
 </m:RootFolder>
 </m:FindFolderResponseMessage>
 </m:ResponseMessages>
</m:FindFolderResponse>

 Chapter 21 Email and Exchange Web Services Basics 515

PHP Object
The PHP SOAP extension converts the response XML to a PHP object. Nested elements cor-
respond to nested objects.

Listing 21-3 shows how the elements are handled: $folderlist shows the message structure,
and the folder array (Folder elements) is processed in a loop. Notice that with $folder->
ParentFolderId->Id, XML elements and attributes are addressed in the same way.

Note Listing 21-3 uses HTMLPage.php (see Appendix A, “Example Scripts and Data”) to display
the data as a table.

LISTINg 21-3 Evaluating the response message from the FindFolder operation.

$page = new HTMLPage('Folders in Mailbox');
$folderlist = $response->ResponseMessages->FindFolderResponseMessage
 ->RootFolder->Folders->Folder;
$folders = array();
foreach ($folderlist as $folder) {
 $folders[$folder->FolderId->Id] = $folder;
}
$table = array(array('Name', 'Folder Class', 'Parent Folder',
 'Elements', 'Unread'));
foreach ($folders as $folder) {
 $parentId = $folder->ParentFolderId->Id;
 $parent = isset($folders[$parentId]) ? $folders[$parentId]->DisplayName
 : 'msgfolderroot';
 $table[] = array($folder->DisplayName, $folder->FolderClass, $parent,
 $folder->TotalCount, $folder->UnreadCount);
}
$page->addTable($table);
$page->printPage();

Figure 21-1 shows the output from the sample program.

516 Part IV Exchange Server

FIgURE 21-1 All folders in the mailbox.

Listing Messages (FindItem)
The FindItem operation lists the email messages. This operation works similar to FindFolder.
Because folders can contain a large number of emails, you might want to limit the search
results.

Limiting the Results (Paging)
With the EWS IndexedPageItemView element, you can limit the number of the search results
returned by the FindItem operation:

<m:IndexedPageItemView MaxEntriesReturned="5" Offset="10" BasePoint="Beginning"/>

MaxEntriesReturned specifies how many hits are returned, Offset specifies the start position,
and Basepoint specifies whether the offset count starts at the first element in descending
order or at the last element in ascending order to simplify scrolling in both directions.

Note Instead of IndexedPageItemView, you can use FractionalPageItemView to specify a relative
(percentage) offset (numerator and denominator attributes).

 Chapter 21 Email and Exchange Web Services Basics 517

In this case, the RootFolder element of the response contains the following attributes:

<m:RootFolder IndexedPagingOffset="15" TotalItemsInView="23"
 IncludesLastItemInRange="false">

IndexedPagingOffset contains the offset value used for the next request. This value is calcu-
lated from Offset+MaxEntriesReturned. TotalItemsInView indicates how many elements are
saved in the folder, and IncludesLastItemInRange specifies if the search result contains the last
element: if IncludesLastItemInRange=true and the order is descending (BasePoint=Beginning),
it is the last element in the folder. If the order is ascending (BasePoint=End), the first element
in the folder is included in the search results.

Note You can also limit the number of results for the FindFolder operation by using the
IndexedPageFolderView and FractionalPageFolderView elements.

Sorting
Use the SortOrder element presented in Listing 21-4 to sort the search results returned
by FindItem. The properties are displayed in the specified order.

LISTINg 21-4 Specifying the sort order.

<m:SortOrder>
 <t:FieldOrder Order="Ascending">
 <t:FieldURI FieldURI="message:Sender" />
 </t:FieldOrder>
 <t:FieldOrder Order="Descending">
 <t:FieldURI FieldURI="item:DateTimeSent" />
 </t:FieldOrder>
<m:SortOrder>

Exchange returns the results in the specified order. In this example, the order is ascend-
ing beginning at the sender (message:Sender) and descending beginning at the time sent
(item:DateTimeSent), if the sender is the same.

Note You cannot sort the results from the FindFolder operation.

PHP and Replacement Groups
The PHP SOAP extension cannot generate the correct XML in Listing 21-4 because in the
EWS schema definition, the FieldURI, IndexedFieldURI, and ExtendedFieldURI elements are

518 Part IV Exchange Server

defined as a replacement group for the path element. Therefore, PHP returns an error mes-
sage stating that the path element is missing.

There are two solutions: you can modify the EWS schema definition to not use replacement
groups, or you can use type mapping to perform the XML serialization in the SoapClient.

Type Mapping
Type mapping cannot be used because of an error in EWS. EWS cannot process schema
instances with xsi:type; it returns an internal server error. If you still want to use type map-
ping, you need to map all parent types. This is possible, but for all practical purposes, it’s
too much effort. Therefore, this book doesn’t use type mapping; instead, it modifies the
schema.

Modifying the Schema
To break the deadlock between PHP and EWS and to take advantage of the programming
functionality based on WSDL, you need to modify the schema for the web services. To do
this, perform the following steps:

 1. Open the local copy of the types.xsd type schema in an editor.

 2. Insert the following lines into the schema (at the end, before the xs:schema end tag):

<xs:group name="PathGroup">
 <xs:choice>
 <xs:element ref="t:FieldURI" />
 <xs:element ref="t:IndexedFieldURI" />
 <xs:element ref="t:ExtendedFieldURI" />
 </xs:choice>
</xs:group>

 3. Replace all <xs:element ref="t:Path"/> instances with <xs:group
ref="t:PathGroup"/>.

 4. Change the definition of NonEmptyArrayOfPathsToElementType as follows:

<xs:complexType name="NonEmptyArrayOfPathsToElementType">
 <xs:choice maxOccurs="unbounded">
 <xs:element ref="t:FieldURI" />
 <xs:element ref="t:IndexedFieldURI" />
 <xs:element ref="t:ExtendedFieldURI" />
 </xs:choice>
</xs:complexType>

Note You need to handle this type in a special way because PHP (currently) ignores the
information relating to groups from maxOccurs.

 Chapter 21 Email and Exchange Web Services Basics 519

 5. Save the schema file.

Based on these modifications, PHP generates the correct XML for the SOAP message.

Request
After all preparations are completed, you can easily create a request that limits the results to
five elements and sorts these elements by sender name and creation date.

XML Request
The XML request from the FindItem operation is shown in Listing 21-5. The results are limited
by using MaxEntriesReturned and the offset and order are specified by using BasePoint. Use
SortOrder to specify the sort order and ParentFolderIds to specify the folders to be searched.

LISTINg 21-5 Message search with result limit and sorting.

<m:FindItem Traversal="Shallow">
 <m:ItemShape>
 <t:BaseShape>Default</t:BaseShape>
 </m:ItemShape>
 <m:IndexedPageItemView MaxEntriesReturned="5" Offset="0" BasePoint="Beginning"/>
 <m:SortOrder>
 <t:FieldOrder Order="Ascending">
 <t:FieldURI FieldURI="message:Sender"/>
 </t:FieldOrder>
 <t:FieldOrder Order="Descending">
 <t:FieldURI FieldURI="item:DateTimeCreated"/>
 </t:FieldOrder>
 </m:SortOrder>
 <m:ParentFolderIds>
 <t:DistinguishedFolderId Id="inbox"/>
 </m:ParentFolderIds>
</m:FindItem>

PHP
Due to the modified EWS type schema, PHP creates the request as if it would be able to
handle replacement groups. This is shown in Listing 21-6.

520 Part IV Exchange Server

LISTINg 21-6 Creating and starting the FindItem operation.

$param = array('Traversal' => 'Shallow',
 'ItemShape' => array('BaseShape' => 'Default'),
 'ParentFolderIds' => array(
 'DistinguishedFolderId' => array('Id'=>'inbox')),
 'IndexedPageItemView' => array(
 'MaxEntriesReturned'=> 5,
 'Offset' => 0,
 'BasePoint' => "Beginning"),
 'SortOrder' => array('FieldOrder' => array(
 array('Order' => 'Ascending',
 'FieldURI' => array('FieldURI' => 'message:Sender')),
 array('Order' => 'Descending',
 'FieldURI' => array('FieldURI' => 'item:DateTimeCreated'))
)));
$response = $client->FindItem($param);

The example listing specifies an alias ID (inbox) without ChangeKey for the parent folder. In
production environments, you should always specify the ChangeKey.

Response
The response message contains the searched email messages with the properties specified in
the default view.

XML Response
Listing 21-7 shows the response message from the operation. The email messages found are
embedded as message elements in the response, and due to the requested Default-Item
Shape, they contain the most important properties for the listing. In this view, the sender
data (from) doesn’t include the email address but only the sender name. The content of the
email (Body) is also not included.

 Chapter 21 Email and Exchange Web Services Basics 521

LISTINg 21-7 The FindItem operation—response message.

<m:FindItemResponse>
 <m:ResponseMessages>
 <m:FindItemResponseMessage ResponseClass="Success">
 <m:ResponseCode>NoError</m:ResponseCode>
 <m:RootFolder IndexedPagingOffset="5" TotalItemsInView="23"
 IncludesLastItemInRange="false">
 <t:Items>
 <t:Message>
 <t:ItemId Id="AQAXAEFn..." ChangeKey="CQAAABYA..."/>
 <t:Subject>Furious Furrows...</</t:Subject>
 <t:Sensitivity>Normal</t:Sensitivity>
 <t:Size>1144</t:Size>
 <t:DateTimeSent>2011-07-19T13:58:28Z</t:DateTimeSent>
 <t:DateTimeCreated>2011-07-19T13:58:28Z</t:DateTimeCreated>
 <t:HasAttachments>false</t:HasAttachments>
 <t:From>
 <t:Mailbox><t:Name>Arno Hollosi</t:Name></t:Mailbox>
 </t:From>
 <t:IsRead>false</t:IsRead>
 </t:Message>
 <t:Message> ... </t:Message>
 ...
 </t:Items>
 </m:RootFolder>
 </m:FindItemResponseMessage>
 </m:ResponseMessages>
</m:FindItemResponse>

PHP Object
You can access messages and properties through PHP, as usual (see Listing 21-8).

LISTINg 21-8 Evaluating the response message from the FindItem operation.

$page = new HTMLPage('Inbox');
$messages = $response->ResponseMessages->FindItemResponseMessage
 ->RootFolder->Items->Message;
$table = array(array('Sender', 'Subject', 'Date', 'Read', 'Size', 'Attachments'));
foreach ($messages as $msg) {
 $read = $msg->IsRead ? 'yes' : '-';
 $attachments = $msg->HasAttachments ? 'yes' : '-';
 $table[] = array($msg->From->Mailbox->Name, $msg->Subject, $msg->DateTimeSent,
 $read, $msg->Size, $attachments);
}
$page->addTable($table);
$page->PrintPage();

522 Part IV Exchange Server

The output of the program is displayed in Figure 21-2. With the Id and ChangeKey values, a
complete web mail script would include additional links to the detailed view of the emails.

Important Direct access to Items->Message (Listing 21-8) only displays email messages and no
appointments or other messages because these have the MeetingRequest or MeetingCancellation
type. To list all elements, you must iterate through the results twice.

$items = $response->ResponseMessages->FindItemResponseMessage->RootFolder->Items;
foreach ($items as $itemType) {
 foreach ($itemType as $singleItem) {
 ...
 }
}

Remember that other message types have properties different from email messages and, there-
fore, must be handled in a different way.

FIgURE 21-2 The message elements in the inbox.

Viewing a Message (GetItem)
To retrieve a single message, use GetItem. Unlike FindItem, GetItem has no 256/512 character
limit for properties; it returns the full values of properties. Email attachments that must be
transferred separately and the original MIME email data are excluded.

Because emails can contain HTML content, there is a risk if this content is not filtered and dis-
played as-is in the browser. An email can contain scripts or other dangerous HTML content.
To this end, Exchange Server 2010 provides an HTML filter. However, Exchange Server 2010
mode must be requested within a SOAP header.

 Chapter 21 Email and Exchange Web Services Basics 523

Requesting the Exchange 2010 Mode Within a SOAP Header
If you need the current version of Exchange Server to use new functions, you need to insert
the version into the request as a SOAP header. Listing 21-9 shows the full SOAP request mes-
sage: whereas the GetItem operation is included in the SOAP body, RequestServerVersion is
transferred as a SOAP header.

LISTINg 21-9 SOAP header RequestServerVersion to perform the operation in Exchange Server 2010 mode.

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:t="http://schemas.microsoft.com/exchange/services/2006/types"
 xmlns:m="http://schemas.microsoft.com/exchange/services/2006/messages">
 <SOAP-ENV:Header>
 <t:RequestServerVersion Version="Exchange2010_SP1"/>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body>
 <m:GetItem>
 ...
 </m:GetItem>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

In PHP, the header is generated with the SoapHeader class and set with __setSoapHeaders()
(see Listing 21-10). Note that depending on your version of Exchange Server, the version
string might be slightly different. To set multiple headers, the headers are passed as an array
to __setSoapHeaders(). If NULL is passed, all headers are deleted.

LISTINg 21-10 The PHP code to create the SOAP header.

$client = new ExchangeSoapClient("./Services.wsdl", $options);
$version = array('Version' => "Exchange2010_SP1");
$header = new \SoapHeader(ExchangeSoapClient::TYPES_NS,
 'RequestServerVersion', $version);
$client->__setSoapHeaders($header);

Important The IDs in Exchange 2010 are different from the those in Exchange 2007. If you
want to access an element at a later time, you need to use the Exchange 2010 mode for the pre-
vious FindItem operation.

Because the ExchangeSoapClient class used in this book allows recycling, the header needs to be
set only once after the instantiation.

524 Part IV Exchange Server

Defining and Filtering the Message Content
Email messages contain text or HTML content. If you want to query the content, use the
BodyType element to specify which format should be returned, as shown in the following:

<m:ItemShape>
 <t:BaseShape>Default</t:BaseShape>
 <t:BodyType>HTML</t:BodyType>
</m:ItemShape>

There are three possible values for BodyType: HTML, Text, and Best (which is the default,
delivers HTML if available; otherwise, plain text). If the content has the wrong format,
Exchange converts the content automatically into the desired format.

Because HTML messages can contain active content that might compromise security, these
contents should be filtered before opened in a browser. However, it is very difficult to write
a reliable HTML filter yourself. Fortunately, Exchange 2010 has a built-in HTML filter that you
can specify in the ItemShape element:

<m:ItemShape>
 <t:BaseShape>Default</t:BaseShape>
 <t:FilterHtmlContent>true</t:FilterHtmlContent>
</m:ItemShape>

Valid values for FilterHtmlContent are true and false. For this function, the request has to
force the processing in Exchange 2010 mode (SOAP header RequestServerVersion).

Requesting the Original MIME Content
The content returned in the body property is already decoded and might already be trans-
formed or filtered. To obtain the original MIME message, specify the IncludeMimeContent
element:

<m:ItemShape>
 <t:BaseShape>Default</t:BaseShape>
 <t:IncludeMimeContent>true</t:IncludeMimeContent>
</m:ItemShape>

Valid values for IncludeMimeContent are true and false.

The returned MIME message is Base-64 encoded and must be decoded for further process-
ing. The MIME message is complete; the message contains the SMTP header, the message
content, and possibly attachments.

 Chapter 21 Email and Exchange Web Services Basics 525

Note Because email attachments can be large, you should consider the PHP memory require-
ments. Keep in mind that you might need three to four times the storage space of the email size
for processing.

Request
Using the techniques from the preceding sections, you can easily create the request.
Listing 21-11 shows how to retrieve two elements in a single operation.

LISTINg 21-11 The GetItem operation—request message.

<m:GetItem>
 <m:ItemShape>
 <t:BaseShape>Default</t:BaseShape>
 <t:BodyType>HTML</t:BodyType>
 <t:FilterHtmlContent>true</t:FilterHtmlContent>
 </m:ItemShape>
 <m:ItemIds>
 <t:ItemId Id="AAMkADhh..." ChangeKey="CQAAABYA..."/>
 <t:ItemId Id="XBMkADh5..." ChangeKey="QACCABYg..."/>
 </m:ItemIds>
</m:GetItem>

The request created by using PHP has the usual pattern, as demonstrated in Listing 21-12. In
the listing, $item1 and $item2 are result objects from a previous FindItem operation.

LISTINg 21-12 The GetItem operation in PHP.

$param = array('ItemShape' => array('BaseShape' => 'Default',
 'BodyType' => 'HTML',
 'FilterHtmlContent' => true),
 'ItemIds' => array('ItemId' => array(
 array('Id' => $item1->ItemId->Id,
 'ChangeKey' => $item1-> ItemId->ChangeKey),
 array('Id' => $item2->ItemId->Id,
 'ChangeKey' => $item2-> ItemId->ChangeKey)))
);
$response = $client->GetItem($param);

526 Part IV Exchange Server

Response
Listing 21-13 shows the response message from the GetItem operation in Listing 21-11. Both
responses for the queried elements are saved in their own GetItemResponseMessage ele-
ments instead of within items for FindItem. This way, you can map errors (ResponseClass,
ResponseCode) at the element level.

The HTML content (Body) in the XML message is entity-encoded so that the HTML doesn’t
impact the validity of the XML message. However, the HTML in the corresponding PHP object
($response) is available in clear text. Keep in mind that the HTML comprises <html>, <head>,
and <body> elements, not just the content of the HTML <body> element itself.

LISTINg 21-13 Response message from the GetItem operation.

<m:GetItemResponse>
 <m:ResponseMessages>
 <m:GetItemResponseMessage ResponseClass="Success">
 <m:ResponseCode>NoError</m:ResponseCode>
 <m:Items>
 <t:Message>
 <t:ItemId Id="AAMkADhh..." ChangeKey="CQAAABYA..."/>
 <t:Subject>Fun at de Efteling</t:Subject>
 <t:Sensitivity>Normal</t:Sensitivity>
 <t:Body BodyType="HTML"><html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
</head>
<body>
<h1>HTML Content</h1>
<p>Email with HTML content.</p>
</body>
</html></t:Body>
 <t:Size>53200</t:Size>
 <t:DateTimeSent>2011-02-10T10:57:26Z</t:DateTimeSent>
 <t:DateTimeCreated>2011-04-19T15:46:17Z</t:DateTimeCreated>
 <t:ResponseObjects>
 <t:ReplyToItem/><t:ReplyAllToItem/><t:ForwardItem/>
 </t:ResponseObjects>
 <t:HasAttachments>false</t:HasAttachments>
 <t:IsAssociated>false</t:IsAssociated>
 <t:ToRecipients>
 <t:Mailbox>
 <t:Name>Tony H. Hamster</t:Name>
 <t:EmailAddress>tony.hamster@xmp.site</t:EmailAddress>
 <t:RoutingType>SMTP</t:RoutingType>
 <t:MailboxType>Mailbox</t:MailboxType>
 </t:Mailbox>
 </t:ToRecipients>

 Chapter 21 Email and Exchange Web Services Basics 527

 <t:CcRecipients><t:Mailbox> ... </t:Mailbox></t:CcRecipients>
 <t:IsReadReceiptRequested>false</t:IsReadReceiptRequested>
 <t:From><t:Mailbox> ... </t:Mailbox></t:From>
 <t:IsRead>false</t:IsRead>
 </t:Message>
 </m:Items>
 </m:GetItemResponseMessage>
 <m:GetItemResponseMessage ResponseClass="Success">
 ...
 </m:GetItemResponseMessage>
 </m:ResponseMessages>
</m:GetItemResponse>

The sender (From) and the recipient (ToRecipients, CcRecipients) are indicated by name
and email address in GetItem in the Mailbox element. The MailboxType element provides
more information about the address. For example, the Mailbox value indicates an Exchange
mailbox.

Note For a list and description of all values for MailboxType, consult the MSDN article at
http://msdn.microsoft.com/en-us/library/aa563493.aspx.

Example
Listing 21-14 shows a full example how an email message is retrieved and displayed by using
EWS. The script is created as follows:

■ First, an ExchangeSoapClient is instantiated, and a SOAP header for Exchange 2010 is
set to use the FilterHtmlContent function.

■ The message to be displayed is specified with the id and changekey GET parameters.

Important Because the request uses the Exchange 2010 mode, the previous FindItem
operation must also be performed in Exchange 2010 mode. Otherwise, id and changekey
don’t match.

■ The $param array is created and the GetItem operation is called.

■ Afterward, certain fields of the email are written in a table (the necessary auxiliary func-
tions are to be found at the end of the script).

This example doesn’t check or solve errors, and the output of the ToRecipients field is simpli-
fied: the email could have several recipients.

528 Part IV Exchange Server

LISTINg 21-14 show-msg.php—retrieving and viewing an email.

<?php
namespace net\xmp\phpbook;

require './ExchangeSoapClient.php';
require './HTMLPage.php';

$options = array('login' => 'tony', 'password' => 'confidential',
 'CACert' => './my-ca.cer');
$client = new ExchangeSoapClient('./Services.wsdl', $options);
$header = array('Version' => 'Exchange2010_SP1');
$reqver = new \SoapHeader(ExchangeSoapClient::TYPES_NS,
 'RequestServerVersion', $header);
$client->__setSoapHeaders($reqver);

$id = filter_input(INPUT_GET, 'id', FILTER_SANITIZE_STRING, FILTER_FLAG_STRIP_LOW);
$key = filter_input(INPUT_GET, 'changekey', FILTER_SANITIZE_STRING,
 FILTER_FLAG_STRIP_LOW);
$param = array('ItemShape' => array('BaseShape' => 'Default',
 'BodyType' => 'HTML',
 'FilterHtmlContent' => true),
 'ItemIds' => array('ItemId' => array('Id' => $id, 'ChangeKey' => $key))
);
$response = $client->GetItem($param);
$msg = $response->ResponseMessages->GetItemResponseMessage->Items->Message;

$page = new HTMLPage('Message');
$table = array(array('Field', 'Content'));
$table[] = addMailboxField('From', $msg->From->Mailbox);
$table[] = addMailboxField('To', $msg->ToRecipients->Mailbox);
$table[] = addStringField('Subject', $msg->Subject);
$table[] = addStringField('Sent at', $msg->DateTimeSent);
$table[] = addStringField('Size', $msg->Size);
$table[] = addBooleanField('Attachments exist', $msg->HasAttachments);
$table[] = addBooleanField('Require read receipt', $msg->IsReadReceiptRequested);
$table[] = array('content', $msg->Body->_);
$page->addTable($table, array(false, true));
$page->printPage();

function addStringField($name, $value) {
 return array($name, htmlspecialchars($value));
}

function addBooleanField($name, $value) {
 return array($name, $value ? 'yes' : 'no');
}

function addMailboxField($name, $value) {
 $value = htmlspecialchars($value->Name . ' <' . $value->EmailAddress . '>');
 return array($name, $value);
}
?>

 Chapter 21 Email and Exchange Web Services Basics 529

Figure 21-3 shows the output of a message using the script in Listing 21-14. The HTML con-
tent was already filtered by Exchange.

FIgURE 21-3 Output generated by the sample script msg.php.

Email Attachments (GetAttachment)
If an email has one or more attachments, GetItemResponseMessage includes the information
shown in Listing 21-15, which includes file name, size and type of the attachment, and the
Exchange ID of the attachment for further processing.

LISTINg 21-15 Information about the attachments in the GetItem response message.

<m:GetItemResponseMessage ResponseClass="Success">
 <m:ResponseCode>NoError</m:ResponseCode>
 <m:Items>
 <t:Message>
 ...
 <t:Attachments>
 <t:FileAttachment>
 <t:AttachmentId Id="AQMkADhh..."/>
 <t:Name>CurrentPriceList.xls</t:Name>
 <t:ContentType>application/vnd.ms-excel</t:ContentType>
 <t:ContentId>dfeef8b3-e589-4c86-b463-10751e9b0906</t:ContentId>
 <t:Size>24816</t:Size>
 <t:LastModifiedTime>2011-08-19T15:46:17</t:LastModifiedTime>
 <t:IsInline>false</t:IsInline>
 <t:IsContactPhoto>false</t:IsContactPhoto>

530 Part IV Exchange Server

 </t:FileAttachment>
 <t:FileAttachment> ... </t:FileAttachment>
 </t:Attachments>
 ...
 <t:HasAttachments>true</t:HasAttachments>
 ...
 </t:Message>
 </m:Items>
</m:GetItemResponseMessage>

The GetAttachment operation is used to retrieve email attachments.

Request
Creating a request for the GetAttachment operation is straightforward:

<m:GetAttachment>
 <m:AttachmentIds>
 <t:AttachmentId Id="AQBgAEAA..."/>
 </m:AttachmentIds>
</m:GetAttachment>

You can specify multiple AttachmentId in one request. You can also use AttachmentShape
(such as FolderShape and ItemShape) to specify properties; the IncludeMimeContent,
BodyType, FilterHtmlContent, and AdditionalProperties elements are available.

The PHP code to retrieve an attachment is also short, and there is no ChangeKey:

$param = array('AttachmentIds' => array(
 'AttachmentId' => array('Id' => "AQMkADhh...")));
$response = $client->GetAttachment($param);

Response
Listing 21-16 shows the response. The content is essentially the same as the results returned
by the GetItem operation. The only difference is that the content in the content element is
Base-64 encoded. The content in the PHP $response object is already decoded.

LISTINg 21-16 The GetAttachment operation—response message.

<m:GetAttachmentResponse>
 <m:ResponseMessages>
 <m:GetAttachmentResponseMessage ResponseClass="Success">
 <m:ResponseCode>NoError</m:ResponseCode>

 Chapter 21 Email and Exchange Web Services Basics 531

 <m:Attachments>
 <t:FileAttachment>
 <t:AttachmentId Id="AQBgAEAA..."/>
 <t:Name>GeneralInformation.pdf</t:Name>
 <t:ContentType>application/octet-stream</t:ContentType>
 <t:ContentId>dfeef8b3-e589-4c86-b463-10751e9b0906</t:ContentId>
 <t:Content> ... </t:Content>
 </t:FileAttachment>
 </m:Attachments>
 </m:GetAttachmentResponseMessage>
 </m:ResponseMessages>
</m:GetAttachmentResponse>

In PHP, you can access the content as follows:

$response->ResponseMessages->GetAttachmentResponseMessage->Attachments
 ->FileAttachment->Content

If several attachments were requested in a single GetAttachment operation, you access the
content as follows:

foreach ($response->ResponseMessages->GetAttachmentResponseMessage as $msg) {
 $content = $msg->Attachments->FileAttachment->Content;
 ...
}

Sending a Message (CreateItem)
An email is sent if the CreateItem method creates a message element and Exchange is
instructed to send this element. Exchange determines the recipient from the element and
delivers the message accordingly.

If you send messages (or perform other EWS operations), EWS might not recognize the XML
of the SOAP request generated by PHP because the content of the request is redundant.
To avoid this problem, you need to use cloned objects instead of the array structure for
parameters.

SOAP Errors Caused by References and Accessors
If a message or other elements are created, the request message might contain certain data
multiple times. SOAP provides a method to reduce the size of the request: accessors (MRA,
multi-reference accessor) reference data at another position. Listing 21-17 shows an example
in an email message. In the listing, the sender adds herself to the CcRecipients element.

532 Part IV Exchange Server

LISTINg 21-17 The sender and Cc recipient are identical.

<t:From>
 <t:Mailbox>
 <t:Name>Doris D. Lass</t:Name>
 <t:EmailAddress>doris.lass@xmp.site</t:EmailAddress>
 </t:Mailbox>
</t:From>
<t:CcRecipients>
 <t:Mailbox>
 <t:Name>Doris D. Lass</t:Name>
 <t:EmailAddress>doris.lass@xmp.site</t:EmailAddress>
 </t:Mailbox>
</t:CcRecipients>

With the MRA method, the duplicated structure isn’t necessary (see Listing 21-18). An id attri-
bute is added to the first record, which is referenced by the second record by using href.

LISTINg 21-18 Reference and accessor (MRA) reduce the size of messages.

<t:ToRecipients>
 <t:Mailbox id="mb1">
 <t:Name>Doris D. Lass</t:Name>
 <t:EmailAddress>doris@xmp.site</t:EmailAddress>
 </t:Mailbox>
</t:ToRecipients>
<t:ToRecipients>
 <t:Mailbox href="#mb1"/>
</t:ToRecipients>

Problem
PHP creates the request XML according to the described method. However, Exchange 2010
doesn’t support the MRA method; instead, it returns an error (XML doesn’t match schema).
How can you write the PHP to create the XML in Listing 21-17?

Solution
If the operation parameters are created as objects instead of arrays in PHP and no object is
used twice, PHP creates the version from Listing 21-17. Listing 21-19 shows how the solution
could look. In the listing, the mailbox class is instantiated once, and for the operation param-
eters, the object is cloned.

 Chapter 21 Email and Exchange Web Services Basics 533

LISTINg 21-19 Avoiding the cloning of references and accessors.

class Mailbox {

 protected $EmailAddress;
 protected $Name;

 function __construct($address, $name=NULL) {
 $this->EmailAddress = $address;
 $this->Name = $name;
 }
}
$doris = new Mailbox('doris.lass@xmp.site', 'Doris D. Lass');
$param->Sender->Mailbox = $doris;
$param->CcRecipients->Mailbox = clone $doris;

Request
To send an email, create the email by using CreateItem, and then send it. You can also save
the email in the Drafts folder (or in another folder).

XML Request

Listing 21-20 shows the typical properties used for this operation, which are described in
the following:

■ ItemClass Email messages have the IPM.Note class

■ Subject Subject of the message

■ Body Message content

■ Sender Sender of the message

■ ToRecipients, CcRecipients Recipients of the message

LISTINg 21-20 The CreateItem operation—request message to send an email.

<m:CreateItem MessageDisposition="SendAndSaveCopy">
 <m:Items>
 <t:Message>
 <t:ItemClass>IPM.Note</t:ItemClass>
 <t:Subject>AdventureWorks: Support ticket #45260</t:Subject>
 <t:Body BodyType="Text">Bicycle headlight is broken.</t:Body>
 <t:Sender>
 <t:Mailbox>
 <t:Name>Tony H. Hamster</t:Name>
 <t:EmailAddress>tony.hamster@xmp.site</t:EmailAddress>

534 Part IV Exchange Server

 </t:Mailbox>
 </t:Sender>
 <t:ToRecipients>
 <t:Mailbox>
 <t:EmailAddress>doris.lass@xmp.site</t:EmailAddress>
 </t:Mailbox>
 </t:ToRecipients>
 <t:CcRecipients>
 <t:Mailbox>
 <t:Name>Tony H. Hamster</t:Name>
 <t:EmailAddress>tony.hamster@xmp.site</t:EmailAddress>
 </t:Mailbox>
 </t:CcRecipients>
 </t:Message>
 </m:Items>
</m:CreateItem>

The MessageDisposition attribute determines if the email is sent or only saved. This attribute
can have the following values:

■ SaveOnly The email is only saved (to the default folder: Drafts).

■ SendOnly The email is only sent and no local copy is saved.

■ SendAndSaveCopy The email is sent and saved (by default in the Sent Items folder).

Note If you want to send a saved email at a later time, use the SendItem operation. You can also
use SendItem to resend already sent emails.

If you don’t want to save the email in the default folder, use SavedItemFolderId to specify a
different folder:

<m:CreateItem MessageDisposition="SendAndSaveCopy">
 <m:SavedItemFolderId>
 <t:FolderId Id="fAMkAD8h..." ChangeKey="cQA3ABYA..."/>
 </m:SavedItemFolderId>
 <m:Items>
 ...
 </m:Items>
</m:CreateItem>

You can create and send several emails in a single CreateItem call. In this case, an email is
saved with its own message structure within items. Therefore, ensure that the MRA method
of PHP is not enabled (see the section “SOAP Errors Caused by References and Accessors,”
earlier in the chapter).

 Chapter 21 Email and Exchange Web Services Basics 535

Creating an Email by Using PHP
Listing 21-21 shows how to use PHP to create and send an email. To do this, you use the
Mailbox class in Listing 21-19. Instead of the array syntax, the operation parameters consist
only of objects (for the request to work you need to pass $tony as two separate objects).

LISTINg 21-21 Creating and sending an email by using CreateItem.

<?php
namespace net\xmp\phpbook;

require './ExchangeSoapClient.php';
require './Mailbox.php';

$options = array('login' => 'tony', 'password' => 'confidential',
 'CACert' => './my-ca.cer');
$client = new ExchangeSoapClient('./Services.wsdl', $options);

$tony = new Mailbox("tony.hamster@xmp.site");
$doris = new Mailbox("doris.lass@xmp.site");
$agnes = new Mailbox("agnes.barstow@xmp.site", "Agnes B. Barstow");

$param = new \stdClass;
$param->MessageDisposition = 'SendAndSaveCopy';
$param->Items = new \stdClass;
$param->Items->Message = new \stdClass;
$param->Items->Message->ItemClass = 'IPM.Note';
$param->Items->Message->Subject = 'AdventureWorks: Support ticket #45260';
$param->Items->Message->Body = new \stdClass;
$param->Items->Message->Body->BodyType = 'Text';
$param->Items->Message->Body->_ = 'Bicycle headlight is broken.';
$param->Items->Message->Sender = new \stdClass;
$param->Items->Message->Sender->Mailbox = $tony;
$param->Items->Message->ToRecipients = new \stdClass;
$param->Items->Message->ToRecipients->Mailbox = $doris;
$param->Items->Message->CcRecipients = new \stdClass;
$param->Items->Message->CcRecipients->Mailbox = array(clone $tony, $agnes);
$response = $client->CreateItem($param);

echo 'Email created and sent successfully.';
?>

Figure 21-4 shows the email created and sent in the Outlook Web App of Exchange 2010.
The message content is plain text. To send the message as HTML the Body->BodyType in
Listing 21-21 needs to be set to HTML and the content must be formatted as HTML.

536 Part IV Exchange Server

FIgURE 21-4 An email created in Outlook Web App.

Response
The response message is short and precise: the response indicates if the operation was suc-
cessful or failed, but it doesn’t contain any further information (see Listing 21-22).

LISTINg 21-22 The CreateItem operation—response message.

<m:CreateItemResponse>
 <m:ResponseMessages>
 <m:CreateItemResponseMessage ResponseClass="Success">
 <m:ResponseCode>NoError</m:ResponseCode>
 <m:Items/>
 </m:CreateItemResponseMessage>
 </m:ResponseMessages>
</m:CreateItemResponse>

Deleting Messages (DeleteItem)
You can delete messages and other elements by using the DeleteItem operation. The IDs of
the elements to be deleted as well as the parameter DeleteType that specifies which method
is used are passed to the operation. Use MoveToDeletedItems to move the element to be
deleted into the Deleted Items folder; use HardDelete to permanently delete the element.
Use SoftDelete to keep the element in the folder, but mark it as deleted.

 Chapter 21 Email and Exchange Web Services Basics 537

XML Messages
Listing 21-23 shows how the XML message for the request looks. The listing deletes two ele-
ments in two separate ItemId elements.

LISTINg 21-23 The DeleteItem operation—XML message of the request.

<m:DeleteItem DeleteType="MoveToDeletedItems">
 <m:ItemIds>
 <t:ItemId Id="fAMkAD8h..." ChangeKey="cQA3ABYA..."/>
 <t:ItemId Id="CAMkAD7h..." ChangeKey="efA3ABYA..."/>
 </m:ItemsIds>
</m:DeleteItem>

Listing 21-24 shows the response message. For each deleted element, a separate DeleteItem
ResponseMessage is returned.

LISTINg 21-24 Response message from the DeleteItem operation.

<m:DeleteItemResponse>
 <m:ResponseMessages>
 <m:DeleteItemResponseMessage ResponseClass="Success">
 <m:ResponseCode>NoError</m:ResponseCode>
 </m:DeleteItemResponseMessage>
 <m:DeleteItemResponseMessage ResponseClass="Success">
 <m:ResponseCode>NoError</m:ResponseCode>
 </m:DeleteItemResponseMessage>
 </m:ResponseMessages>
</m:DeleteItemResponse>

PHP
Listing 21-25 shows the DeleteItem operation call in PHP.

LISTINg 21-25 Deleting elements by using PHP.

$param = array('DeleteType' => 'MoveToDeletedItems',
 'ItemIds' => array(
 'ItemId' => array(
 array('Id' => $itemId1, 'ChangeKey' => $changeKey1),
 array('Id' => $itemId2, 'ChangeKey' => $changeKey2))));
$response = $client->DeleteItem($param);

The DeleteItem operation uses two additional parameters (SendMeetingCancellations, Affected
TaskOccurrences), which you can set to delete meetings or tasks. However, meetings should
be deleted with a meeting cancellation (CancelCalendarItem).

538 Part IV Exchange Server

Summary
EWS operations provide access to the Exchange data. Use FindFolder, FindItem, and GetItem
to query and to view folders and elements and CreateItem to create new elements and
DeleteItem to delete elements. Other operations for elements are UpdateItem, MoveItem,
and CopyItem. UpdateItem is introduced in the next chapter.

Elements in the Exchange database consist of properties and have an ID (Id) and a version
(ChangeKey) to identify the element for operations. You indicate the properties displayed for
operations by using views (FolderShape, ItemShape).

Programming EWS with PHP is basically straightforward, but because of flaws in the PHP
SOAP extension and the incompatibility between EWS and PHP, the EWS schema must be
modified.

The following chapter introduces contacts and explains how search expressions are used to
query elements with certain properties.

 539

Chapter 22

Contacts and Search

Microsoft Exchange provides functions to save and manage contacts. Contact elements
are handled in the same manner as email messages. The FindItem, GetItem, CreateItem,
UpdateItem, DeleteItem, CopyItem, and MoveItem operations are used in the same way for
contacts.

The following sections describe the properties of contact elements in detail. The UpdateItem
operation (which has not been described yet) is used as an example to explain how values in
property groups are handled.

Afterward, you will learn how to use the FindItem operation to query elements with certain
properties. The Restriction element passed as a parameter can be used to search for emails,
calendar entries, or tasks.

Properties of Contacts
Contacts are elements in the Exchange database that are saved in a contact folder. These ele-
ments have the IPM.Contact type and are represented in SOAP messages by the Contact
element. The DistinguishedFolderId for the default contact folder is contacts.

Exchange can access contacts in Microsoft Active Directory, but using Exchange Web Services
(EWS), applications just have read-only access.

Standard Properties
Table 22-1 lists frequently used standard properties of a contact element. Contacts inherit
the almost 40 properties of the basic element type, including: ItemId, ItemClass, Categories,
DateTimeCreated, and Subject.

In this chapter:
Properties of Contacts . 539
Changing a Contact (UpdateItem) . 543
Finding Certain Properties . 548
Defining the Search in a Request . 552
Summary . 558

540 Part IV Exchange Server

For a contact, ItemClass has the value IPM.Contact.

The Subject (from the basic element type) and DisplayName (from the contact type) proper-
ties have the same meaning, but most of the time, programs use only one of the two properties.
To ensure contacts are displayed correctly in all programs, you should always use Subject and
DisplayName.

TABLE 22-1 Selected properties of a contact

Property Type Description
Birthday dateTime Date of birth

BusinessHomePage anyURI Company website

CompanyName string Company

CompleteName Name structure See Table 22-2 (read-only)

ContactSource enumeration Exchange database (Store) or Active Directory
(ActiveDirectory)

DisplayName string Name displayed

EmailAddresses Sequence of email addresses See Table 22-3

FileAs string Name for the sort or display order (Save as in
Outlook)

FileAsMapping enumeration Method to automatically generate FileAs, for
example, LastCommaFirst

GivenName string First name

ImAddresses Sequence of addresses Instant messaging addresses

Initials string Initials (first letters of middle names)

JobTitle string Position within the company

MiddleName string Middle name

PhoneNumbers Sequence of numbers Phone numbers

PhysicalAddresses Sequence of addresses See Table 22-4

Surname string Last name

Listing 22-1 shows the XML structure for a contact, including a group property (phone
numbers).

LISTINg 22-1 XML example for a contact.

<t:Contact>
 <t:ItemId Id="AQAXAEFn..." ChangeKey="EQAAABYA..." />
 <t:ItemClass>IPM.Contact</t:ItemClass>
 <t:Subject>Doris D. Lass</t:Subject>
 <t:FileAsMapping>LastCommaFirst</t:FileAsMapping>
 <t:DisplayName>Doris D. Lass</t:DisplayName>
 <t:GivenName>Doris</t:GivenName>

 Chapter 22 Contacts and Search 541

 <t:Initials>D.</t:Initials>
 <t:CompanyName>Doze and Sleep</t:CompanyName>
 <t:PhoneNumbers>
 <t:Entry Key="BusinessPhone">+12 (345) 6789-0</t:Entry>
 <t:Entry Key="HomePhone">+98 (765) 43210</t:Entry>
 <t:/PhoneNumbers>
 <t:JobTitle>Department Manager</t:JobTitle>
 <t:Surname>Lass</t:Surname>
</t:Contact>
<t:Contact>

Note For a complete list of the properties for a contact element, consult the MSDN article at
http://msdn.microsoft.com/en-us/library/aa581315.aspx.

Name Properties
The name properties of a contact reside in the standard properties and in the CompleteName
property. CompleteName is read-only and the values are filled in from the standard prop-
erties. Table 22-2 shows these properties and their relationship with the standard contact
properties.

If a contact is retrieved by using the Default ItemShape profile, only the CompleteName
properties are returned but not the associated name properties of the contact.

TABLE 22-2 Selected properties of CompleteNameType and their mapping to contact properties

Property Contact property Description
FirstName GivenName First name

FullName DisplayName Display name, full name in a property

Initials Initials Initials (first letters of the middle names)

LastName Surname Last name, surname

MiddleName MiddleName Middle name

Nickname Nickname Nickname

Suffix Generation Name affix, such as Jr. or Sr.

Title MAPI tag 0x3A45 Salutation/title

542 Part IV Exchange Server

Listing 22-2 shows an example of the XML structure for the CompleteName property.

LISTINg 22-2 XML example for a name structure.

<t:Contact>
 <t:CompleteName>
 <t:FirstName>Doris</t:FirstName>
 <t:Initials>D.</t:Initials>
 <t:LastName>Lass</t:LastName>
 <t:FullName>Doris D. Lass</t:FullName>
 </t:CompleteName>
</t:Contact>

Properties of Email Addresses
Email addresses are a property group that can contain three saved addresses. Table 22-3 lists
these properties.

TABLE 22-3 Properties of the data type email address

Property Type Description
_ string Email address (content of the element “_” in PHP)

Key enumeration Valid values are EmailAddress1, EmailAddress2, EmailAddress3

MailboxType enumeration Type of the mailbox, such as a Mailbox or OneOff

Name string Name of the email account

RoutingType string Should always have the value SMTP

Listing 22-3 shows an example. In the listing, the email address is included in the element
content, and the other properties are attributes.

LISTINg 22-3 XML example of the email address structure.

<t:Contact>
 <t:EmailAddresses>
 <t:Entry Key="EmailAddress1">doris.lass@xmp.site</t:Entry>
 <t:Entry Key="EmailAddress2" Name="Dr. Aboba">dr.aboba@phpdemo.site</t:Entry>
 </t:EmailAddresses>
</t:Contact>

 Chapter 22 Contacts and Search 543

Address Properties
You can save three different addresses for a contact: the business address (Business), the
home address (Home), and an additional address (Other). Use the PostalAddressIndex contact
property to indicate which of the three addresses is used as the postal address. Table 22-4
lists the properties of an address entry.

TABLE 22-4 Properties of addresses
Property Type Description
City string City

CountryOrRegion string Country

Key enumeration Valid values are Business, Home, Other

PostalCode string Postal code

State string State

Street string Street, including street number and other details

Listing 22-4 shows how to specify the home address.

LISTINg 22-4 XML example of an address.

<t:Contact>
 <t:PhysicalAddresses>
 <t:Entry Key="Home">
 <t:Street>Dwarfs 7</t:Street>
 <t:City>Sevenmountainville</t:City>
 <t:CountryOrRegion>Far Away Land</t:CountryOrRegion>
 <t:PostalCode>12345</t:PostalCode>
 </t:Entry>
 </t:PhysicalAddresses>
 <t:PostalAddressIndex>Home</t:PostalAddressIndex>
</t:Contact>

Changing a Contact (UpdateItem)
To change the contact data, use the UpdateItem operation. UpdateItem offers three functions
to change properties:

■ SetItemField Sets (and overwrites) the properties of an element.

■ DeleteItemField Deletes a property.

■ AppendToItemField Adds data to an existing property. This function is allowed only
for certain properties. For example, for contacts, it’s allowed only for the note property
represented by the body element.

544 Part IV Exchange Server

Request
The UpdateItem operation can change several elements—and in each element, several
properties—at the same time. Use ItemChange to specify elements and Updates for the prop-
erties that you want to change. The three change functions have the same format: the
property to be changed is defined by an identifier, and the new or added data are indicated
in the same structure as the elements. (You don’t have to specify this data if you delete a
property.) The property that is changed is declared twice: once by its name, and then by the
structure. However, EWS expects both declarations, which must correspond.

Note A list of the property names can be found in the types.xsd XML schema (UnindexedField
URIType and DictionaryURIType) and in the MSDN article at http://msdn.microsoft.com/en-us/
library/aa581022.aspx (click the link to the desired sub type).

The operation also expects information regarding conflicts if the ChangeKey is not current, as
a result of a change that occurred in the meantime. There are three possible modes (through
ConflictResolution):

■ NeverOverwrite If a conflict occurs, the process is terminated with an error.

■ AlwaysOverwrite The current change overwrites all previous changes.

■ AutoResolve Exchange tries to resolve the conflict. If the conflict can be solved, the
change is applied. Otherwise, Exchange returns an error.

Which mode you use depends on your requirements. Because the functionality of AutoResolve
is quite limited, it almost always behaves like NeverOverwrite.

XML Request
Listing 22-5 shows the XML of an example request. The following changes are made to the
properties:

■ The nickname is set to a new value.

Note The nickname is not displayed in Outlook Web App.

http://msdn.microsoft.com/en-us/library/aa581022.aspx
http://msdn.microsoft.com/en-us/library/aa581022.aspx

 Chapter 22 Contacts and Search 545

■ The state is set for the home address (property group). It is apparent that the property
is set twice. The key is located in the FieldIndex and in the Key attribute.

■ Text is added to the note (body).

■ The Manager property is deleted.

LISTINg 22-5 UpdateItem operation—XML request to change a contact.

<m:UpdateItem ConflictResolution="AutoResolve">
 <m:ItemChanges>
 <t:ItemChange>
 <t:ItemId Id="AQAXAEFn..." ChangeKey="EQAAABYA..."/>
 <t:Updates>
 <t:SetItemField>
 <t:FieldURI FieldURI="contacts:Nickname"/>
 <t:Contact>
 <t:Nickname>Doribori</t:Nickname>
 </t:Contact>
 </t:SetItemField>
 <t:SetItemField>
 <t:IndexedFieldURI FieldURI="contacts:PhysicalAddress:State" FieldIndex="Business"/>
 <t:Contact>
 <t:PhysicalAddresses>
 <t:Entry Key="Business">
 <t:State>Manymountains</t:State>
 </t:Entry>
 </t:PhysicalAddresses>
 </t:Contact>
 </t:SetItemField>
 <t:AppendToItemField>
 <t:FieldURI FieldURI="item:Body"/>
 <t:Contact>
 <t:Body BodyType="Text">Expert in time travel.</t:Body>
 </t:Contact>
 </t:AppendToItemField>
 <t:DeleteItemField>
 <t:FieldURI FieldURI="contacts:Manager"/>
 </t:DeleteItemField>
 </t:Updates>
 </t:ItemChange>
 </m:ItemChanges>
</m:UpdateItem>

546 Part IV Exchange Server

Creating the Request in PHP
Listing 22-6 shows how the UpdateItem operation is created in PHP and the XML structure is
reflected in the array nesting of $param.

LISTINg 22-6 Creating and starting the UpdateItem operation in PHP.

// $itemId contains the contact's ID information
$param = array('ConflictResolution' => 'AutoResolve',
 'ItemChanges' => array(
 'ItemChange' => array(
 'ItemId' => array('Id' => $itemId->Id,
 'ChangeKey' => $itemId->ChangeKey),
 'Updates' => array(
 'SetItemField' => array(
 array(
 'FieldURI' => array('FieldURI' => 'contacts:Nickname'),
 'Contact' => array('Nickname' => 'Doribori')),
 array(
 'IndexedFieldURI' => array(
 'FieldURI' => 'contacts:PhysicalAddress:State',
 'FieldIndex' => 'Home'),
 'Contact' => array(
 'PhysicalAddresses' => array(
 'Entry' => array(
 'Key' => 'Home',
 'State' => 'Manymountains'))))),
 'AppendToItemField' => array(
 'FieldURI' => array('FieldURI' => 'item:Body'),
 'Contact' => array(
 'Body' => array('_' => "\nExpert in time travel.",
 'BodyType' => 'Text'))),
 'DeleteItemField' => array(
 'FieldURI' => array('FieldURI' => 'contacts:Manager'))
))));
$response = $client->UpdateItem($param);

Figure 22-1 shows the contact before and after the UpdateItem operation; in Outlook Web
App in the figure, the field Manager is deleted, the State is new, and Note contains an addi-
tional row. Because AppendToItemField adds the new text directly, the line break has to be
inserted with \n, as shown in Listing 22-6.

 Chapter 22 Contacts and Search 547

FIgURE 22-1 Updating a contact entry (Contact view in Outlook Web App).

Response
Listing 22-7 shows the response from the UpdateItem operation. For each element, the ItemId
is returned with the new ChangeKey.

548 Part IV Exchange Server

LISTINg 22-7 The UpdateItem operation—XML response message.

<m:UpdateItemResponse>
 <m:ResponseMessages>
 <m:UpdateItemResponseMessage ResponseClass="Success">
 <m:ResponseCode>NoError</m:ResponseCode>
 <m:Items>
 <t:Contact>
 <t:ItemId Id="AQAXAEFn..." ChangeKey="EQAAABYB..."/>
 </t:Contact>
 </m:Items>
 </m:UpdateItemResponseMessage>
 </m:ResponseMessages>
</m:UpdateItemResponse>

Finding Certain Properties
Until now, we used the FindItem operation only to find and list the content of folders.
Chapter 21, “Email and Exchange Web Services Basics,” described paging and sorting search
results. But if a folder (for example, the contact folder or the inbox) contains a large number
of elements, it makes sense to only return elements that meet certain criteria.

In Exchange, you can do this by using search limits (restriction parameter). Using search
expressions, you can create complex queries to check if properties have certain values.

Because replacement groups are used, you need to modify the XML schema for PHP to
communicate with EWS.

Expressions
EWS provides different search expressions for queries:

■ Boolean expressions to link other expressions

■ Comparison expressions to compare the property values with a given value or with
other properties

■ Additional expressions to compare names or to check if a property exists

The combination of these expressions allows you to create almost any query. All expressions
refer to the element being checked. Therefore, the combination with other elements in the
query is not possible (for instance, a search similar to a JOIN in a relational database).

 Chapter 22 Contacts and Search 549

Boolean Expressions
Three Boolean expressions are implemented in EWS (see Table 22-5).

TABLE 22-5 Boolean expressions

Expression Description
And Boolean AND operator to combine expressions

Or Boolean OR operator to combine expressions

Not Negates the included expression

Comparison Expressions
To compare properties, use the expressions listed in Table 22-6. The first operator indicates
the property that is compared, and the second operator can be a fixed value or another
property.

TABLE 22-6 Expressions with two operators

Expression Description
IsEqualTo True, if the property is equal to the second operator

IsGreaterThan True, if the property is greater than the second operator

IsGreaterThanOrEqualTo True, if the property is greater than or equal to the second operator

IsLessThan True, if the property is less than the second operator

IsLessThanOrEqualTo True, if the property is less than or equal to the second operator

IsNotEqualTo True, if the property is not equal to the second operator

The second operator is embedded in the FieldURIOrConstant element (see Listing 22-8). When
comparing with a second property, use FieldURI, IndexedFieldURI, or ExtendendFieldURI
instead of Constant.

LISTINg 22-8 Example of the IsGreaterThan expression.

<t:IsGreaterThan>
 <t:FieldURI FieldURI="item:DateTimeCreated"/>
 <t:FieldURIOrConstant>
 <t:Constant>2011-01-01T00:00:00Z</t:Constant>
 </t:FieldURIOrConstant>
</t:IsGreaterThan>

550 Part IV Exchange Server

Additional Expressions
Of the additional expressions provided by EWS, Contains (for searching and comparing
strings) is the most commonly used. Table 22-7 lists the additional query expressions.

TABLE 22-7 Additional expressions

Expression Description
Contains Comparison of strings

Excludes True, if the bitwise AND operator of the bit mask and the property amount
to Zero

Exists True, if the element has the specified property

Listing 22-9 shows an example of the Contains expression to find all elements whose first
name begins with “A”. The search mode is specified with ContainmentMode: full match
(FullString), property starts with search text (Prefixed), or the search text is included in the
property value (Substring). Use ContainmentComparison to specify how the comparison is
performed: exact comparison (Exact), case insensitive (IgnoreCase), ignore diacritical markers
(IgnoreNonSpacingCharacters) or a combination of the last two (IgnoreCaseAndNonSpacing
Characters).

LISTINg 22-9 Example of the Contains expression.

<t:Contains ContainmentMode="Prefixed" ContainmentComparison="IgnoreCase">
 <t:FieldURI FieldURI="contacts:GivenName"/>
 <t:Constant>A</t:Constant>
</t:Contains>

Preparation: Modifying the Schema
In EWS, Web Services Description Language (WSDL) search expressions are used with
replacement groups. To solve the problems that might occur when PHP and EWS interact,
you need to modify the web services schema. To do this, perform the following steps:

 1. Open the local copy of the types.xsd type schema in an editor.

 2. Insert the following lines into the schema (near the end, before the xs:schema end tag).

 Chapter 22 Contacts and Search 551

<xs:group name="SearchExpressionGroup">
 <xs:choice>
 <xs:element ref="t:Exists"/>
 <xs:element ref="t:Excludes"/>
 <xs:element ref="t:IsEqualTo"/>
 <xs:element ref="t:IsNotEqualTo"/>
 <xs:element ref="t:IsGreaterThan"/>
 <xs:element ref="t:IsGreaterThanOrEqualTo"/>
 <xs:element ref="t:IsLessThan"/>
 <xs:element ref="t:IsLessThanOrEqualTo"/>
 <xs:element ref="t:Contains"/>
 <xs:element ref="t:Not"/>
 <xs:element ref="t:And"/>
 <xs:element ref="t:Or"/>
 </xs:choice>
</xs:group>

 3. Replace all <xs:element ref="t:SearchExpression"/> instances with <xs:group
ref="t:SearchExpressionGroup"/>.

 4. Change the definition of MultipleOperandBooleanExpressionType, as follows:

<xs:complexType name="MultipleOperandBooleanExpressionType" abstract="true">
 <xs:complexContent>
 <xs:extension base="t:SearchExpressionType">
 <xs:sequence>
 <xs:choice minOccurs="1" maxOccurs="unbounded">
 <xs:element ref="t:Exists"/>
 <xs:element ref="t:Excludes"/>
 <xs:element ref="t:IsEqualTo"/>
 <xs:element ref="t:IsNotEqualTo"/>
 <xs:element ref="t:IsGreaterThan"/>
 <xs:element ref="t:IsGreaterThanOrEqualTo"/>
 <xs:element ref="t:IsLessThan"/>
 <xs:element ref="t:IsLessThanOrEqualTo"/>
 <xs:element ref="t:Contains"/>
 <xs:element ref="t:Not"/>
 <xs:element ref="t:And"/>
 <xs:element ref="t:Or"/>
 </xs:choice>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

Note You need to handle this type in a special way because PHP (currently) ignores the infor-
mation from maxOccurs relating to groups.

 5. Save the schema file.

Based on these modifications, PHP generates the correct XML for search expressions in SOAP
messages.

552 Part IV Exchange Server

Defining the Search in a Request
You specify search expressions for the FindItem and FindFolder operations in the Restriction
element. The example shows how to find contacts by using FindItem.

Listing 22-10 shows a search for contacts created in 2011 and living in Dreamsville, for which
the assistant name property is not set.

LISTINg 22-10 The FindItem operation with search limits.

<m:FindItem Traversal="Shallow">
 <m:ItemShape>
 <t:BaseShape>IdOnly</t:BaseShape>
 </m:ItemShape>
 <m:Restriction>
 <t:And>
 <t:IsGreaterThan>
 <t:FieldURI FieldURI="item:DateTimeCreated" />
 <t:FieldURIOrConstant>
 <t:Constant Value="2011-01-01T00:00:00Z" />
 </t:FieldURIOrConstant>
 </t:IsGreaterThan>
 <t:Contains ContainmentMode="FullString" ContainmentComparison="Exact">
 <t:IndexedFieldURI FieldURI="contacts:PhysicalAddress:City" FieldIndex="Home" />
 <t:Constant Value="Dreamsville" />
 </t:Contains>
 <t:Not>
 <t:Exists>
 <t:FieldURI FieldURI="contacts:AssistantName" />
 </t:Exists>
 </t:Not>
 </t:And>
 </m:Restriction>
 <m:ParentFolderIds>
 <t:DistinguishedFolderId Id="contacts" />
 </m:ParentFolderIds>
</m:FindItem>

Complete PHP Example
Using the following PHP example, you can search for contacts that fall within certain limita-
tions. The example consists of three scripts: the search form, the search parameters for the
FindItem operation, and the search and output of the results.

 Chapter 22 Contacts and Search 553

The Search Form
The search form in Listing 22-11 uses the HTMLPage class (see Appendix A, “Example Scripts
and Data”) to create the page and contains the search fields for city, postal code, country,
creation date, as well as non-existing fields.

LISTINg 22-11 find-contact-form.php—search form for contacts.

<?php
namespace net\xmp\phpbook;
require './HTMLPage.php';

$page = new HTMLPage('Search contacts');
$page->addHTML('<form method="post" action="find-contact.php">');
$table = array(array('Field', 'Input'));
$table[] = array('Case-sensitive',
 '<input type="checkbox" name="case" value="1">');
$table[] = array('Search mode', '<select name="mode">
 <option value="exact">Exact</option>
 <option value="prefix">Starts with</option>
 <option value="substr">Contains</option></select>');
$table[] = array('City', '<input name="City" size="40">');
$table[] = array('Postal code', '<input name="PostalCode" size="8">');
$table[] = array('Country', '<input name="CountryOrRegion" size="40">');
$table[] = array('Created after', '<input name="created" size="12">');
$table[] = array('Field not included', '<select name="field">
 <option value="-">-</option>
 <option value="assistant">Assistant</option>
 <option value="manager">Manager</option>
 <option value="jobtitle">Position</option></select>');
$page->addTable($table, array(false, true));
$page->addHTML('<input type="submit" value="Search"/>');
$page->addHTML('</form>');
$page->printPage();
?>

Figure 22-2 shows the search form. Note that the content of the fields corresponds to the
query in Listing 22-10.

554 Part IV Exchange Server

FIgURE 22-2 Completed search form for contacts.

Creating the Search Parameters
The SearchParameters class, including auxiliary functions to create the search parameters, is
shown in Listing 22-12. This class contains the following methods:

■ getSearchParameters() Compiles the complete parameter array. The array structure
is for the most part identical to the query in Listing 22-10.

■ addHomeAddressContains() Adds a search limit for the home address.

■ addCreatedAfter() Adds a search limit for the creation date.

■ addNoField() Adds a search limit for missing property fields.

■ getValue() and getWhiteListValue() Auxiliary methods to retrieve data from the
passed form parameters.

LISTINg 22-12 SearchParameters.php—auxiliary class to create the search parameter array.

<?php
namespace net\xmp\phpbook;

class SearchParameters {

 protected $values;
 protected $restrictions;
 protected $mode;
 protected $comparison;

 function __construct($values) {
 $this->values = $values;
 }

 Chapter 22 Contacts and Search 555

 function getParams() {
 $this->restrictions = array();
 $this->mode = $this->getWhiteListValue('mode', array('exact' => 'FullString',
 'prefix' => 'Prefixed',
 'substr' => 'Substring'), 'substr');
 $this->comparison = empty($this->values['case']) ? 'IgnoreCase' : 'Exact';
 $this->addHomeAddressContains('City');
 $this->addHomeAddressContains('PostalCode');
 $this->addHomeAddressContains('CountryOrRegion');
 $this->addCreatedAfter();
 $this->addNoField();
 $param = array('Traversal' => 'Shallow',
 'ItemShape' => array('BaseShape' => 'Default'),
 'ParentFolderIds' => array('DistinguishedFolderId' => array(
 'Id' => 'contacts')));
 if (!empty($this->restrictions)) {
 $param['Restriction'] = array('And' => $this->restrictions);
 }
 return $param;
 }

 protected function addHomeAddressContains($field) {
 $value = $this->getValue($field);
 if (empty($value)) {
 return;
 }
 $contains = array('ContainmentMode' => $this->mode,
 'ContainmentComparison' => $this->comparison,
 'IndexedFieldURI' => array(
 'FieldURI' => "contacts:Physical Address:$field",
 'FieldIndex' => "Home"),
 'Constant' => array('Value' => $value));
 if (!isset($this->restrictions['Contains'])) {
 $this->restrictions['Contains'] = array($contains);
 }
 else {
 $this->restrictions['Contains'][] = $contains;
 }
 }

 protected function addCreatedAfter() {
 $date = $this->getValue('created');
 if (!empty($date)) {
 $timestamp = $date . 'T00:00:00Z';
 $this->restrictions['IsGreaterThan'] = array(
 'FieldURI' => array('FieldURI' => "item:DateTimeCreated"),
 'FieldURIOrConstant' => array('Constant' => array(
 'Value' => $timestamp)));
 }
 }

556 Part IV Exchange Server

 protected function addNoField() {
 $noField = $this->getWhiteListValue('field', array('-' => false,
 'manager' => 'contacts:Manager',
 'assistant' => 'contacts:AssistantName',
 'jobtitle' => 'contacts:JobTitle'), '-');
 if ($noField !== false) {
 $this->restrictions['Not'] = array('Exists' => array('FieldURI' => array(
 'FieldURI' => $noField)));
 }
 }

 function getValue($name) {
 if (!isset($this->values[$name])) {
 return false;
 }
 return trim(filter_var($this->values[$name], FILTER_UNSAFE_RAW,
 FILTER_FLAG_STRIP_LOW));
 }

 function getWhiteListValue($name, $list, $default) {
 $value = $this->getValue($name);
 return isset($list[$value]) ? $list[$value] : $list[$default];
 }
}
?>

Contact Search
The script in Listing 22-13 searches for contacts. The FindItem operation call is straight-
forward because the SearchParameters class creates the required parameters. The result is
returned using the HTMLPage class (Appendix A). The getEntry() function searches in the
results for the home address entry.

ExchangeSoapClient is called with the SOAP_SINGLE_ELEMENT_ARRAYS option so that no
distinction between a single hit or several hits must be made.

LISTINg 22-13 find-contact.php—searching for contacts.

<?php
namespace net\xmp\phpbook;
require './ExchangeSoapClient.php';
require './HTMLPage.php';
require './SearchParameters.php';

$options = array('login' => 'arno', 'password' => 'confidential',
 'CACert' => './my-ca.cer', 'features' => SOAP_SINGLE_ELEMENT_ARRAYS);
$client = new ExchangeSoapClient('./Services.wsdl', $options);

 Chapter 22 Contacts and Search 557

$sp = new SearchParameters($_POST);
$param = $sp->getParams();
$response = $client->FindItem($param);

$page = new HTMLPage('Contacts found');
$table = array(array('Name', 'Position', 'Company', 'City', 'Postal code', 'Country'));
$items = $response->ResponseMessages->FindItemResponseMessage[0]->RootFolder->Items;
if (isset($items->Contact)) {
 foreach ($items->Contact as $item) {
 $home = getEntry($item->PhysicalAddresses->Entry, 'Home');
 $table[] = array($item->CompleteName->FullName,
 $item->JobTitle, $item->CompanyName,
 $home->City, $home->PostalCode, $home->CountryOrRegion);
 }
 $page->addTable($table);
}
else {
 $page->addElement('p', 'No contacts meet the criteria.');
}
$page->printPage();

function getEntry($entries, $key) {
 foreach ($entries as $entry) {
 if ($entry->Key == $key) {
 return $entry;
 }
 }
 return null;
}

Figure 22-3 depicts the result of the contact search. The figure demonstrates how entries that
are found are listed in a table.

FIgURE 22-3 The result of a contact search.

558 Part IV Exchange Server

Summary
Managing contacts and searching for contact information are daily tasks of professional life.
Exchange provides all the necessary functions for these tasks via EWS element operations.
You can also save contacts in different folders to organize the contacts.

With the Restriction element in the FindItem operation, you can query elements with certain
properties. You can also combine search expressions by using Boolean expressions to create
complex queries.

The next chapter describes the Exchange calendar function in detail and shows how a user
(such as the PHP user) can impersonate another user in an EWS operation.

 559

Chapter 23

Calendar and Impersonation

The calendar in Microsoft Exchange provides a full-fledged system to manage individual
and organization-wide appointments. In addition to common calendar entries and recurring
appointments with flexible intervals, Exchange also manages attendees and resources.

This chapter introduces important properties of calendar entries as well as meeting proce-
dures and messages. You also learn about the impersonation of other users, which is impor-
tant for PHP applications. The impersonation allows you to specify an application user who
handles user requests to enable a continuous single sign-on.

Calendar Entries
The calendar is a folder in Exchange in which the individual appointments are saved as ele-
ments. This folder has the DistinguishedFolderId calendar. To query and create the elements
saved in this folder, use the FindItem, GetItem, and CreateItem operations.

Exchange provides three calendar entry types:

■ Common calendar entries intended only for the management of individual
appointments

■ Meetings with invited attendees and booked resources

■ Recurring appointments in selectable intervals, based on a recurring master

In this chapter:
Calendar Entries . 559
Creating a Common Calendar Entry . 563
Meetings . 566
Appointment Conflicts . 580
Searching the Calendar . 582
Impersonation . 587
Additional Steps . 590
Summary . 591

560 Part IV Exchange Server

All three types have a universal set of properties. Exchange provides additional attributes to
manage attendees and specify recurring appointments. This book only describes common
calendar entries and meetings.

Standard Properties
Each calendar entry (independent of its type) has a universal set of properties. The most
important properties are listed in Table 23-1. Several of these properties (for example,
duration) are read-only because they are calculated from other data.

TABLE 23-1 Selected properties of a calendar entry

Property Type Description
AdjacentMeetingCount xs:int Number of the events occurring close to the time

of this event (read-only)

Body String Description

CalendarItemType Enumeration Event type: Single, Occurrence (appointment, part
of a recurring series), Exception (appointment,
part of a recurring series but with different proper-
ties), and RecurringMaster (base entry for recurring
series)

ConflictingMeetingCount xs:int Number of the events coinciding with this event
(read-only)

Duration xs:duration Length of the event (read-only)

End xs:dateTime End time of the event

IsAllDayEvent xs:boolean Indicates if it is an all-day event

IsRecurring xs:boolean Indicates if the appointment belongs to a series of
recurring appointments (read-only); the recurring
master has a value of false

ItemClass String Has the value IPM.Appointment

LegacyFreeBusyStatus Enumeration Status: Free, Tentative, Busy, OOF (out of office),
NoData

Location xs:string Location

MeetingTimeZone Time zone type Writable property indicating the time zone for the
event

ReminderDueBy xs:dateTime Time of the reminder

ReminderIsSet xs:boolean Indicates if the reminder function is enabled

ReminderMinutesBeforeStart Integer Indicates the number of minutes before the event
that the reminder is sent

Start xs:dateTime Start time

Subject xs:string Subject

TimeZone xs:string Text presentation of the time zone (read-only)

 Chapter 23 Calendar and Impersonation 561

Meetings
Meetings and calendar entries are different because meetings have attendees and resources.
Exchange sends invitations automatically and evaluates the responses from the attendees.
Table 23-2 lists several meeting properties.

TABLE 23-2 Selected meeting properties

Property Type Description
AllowNewTimeProposal xs:boolean Indicates if an attendee can suggest a new

appointment

AppointmentReplyTime xs:dateTime The time at which the response was sent

AppointmentSequenceNumber xs:int Version of the calendar entry

AppointmentState xs:int Bit mask of the meeting status

IsCancelled xs:boolean Indicates if the meeting is canceled

IsMeeting xs:boolean Indicates if it is a meeting

IsResponseRequested xs:boolean Specifies if a response is required

MeetingRequestWasSent xs:boolean Indicates if invitations were sent to the
attendees

MyResponseType Response type Own response to the meeting invitation

OptionalAttendees Attendee structure Optional attendees

Organizer Recipients structure Organizer of the meeting

RequiredAttendees Attendee structure Required attendees

Resources Attendee structure Resources for the meeting (room, and so on)

Recurring Appointments
Recurring appointments are appointments with the same properties occurring in specified
intervals. Recurring appointments are specified in the recurring master, and although the
occurrences can be handled like normal calendar entries, they are not saved in the calendar
folder; instead, they’re managed as attachments to the recurring master. Table 23-3 lists
additional properties for a recurring master.

562 Part IV Exchange Server

TABLE 23-3 Additional properties of the recurring master

Property Type Description
DeletedOccurrences Array Start time array of all deleted recurring

appointments

FirstOccurrence OccurrenceInfoType ID and time of the first recurring appointment

LastOccurrence OccurrenceInfoType ID and time of the last recurring appointment

ModifiedOccurrences Array Array of all modified recurring appointments
with ID and time

Recurrence RecurrenceType Contains all information about intervals and the
time of the last recurring appointments

If an occurrence changes, it is an exception. Also, individual occurrences can be deleted.
Each occurrence has an index specifying which recurring appointment corresponds to this
occurrence. Exchange Web Services (EWS) provides parameters (for example, for GetItem)
to retrieve the ID of the recurring master from an occurrence or from the index of the
occurrence.

Time and Time Zones
For calendar applications, the exact time is required because the different time zones as well
as the standard and summer time (Daylight Savings Time) need to be considered. The coordi-
nated universal time (UTC) is the basis used by Exchange for internal time information.

Time Format
The time has the xs:dateTime format of the W3C XML schema specification—for example,
2011-09-13T10:30:00Z (format: year-month-day “T” hours:minutes:seconds “Z”). The Z stands
for the UTC time zone.

Use the gmdate() function to create a compliant time string in PHP:

$dateTime = gmdate('Y-m-d\TH:i:s\Z', $timestamp);

To parse such a time string and to create a timestamp (since PHP 5.3), use the DateTime class:

$time = DateTime::createFromFormat('Y-m-d\TH:i:s\Z', $dateTime, new DateTimeZone('UTC'));
$timestamp = $time->getTimestamp();

 Chapter 23 Calendar and Impersonation 563

Specifying the Time for Requests
Because Exchange responses use the UTC time, you can specify the time for requests in EWS
operations by using a UTC offset.

Use +/-Offset to specify the offset directly in xs:dateTime; for example, 2011-09-13T10
:30:00+02:00 indicates the same time as 2011-09-13T08:30:00Z, because the suffix +02:00
means it is two hours later than the UTC time.

You can also use the MeetingTimeZone, StartTimeZone, or EndTimeZone properties to specify
the offset or the time zone. For a detailed description of these elements and the complex
dependencies, consult the MSDN articles at http://msdn.microsoft.com/en-us/library/
dd633701.aspx and http://msdn.microsoft.com/en-us/library/dd633689.aspx.

If you use none of these elements and specify a time without offset, the local time zone of
Exchange Server (Exchange 2010) is used. If you use Exchange Server 2007, you should specify
the time always as UTC or with an offset.

Creating a Common Calendar Entry
A common calendar entry is created by using CreateItem, which is different from a meeting
because no additional attendees are invited and no invitations are sent.

The Request Message
Listing 23-1 shows how to create a common calendar entry. Because this isn’t a meeting with
attendees, SendMeetingInvitations is set to SendToNone. Also, because the time zone is not
specified for the start and end time, the local time zone of Exchange Server is used.

LISTINg 23-1 Creating a new calendar entry by using CreateItem.

<m:CreateItem SendMeetingInvitations="SendToNone">
 <m:Items>
 <t:CalendarItem>
 <t:Subject>Afternoon nap</t:Subject>
 <t:Start>2011-09-13T12:00:00</t:Start>
 <t:End>2011-09-13T12:20:00</t:End>
 <t:Location>Office</t:Location>
 </t:CalendarItem>
 </m:Items>
</m:CreateItem>

http://msdn.microsoft.com/en-us/library/dd633701.aspx
http://msdn.microsoft.com/en-us/library/dd633701.aspx

564 Part IV Exchange Server

In PHP, a calendar entry is created as shown in Listing 23-2.

LISTINg 23-2 Creating a calendar entry in PHP.

$param = array('SendMeetingInvitations' => 'SendToNone',
 'Items' => array('CalendarItem' => array(
 'Subject' => 'Afternoon nap',
 'Start' => '2011-09-13T12:00:00',
 'End' => '2011-09-13T12:20:00',
 'Location' => 'Office')));
$response = $client->CreateItem($param);

The Response Message
Listing 23-3 shows the response from the CreateItem operation. If the operation is successful,
the ItemId of the created element (ID with ChangeKey) is returned.

LISTINg 23-3 CreateItem operation: response message.

<m:CreateItemResponse>
 <m:ResponseMessages>
 <m:CreateItemResponseMessage ResponseClass="Success">
 <m:ResponseCode>NoError</m:ResponseCode>
 <m:Items>
 <t:CalendarItem>
 <t:ItemId Id="AQAXAEFn..." ChangeKey="DwAAABYA..."/>
 </t:CalendarItem>
 </m:Items>
 </m:CreateItemResponseMessage>
 </m:ResponseMessages>
</m:CreateItemResponse>

Created Entry
Listing 23-4 shows how the created calendar entry is retrieved. $itemId and $changeKey are
set according to the response message. Default is used for ItemShape, and three additional
properties are specified with AdditionalProperties.

 Chapter 23 Calendar and Impersonation 565

LISTINg 23-4 Retrieving the calendar entry.

$param = array('ItemShape' => array('BaseShape' => 'Default',
 'AdditionalProperties' => array(
 'FieldURI' => array(
 array('FieldURI' => 'item:ReminderDueBy'),
 array('FieldURI' => 'item:ReminderIsSet'),
 array('FieldURI' => 'item:ReminderMinutesBeforeStart')))),
 'ItemIds' => array('ItemId' => array('Id' => $itemId, 'ChangeKey' => $changeKey)));
$response = $client->GetItem($param);

Listing 23-5 shows the created calendar entry. Exchange automatically completes several
properties; for example, LegacyFreeBusyStatus is set to Busy or the reminder (ReminderIsSet)
is set to 15 minutes before the appointment starts (ReminderMinutesBeforeStart). The start
and end times are returned in UTC.

LISTINg 23-5 Calendar entry created.

<t:CalendarItem>
 <t:ItemId Id="AQAXAEFn..." ChangeKey="DwAAABYA..." />
 <t:Subject>Afternoon nap</t:Subject>
 <t:ResponseObjects><t:ForwardItem/></t:ResponseObjects>
 <t:ReminderDueBy>2011-09-13T10:00:00Z</t:ReminderDueBy>
 <t:ReminderIsSet>true</t:ReminderIsSet>
 <t:ReminderMinutesBeforeStart>15</t:ReminderMinutesBeforeStart>
 <t:HasAttachments>false</t:HasAttachments>
 <t:Start>2011-09-13T10:00:00Z</t:Start>
 <t:End>2011-09-13T10:20:00Z</t:End>
 <t:LegacyFreeBusyStatus>Busy</t:LegacyFreeBusyStatus>
 <t:Location>Office</t:Location>
 <t:CalendarItemType>Single</t:CalendarItemType>
 <t:Organizer>
 <t:Mailbox>
 <t:Name>Doris D. Lass</t:Name>
 <t:EmailAddress>doris.lass@xmp.site</t:EmailAddress>
 <t:RoutingType>SMTP</t:RoutingType>
 </t:Mailbox>
 </t:Organizer>
</t:CalendarItem>

566 Part IV Exchange Server

Meetings
A meeting differs from a simple calendar entry because attendees are invited to the meeting,
and Exchange evaluates the attendees’ responses and adds the responses to the calendar entry.

Creating a Meeting
When you create a meeting, Exchange adds a calendar entry to the calendar of the organizer
and the free/busy status (LegacyFreeBusyStatus) is set to Busy. Next, Exchange sends the invi-
tations to the attendees; the invitation is saved in the inboxes of the attendees, a calendar
entry is created in the attendees’ calendars and their free/busy status is set to Tentative.

You can use CreateItem to create a meeting directly or UpdateItem to change a calendar
entry into a meeting by adding attendees.

The XML Request Message
Listing 23-6 shows how to create a meeting by using the CreateItem operation. You specify
required attendees via RequiredAttendees, optional attendees with OptionalAttendees, and
resources (for example, a room) with Resources.

LISTINg 23-6 Creating a meeting by using CreateItem.

<m:CreateItem SendMeetingInvitations="SendOnlyToAll">
 <m:Items>
 <t:CalendarItem>
 <t:Subject>Creativity meeting</t:Subject>
 <t:Start>2011-09-13T12:21:00</t:Start>
 <t:End>2011-09-13T13:00:00</t:End>
 <t:RequiredAttendees>
 <t:Attendee>
 <t:Mailbox><t:EmailAddress>tony.hamster@xmp.site</t:EmailAddress></t:Mailbox>
 </t:Attendee>
 <t:Attendee>
 <t:Mailbox><t:EmailAddress>doris.lass@xmp.site</t:EmailAddress></t:Mailbox>
 </t:Attendee>
 </t:RequiredAttendees>
 <t:OptionalAttendees>
 <t:Attendee>
 <t:Mailbox><t:EmailAddress>arno.hollosi@xmp.site</t:EmailAddress></t:Mailbox>
 </t:Attendee>
 </t:OptionalAttendees>
 <t:Resources>
 <t:Attendee>
 <t:Mailbox><t:EmailAddress>sun.porch@xmp.site</t:EmailAddress></t:Mailbox>
 </t:Attendee>
 </t:Resources>
 </t:CalendarItem>
 </m:Items>
</m:CreateItem>

 Chapter 23 Calendar and Impersonation 567

The SendMeetingInvitations attribute indicates if invitations are sent:

■ SendToNone No invitation is sent.

■ SendOnlyToAll Invitations are sent to all attendees and resources.

■ SendToAllAndSaveCopy Invitations are sent to all attendees and a copy of the
invitation is saved in the Sent Items folder.

If you change a meeting by using the UpdateItem operation (for example, to add or remove
attendees) the following two options are available:

■ SendOnlyToChanged Sends messages only to added or removed attendees.

■ SendToChangedAndSaveCopy Same as SendOnlyToChanged; in addition, a copy of
the message is saved in the Sent Items folder.

A Complete PHP Example
Listings 23-7 and 23-8 show how to create a meeting in PHP. Listing 23-7 creates the input
form used to create a meeting. The form includes text boxes for subject, location, start, end,
attendees, and resources.

LISTINg 23-7 Generating an HTML form to create a meeting (add-meeting.php).

<?php
namespace net\xmp\phpbook;
require './HTMLPage.php';

$page = new HTMLPage('Create meeting');
$page->addHTML('<form method="post" action="create-meeting.php">');
$table = array(array('Field', 'Input'));
$table[] = array('Subject', '<input name="subject" size="40">');
$table[] = array('Location', '<input name="location" size="40">');
$table[] = array('Start time', '<input name="start" size="9"> <input name="startT"
size="4">');
$table[] = array('End time', '<input name="end" size="9"> <input name="endT"
size="4">');
$table[] = array('Attendees', '<input name="required[]" size="30">
'
 . '<input name="required[]" size="30">
'
 . '<input name="required[]" size="30">');
$table[] = array('Optional attendees', '<input name="optional[]" size="30">
'
 . '<input name="optional[]" size="30">');
$table[] = array('Resources', '<input name="resource[]" size="30">
'
 . '<input name="resource[]" size="30">');
$page->addTable($table, array(false, true));
$page->addHTML('<input type="submit" value="Create"/>');
$page->addHTML('</form>');
$page->printPage();
?>

568 Part IV Exchange Server

Figure 23-1 shows the completed form. Notice that the date is entered in the ISO format and
the attendees are identified by their email addresses.

FIgURE 23-1 The completed form to create a meeting.

In Listing 23-8, the form data is evaluated and the CreateItem operation is called. The get
MeetingParameters() function creates the parameters for the operation but doesn’t check for
errors such as the syntax of date and time. The getValue() function retrieves a form value and
getAttendees() creates the array for the attendees by using the mailbox class (see Chapter 21,
“Email and Exchange Web Services Basics”).

LISTINg 23-8 Creating a meeting by using the CreateItem operation (create-meeting.php).

<?php
namespace net\xmp\phpbook;

require './ExchangeSoapClient.php';
require './HTMLPage.php';
require './Mailbox.php';

$page = new HTMLPage('Create meeting');
try {
 $param = getMeetingParameters();
 $options = array('login' => 'agnes', 'password' => 'confidential',
 'CACert' => './my-ca.cer');
 $client = new ExchangeSoapClient('./Services.wsdl', $options);
 $client->CreateItem($param);
 $page->addElement('p', 'Meeting was created.');

 Chapter 23 Calendar and Impersonation 569

} catch (\Exception $e) {
 $page->addElement('h2', 'Error (Exception)');
 $page->addElement('p', $e);
}
$page->printPage();

function getMeetingParameters() {
 $param = array('SendMeetingInvitations' => 'SendOnlyToAll',
 'Items' => array('CalendarItem' => array(
 'Subject' => getValue('subject'),
 'Start' => getValue('start') . 'T' . getValue('startT') . ':00',
 'End' => getValue('end') . 'T' . getValue('endT') . ':00',
 'Location' => getValue('location'),
 'RequiredAttendees' => getAttendees('required'),
 'OptionalAttendees' => getAttendees('optional'),
 'Resources' => getAttendees('resource'))));
 return $param;
}

function getValue($name) {
 if (!isset($_POST[$name])) {
 throw new \Exception('Text field "$name" not specified.');
 }
 return filter_input(INPUT_POST, $name, FILTER_UNSAFE_RAW, FILTER_FLAG_STRIP_LOW);
}

function getAttendees($name) {
 if (!isset($_POST[$name]) || !is_array($_POST[$name])) {
 throw new \Exception('Text field "$name" not specified.');
 }
 $attendee = array();
 foreach ($_POST[$name] as $mail) {
 $email = trim(filter_var($mail, FILTER_SANITIZE_EMAIL));
 if (!empty($email)) {
 $attendee[] = array('Mailbox' => new Mailbox($email));
 }
 }
 if (!count($attendee)) {
 return null;
 }
 return array('Attendee' => $attendee);
}
?>

570 Part IV Exchange Server

Figure 23-2 shows the meeting invitation in Outlook Web App. The next section explains the
structure and design of a meeting invitation.

FIgURE 23-2 A meeting request in Outlook Web App.

Creating the Meeting Invitation
After the organizer creates a meeting, the meeting invitations are sent to the attendees
and saved in their inboxes, and the associated calendar entries are added. The invitation
(MeetingRequest) is explained in more detail in the following subsection.

The XML Structure
Listing 23-9 shows the structure of a meeting invitation saved in the inboxes of the attendees.
The listing contains only selected properties and the complete mailbox structure is only
shown for the organizer. Tony and Doris received the invitation directly (ToRecipients), and
Arno, an optional attendee, was added to Cc (CcRecipients).

 Chapter 23 Calendar and Impersonation 571

LISTINg 23-9 Meeting invitation structure (MeetingRequest).

<t:MeetingRequest>
 <t:ItemId Id="AAMkAGM0..." ChangeKey="CwAAABYA..."/>
 <t:ItemClass>IPM.Schedule.Meeting.Request</t:ItemClass>
 <t:Subject>Creativity meeting</t:Subject>
 <t:ToRecipients>
 <t:Mailbox> ... Tony ... </t:Mailbox>
 <t:Mailbox> ... Doris ... </t:Mailbox>
 </t:ToRecipients>
 <t:CcRecipients>
 <t:Mailbox> ... Arno ... </t:Mailbox>
 </t:CcRecipients>
 <t:AssociatedCalendarItemId Id="AAMkAGM0..." ChangeKey="DwAAABYA..."/>
 <t:IsDelegated>false</t:IsDelegated>
 <t:IsOutOfDate>false</t:IsOutOfDate>
 <t:HasBeenProcessed>true</t:HasBeenProcessed>
 <t:MeetingRequestType>NewMeetingRequest</t:MeetingRequestType>
 <t:IntendedFreeBusyStatus>Busy</t:IntendedFreeBusyStatus>
 <t:Start>2011-09-13T10:21:00Z</t:Start>
 <t:End>2011-09-13T11:00:00Z</t:End>
 <t:LegacyFreeBusyStatus>Tentative</t:LegacyFreeBusyStatus>
 <t:IsMeeting>true</t:IsMeeting>
 <t:IsCancelled>false</t:IsCancelled>
 <t:MeetingRequestWasSent>true</t:MeetingRequestWasSent>
 <t:Organizer>
 <t:Mailbox>
 <t:Name>Agnes B. Barstow</t:Name>
 <t:EmailAddress>agnes.barstow@xmp.site</t:EmailAddress>
 <t:RoutingType>SMTP</t:RoutingType>
 <t:MailboxType>Mailbox</t:MailboxType>
 </t:Mailbox>
 </t:Organizer>
 <t:RequiredAttendees>
 <t:Attendee>
 <t:Mailbox> ... Agnes ... </t:Mailbox>
 <t:ResponseType>Unknown</t:ResponseType>
 </t:Attendee>
 <t:Attendee>
 <t:Mailbox> ... Tony ... </t:Mailbox>
 <t:ResponseType>Unknown</t:ResponseType>
 </t:Attendee>
 <t:Attendee>
 <t:Mailbox> ... Doris ... </t:Mailbox>
 <t:ResponseType>Unknown</t:ResponseType>
 </t:Attendee>
 </t:RequiredAttendees>
 <t:OptionalAttendees>
 <t:Attendee>
 <t:Mailbox> ... Arno ... </t:Mailbox>
 <t:ResponseType>Unknown</t:ResponseType>
 </t:Attendee>
 </t:OptionalAttendees>
</t:MeetingRequest>

572 Part IV Exchange Server

Selected Properties
Table 23-4 lists several selected properties of the meeting invitation.

TABLE 23-4 Selected properties of a meeting invitation

Property Description
AssociatedCalendarItemId Points to the associated calendar entry.

HasBeenProcessed Indicates if Exchange processed the invitation and created the associ-
ated calendar entry.

IntendedFreeBusyStatus Status set by the organizer of the meeting. If the status is Busy, the status
is applied if the attendee accepts the invitation.

IsOutOfDate Indicates if the invitation is still current. If not, the invitation data might
not be valid and the meeting properties should be retrieved from the
calendar entry.

MeetingRequestType Invitation message type:
NewMeetingRequest: the message is an invitation to a new meeting.
FullUpdate, InformationalUpdate: the message indicates that an existing
invitation was changed.
Outdated: the message is no longer current.

Responding to a Meeting Invitation
An attendee can respond to a meeting invitation in three different ways: accept, accept
tentatively, or decline. Each of the three responses has a different element in the response
message created by the CreateItem operation.

The response can refer to two different IDs: the invitation ID, or the ID of the associated cal-
endar entry. If an attendee responds to the invitation, the invitation is automatically deleted.
If an attendee responds to the calendar entry, the invitation doesn’t change.

If the invitation is accepted or tentatively accepted, the calendar entry is deleted and a new
calendar entry is created (LegacyFreeBusyStatus, MyResponseType, AppointmentReplyTime). If
the invitation is declined, the calendar entry is deleted and no new entry is created.

The response is sent as MeetingResponse to the organizer of the meeting and saved in the
organizer’s inbox. The calendar entry is automatically updated. The MeetingResponse struc-
ture is similar to MeetingRequest that is presented in Listing 23-9, and the ResponseType
element contains the response.

 Chapter 23 Calendar and Impersonation 573

Accepting an Invitation
To accept an invitation, use the CreateItem operation to create an AcceptItem. Listing 23-10
shows the XML of the request. With the MessageDisposition attribute, you can specify if the
response is only sent (SendOnly) or also saved (SendAndSaveCopy). The SaveOnly option
should not be used for an invitation response.

LISTINg 23-10 Accepting a meeting or a meeting invitation.

<m:CreateItem MessageDisposition="SendOnly">
 <m:Items>
 <t:AcceptItem>
 <t:ReferenceItemId Id="AAMkAGM0..." ChangeKey="CwAAABYA..."/>
 </t:AcceptItem>
 </m:Items>
</m:CreateItem>

Listing 23-11 shows how to accept a meeting in PHP. $itemId and $changeKey reference the
meeting invitation or the associated calendar entry that is automatically created.

LISTINg 23-11 Accepting a meeting in PHP.

$param = array('MessageDisposition' => 'SendOnly',
 'Items' => array(
 'AcceptItem' => array(
 'ReferenceItemId' => array('Id' => $itemId, 'ChangeKey' => $changeKey))));
$response = $client->CreateItem($param);

Listing 23-12 shows the XML response to the meeting acceptance, containing the new IDs for
the calendar entry and for the (deleted) meeting request.

LISTINg 23-12 XML response to the CreateItem operation to accept a meeting.

<m:CreateItemResponse003E
 <m:ResponseMessages>
 <m:CreateItemResponseMessage ResponseClass="Success">
 <m:ResponseCode>NoError</m:ResponseCode>
 <m:Items>
 <t:CalendarItem>
 <t:ItemId Id="AAAWAEp1..." ChangeKey="DwAAABYA..."/>
 </t:CalendarItem>
 <t:MeetingRequest>
 <t:ItemId Id="AAAWAEp1..." ChangeKey="CwAAABYA..."/>
 </t:MeetingRequest>
 </m:Items>
 </m:CreateItemResponseMessage>
 </m:ResponseMessages>
</m:CreateItemResponse003E

574 Part IV Exchange Server

Tentatively Accepting an Invitation
To accept an invitation tentatively, use the CreateItem operation to create a Tentatively
AcceptItem. Listing 23-13 shows the XML request that has the same structure as AcceptItem.

LISTINg 23-13 XML request to tentatively accept a meeting.

<m:CreateItem MessageDisposition="SendOnly">
 <m:Items>
 <t:TentativelyAcceptItem>
 <t:ReferenceItemId Id="AAMkAGM0..." ChangeKey="CwAAABYA..."/>
 </t:TentativelyAcceptItem>
 </m:Items>
</m:CreateItem>

Declining an Invitation
To decline a meeting invitation, send a DeclineItem message that has the same structure as
the other two response types. For all three types, you can set additional message proper-
ties. Listing 23-14 shows how an additional message is added in the message sent to the
organizer.

LISTINg 23-14 Declining a meeting and sending a message to the organizer.

<m:CreateItem MessageDisposition="SendOnly">
 <m:Items>
 <t:DeclineItem>
 <t:Body BodyType="Text">I have to feed my hamsters.</t:Body>
 <t:ReferenceItemId Id="AAMkAGM0..." ChangeKey="CwAAABYA..."/>
 </t:DeclineItem>
 </m:Items>
</m:CreateItem>

The generated rejection for the meeting invitation is shown in Figure 23-3. The text is part of
the message.

 Chapter 23 Calendar and Impersonation 575

FIgURE 23-3 Declining a meeting invitation (Outlook Web App view).

A Complete PHP Example
Listing 23-15 shows a complete example of a declined meeting invitation.

First Items->MeetingRequest searches the inbox for meeting invitations. Then, in the listing,
the first invitation is selected ($items[0]).

Next, the meeting invitation is retrieved and the data is displayed. The invitation is declined
with a DeclineItem message.

And finally, the SOAP response (IDs of the invitation and the calendar entry) is displayed.

LISTINg 23-15 Declining a meeting invitation (answer-meeting-request.php).

<?php
namespace net\xmp\phpbook;
require './ExchangeSoapClient.php';
require './HTMLPage.php';

$page = new HTMLPage('Decline meeting request');
$options = array('login' => 'tony', 'password' => 'confidential',
 'CACert' => './my-ca.cer');
$client = new ExchangeSoapClient('./Services.wsdl', $options);

576 Part IV Exchange Server

// Search inbox
$param = array('Traversal' => 'Shallow',
 'ItemShape' => array('BaseShape' => 'IdOnly'),
 'ParentFolderIds' => array('DistinguishedFolderId' => array('Id' => 'inbox')));
$response = $client->FindItem($param);

// Select the first meeting invitation
$item = $response->ResponseMessages->FindItemResponseMessage->RootFolder
 ->Items->MeetingRequest;
$item = $item[0];

// Retrieve selected meeting invitation
$param = array('ItemShape' => array('BaseShape' => 'Default'),
 'ItemIds' => array('ItemId' => array('Id' => $item->ItemId->Id,
 'ChangeKey' => $item->ItemId->ChangeKey)));
$response = $client->GetItem($param);
$item = $response->ResponseMessages->GetItemResponseMessage->Items->MeetingRequest;

// Display meeting invitation
$table = array(array('Field', 'value'));
$table[] = array('Subject', $item->Subject);
$table[] = array('Start time', $item->Start);
$table[] = array('End time', $item->End);
$table[] = array('Location', $item->Location);
$table[] = array('Organizer', $item->Organizer->Mailbox->Name);
$table[] = array('ItemID (before): ', splitString($item->ItemId->Id));
$table[] = array('CalendarItemID (before): ', splitString($item-
>AssociatedCalendarItemId->Id));
$page->addTable($table);

// Send decline message
$param = array('MessageDisposition' => 'SendOnly',
 'Items' => array('DeclineItem' => array(
 'ReferenceItemId' => array('Id' => $item->ItemId->Id,
 'ChangeKey' => $item->ItemId->ChangeKey),
 'Body' => array('BodyType' => 'Text',
 '_' => 'I have to feed my hamsters.'))));
$response = $client->CreateItem($param);

// Display response
$page->addElement('h2', 'SOAP response message');
$items = $response->ResponseMessages->CreateItemResponseMessage->Items;
$table = array(array('Field', 'Value'));
$table[] = array('ItemID (after): ', splitString($items->MeetingRequest->ItemId->Id));
$table[] = array('CalendarItemID (after): ',
 splitString($items->CalendarItem->ItemId->Id));
$page->addTable($table);
$page->printPage();

// Auxiliary function: Insert space to allow line break
function splitString($str) {
 return preg_replace('/(.{33})/', '$1 ', $str);
}
?>

 Chapter 23 Calendar and Impersonation 577

Figure 23-4 shows the output of the scripts and the arrow points to the different IDs of the
meeting invitation before and after the function call. Because the meeting is declined, the ID
of the associated calendar entry doesn’t change.

However, you can accept the invitation by replacing DeclineItem with AcceptItem or
TentativelyAcceptItem in the script.

Note The start and end time are displayed in UTC, although the local time was used (see the
section “Time and Time Zones,” earlier in the chapter).

FIgURE 23-4 Declining a meeting invitation (the arrow points to the different IDs).

Canceling a Meeting
You can cancel a meeting by simply deleting the associated entry from the calendar
by using DeleteItem. You can also create a message canceling the meeting by using
CancelCalendarItem.

578 Part IV Exchange Server

The Request Message
Use the CreateItem operation to cancel the meeting. Like email messages, this message has a
MessageDisposition attribute. ReferenceItemId contains the ID of the meeting to be deleted,
and NewBodyContent (not Body!) adds text to the message. Listing 23-16 shows the XML
message of the request.

LISTINg 23-16 Declining a meeting—the XML message of the request.

<m:CreateItem MessageDisposition="SendAndSaveCopy">
 <m:Items>
 <t:CancelCalendarItem>
 <t:Subject>Creativity meeting canceled</t:Subject>
 <t:IsReadReceiptRequested>true</t:IsReadReceiptRequested>
 <t:ReferenceItemId Id="AQAXAEFn..." ChangeKey="DwAAABYA..."/>
 <t:NewBodyContent BodyType="Text">We've run out of ideas.</t:NewBodyContent>
 </t:CancelCalendarItem>
 </m:Items>
</m:CreateItem>

Listing 23-17 shows how to use PHP to create and send the decline message.

LISTINg 23-17 Declining a meeting in PHP.

$param = array('MessageDisposition' => 'SendAndSaveCopy',
 'Items' => array(
 'CancelCalendarItem' => array(
 'Subject' => 'Creativity meeting canceled',
 'IsReadReceiptRequested' => true,
 'ReferenceItemId' => array('Id'=>$itemId, 'ChangeKey'=>$changeKey),
 'NewBodyContent' => array('BodyType' => 'Text',
 '_' => "We've run out of ideas."),
)));
$response = $client->CreateItem($param);

Figure 23-5 shows the declined meeting in Outlook Web App. Notice that the content of
NewBodyContent is the message body.

 Chapter 23 Calendar and Impersonation 579

FIgURE 23-5 Declining a meeting (Outlook Web App view).

The Response Message
The response is a common CreateItemResponse, containing the ID of the deleted calendar
entry, as shown in Listing 23-18.

LISTINg 23-18 Declining a meeting—the XML response message.

<m:CreateItemResponse>
 <m:ResponseMessages>
 <m:CreateItemResponseMessage ResponseClass="Success">
 <m:ResponseCode>NoError</m:ResponseCode>
 <m:Items>
 <t:CalendarItem>
 <t:ItemId Id="AQAXAEFn..." ChangeKey="DwAAABYA..."/>
 </t:CalendarItem>
 </m:Items>
 </m:CreateItemResponseMessage>
 </m:ResponseMessages>
</m:CreateItemResponse>

580 Part IV Exchange Server

Appointment Conflicts
To determine if other entries are adjacent to or conflict with a calendar entry, query the
ConflictingMeetingCount and AdjacentMeetingCount properties. You can query information
to the adjacent or conflicting entries by using the ConflictingMeetings and AdjacentMeetings
properties.

The Request Message
Because the properties for adjacent or conflicting appointments are calculated, you can
query them only for a GetItem operation but not for a FindItem operation.

The XML Request Message
Listing 23-19 shows the XML request. In the listing, you use GetItem to retrieve the informa-
tion on adjacent or conflicting appointments. For the ItemShape Default, you have to specify
the properties with AdditionalProperties or set ItemShape to AllProperties.

LISTINg 23-19 An XML request to identify adjacent and conflicting calendar entries.

<m:GetItem>
 <m:ItemShape>
 <t:BaseShape>Default</t:BaseShape>
 <t:AdditionalProperties>
 <t:FieldURI FieldURI="calendar:ConflictingMeetingCount" />
 <t:FieldURI FieldURI="calendar:AdjacentMeetingCount" />
 <t:FieldURI FieldURI="calendar:ConflictingMeetings" />
 <t:FieldURI FieldURI="calendar:AdjacentMeetings" />
 </t:AdditionalProperties>
 </m:ItemShape>
 <m:ItemIds>
 <t:ItemId Id="AQAXAEFn..." ChangeKey="DwAAABYA..." />
 </m:ItemIds>
</m:GetItem>

Using PHP to Identify Calendar Conflicts
Listing 23-20 shows the PHP section to create and call the operation.

 Chapter 23 Calendar and Impersonation 581

LISTINg 23-20 Identifying adjacent and conflicting calendar entries in PHP.

$param = array('ItemShape' => array('BaseShape' => 'Default',
 'AdditionalProperties' => array(
 'FieldURI' => array(
 array('FieldURI' => 'calendar:ConflictingMeetingCount'),
 array('FieldURI' => 'calendar:AdjacentMeetingCount'),
 array('FieldURI' => 'calendar:ConflictingMeetings'),
 array('FieldURI' => 'calendar:AdjacentMeetings')))),
 'ItemIds' => array(
 'ItemId' => array('Id'=> $itemId, 'ChangeKey' => $changeKey)));
$response = $client->GetItem($param);

The Response Message
For each appointment, the ID (ItemId), subject (Subject), start time (Start), end time (End),
free/busy data (LegacyFreeBusyStatus), and location (Location) are returned.

The GetItemResponse contains the required information about the adjacent or conflicting
entries, as presented in Listing 23-21.

LISTINg 23-21 The search operation response (short version).

<m:GetItemResponse>
 <m:ResponseMessages>
 <m:GetItemResponseMessage ResponseClass="Success">
 <m:ResponseCode>NoError</m:ResponseCode>
 <m:Items>
 <t:CalendarItem>
 <t:ItemId Id="AQAXAEFn..." ChangeKey="DwAAABYA..." />
 <t:Subject>Creativity meeting</t:Subject>
 <t:Start>2011-09-13T10:21:00Z</t:Start>
 <t:End>2011-09-13T11:00:00Z</t:End>
 <t:ConflictingMeetingCount>1</t:ConflictingMeetingCount>
 <t:AdjacentMeetingCount>1</t:AdjacentMeetingCount>
 <t:ConflictingMeetings>
 <t:CalendarItem>
 <t:ItemId Id="AQAXAEFn..." ChangeKey="DwAAABYA..." />
 <t:Subject>Design meeting</t:Subject>
 <t:Start>2011-09-13T09:30:00Z</t:Start>
 <t:End>2011-09-13T10:30:00Z</t:End>
 <t:LegacyFreeBusyStatus>Busy</t:LegacyFreeBusyStatus>
 <t:Location>Office Doris</t:Location>
 </t:CalendarItem>
 </t:ConflictingMeetings>
 <t:AdjacentMeetings>
 <t:CalendarItem>
 <t:ItemId Id="AQAXAEFn..." ChangeKey="DwAAABYA..." />
 <t:Subject>Customer presentation</t:Subject>
 <t:Start>2011-09-13T11:00:00Z</t:Start>

582 Part IV Exchange Server

 <t:End>2011-09-13T12:00:00Z</t:End>
 <t:LegacyFreeBusyStatus>Busy</t:LegacyFreeBusyStatus>
 <t:Location />
 </t:CalendarItem>
 </t:AdjacentMeetings>
 </t:CalendarItem>
 </m:Items>
 </m:GetItemResponseMessage>
 </m:ResponseMessages>
</m:GetItemResponse>

Listing 23-24 shows an evaluation example for this response in PHP.

Searching the Calendar
Even though you can query entries in the calendar folder with the FindItem operation, this
search is not efficient: for recurring appointments only, the master entry is displayed, but not
all consecutive appointments based on the master entry. In Exchange, these appointments
are managed as attachments to the recurring master. To determine if there are recurring
appointments within a certain time period, you would need to search for the recurring mas-
ters, request the attachments, and derive the time for the recurring appointments.

Fortunately, Exchange provides a function that performs this complex task. In a FindItem
operation, CalendarView displays all appointments (even recurring appointments) within a
certain time period.

The Request Message
Listing 23-22 shows the XML request. CalendarView has two attributes: StartDate and EndDate.
In the listing, the time is specified with a two-hour UTC offset and IdOnly is used for ItemShape.

LISTINg 23-22 An XML request from the FindItem operation with CalendarView.

<m:FindItem Traversal="Shallow">
 <m:ItemShape>
 <t:BaseShape>IdOnly</t:BaseShape>
 </m:ItemShape>
 <m:CalendarView StartDate="2011-09-12T00:00:00+02:00"
 EndDate="2011-09-16T23:59:59+02:00" />
 <m:ParentFolderIds>
 <t:DistinguishedFolderId Id="calendar" />
 </m:ParentFolderIds>
</m:FindItem>

 Chapter 23 Calendar and Impersonation 583

The Response Message
The response from the search operation with CalendarView is identical to the response mes-
sages from a FindItem operation (see Listing 23-23).

LISTINg 23-23 FindItem operation with CalendarView: response message (short version).

<m:FindItemResponse>
 <m:ResponseMessages>
 <m:FindItemResponseMessage ResponseClass="Success">
 <m:ResponseCode>NoError</m:ResponseCode>
 <m:RootFolder TotalItemsInView="5" IncludesLastItemInRange="true">
 <t:Items>
 <t:CalendarItem>
 <t:ItemId Id="AQAXAEFn..." ChangeKey="DwAAABYA..." />
 </t:CalendarItem>
 <t:CalendarItem>
 <t:ItemId Id="cQAXAEF3..." ChangeKey="DwAxxBYv..." />
 </t:CalendarItem>
 ...
 </t:Items>
 </m:RootFolder>
 </m:FindItemResponseMessage>
 </m:ResponseMessages>
</m:FindItemResponse>

A Complete PHP Example
The following example uses the calendar shown in Figure 23-6. The week of September 12th
through the 16th contains the recurring creative meeting with one changed appointment on
Wednesday and two individual appointments on Tuesday.

584 Part IV Exchange Server

Appointment
conflict

Adjacent
appointment

Exception
from series

Series
occurence

FIgURE 23-6 Appointments between September 12th and September 16th.

In Listing 23-24, the appointments within this time period are queried, and for the third entry
(creative meeting on Tuesday), adjacent appointments and appointment conflicts are dis-
played. Appointments are queried with the CalendarView parameter to also show recurring
appointments.

To view conflicts and adjacent appointments, AdditionalProperties adds additional properties
to the Default-Baseshape of GetItem.

Note that in Listing 23-24, the ExchangeSoapClient is used with the SOAP_SINGLE_ELEMENT_
ARRAYS option. For this reason, the FindItemResponseMessage must be accessed with
$response-> ResponseMessages->FindItemResponseMessage[0].

LISTINg 23-24 view-calendar.php—displaying appointments in the calendar with CalendarView.

<?php
namespace net\xmp\phpbook;
require './ExchangeSoapClient.php';
require './HTMLPage.php';

 Chapter 23 Calendar and Impersonation 585

$options = array('login' => 'doris', 'password' => 'confidential',
 'CACert' => './my-ca.cer',
 'features' => SOAP_SINGLE_ELEMENT_ARRAYS);
$client = new ExchangeSoapClient('./Services.wsdl', $options);

// Search for appointments within the given time frame
$param = array('Traversal' => 'Shallow',
 'ItemShape' => array('BaseShape' => 'Default',),
 'CalendarView' => array(
 'StartDate' => '2011-09-12T00:00:00',
 'EndDate' => '2011-09-16T23:59:59'),
 'ParentFolderIds' => array(
 'DistinguishedFolderId' => array('Id' => 'calendar')));
$response = $client->FindItem($param);

$page = new HTMLPage('Calendar search');
$items = $response->ResponseMessages->FindItemResponseMessage[0]
 ->RootFolder->Items->CalendarItem;
showMeetings('Appointments in the given time frame', $items, $page);

// Select any appointment and show adjacent appointments and conflicts
$item = $items[2];
$param = array('ItemShape' => array(
 'BaseShape' => 'Default',
 'AdditionalProperties' => array(
 'FieldURI' => array(
 array('FieldURI' => 'calendar:ConflictingMeetingCount'),
 array('FieldURI' => 'calendar:AdjacentMeetingCount'),
 array('FieldURI' => 'calendar:ConflictingMeetings'),
 array('FieldURI' => 'calendar:AdjacentMeetings')))),
 'ItemIds' => array(
 'ItemId' => array('Id' => $item->ItemId->Id,
 'ChangeKey' => $item->ItemId->ChangeKey)));
$response = $client->GetItem($param);

$item = $response->ResponseMessages->GetItemResponseMessage[0]
 ->Items->CalendarItem[0];
if ($item->ConflictingMeetingCount) {
 showMeetings('Conflicting meetings',
 $item->ConflictingMeetings->CalendarItem, $page, false);
}
if ($item->AdjacentMeetingCount) {
 showMeetings('Adjacent appointments',
 $item->AdjacentMeetings->CalendarItem, $page, false);
}
$page->printPage();

function showMeetings($name, $items, $page, $showType=true) {

586 Part IV Exchange Server

 $page->addElement('h2', $name);
 $table = array(array('Subject', 'Start', 'End', 'Status'));
 if ($showType) {
 $table[0][] = 'Type';
 }
 foreach ($items as $item) {
 $data = array($item->Subject, $item->Start, $item->End,
 $item->LegacyFreeBusyStatus);
 if ($showType) {
 $data[] = $item->CalendarItemType;
 }
 $table[] = $data;
 }
 $page->addTable($table);
}
?>

Figure 23-7 shows the result of the calendar search.

FIgURE 23-7 The result of the calendar search.

In the figure, all seven appointments are listed and the individual appointments have
the type Single, recurring appointments have the type Occurrence, and the exception on
Wednesday has the type Exception. The start and end times are specified in UTC and should
be converted into the appropriate time zone.

 Chapter 23 Calendar and Impersonation 587

Impersonation
Until now the user whose mailbox was accessed was used for NT LAN Manager (NTLM)
authentication to connect to the EWS. The drawback of this method is that you need to
know the password of the user, because you must specify the password while instantiating
ExchangeSoapClient.

Especially for Internet applications in your own organization, this means that you cannot use
a significant advantage: although users are already logged on to the domain and the PHP
application can process the Windows single sign-on authentication, the password must be
reentered to access the mailbox.

With impersonation, EWS offers a simple solution: you can grant a user the right to imper-
sonate other users. This means that you can grant the PHP application user the right to
impersonate mailbox users.

Granting Impersonation Rights
To grant a user the right to impersonate other users, use the New-ManagementRole
Assignment cmdlet of the Exchange Management Shell.

New-ManagementRoleAssignment -Name:<Name> -Role:ApplicationImpersonation -User:<User>

The <Name> is freely selectable and serves as ID for the right added to the Role-Based Access
Control (RBAC) database. As a user, you must specify a domain user because Exchange Server
(or the server with the Exchange Client Access server role) doesn’t recognize local web server
users (for example, application pool users).

The command grants the user the right to impersonate all other users. You can specify
restrictions while granting the right: you can limit the right to only impersonate the users
within a certain organizational unit.

New-ManagementRoleAssignment -Name:<Name> -Role:ApplicationImpersonation
 -User:<User> -RecipientOrganizationalUnitScope:<Name of the OU>

With definable managements scopes (ManagementScope), you can grant granular rights.
To grant the user PHPWebUser the right to impersonate only the user Tony (principal
tony@xmp.site), use the following script:

New-ManagementScope -Name:exchPHPTony
 -RecipientRestrictionFilter "UserPrincipalName -eq 'tony@xmp.site'"
New-ManagementRoleAssignment -Name:exchImpersPHPWeb -Role:ApplicationImpersonation
 -User:PHPWebUser -CustomRecipientWriteScope:exchPHPTony

588 Part IV Exchange Server

Note This description applies only to Exchange Server 2010. For more information about grant-
ing rights in Exchange Server 2007 consult the article on MSDN at http://msdn.microsoft.com/
en-us/library/bb204095%28v=EXCHG.80%29.aspx.

Impersonation in EWS Operations
The impersonation is specified in the SOAP ExchangeImpersonation header of the request
message, as shown in the FindItem operation in Listing 23-25.

LISTINg 23-25 Impersonation of other users using the SOAP ExchangeImpersonation header.

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:t="http://schemas.microsoft.com/exchange/services/2006/types"
 xmlns:m="http://schemas.microsoft.com/exchange/services/2006/messages">
<SOAP-ENV:Header>
 <t:ExchangeImpersonation>
 <t:ConnectingSID>
 <t:PrincipalName>doris@xmp.site</t:PrincipalName>
 </t:ConnectingSID>
 </t:ExchangeImpersonation>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
 <m:FindItem Traversal="Shallow">
 <m:ItemShape>
 <t:BaseShape>IdOnly</t:BaseShape>
 </m:ItemShape>
 <m:CalendarView StartDate="2011-09-12T00:00:00" EndDate="2011-09-16T23:59:59" />
 <m:ParentFolderIds>
 <t:DistinguishedFolderId Id="calendar" />
 </m:ParentFolderIds>
 </m:FindItem>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Three methods are available to specify an impersonated user: principal name, SID, and email
address.

Impersonation by Using Principal Names
Listing 23-26 shows the SOAP header structure if you specify the principal name by using
PrincipalName. Although the principal name is written like an email address, it does not nec-
essarily have to be identical to the user’s primary email address. For example, Doris, who has
the logon name doris in the domain xmp.site, has a principal name of doris@xmp.site, but a
primary email address of doris.lass@xmp.site. It is good practice though that the user’s princi-
pal name and the primary email address are the same.

http://msdn.microsoft.com/en-us/library/bb204095%28v=EXCHG.80%29.aspx
http://msdn.microsoft.com/en-us/library/bb204095%28v=EXCHG.80%29.aspx

 Chapter 23 Calendar and Impersonation 589

LISTINg 23-26 Impersonation using the principal.

<t:ExchangeImpersonation>
 <t:ConnectingSID>
 <t:PrincipalName>doris@xmp.site</t:PrincipalName>
 </t:ConnectingSID>
</t:ExchangeImpersonation>

Listing 23-27 shows how to specify the SOAP header in PHP.

LISTINg 23-27 Specifying the SOAP header for impersonation by using the principal in PHP.

$header = array('ConnectingSID' => array('PrincipalName' => 'doris@xmp.site'));
$impersonate = new \SoapHeader(ExchangeSoapClient::TYPES_NS,
 'ExchangeImpersonation', $header);
$client->__setSoapHeaders($impersonate);

Caution If you want to indicate additional SOAP headers (for example, for the EWS version), you
need to specify all headers in a single __setSoapHeaders() call.

Impersonation by Using Email Addresses
You also can define the impersonated user by using his primary email address, as illustrated
in Listing 23-28.

LISTINg 23-28 Impersonation using the primary email address.

<t:ExchangeImpersonation>
 <t:ConnectingSID>
 <t:PrimarySmtpAddress>doris.lass@xmp.site</t:PrimarySmtpAddress>
 </t:ConnectingSID>
</t:ExchangeImpersonation>

Listing 23-29 shows how to specify the SOAP header in PHP.

LISTINg 23-29 Impersonation using the primary email address in PHP.

$header = array('ConnectingSID' => array('PrimarySmtpAddress' => 'doris.lass@xmp.site'));
$impersonate = new \SoapHeader(ExchangeSoapClient::TYPES_NS,
 'ExchangeImpersonation', $header);
$client->__setSoapHeaders($impersonate);

590 Part IV Exchange Server

Impersonation by Using Security IDs (SID)
The third method for specifying the impersonated user is to use the SID of the user, as dem-
onstrated in Listing 23-30.

LISTINg 23-30 Impersonation using the SID.

<t:ExchangeImpersonation>
 <t:ConnectingSID>
 <t:SID>S-1-5-21-1465576585-1264251571-1973391373-1108</t:SID>
 </t:ConnectingSID>
</t:ExchangeImpersonation>

Listing 23-31 shows how to specify the SOAP header in PHP.

LISTINg 23-31 Impersonation using the SID in PHP.

$header = array('ConnectingSID' => array(
 'SID' => 'S-1-5-21-1465576585-1264251571-1973391373-1108'));
$impersonate = new \SoapHeader(ExchangeSoapClient::TYPES_NS,
 'ExchangeImpersonation', $header);
$client->__setSoapHeaders($impersonate);

Additional Steps
The EWS provides many more operations that are beyond the scope of this book. If you
approach the task of EWS programming, you will repeatedly encounter communication
problems between PHP and EWS.

Be sure to disable Web Services Description Language caching for the PHP page in
php.ini or with the cache_wsdl=WSDL_CACHE_NONE option during the instantiation of
ExchangeSoapClient.

The __getLastRequest() and __getLastResponse() functions are helpful to check which XML
messages were sent and received.

Pay attention to the encoding: all requests and data must be UTF-8 encoded. If PHP com-
plains about missing parameters while creating request messages, the parameters are either
incorrectly embedded in the array or, because of an error in the PHP SOAP extension, PHP
erroneously interprets an instruction as mandatory. In the latter case, you must modify
the schema (for example, you have to set minOccurs for single elements instead of for
xs:sequence or xs:choice).

 Chapter 23 Calendar and Impersonation 591

The same applies if the request created with PHP is missing parameters: the cause usually is
inaccurate interpretation of the schema or wrong array parameter embedding.

The developer documentation on MSDN includes many examples and additional expla-
nations. You can find the documentation at http://msdn.microsoft.com/en-us/library/
dd877012%28EXCHG.140%29.aspx.

Summary
This chapter explained the basics of working with calendar entries, how to invite attendees
to a meeting, and how to accept or decline a meeting invitation. The CalendarView is a
search method with which you can easily find all appointments and recurring appointments
in a certain time period.

With the impersonation of other users, you can realize a consistent single sign-on in PHP
because the connection is authenticated on the NTLM level with the PHP application user,
and the mailbox of the end-user can be accessed.

Because the PHP SOAP extension cannot process WSDL correctly, you need to modify the
EWS schema (usually types.xsd). But don’t be discouraged: as you can see in the PHP code
examples, the programming of EWS is straightforward after you have mastered the initial
obstacles.

On that note: Happy Coding!

http://msdn.microsoft.com/en-us/library/dd877012%28EXCHG.140%29.aspx
http://msdn.microsoft.com/en-us/library/dd877012%28EXCHG.140%29.aspx

 593

Appendix A

Example Scripts and Data

This appendix contains listings that are used in different example programs throughout this
book to create an HTML page or to establish a connection to a database as well as a data-
base chart of the example database.

The HTMLPage Class
The HTMLPage class (Listing A-1) creates the HTML content and ensures that the content is
properly encoded to avoid security gaps such as cross-site scripting. HTMLPage provides the
following methods:

■ __construct($title, $template)  Title of the page and the file name (optional) of the
HTML template is passed to the constructor.

■ printPage()  Loads the template and creates the HTML page. The content created up
to now is displayed with the template.

■ get($name, $escape) Method to retrieve properties of the class. $escape indicates if
the returned value is masked for the HTML view.

■ addElement($name, $content) The HTML element $name containing $content is
added to the HTML page.

■ addHTML($html)  Adds unfiltered content to the HTML page.

■ addTable($content)  Adds a table to the output. $content is a two-dimensional array
containing the table data. The first line of the array contains table headings (HTML
element <th>).

In this chapter:
The HTMLPage Class . 593
The HTML Template . 596
The DatabaseConnection Class . 597
Example Database: AdventureWorksLT2008 . 599

594 Appendix A Example Scripts and Data

■ addList($items)  Adds a list to the output. $items is an one-dimensional array con-
taining the list entries or a two-dimensional array if the first part should be highlighted.

■ escape($txt)  Masks a passed value to secure the HTML output.

LISTINg A-1 HTMLPage.php—using the HTMLPage class to create HTML pages.

<?php
namespace net\xmp\phpbook;

class HTMLPage {

 protected $title;
 protected $content;
 protected $template;

 function __construct($title, $template='./template.html') {
 $this->title = $title;
 $this->content = '';
 $this->template = $template;
 }

 /**
 * Displays the created HTML page.
 */
 function printPage() {
 global $page;
 $page = $this;
 require $this->template;
 }

 /**
 * Returns single data fields of HTMLPage.
 *
 * @param string $name Name of the data field
 * @param boolean $escape Indicates if the value for HTML output is masked
 */
 function get($name, $escape=true) {
 if ($escape) {
 return $this->escape($this->$name);
 } else {
 return $this->$name;
 }
 }

 /**
 * Adds a HTML element with text to the page.
 *
 * @param string $name Name of the HTML element
 * @param string $content Content of the element
 * @param boolean $keepWhiteSpace Leave white space as is

 Appendix A Example Scripts and Data 595

 */
 function addElement($name, $content, $keepWhiteSpace=false) {
 $this->content .= "<$name>" . $this->escape($content, $keepWhiteSpace)
 . "</$name>";
 }

 /**
 * Adds unfiltered HTML to the page.
 *
 * @param string $html HTML to be added
 */
 function addHTML($html) {
 $this->content .= $html;
 }

 /**
 * Adds a table to the page.
 *
 * @param array $content Two-dimensional array:
 * First line contains headings (<th>)
 * The following lines contain data (<td>)
 * @param array $rawHTML Indicates which columns are added as unfiltered HTML
 */
 function addTable($content, $rawHTML=array()) {
 $this->content .= "<table>\n";
 // Adds a header
 $this->content .= "<thead><tr>\n";
 foreach ($content[0] as $cell) {
 $this->addElement('th', $cell);
 }
 $this->content .= "</tr></thead>\n";
 // Adds data
 $this->content .= '<tbody>';
 for ($i = 1; $i < count($content); $i++) {
 $this->content .= '<tr>';
 for ($j = 0; $j < count($content[$i]); $j++) {
 if (empty($rawHTML[$j])) {
 $this->addElement('td', $content[$i][$j]);
 } else {
 $this->addHTML('<td>' . $content[$i][$j] . '</td>');
 }
 }
 $this->content .= "</tr>\n";
 }
 $this->content .= "</tbody></table>\n";
 }

 /**
 * Adds a list to the page.
 *
 * @param array $items List entries. If the entry is an array the first part is
 * highlighted and the second part is displayed normally
 * @param boolean $rawHTML Indicates if the entries are added unfiltered.

596 Appendix A Example Scripts and Data

 */
 function addList($items, $rawHTML=false) {
 $this->content .= "\n";
 foreach ($items as $item) {
 if (!is_array($item)) {
 $rawHTML ? $this->addHTML('' . $item . '')
 : $this->addElement('li', $item);
 } else {
 $this->content .= '';
 $this->addElement('b', $item[0] . ': ');
 $this->content .= $rawHTML ? $item[1] : $this->escape($item[1]);
 $this->content .= '';
 }
 }
 $this->content .= "\n";
 }

 /**
 * Masks the text displayed on the HTML page
 * Replaces critical characters with entities and
 * deletes all characters less than chr(32) depending on white space option
 *
 * @param string $txt Text
 * @param boolean $keepWhiteSpace Leave white space as is
 */
 function escape($txt, $keepWhiteSpace=false) {
 if ($keepWhiteSpace) {
 $txt = preg_replace('/[\\x00-\\x08\\x0b-\\x1f]/', '', $txt);
 return filter_var($txt, FILTER_SANITIZE_SPECIAL_CHARS);
 } else {
 $txt = preg_replace('/\s+/', ' ', $txt);
 return filter_var($txt, FILTER_SANITIZE_SPECIAL_CHARS,
 FILTER_FLAG_STRIP_LOW);
 }
 }
}

The HTML Template
The HTML template (Listing A-2) provides the frame for the HTML page output. The template
expects an HTMLPage object in the $page variable to display the title and content (using
$page->get()).

 Appendix A Example Scripts and Data 597

LISTINg A-2 template.html—HTML template for the example application.

<!DOCTYPE html>
<html>

<head>

 <meta charset="UTF-8" />

 <title><?php echo $page->get('title') ?></title>

 <style type="text/css">

 th { font-size: 110%; border-bottom: 2px solid black }

 td { padding: 3px; border-bottom: 1px solid #aaa }

 </style>

</head>

<body>

 <h1><?php echo $page->get('title') ?></h1>

 <?php echo $page->get('content', false) ?>

</body>

</html>

Note The scripts use PHP 5.3 namespaces. Because no other special features of PHP 5.3 are
used, you can run the scripts in PHP 5.2 after you remove all lines containing the namespace
definition.

The DatabaseConnection Class
The DatabaseConnection class (Listing A-3) provides three methods:

■ connect()  Establishes the connection with SQL Server using predefined parameters.

■ close() Disconnects the SQL Server connection.

■ exitWithError()  Displays SQL Server error messages and exits the program.

If your application requires other connection parameters for the connect() method, modify
the $serverName and $connectionInfo class properties accordingly.

598 Appendix A Example Scripts and Data

LISTINg A-3 DatabaseConnection.php—database connection to SQL Server.

<?php

namespace net\xmp\phpbook;

class DatabaseConnection {

 public $handle = null;

 protected $serverName = '(local)';

 protected $connectionInfo = array(

 'Database' => 'AdventureWorksLT2008',

 'CharacterSet' => 'UTF-8'

);

 /**

 * Establishes a connection with SQL.

 * Uses predefined connection parameters.

 */

 function connect() {

 $this->handle = sqlsrv_connect($this->serverName, $this->connectionInfo);

 if ($this->handle === false) {

 $this->exitWithError('database connection failed');

 }

 }

 /**

 * Disconnects the SQL Server connection.

 */

 function close() {

 if ($this->handle) {

 sqlsrv_close($this->handle);

 $this->handle = null;

 }

 }

 /**

 * Closes the program, returns error messages from SQL Server

 *

 * @param string $txt Error description

 */

 function exitWithError($txt) {

 $errors = sqlsrv_errors();

 $html = new HTMLPage('Database error');

 $html->addElement('p', $txt);

 $table = array(array('SQL status', 'Code', 'Message'));

 Appendix A Example Scripts and Data 599

 foreach ($errors as $error) {

 // Error messages have the ISO-8859-1 format

 $msg = iconv('ISO-8859-1', 'UTF-8', $error['message']);

 $table[] = array($error['SQLSTATE'], $error['code'], $msg);

 }

 $html->addTable($table);

 $html->printPage();

 $this->close();

 exit;

 }

}

?>

Example Database: AdventureWorksLT2008
The example database AdventureWorksLT2008 consists of 11 tables in the SalesLT schema.
The tables are:

■ Customer  Information about the customer (name, company, email address, …)

■ CustomerAddress  Connection table between customer and address

■ Address  Address (street, city, postal code, …)

■ SalesOrderHeader  Order (order date, customer, weight, total, …)

■ SalesOrderDetail  Single article in the order (product, price, amount, …)

■ Product  Product information (name, size, color, photo, price, …)

■ ProductCategory  Product categories, hierarchy possible

■ ProductModel  Model of a product

■ ProductDescription  Product description in a certain language

■ ProductModelProductDescription  Connection table between product model and
product description

■ ErrorLog  Error log table

In Figure A-1, you can see the database diagram as produced by SQL Server's Database
Diagram Designer. Column names are shown for each table, and the tables' primary keys
are marked with small key symbols. The lines between the tables depict the one-to-many
relationships based on foreign keys.

600 Appendix A Example Scripts and Data

FIgURE A-1 Chart of the example database AdventureWorksLT2008.

 601

Index

permissions (SQL Server), 353–355
common, 353
database principals, 344
database roles, 345
effective permission for

object, 354
impersonation, 360
managing using SSMS, 355–356
managing using T-SQL, 356–358
ownership chain, 354
server roles, 344
stored procedures and, 358–359

user authentication, 92–95
authentication against AD, 95
authorization rules, 98–100
basic, 92
digest, 92
installing required role

services, 93
retrieving authentication in

PHP, 95
setting up using command

line, 94
setting up using IIS

Manager, 93–94
Windows, 92

accessing data in SQL Server from
PHP, 279–318

AdventureWorksLT2008 sample
database, 279

approach and process, 279
closing database

connection, 280–282, 284
database connections, 285–291

authentication, 287–288
connection pooling, 289–290
more connection options, 290
server names, 286

database queries, 291–303
filtering and masking data,

292–293
parameterizing statements, 291,

293–294
PDO and, 311–313
search_products.php sample

program, 294–297
SQL Injection, 291–292

data types, 304–316
converting from PHP to SQL

Server, 304
converting from SQL Server to

PHP, 304–305

streams, 306–309
opening database

connection, 280–282, 283
PDO driver, 310–316
preparations, 279–280
prepared statements, 299–303

PDO and, 311–313
product_list.php sample

program, 280–282
overview of individual

steps, 282–284
retrieving results, 280–282, 284,

297–299
as objects, 297–298
individual fields, 299

sending query, 280–282, 283
valid login, 280

accountExpires attribute (domain
objects), 434

account operators in AD, 452
accounts in AD

activating and deactivating, 464
finding users with locked or

deactivated accounts, 445
unlocking, 463

<action> configuration
element, 170

Active Directory (AD), 365, 368,
372, 385

access rights, 451–453
access control list (ACL), 452
administrator groups, 452

account operators, 452
accounts

activating and deactivating, 464
unlocking, 463

administrators, 452
attribute classes, 426–430

attributes for, 427
finding and viewing, 428
syntax, 428–430
syntax, adding additional

information to, 430
userPrincipalName, 426

attributes, 458–463
adding, 458–459
changing, 461–462
changing, practical examples

for, 463
deleting, 459–461

authentication against, 95
Autodiscover and EWS URLs, 498

Symbols
$_ENV global variable, 141
$_SERVER

variables, 140–143
CGI, 140
of an HTTP request, 141

$_SERVER[“AUTH_USER”]
variable, 95

$_SERVER[‘HTTPS’] variable, 24
$_SERVER[‘LOCAL_ADDR’]

variable, 24
$_SERVER[“LOGON_USER”]

variable, 95
$_SERVER[“REMOTE_USER”]

variable, 95
$_SERVER[‘SERVER_ADDR’]

variable, 24
$_SERVER variables

for client certificate, 113
for retrieving connection

and server certificate
information, 113

__DIR__ constant, 141
__FILE__ constant, 141
[HOST=…] (php.ini file), 65
@@IDENTITY, 241
[PATH=…] (php.ini file), 65
@@ROWCOUNT, 358

A
Abort Request action type (URL

Rewrite), 144, 152
access

access control list (ACL), 452
access rights in Active

Directory, 451–453
access control list (ACL), 452
administrator groups, 452

identity and access rights, 96–98
anonymous authentication, 97
application pool identity, 96
path logon information, 97
securing PHP application, 98

impersonation, 360, 587–590
by using email address, 589
by using PrincipalName, 588
by using SID, 590
granting rights, 587
required permissions, 360
(see also stored procedures)

602 Active Directory

user search, 445–446
utilities for LDAP, 392–398

ADSI Edit, 395–398
LDP, 393–395

writing in
LDAP connection and, 451
preparation, 451–458

Active Directory Service Interface
(ADSI)

LDAP and, 389
AD CS (Active Directory Certificate

Services)
installing, 381–384

Certification Authority Web
Enrollment option, 382

Create A New Private Key, 382
Enterprise or Standalone

option, 382
naming certification

authority, 383
Root CA option, 382

Add Child command (LDP), 395
<add> element (IIS), 44

within element
<conditions>, 169–170

AdditionalProperties (EWS), 510,
511

add operation (LDAP), 392
AdjacentMeetingCount property

(calendar), 560
adminDescription attribute

(classSchema), 423, 427
administrator groups in AD, 452
administrators in AD, 452
ADSI Edit, 395–398

creating new entries, 398
working with, 396–397

AD_util.php, 457
AdventureWorksLT2008 sample

database, 279, 280, 283, 287,
288, 290, 305, 311, 316

AdventureWorks sample database
installing, 217–219

allowedAttributesEffective list, 443
allowedAttributes list, 443
<allowedServerVariables>

elements, 168
AllowNewTimeProposal property

(meetings), 561
allowSubDirConfig attribute

(<virtualDirectory>), 53
allow_url_fopen (PHP security

setting), 90
allow_url_include (PHP security

setting), 90
AllProperties (EWS), 510
ALTER permission (SQL Server), 353
ALTER TABLE command

(T-SQL), 244, 246, 273

installing AD DS, 370–371
Additional Domain Controller

Options page, 370
administrator password, 371
Choose a Deployment

Configuration page, 370
Location For Database, Log Files,

And SYSVOL page, 371
Name The Forest Root Domain

page, 370
Set Forrest Functional Level

page, 370
warning message about

dynamic IP addresses, 371
LDAPConnection class, 455, 456,

466
creating encrypted connection

with, 466
object classes, 422–426

attributes for, 423–424
attributes of top object

class, 423
categories, 424
finding and viewing, 424–426
vs. object categories, 426

OrganizationalUnit class, 440–441
looking up organizational

units, 441
organizational units, 373–375

creating, 373–374
defining additional

properties, 374
deleting, 375

overview of AD DS, 372–373
passwords

changing, 466
forced changes, 465

PHP LDAP Browser (PLB)
and, 413–421

conversion functions, 421
entry form, 414
evaluating search results,

415–416
formatting LDAP entry, 417–419
LDAPConnection class, 415
main program, 413–417
type information and search

definitions, 419–420
viewing search results, 416–417

print operators, 452
schema (see schema)
scripts, 455–458

AD_util.php, 457
LDAPConnection class, 456–457
modify_ldap.php, 455–456

setting up, 365–388
users

changing properties, 376
creating, 375–376, 472–474
deleting, 376, 474–475

Active Directory (continued)
certificates (see Active Directory

Certificate Services (AD CS);
certificates)

character sets, 462–463
contacts and, 539
directory information tree

(DIT), 421–422
configuration context, 421
domain contexts, 421
naming contexts, 421
optional application

contexts, 422
schema context, 421

domain administrators, 452
domain objects, 431–441

contact information, 433
converting object GUID, 432
converting Windows

timestamps, 436
general attributes for, 431–438
general search for, 431
personal information, 433
searching for users, 434–435
SID conversion, 436
user account information, 434
users, 433
viewing user account state, 437

domains, 366–367
forest, 366, 367, 370, 373, 377
joining computers to, 380–381
(see also Active Directory

Domain Services (AD DS))
encoding, 462–463
enterprise administrators, 452
entries, 367, 467–471

adding new, 467–469
deleting, 469
moving, 470–471
renaming, 470

error logging, 453–454
establishing encrypted connection

to AD from PHP, 401–405
existing (visible)

hierarchy, 372–373
Group object class, 438–440

attributes, 438
searching for groups, 439
viewing group type, 440

groups, 464–465
adding user to group, 464
creating, 377–378, 472
deleting, 474–475
removing user from group, 465
setting members and

memberships, 378–379
installing, 367–371

AD DS, 370–371
preparation, 368
server role, 368–369

 Business Intelligence applications (see BI applications) 603

NTLM authentication (Exchange
default configuration), 495

searching for configuration
data, 492–493

POX Autodiscover service, 494
retrieving configuration

data, 495–497
retrieving data over TLS with

NTLM authentication, 496
URL queries, 498

B
backing up PHP and IIS

configuration, 14
badPasswordTime attribute (domain

objects), 434
badPwdCount attribute (domain

objects), 434
bandwidth and TCP/IP connection

limits, 50
Base DN setting (LDP), 394
Basepoint (FindItem (EWS)), 516
BaseShape (EWS), 510
basic authentication, 92
batch processing, T-SQL batch, 213
BEGIN TRANSACTION (T-SQL), 326
bigint data type (SQL Server), 234
binary(n) data type (SQL

Server), 235
bindings, 52

adding additional, 24–25
using command line, 25
using IIS Manager, 24–25

of a host name, 176
parameters and values with

prepared statements, 312
setting up HTTPS

binding, 110–111
setting up with appcmd, 111

bind operation (LDAP), 392
Birthday property (contacts

(EWS)), 540
bit data type (SQL Server), 234
Blank Rule template (URL

Rewrite), 147, 150, 152, 166
Body property (calendar), 560
Body property (EWS), 511
BodyType element, 524
Boolean expressions in EWS, 549
browse_ldap_types.php, 414, 415,

418, 419, 420, 424, 428–435,
439, 441, 442, 446

bulkadmin server role (SQL
Server), 344

BusinessHomePage property
(contacts (EWS)), 540

Business Intelligence applications
(see BI applications)

using command line, 29
using IIS Manager, 28–29

APPL_PHYSICAL_PATH (PHP
variable), 141

AppointmentReplyTime property
(meetings), 561, 572

AppointmentSequenceNumber
property (meetings), 561

AppointmentState property
(meetings), 561

app parameter (appcmd), 49
Area setting (LDP), 394
AssociatedCalendarItemId property

(meeting invitation), 572
Attachments property (EWS), 511
attribute classes, 426–430

attributes for, 427
finding and viewing, 428
syntax, 428–430
syntax, adding additional

information to, 430
userPrincipalName, 426

attributes
finding all attributes calculated

automatically, 443
finding all attributes in global

catalog, 443
finding all object classes with

certain attribute, 442
finding all possible attributes for a

certain object, 443
attributes for object

classes, 423–424
Attributes setting (LDP), 394
attributeSyntax attribute

(classSchema), 427–428
authentication, 287–288

anonymous, 97
LDAP, 403–404
local, 95
SQL Server, 287–288
SQL Server principals, 343
user (see user authentication)
Windows, 94–95, 287–288
with client certificates, 114–115

authorization rules, 98–100
defining rules from command

line, 100
defining rules via IIS

Manager, 99–100
installing authorization IIS role

service, 99
Autodiscover, 492–498

cURL (PHP extension)
querying with, 495–497

evaluating configuration
data, 497

EWS and
configuration data, 493–495

anonymous authentication, 97
AnonymousAuthenticationModule

(IIS), 34
ANR

searching with, 444
anr filter attribute, 444
Apache

converting rules of module
mod_rewrite, 181–182

php_admin_flag, 68
php_admin_value, 68
php_flag, 66
php_value, 66
.user.ini files and, 66
VirtualHost, 20

APIs
configuration files and, 42

appcmd, 14, 193
appHost parameter, 49
app parameter, 49
configuring PHP from command

line, 64
creating or updating location

elements, 49
locking and unlocking

configuration with, 58
<Path> parameter, 49
site parameter, 49
(see also command line)

AppendToItemField function
(UpdateItem operation
(EWS)), 543

appHost parameter (appcmd), 49
<application> configuration

element, 52–53
applicationDefaults element (sites

section), 51
applicationHost.config file (IIS), 42,

47, 49
sites, applications, and virtual

directories, 49
specifying default document, 71

application pools, 27, 35–38, 50
adding users, 347
identity, 36–38, 96

specifying using command
line, 38

specifying using IIS
Manager, 36–37

setting up, 35
applicationPools (system.

applicationHost), 50
applications, 27–30, 50

changing settings, 29–30
nested, 27
process flow, 33
root, 27
setting up, 28–29

604 Cache-Control header

C
Cache-Control header, 119, 124

statements in, 122
cacheControlMaxAge attribute

(content caching), 125
cacheControlMode attribute

(content caching), 125
Cache-Control statement

must-revalidate, 125
caching, 117–136

configuration collection caching/
profiles, 128–129

duration, 118–120
Expires header, 118–119
max-age statement, 119

duration attribute for
configuration collection
caching/profiles, 129

Entity tag, 121–122
ETag headers, 121, 122, 123
extension attribute for

configuration collection
caching/profiles, 129

HTTP
change date option, 120
mutable contents, 120–122

HTTP requests, 118
in web, 117–125
kernelCachePolicy attribute

for configuration collection
caching/profiles, 129

Last-Modified header, 120–123
max-age=seconds statement in

Cache-Control header, 122
must-revalidate statement in

Cache-Control header, 122
no-cache statement in Cache-

Control header, 122
no-store statement in Cache-

Control header, 122
options, 117
policy attribute for configuration

collection caching/
profiles, 129

private statement in Cache-
Control header, 122

public statement in Cache-Control
header, 122

setting for specific period of
time, 125

specifying HTTP headers
for, 123–125

configuration elements, 125
using command line, 124
using IIS Manager, 123–124

with HTTP headers, 117

with Output Cache, 117, 126–129
configuring using command

line, 128
configuring using configuration

elements, 128–129
configuring using IIS

Manager, 126–128
with WinCache, 117, 129–136

detecting changes to PHP files
automatically, 132

file cache, 132–133
installing manually, 130
installing using Web PI, 131
opcode cache, 132–136
session handler, 133–134
status information, 132–133
user cache, 134–136

calendar, 559–586
appointment conflicts, 580–582

identifying, 580–581
AppointmentReplyTime, 561, 572
common calendar entry, 563–565
entry types, 559
ID, 510
LegacyFreeBusyStatus, 560, 565,

566, 571, 572, 581, 582
meetings, 566–579

canceling, 577–579
changing with UpdateItem

operation, 567
complete PHP example,

567–570
complete PHP example

of declined meeting
invitation, 575–577

invitations, 570–577
invitations, accepting, 573
invitations, accepting

tentatively, 574
invitations, declining, 574
invitations properties, 572
invitations, responding to,

572–577
invitations structure, 570–571
properties, 561

MyResponseType, 561, 572
recurring appointment

properties, 561–562
searching, 582–586

complete PHP example,
583–586

searching for entries with
Restriction element, 539

standard properties, 560
time format, 562
time zones, 562–563

CalendarItemType property
(calendar), 560

canonical host name, 176
canonical user directories, 177–179
CASCADE (T-SQL), 247, 272
CASE queries (T-SQL), 334–335
catalog

finding all attributes in global
catalog, 443

Categories property (EWS), 511,
539

c, co, countryCode attributes (Active
Directory), 434, 441

CERT_COOKIE variable
($_SERVER), 113

CERT_FLAGS variable
($_SERVER), 113

certificates
$_SERVER variables for retrieving

Connection and Server
certificate information, 113

authentication with client
certificates, 114–115

checking if encrypted access to
LDAP works, 386

creating keys and, 109–110
Exchange Server 2010

assigning services to, 488
configuring, 485–488
issuing, 487–488
requesting, 486

exporting, 387
root certificate, 386–387

issuing for AD, 385
issuing user certificate, 112
working with, 384–388
(see also Active Directory

Certificate Services (AD CS))
CERT_ISSUER variable

($_SERVER), 113
CERT_SERIALNUMBER variable

($_SERVER), 113
CERT_SUBJECT variable

($_SERVER), 113
CgiModule (IIS), 34
CGI vs. FastCGI, 38–39
change date option, 120
ChangeKey

UpdateItem operation (EWS), 544
ChangeKey (EWS), 509, 511, 513,

514, 520–522, 525, 526, 528,
530, 534, 537, 538

change modes of PHP settings at
runtime, 63

character filter, 102
CharacterSet (database connection

option), 290
character sets, 462–463
char(n) data type (SQL Server), 235

 configuring PHP 605

CHECK_EXPIRATION (SQL
Server), 347, 348

CHECK_POLICY (SQL Server), 347,
348

child domains
converting user directories

with, 178
placeholders for, 179

<clear> element, 45
Client Certificate Assignment

Authentication, 114
CLUSTERED clause, 249
cn attribute (Active Directory), 431,

439
code pages, 236
command line

adding additional bindings, 25
application pools, setting up, 35

identity, 38
caching

with Output Cache, 128
configuring different PHP

versions, 80
configuring FastCGI, 81
configuring file name

extensions, 107
configuring PHP

setting up file monitoring, 64
configuring PHP in IIS, 11–12
configuring PHP syntax

highlighting, 78
configuring time limits for request

processing, 75
defining authorization rules

from, 100
defining general settings of

request filter feature, 105–106
installing IIS, 6
setting up applications, 29
setting up binding, 111
setting up filter rules, 109
setting up sites, 22
setting up user authentication, 94
setting up virtual directories, 31
specifying default document, 70
specifying HTTP headers for

caching, 124
sqlcmd command line tool, 213
starting and stopping sites, 26
tracing

configuring logging rules, 192
enabling, 191

(see also appcmd)
COMMIT TRANSACTION

(T-SQL), 326

Common Gateway Interface
(CGI), 34

other variables, 140
predefined variables, 139–140

common table expressions
(CTEs), 261–263

multiple tables, 261
recursive expressions, 262
UPDATE command, 269
WITH keyword, 261

Compact View tab (Internet
Explorer), 192

company attribute (domain
objects), 433

CompanyName property (contacts
(EWS)), 540

compare operation (LDAP), 392
CompleteName property (contacts

(EWS)), 540
CompleteNameType properties, 541
computers

finding users or computers not
requiring a password or
with a password that never
expires, 445

joining to domains, 380–381
configSections

locking with, 54
configSections (IIS), 47
configSource attribute (IIS), 45
configuration collection caching/

profiles, 128–129
configuration context, 421
Configuration Editor, 45, 46, 48
configuring FastCGI, 80–82

configuring individual
configuration files, 68

from command line, 81
testing, 81–82
using IIS Manager, 80

configuring IIS, 41–60
<add> element, 44
appcmd tool

creating or updating location
elements, 49

<application> configuration
element, 52–53

bindings, 52
<clear> element, 45
configSections, 47
configSource attribute, 45
Configuration Editor, 45, 46, 48
configuration files, 42–43

hierarchy of, 43
ways to edit or read, 42

configuring paths using
location, 47–49

IIS Manager configuration
editor, 45–46

<location path=“.”> statement, 48
lockAllAttributesExcept

attribute, 56
lockAllElementsExcept

attribute, 56
lockAttributes attribute, 56

example, 56
lockElements attribute, 56

example, 57
locking configuration, 53–59

specifying rights for individual
settings, 56–58

with configSections, 54
with IIS Manager, 58–60
with location, 54–56

lockItem attribute, 56
example, 57

path attribute, 48
<remove> element, 45
site configuration

elements, 50–51
structure, 43–46

elements and attributes, 44–45
moving and binding

sections, 45
section groups and sections, 44

<virtualDirectory> configuration
element, 53

XML configuration file content, 47
configuring PHP, 61–84

changes to files on network
share, 63

handler assignment, 89
individual configuration

files, 66–69
FastCGI, 68
.user.ini files, 66
Windows Registry, 67

installing PHP Manager, 61–62
path and host dependent

configuration in php.
ini, 65–66

recognizing configuration
changes, 63–65

request filter, 89
request limits, 71–73
session storage, 75–76
settings, 90–92

error output and logs, 91
general, 90
resource limits, 91
session management, 92

setting up different
configurations, 83

606 configuring PHP

configuring PHP (continued)
setting up different

versions, 78–82
configuring handler

assignment, 79
configuring using command

line, 80
configuring using IIS

Manager, 79
configuring using PHP

Manager, 79
installing new version, 78

setting up file monitoring, 63–65
using command line, 64
using IIS Manager, 64
using PHP Manager, 65

specifying default
document, 69–71

syntax highlighting, 76–78
using IIS Manager, 76–77

temporary files, 75–76
time limits for request

processing, 74–75
configuring using IIS

Manager, 74
FastCGI limits, 74
PHP limits, 74

using command line
setting up file monitoring, 64

using IIS Manager
setting up file monitoring, 64

using PHP Manager
setting up file monitoring, 64

configuring PHP in IIS, 8–12
handlers, 8
using command line, 11–12
using IIS Manager, 9–11

ConflictingMeetingCount property
(calendar), 560

connection pooling, 289–290
connection options, 290
fragmenting, 289

CONSTRAINT (T-SQL), 244, 246,
247, 273, 276–278

contacts, 539–552
CompleteNameType

properties, 541
default contact folder, 539
DistinguishedFolderId, 539
Exchange and AD, 539
finding contacts using FindItem

operation, 552
IPM.Contact type, 539
PostalAddressIndex property, 543
properties of, 539–543
search form for, 553
searching for, 556–557

searching for with Restriction
element, 539

(see also EWS, contacts)
ContactSource property (contacts

(EWS)), 540
Contains expression (EWS), 550
CONTAINS statement

(T-SQL), 323–325
CONTAINSTABLE() (T-SQL), 323–325
CONTROL permission (SQL

Server), 353
control structures (T-SQL), 334–335
conversion functions, 421
CopyItem operation (EWS), 539
count(*) function (T-SQL), 255
Country object class, 440
CREATE DATABASE command

(T-SQL), 227
specifying files and file

groups, 227–228
CREATE FULLTEXT CATALOG

command, 322
CREATE FUNCTION, 338–340
CREATE INDEX command

(T-SQL), 249
CreateItem operation (EWS), 539

calendar, 559, 563–565
created entry, 564–565
request message, 563
response message, 564

calendar meetings, 566–579
cancelling, 578–579
creating, 566–570
responding to, 572–577
XML request message, 566–567

email, 531–536
creating using PHP, 535
requests, 533–536
responses, 536

getAttendees(), 568
getMeetingParameters()

function, 568
getValue() function, 568
MessageDisposition attribute, 534
SendMeetingInvitations

attribute, 567
CREATE LOGIN command

(T-SQL), 347
CREATE PROCEDURE command

(T-SQL), 332–333, 360
CREATE SCHEMA command

(T-SQL), 238
CREATE TABLE command

(T-SQL), 239, 240
optional specifications and

constraints for the column
definition, 241

CROSS JOIN expression (T-SQL), 257

curl_exec(), 495, 497
CURLINFO_HEADER_OUT

option, 502
CURLOPT_CAINFO option, 495,

496, 503
CURLOPT_HEADER option, 497, 503
CURLOPT_HTTPAUTH option, 495,

496, 503
CURLOPT_POSTFIELDS option, 495,

496, 503
CURLOPT_SSL_VERIFYHOST

option, 497
CURLOPT_USERPWD option, 495,

496, 503
cURL (PHP extension), 491

querying with, 495–497
curl_setopt_array(), 495
custom error messages, 34
CustomErrorModule (IIS), 34
custom functions (T-SQL), 338–340

scalar function, 338
table-valued functions, 339

Custom Response action type (URL
Rewrite), 144, 151

<customTags> configuration
element, 173

D
database connections, 285–291

authentication, 287–288
SQL Server, 287–288
Windows, 287–288

connection pooling, 289–290
connection options, 290

fragmenting, 289
more connection options, 290
named pipes, 286
PDO, Microsoft Drivers for PHP for

SQL Server, 311
protocol identifiers, 286
server names, 286
shared memory, 286

database principals, 344–345
database queries, 291–303

filtering and masking
data, 292–293

parameterizing statements,
291, 293–294

PDO driver and, 311–313
search_products.php sample

program, 294–297
SQL Injection, 291–292

database roles, 345
creating, 351–352

using SSMS, 351–352
using T-SQL, 352

 disable_functions (PHP security setting) 607

databases, 225–252
ALTER TABLE command, 244
CREATE DATABASE command, 227

specifying files and file
groups, 227–228

CREATE TABLE command, 239,
240

creating snapshot, 231–234
restoring databases, 233

custom functions
(T-SQL), 338–340

scalar function, 338
table-valued functions, 339

data types, 234–237
dates and time, 237
numeric, 234–235
sorting of string data type,

236–237
strings and binary data,

235–237
default settings, 228
deleting, 230–231
deleting snapshot, 233
DROP DATABASE command,

230–231, 233
FILEGROUP group type, 226, 227,

229
file types, 226
full-text search, 319–326

creating catalog using
SSMS, 321

creating catalog using
T-SQL, 322

creating index using SSMS, 321
creating index using T-SQL, 322
exact search queries, 323–325
free-text search, 325
language selection, 320
searching with index, 323–326

group types, 226
indexes, 249–251

creating, 249–250
deleting, 251

installing AdventureWorks sample
database, 217–219

keys, 243–251
foreign keys, 246–249
primary keys, 243–246

logical name of, 231
master, 225
migrating MySQL, 219–223
model, 226
msdb, 226
object names, 238
objects in, 353
physical file, 231
primary data files (extension

.mdf), 226

PRIMARY file group (SQL
Server), 226–229, 232, 237,
243, 244, 247, 250

restoring, 233
schemas, 238–239

creating, 238
deleting, 238

secondary data files (extension
.ndf), 226

setting up, 227–230
with SSMS, 229–230

specifying files and file
groups, 228–229

stored procedures, 331–338
calling, 333
calling from PDO, 337–338
calls from PHP, 336–337
control structures, 334–335
defining, 332–333
output parameters and return

values, 333–334
variables, 331–332

structure, 226–227
system, 225–226
tables, 239–243

creating, 239–242
creating using SSMS, 241
defining columns, 240
deleting, 243
IDENTITY number, 241

tempdb, 226
transaction log files (extension

.ldf), 226
transactions, 326–330

PHP, 328–329
PHP Data Objects (PDO), 330
T-SQL, 326–327

triggers, 340–342
creating, 340
initiating, 342

with alternative sort order, 228
(see also SQL Server; T-SQL)

data types, 304–316
converting from PHP to SQL

Server, 304
converting from SQL Server to

PHP, 304–305
PDO driver and, 315–316
PHP, 305
streams, 306–309

inserting data as, 308–309
retrieving data as, 306–308

data types, parameter (PDO), 315
date data type (SQL Server), 237
datetime2(n) data type (SQL

Server), 237
DateTimeCreated property

(EWS), 511, 539

datetime data type (SQL
Server), 237

datetimeoffset(n) data type (SQL
Server), 237

DateTime (PHP data type), 305
DateTimeReceived property

(EWS), 511
DateTimeSent property (EWS), 511
deactivated accounts

finding users with locked or
deactivated accounts, 445

decimal(p,s) data type (SQL
Server), 235

DECLARE statement
(T-SQL), 331–332

default_charset (PHP setting), 90
default document (IIS), 69–71

command line, specifying, 70
defining directly in

configuration, 70
IIS Manager, specifying, 69–70

DefaultDocumentModule (IIS), 34
Default (EWS), 510
Delete command (LDP), 395
DELETE command (T-SQL), 271–274

ALTER TABLE, 273
CASCADE, 272
errors during deletion, 272–273
SET DEFAULT, 272
SET NULL, 272

DeletedOccurrences property
(appointments), 562

DeleteItemField function
(UpdateItem (EWS)), 543

DeleteItem operation (EWS),
536–537, 539

PHP, 537
XML messages, 537

delete operation (LDAP), 392
DELETE permission (SQL

Server), 353
DENY command (T-SQL), 356, 357
description attribute (Active

Directory), 431, 433, 439, 441
digest authentication, 92
directory information tree

(DIT), 421–422
configuration context, 421
domain contexts, 421
naming contexts, 421
optional application contexts, 422
schema context, 421

DirectoryListingModule (IIS), 34
dirty reads, 327
disable_classes (PHP security

setting), 90
disable_functions (PHP security

setting), 90

608 display_errors (PHP configuration option)

display_errors (PHP configuration
option), 91, 188, 189

displayName attribute (Active
Directory), 431, 433

DisplayName property (EWS), 513,
540, 541

display_startup_errors (PHP
configuration option), 91,
188, 189

DistinguishedFolderId (EWS), 539
calendar, 559
distinguishing aliases, 510

distinguishedName attribute (Active
Directory), 431

distributed rules (URL Rewrite), 144
distribution database, 226
DNS entries

configuring for Exchange Server
2010, 482

document fragment (URLs), 139
DOCUMENT_ROOT (PHP

variable), 141
domain administrators (AD), 452
domain contexts, 421
domain controller, 366, 368, 370,

385
domain objects, 431–441

contact information, 433
converting object GUID, 432
converting Windows

timestamps, 436
general attributes for, 431–438
general search for, 431
personal information, 433
searching for users, 434–435
SID conversion, 436
user account information, 434
users, 433
viewing user account state, 437

domains, 366–367
forest, 366, 367, 370, 373, 377
joining computers to, 380–381

double-escaped character
filtering, 102

DROP DATABASE command
(T-SQL), 230–231, 233

DROP INDEX command
(T-SQL), 251

DROP SCHEMA command
(T-SQL), 239

DROP TABLE command (T-SQL), 243
Duration property (calendar), 560

E
effective permission for object, 354
Efteling, 526

email, 509–538
attachments, 529–531
creating using PHP, 535
finding folders, 513–516
impersonation by using email

address, 589
messages

defining and filtering message
content, 524

deleting, 536–537
example of email message

retrieved and displayed by
using EWS, 527–529

listing, 516–522
sending, 531–536
viewing, 522–524

requesting original MIME
content, 524–531

searching for with Restriction
element, 539

(see also EWS, email)
EmailAddresses property (contacts

(EWS)), 540
encoding, 462–463
encoding types (PDO), 316
Encrypt (database connection

option), 290
encrypted connections

establishing to AD from
PHP, 401–405

testing encrypted LDAP
connection, 402

encrypted data transfer (see HTTPS)
End property (calendar), 560
enterprise administrators (AD), 452
Entity tag, 121–122
error logging (AD), 453–454
error_log (PHP configuration

option), 91, 188
error messages, 185–198

detailed, 185–189
enabling, 186–188

determining causes of server
problems, 196

disabling, 185
in Internet Explorer, 186

displaying PHP errors during
development, 189

IIS replaced by standard, 185–188
installing URL Rewrite feature

before Trace, 190
invalid side-by-side

configuration, 7
PHP, 194–196

outputting to STDERR, 194
PHP configuration

options, 188–189
PHP scripts not executing, 197

setting the level of error
reporting, 189

setting up Trace role service, 190
STDERR (standard error

output), 188, 194–196, 198
and FastCGI module, 195

tracing, 189–193
appcmd list traces

command, 193
configuring logging rules,

191–192
enabling a trace, 190–191
installing Tracing module, 190
PHP messages, 194–195
trace entries, 192–193

error output and logs, 91
error_reporting (PHP configuration

option), 91, 188
E_ALL|E_STRICT, 189

escapeLDAP() function, 457
ETag headers, 121, 122, 123
EWS (Exchange Web

Services), 491–508
activating extensions in php.ini

file, 492
AdditionalProperties, 510, 511
AllProperties, 510
Autodiscover and

configuration data, 493–495
evaluating configuration

data, 497
retrieving configuration

data, 495–497
searching for configuration

data, 492–493
URL queries, 498

BaseShape, 510
calendar, 559–586

appointment conflicts, 580–582
common calendar entry,

563–565
complete PHP example

of declined meeting
invitation, 575–577

entry types, 559
meeting invitations, 570–577
meeting invitations,

accepting, 573
meeting invitations, accepting

tentatively, 574
meeting invitations,

declining, 574
meeting invitations,

properties, 572
meeting invitations, responding

to, 572–577
meeting invitations,

structure, 570–571

 EWS (Exchange Web Services) 609

meeting properties, 561
meetings, 566–579
meetings, canceling, 577–579
recurring appointment

properties, 561–562
standard properties, 560
time format, 562
time zones, 562–563

ChangeKey, 509, 511, 513, 514,
520–522, 525, 526, 528, 530,
534, 537, 538

contacts, 539–552
address properties, 543
changing, 543–548
CompleteNameType

properties, 541
default contact folder, 539
DistinguishedFolderId, 539
email addresses, 542
IPM.Contact type, 539
name properties, 541
PostalAddressIndex

property, 543
properties, 539–543
standard properties, 539

Contains expression, 550
CopyItem operation, 539
CreateItem operation

calendar, 559, 563–565
calendar entry, 564–565
calendar meetings, 566–579
calendar meetings,

cancelling, 578–579
calendar meetings,

creating, 566–570
calendar request

message, 563
calendar response

message, 564
email, 531–536, 539
email, creating using

PHP, 535
email, requests, 533–536
email, responses, 536
MessageDisposition

attribute, 534
SendMeetingInvitations

attribute, 567
cURL (PHP extension), 491

querying with, 495–497
Default, 510
DeleteItem operation, 536–537,

539
PHP, 537
XML messages, 537

DistinguishedFolderId, 510,
513, 514, 519, 520

elements, 509
properties of, 511
viewing, 510

email
FindFolder operation, 510,

513–516
Excludes expression, 550
Exists expression, 550
FilterHtmlContent function, 527
FindFolder operation

converting XML response to PHP
object, 515

ParentFolderIds parameter, 514
requests, 513–514
response, 514
selected properties, 513
Traversal parameter, 514
XML response, 514

FindItem operation, 516–522, 539
calendar, 559
CalendarView, 582, 583
finding contacts using, 552
IndexedPageItemView

element, 516–518
limiting results, 516–518
PHP objects, 521–522
PHP requests, 519
requests, 519–520
responses, 520–522
SortOrder element, 517
XML request, 519
XML response, 520–521

folders
finding, 513–516
labeled, 510

GetAttachment
operation, 529–531

requests, 530
responses, 530

GetItem operation, 510, 522–524,
539

appointment conflicts, 580
calendar, 559
defining and filtering message

content, 524
in PHP, 525
response message from, 526
SOAP header

RequestServerVersion, 523
IdOnly, 510
IDs, 509

labeled folders, 510
impersonation, 587–590

by using email address, 589
by using PrincipalName, 588
by using SID, 590
granting rights, 587

IncludeMimeContent
element, 524–531

requests, 525
response, 526

labeled folders, 510
mapping errors at the element

level, 526
messages

deleting, 536–537
example of email message

retrieved and displayed by
using, 527–529

sending, 531–536
viewing, 522–524

modifying schema, 518
MoveItem operation, 539
NTLM authentication (Exchange

default configuration), 495
OpenSSL (PHP extension), 491
PHP SOAP extension

converting structure of SOAP
message into PHP object, 514,
515

generating correct XML, 517
PHP working with EWS WSDL, 501
properties, 511–512

basic, 512
extended, 512
groups, 512
names of, 511–512

queries, 510
required PHP extensions, 491–492
searching

Boolean expressions, 549
comparison expressions, 549
defining search in request,

552–557
expressions, 548–550
finding certain properties,

548–551
for contacts, 556–557
search form for contacts, 553
SearchParameters class,

554–556
WSDL search expressions, 550

SearchParameters class, 554–558
SOAP errors caused by references

and accessors, 531–532
SOAP (PHP extension), 491
structure, 509–512
testing EWS WSDL file, 501
type mapping and, 518
UpdateItem operation, 539,

543–548
AppendToItemField

function, 543
ChangeKey, 544
changing meeting, 567

610 EWS

requests, 513–514
response, 514
selected properties, 513
Traversal parameter, 514
XML response, 514

converting XML response to PHP
object, 515

FindItem operation (EWS), 516–522,
539

calendar, 559
CalendarView, 583
FieldURIOrConstant element, 549
finding contacts using, 552
IndexedPageItemView

element, 516–518
limiting results, 516–518
modifying schema, 518
PHP SOAP extension

generating correct XML, 517
requests, 519–520

PHP, 519
XML, 519

responses, 520–522
PHP object, 521–522
XML, 520–521

SortOrder element, 517
type mapping, 518

FirstName property
(CompleteNameType), 541

FirstOccurrence property
(appointments), 562

float(n) data type (SQL Server), 235
Float (PHP data type), 305
FolderId property (FindFolder

(EWS)), 513
foreign keys, 246–249, 272, 273,

277
actions based on, 247
defining, 246–247
defining using SSMS, 248–249

forest, 366, 367, 370, 373, 377
formatChangedEntry()

function, 455
fragmenting, 289
FREETEXT/FREETEXTTABLE, 325
free-text search, 325
full-text search, 319–326

CONTAINS statement, 323–325
CONTAINSTABLE(), 323–325
creating catalog using SSMS, 321
creating catalog using T-SQL, 322
creating index using SSMS, 321
creating index using T-SQL, 322
exact search queries, 323–325
expressions for, 325
free-text search, 325
installing in SQL Server, 320
language selection, 320
searching with index, 323–326

EWS (continued)
DeleteItemField function, 543
PHP requests, 546
requests, 544–547
responses, 547–548
SetItemField function, 543
XML requests, 544–545

version information, 509
WSDL search expressions, 550

exact search queries, 323–325
example PHP application, 15
Exchange Management Console

New Mailbox, 489
Exchange Management Shell (EMS)

Autodiscover and EWS URLs, 498
Exchange Server 2010, 479–490

Autodiscover, 492–498
certificates

assigning services to, 488
configuring, 485–488
issuing, 487–488
requesting, 486

configuration after
installation, 484–488

configuring
DNS entries, 482
IIS, 480–481
shared ports, 481

creating a mailbox, 489
installing, 482–484

features, 481
Office System converter, 482
required services and

features, 479–482
role services, 480

registering, 484–485
required features, 481
requirements, 480
Role-Based Access Control

(RBAC), 479
Transport Layer Security (TLS)

encrypted connections, 485
Web Server (IIS) roles, 480

ExchangeSoapClient class, 501–505
overview, 502–503
searching for contacts, 556–557
SOAP_SINGLE_ELEMENT_ARRAYS

option, 584
using, 504–505

Exchange Web Services (see EWS)
Excludes expression (EWS), 550
executable files, specifying, 89–90
EXECUTE AS CALLER

statement, 360, 361
EXECUTE AS OWNER

statement, 360, 361
EXECUTE AS SELF statement, 360,

361

EXECUTE AS statement (SQL
Server), 360

EXECUTE AS ’user name’
statement, 360

EXECUTE permission (SQL
Server), 353

EXECUTE statement (T-SQL), 333
Exists expression (EWS), 550
exitWithError()

(LDAPConnection), 400
Expires header, 118–119
extended operation (LDAP), 392

F
FastCGI, 9, 38–40

configuring (see configuring
FastCGI)

functionality, 34
impersonation, 7, 96, 288
instanceMaxRequests variable, 72
request limits, 71–73

configuring using command
line, 73

configuring using configuration
file, 73

configuring using IIS
Manager, 72

time limits for request
processing, 74

user.ini files and, 66
vs. CGI, 38–39
vs. ISAPI, 40

FastCgiModule (IIS), 34
STDERR and, 195

FastCGI Settings feature (IIS
Manager), 64

configuring request limits, 72
fetch modes (PDO), 314–315
FETCH statement (T-SQL), 265
FieldURIOrConstant element, 549
FILEGROUP group type (SQL

Server), 226, 227, 229
files

changes to files on network
share, 63

temporary, 75–76
file types

databases, 226
FilterHtmlContent function

(EWS), 524, 527
filtering data, 292–293
Filter setting (LDP), 394
FindFolder operation (EWS), 510,

513–516
converting XML response to PHP

object, 515
ParentFolderIds parameter, 514

 identity and access rights 611

HTTP_REFERER variable, 163
HTTP requests

caching, 118
FastCGI, 38–40

vs. CGI, 38–39
vs. ISAPI, 40

flow, 31–33
application process flow, 33
HTTP protocol stack, 32
overview, 32
WAS (Windows Process

Activation Service), 32
redirecting, 34
suspicious requests, 34
variables of an, 141

HTTPS, 109–115
$_SERVER variables

for client certificate, 113
for retrieving connection

and server certificate
information, 113

authentication with client
certificates, 114–115

creating keys and
certificates, 109–110

user certificate, 112
redirecting to, 180
retrieving information about

connection, 113
setting up binding, 110–111
setting up user certificate, 112
set up encrypted

connection, 110–113
SSL Settings feature, 111–112

HTTPS_KEYSIZE variable
($_SERVER), 113

HTTPS_SECRETKEYSIZE variable
($_SERVER), 113

HTTPS_SERVER_ISSUER variable
($_SERVER), 113

HTTPS_SERVER_SUBJECT variable
($_SERVER), 113

HTTP status codes for Redirect, 147
HTTPS variable ($_SERVER), 113,

141
http.sys, 34
HttpUser object for anonymous

authentication, 34
HTTP_X_ORIGINAL_URL (IIS only)

(PHP variable), 141

I
identity and access rights, 96–98

anonymous authentication, 97
application pool identity, 96
path logon information, 97
securing PHP application, 98

finding groups without
members, 447

primaryGroupID attribute, 448
searching for primary group of an

object, 449
groupType attribute (Group

object), 439, 440

H
handler assignment

configuring, 89
handlers, 8, 11, 197

configuring handler
assignment, 79

StaticFile, 8
content caching attributes, 125

HasAttachments property
(EWS), 511

HasBeenProcessed property
(meeting invitation), 572

HAVING keyword (T-SQL)
versus WHERE clause, 255

hierarchyid data type (SQL
Server), 237

host names
canonical, 176
multiple, 176

host name (URLs), 139
hotlinking, preventing, 179–180
.htaccess file

php_flag statement, 66
php_value statement, 66

HTML, adding notices to
pages, 180–181

HTMLPage, 417–419
addTable(), 418

HTTP
caching

change date option, 120
duration, 118–120
mutable contents, 120–122

protocol stack, 32
HttpCacheModule (IIS), 34
httpExpires attribute (content

caching), 125
HTTP features, Web Server (IIS)

roles, 480
HTTP headers

caching with, 117
setting in URL Rewrite, 162–164
specifying in IIS for

caching, 123–125
configuration elements, 125
using command line, 124
using IIS Manager, 123

URL Rewrite, 168, 170
HttpLoggingModule (IIS), 34

g
GetAttachment operation

(EWS), 529–531
requests, 530
responses, 530

Get-Autodiscover-
VirtualDirectory, 498

Get-clientAccessServer, 498
GetFolder operation (SOAP

request), 504, 505
get_image.php, 306
GetItem operation (EWS), 510,

522–524, 539
calendar, 559

appointment conflicts, 580
defining and filtering message

content, 524
in PHP, 525
response message from, 526
SOAP header

RequestServerVersion, 523
Get-WebServices-

VirtualDirectory, 498
givenName attribute (domain

objects), 433
GivenName property (contacts

(EWS)), 540, 541
global catalog

finding all attributes in global
catalog, 443

<globalRules> configuration
elements, 168–169

GRANT command (T-SQL), 356–357
GROUP BY clause (T-SQL), 255
Group object class, 438–440

attributes, 438
searching for groups, 439
viewing group type, 440

groups, 464–465
Active Directory (AD)

adding user to group, 464
creating, 377–378
deleting, 474–475
removing user from group, 465
setting members and

memberships, 378–379
determining if users are members

of a group, 448
finding all distribution

groups, 447
finding all groups containing a

certain member, 447
finding all members of a

group, 448
finding all members with a group

as primary group, 449

612 IDENTITY number (SQL Server)

Edit Request Filtering Settings
dialog box, 104

enabling tracing, 190
FastCGI Settings feature, 64

configuring request limits, 72
locking and unlocking

configuration using, 58–60
Monitor Changes To File, 64
path logon information, 97
Request Filter feature, 106
setting up binding, 110–111
setting up filter rules, 107
setting up user authentication, 93
sites

setting up, 20–22
starting and stopping, 26

specifying default
document, 69–70

SSL Settings feature, 111–112
virtual directories, setting up, 30

IIS PHP Manager (see PHP Manager)
IIS role services

installing
authentication role services, 93
authentication with client

certificates, 114
URL Authorization, 99

IIS_UrlRewriteModule (IIS only) (PHP
variable), 141

IIS_WasUrlRewritten (IIS only) (PHP
variable), 141

ImAddresses property (contacts
(EWS)), 540

image data type (SQL Server), 235
images

displaying image directly from
the database using PDO
driver, 316

IMPERSONATE permission (SQL
Server), 353

impersonation, 360, 587–590
by using email address, 589
by using PrincipalName, 588
by using SID, 590
FastCGI, 288
granting rights, 587
required permissions, 360
(see also stored procedures)

IncludeMimeContent element
(EWS), 524–531

requests, 525
response, 526

IncludesLastItemInRange (FindItem
(EWS)), 514, 517

IndexedPageItemView
element, 516–518

indexes, 249–251
CLUSTERED clause, 249
CREATE INDEX command, 249

modules, 34
Output Cache (see Output Cache)
paths and folders, 27
role services, 480–481
root directory path, 27
security (see security)
setting up using Web Platform

Installer (Web PI), 13
sites, 19–26

adding additional bindings,
24–25

managing, 26
testing, 23–24

sites, setting up, 20–24
using command line, 22
using IIS Manager, 20–22

virtual directories, 27–31
setting up using command

line, 31
setting up using IIS Manager, 30

web.config root file, 42
web server (see IIS web server)
(see also IIS Manager)

IIS log files, 149
IIS Manager

Add Allow Authorization Rule
dialog box, 99

adding additional bindings, 24–25
application pools, setting up, 35

identity, 36–37
applications

changing settings, 29–30
setting up, 28–29

caching
specifying HTTP headers

for, 123–124
with Output Cache, 126–128

Configuration Editor, 45, 46, 48
configuration files and, 42
configuring FastCGI, 80
configuring file name

extensions, 106
configuring logging rules, 191
configuring new PHP

version, 79–80
configuring PHP, 9–11

setting up file monitoring, 64
configuring PHP syntax

highlighting, 76–77
configuring time limits for request

processing, 74
Create Domain Certificate dialog

box, 110
creating keys and

certificates, 109–110
defining authorization rules, 99
defining general settings of

request filter feature, 104–105
editing location sections, 48–49

IDENTITY number (SQL Server), 241
IdOnly (EWS), 510
IDs, Exchange 2010 vs. Exchange

2007, 523
IF/ELSE queries (T-SQL), 334–335
IIS application pool, 96

adding users, 347
IIS (Internet Information

Services), 19–40
account IIS uses to execute PHP

code, 7
applicationHost.config, 42, 47
application pools, 27, 35–38

identity, 36–38
setting up, 35

applications, 27–30
changing settings, 29–30
nested, 27
root, 27
setting up, 28–29

backing up configuration, 14
bandwidth, saving, 34
caching

specifying HTTP headers,
123–125

Common Gateway Interface
(CGI), 34

configuration files, 42–43
configuring IIS (see configuring

IIS)
configuring PHP (see configuring

PHP in IIS)
current version, 4
custom error messages, 34
error messages, 185–188
FastCGI, 34, 38–40

vs. CGI, 38–39
vs. ISAPI, 40

HTTP answer, 34
HTTP request flow, 31–33

application process flow, 33
overview, 32

HTTP requests
redirecting, 34
suspicious requests, 34

HttpUser object for anonymous
authentication, 34

installing, 4–6
using command line, 6
using Service Manager, 4–5
using Web Platform Installer

(Web PI), 12–14
logic for Kernel mode cache with

http.sys, 34
machine.config, 42, 47
making accessible or inaccessible

from outside connections, 17
MIME data type, 34

 LDAPConnection class 613

J
JOIN expression (T-SQL), 257–259

linking tables to themselves, 259

K
kernelCachePolicy attribute for

configuration collection
caching/profiles, 129

Kernel mode cache, 34
Key property (email addresses

(EWS)), 542, 543
keys, 243–251

CONSTRAINT (T-SQL), 244, 246,
247, 273, 276–278

Create A New Private Key, 382
creating keys and

certificates, 109–110
cryptographic key pair, 381, 382
foreign keys, 246–249

actions based on, 247
defining, 246–247
defining using SSMS, 248–249

primary keys, 243–246
changing, 244
defining when creating

table, 243–244
Public Key Infrastructure

(PKI), 381

L
labeled folders, 510
languages

full-text search language
selection, 320

multilingual pages, 176–177
lastLogoff attribute (domain

objects), 434
lastLogon, lastLogonTimestamp

attributes (domain
objects), 434, 446

Last-Modified header, 120–123
change date option, 120

LastOccurrence property
(appointments), 562

l attribute (Active Directory), 434,
441

ldap_add() function, 467–469
creating new group, 472
creating new user, 472–474

ldap_bind() authentication
method, 403–404

LDAPConnection class, 456–457
creating encrypted connection

with, 466
methods and properties, 400
PHP LDAP Browser (PLB), 415

installing .NET Framework, 202
Instance Configuration

page, 204
Management Tools, 203
Mixed Mode option, 205
Ready To Install page, 205
sample database, 217–219
Server Configuration page, 204
SQL Server Feature

Installation, 203
support files, 203

SQL Server Express, 206–209
manually, 206–207
troubleshooting

installation, 207
with Web PI, 208

SQL Server Migration Assistant for
MySQL (SSMA), 219–220

SQL Server PHP
extensions, 209–211

manually, 209–210
Web PI, 211

SSMA for MySQL, 220
URL Rewrite

manually, 138
using Web PI, 138

WinCache
manually, 130
using Web PI, 131

instanceMaxRequests variable
(FastCGI), 72

instanceType attribute (Active
Directory), 431

int data type (SQL Server), 234
Integer (PHP data type), 305
Integration Services (SQL

Server), 201
IntendedFreeBusyStatus property

(meeting invitation), 572
Internet Explorer, disabling error

messages, 186
invalid side-by-side configuration

error message, 7
IP addresses

servers
obtaining, 24

IPM.Contact type, 539
IsAllDayEvent property

(calendar), 560
ISAPI vs. FastCGI, 40
IsCancelled property

(meetings), 561
IsMeeting property (meetings), 561
IsRecurring property (calendar), 560
IsResponseRequested property

(meetings), 561
ItemClass property (calendar), 560
ItemClass property (EWS), 511, 539
ItemId property (EWS), 511, 539

creating, 249–250
using SSMS, 250–251

deleting, 251
DROP INDEX command, 251
NONCLUSTERED clause, 249
UNIQUE clause, 249

inetmgr, 9
inline table-valued function, 339
INNER JOIN expression

(T-SQL), 257, 258
INSERT command (T-SQL), 266–268

default values, 266
insert table by using SSMS, 267
OUTPUT clause, 267

INSERT permission (SQL
Server), 353

installing
Active Directory (AD), 367–371

AD DS, 370–371
preparation, 368
server role, 368–369

Active Directory Certificate
Services (AD CS), 381–384

Certification Authority Web
Enrollment option, 382

Create A New Private Key, 382
Enterprise or Standalone

option, 382
naming certification

authority, 383
Root CA option, 382

AdventureWorks sample
database, 217–219

Exchange Server 2010, 482–484
Office System converter, 482
required services and

features, 479–482
IIS, 4–6

using command line, 6
using Server Manager, 4–5
using Web Platform Installer

(Web PI), 12–14
IIS role services, 93, 99
MySQL ODBC driver, 219–220
PHP, 6–8

default PHP modules, 8
fastcgi.impersonate option, 7
new version, 78
root folder or virtual

directory, 87–89
using Web Platform Installer

(Web PI), 12–14, 61
PHP Manager, 61–62
SQL Server, 202–211

Client Tools Connectivity, 203
Database Engine Configuration

page, 205
Database Engine Services, 203
full-text search module, 320

614 LDAPConnection .php script

lockAllElementsExcept attribute
(IIS), 56

lockAttributes attribute (IIS), 56
example, 56

locked accounts
finding users with locked or

deactivated accounts, 445
lockElements attribute (IIS), 56

example, 57
lockItem attribute (IIS), 56

example, 57
log creation, 50
log_errors (PHP configuration

option), 91, 188, 189
log files

transaction log files (extension
.ldf), 226

logins (AD)
finding all users who have not

logged on since a certain
time, 446

logins (SQL Server)
adding IIS application pool

users, 347
creating, 346–348

using SSMS, 346–347
using T-SQL, 347–348

login types of server
principals, 344

LoginTimeout (database connection
option), 290

logonMethod attribute
(<virtualDirectory>), 53

log (system.applicationHost), 50
lost updates, 327
lpc protocol identifier, 286

M
machine.config (IIS), 42, 47
magic_quotes_gpc (PHP security

setting), 90
magic_quotes_runtime (PHP

security setting), 90
MailboxType property (email

addresses (EWS)), 542
MAPI tag 0x3A45 property (contacts

(EWS)), 541
masking data, 292–293
master database, 225
max-age statement in Cache-

Control header, 119, 122
MaxEntriesReturned (FindItem

(EWS)), 516
max_execution_time (PHP security

setting), 91
max(expression) (T-SQL), 255

querying entries, 405–412
iterating through search

results, 410–412
ldap_get_entries() function, 410

search, 415
evaluating results, 415–416
viewing search results, 416–417

searching by using, 394
searching for domain

users, 405–407
utilities, 392–398

ADSI Edit, 395–398
LDP, 393–395

(see also PHP LDAP Browser (PLB))
ldap_list() function, 405, 469
ldap_mod_add() function, 458, 459,

462, 464
ldap_mod_del() function, 459–462
ldap_mod_replace() function,

461–462, 466
ldap_next_entry() function, 410
ldap_read() function, 405, 415, 443,

448
ldap_rename() function, 470
ldap_search() function, 405, 406,

410, 415, 442, 448
.ldf files, 226
LDP utillity, 393–395

Add Child command, 395
Area setting, 394
Attributes setting, 394
Base DN setting, 394
changing entries by using, 395
Delete command, 395
Filter setting, 394
Modify command, 395
Modify DN command, 395
working with, 393–394

LEFT OUTER JOIN expression
(T-SQL), 258

LegacyFreeBusyStatus
(calendar), 560, 565, 566, 571,
572, 581, 582

Lightweight Directory Access
Protocol (see LDAP)

listenerAdapters (system.
applicationHost), 50

local authentication, 95
location

configuring paths using, 47–48
locking and unlocking

configuration using, 54–56
specifying section rights, 54

overrideMode attribute, 54
<location path=“.”> statement, 48
Location property (calendar), 560
lockAllAttributesExcept attribute

(IIS), 56

LDAPConnection.php
script, 400–401

ldap_count_entries() function, 415
ldap_delete() function, 469
ldap_delete_recursive()

function, 469
lDAPDisplayName attribute

(classSchema), 423, 427
LDAPEntryFormatter class, 417–419

getAttributes() method, 418
getValue() method, 418
link() method, 419

ldap_errno() function, 453
ldap_error() function, 453
LDAP filter

attribute syntax, 428
object classes vs. object

categories, 426
ldap_first_entry() function, 410
ldap_free_result() function, 415
ldap_get_attributes() function, 410,

411, 412, 417
ldap_get_entries() function, 406,

410, 411, 412, 416, 417, 469
LDAP (Lightweight Directory Access

Protocol)
ADSI and, 389
authentication, 403–404
basics, 389–412
certificates and, 381, 384

checking if encrypted access
works, 386

establishing encrypted
connection, 385

classes and inheritance, 391
connections, 451
directory hierarchical

structure, 390
filters, 407–410

escape sequences for
characters, 408

examples of syntax, 409–410
operators, 408

formatting entry, 417–419
operations, 392
PHP LDAP extension

activating, 398–399
communication process,

399–400
configuring, 398–403
configuring OpenLDAP, 402
establishing encrypted

connection to AD from
PHP, 401–405

LDAPConnection.php
script, 400–401

testing encrypted LDAP
connection, 402

protocol elements, 391–392

 operators for LDAP filters 615

nvarchar(max) data type (SQL
Server), 235

nvarchar(n) data type (SQL
Server), 235

O
objectCategory attribute (Active

Directory), 431
objectClass, 431
objectClass attribute (Active

Directory), 431
object classes

attributes for, 423–424
attributes of top object class, 423
categories, 424
finding all object classes derived

from an object class, 444
finding and viewing, 424–426
structure rules, 443
vs. object categories, 426

objectGUID attribute (Active
Directory), 431

object GUID, converting, 432
object names, 238
objects

domain (see domain objects)
finding all possible attributes for a

certain object, 443
group (see Group object class)
organizational (see

OrganizationalUnit class)
searching for primary group of an

object, 449
(see also object classes)

objectSid attribute (Active
Directory), 434, 439

objects (SQL Server), 353–358
effective permission, 354
managing permissions

using SSMS, 355–356
ownership chains, 354
permissions, 353–355
schema and, 353

Office System converter,
installing, 482

Offset (FindItem (EWS)), 516
OFFSET statement (T-SQL), 265
opcode cache (WinCache), 129,

132–136
open_basedir (PHP security

setting), 90
OpenLDAP, 401

configuring, 402
verifying connection

certificate, 403
OpenSSL (PHP extension), 491
operators for LDAP filters, 408

multiple host names, 176
multi-statement table-valued

function, 339
MUST_CHANGE (SQL Server), 347,

348
mustContain attribute

(classSchema), 423, 442
must-revalidate statement in Cache-

Control header, 122
MyResponseType property

(meetings), 561, 572
MySQL

migrating databases, 219–223
installing SQL Server Migration

Assistant for MySQL
(SSMA), 219–220

SSMA for MySQL
installing and registering, 220

MySQL ODBC driver
installing, 219–220

N
name attribute (Active

Directory), 423, 427, 431, 433,
439, 441

named pipes, 286
Name property (email addresses

(EWS)), 542
nchar(n) data type (SQL Server), 235
.ndf files, 226
.NET Framework

installing, 202
network share

changes to files on network
share, 63

New Mailbox Wizard, 489
NO ACTION (SQL Server), 247
no-cache statement in Cache-

Control header, 122
NONCLUSTERED clause, 249
non-repeatable reads, 327
no-store statement in Cache-

Control header, 122
np protocol identifier, 286
ntext data type (SQL Server), 235
NTLM authentication (Exchange

default configuration), 495
retrieving Autodiscover data

over TLS with NTLM
authentication, 496

SoapClient class, 501
nTSecurityDescriptor attribute

(Active Directory), 431
N’’ (T-SQL), 236
numeric(p,s) data type (SQL

Server), 235

max_input_time (PHP security
setting), 91

mayContain attribute
(classSchema), 423, 442

.mdf files, 226
MeetingRequest, 522, 570–573,

575, 576
MeetingResponse, 572
MeetingTimeZone property

(calendar), 560
member attribute (Group

object), 439
memberOf attribute (domain

objects), 434
memberOf attribute (Group

object), 439
MessageDisposition attribute

(CreateItem (EWS)), 534
Microsoft Drivers for PHP for SQL

Server, 310
Microsoft Management Console

(MMC)
ADSI Edit, 395–398
certificates

exporting, 387
exporting root certificate,

386–387
issuing for AD, 385
issuing user certificate, 112

changing access rights, 452
creating groups, 377–378
setting group members and

memberships, 378–379
migrating MySQL

databases, 219–223
installing SQL Server Migration

Assistant for MySQL
(SSMA), 219–220

MIME
data type, 34
requesting original MIME

content, 524–531
min(expression) (T-SQL), 255
model database, 226
Modify command (LDP), 395
Modify DN command (LDP), 395
modify DN operation (LDAP), 392
modify_ldap.php, 455–456
modify operation (LDAP), 392
money data type (SQL Server), 235
Monitor Changes To File (IIS

Manager), 64
MoveItem operation (EWS), 539
MRA (multi-reference

accessor), 531–532
multilingual pages, 176–177
MultipleActiveResultSets (database

connection option), 290

616 OptionalAttendees property (meetings)

configuring (see configuring PHP)
converting Windows

timestamps, 436
establishing encrypted connection

to AD from PHP, 401–405
example application, 15
executable files, specifying, 89–90
extensions

cURL, 491
OpenSSL, 491
required for EWS, 491–492
SOAP, 491
WinCache (see WinCache)

identifying appointment
conflicts, 580–581

installing, 6–8
default PHP modules, 8
fastcgi.impersonate option, 7
new version, 78
using Web Platform Installer

(Web PI), 12–14, 61
missing Visual C++ runtime

component libraries, 7
predefined variables, 138–143

additional PHP and IIS, 140–141
prepared statements, 336–337
retrieving authentication in, 95
security (see security)
session management

settings, 92
setting up using Web Platform

Installer (Web PI), 13
SoapHeader class, 523
stored procedures

calls from, 336–337
structuring application, 86–90

folder structure, 87
installing root folder or virtual

directory, 87–89
parts of application, 86
properties, 86
specifying executable files,

89–90
testing EWS WSDL file, 501
transactions, 328–329

specifying isolation level, 329
Unicode-ready code, 104
working with EWS WSDL, 500

php-cgi.exe, 9
PHP Data Objects (PDO)

calling stored procedures
from, 337–338

transactions, 330
PHP_FCGI_MAX_REQUESTS

variable, 72
php_flag statement (.htaccess

file), 66
PHP handler mapping, 197

path attribute
(<virtualDirectory>), 53

PATH_INFO ($_SERVER), 140
<Path> parameter (appcmd), 49
PATH_TRANSLATED ($_SERVER), 140
path (URLs), 139
PDO::beginTransaction()

function, 330
PDO::commit() function, 330
PDO driver, 310–316

common fetch modes, 314
connecting to SQL Server

with, 311
database access lifecycle, 310
data types and streams, 315–316
direct quesries and prepared

statements, 311
displaying image directly from the

database, 316
querying data with, 310
retrieving results, 314–316
setting database language

option, 313
PDO encoding types, 316
PDO fetch modes, 314–315
PDO parameter data types, 315
PDO::rollBack() function, 330
permissions (SQL Server), 353–355

common, 353
database principals, 344
database roles, 345
effective permission for

object, 354
impersonation, 360
managing using SSMS, 355–356
managing using T-SQL, 356–358
ownership chain, 354
server roles, 344
stored procedures and, 358–359

Person object class, 433
phantom reads, 327
PhoneNumbers property (contacts

(EWS)), 540
PHP

accessing SQL Server data (see
accessing data in SQL Server
from PHP)

account IIS uses to execute PHP
code, 7

backing up configuration, 14
change modes of PHP settings at

runtime, 63
complete example of searching

calendar, 583–586
configuring in IIS, 8–12

handlers, 8
using command line, 11–12
using IIS Manager, 9–11

OptionalAttendees property
(meetings), 561

ORDER BY clause (T-SQL), 256
OrganizationalPerson object

class, 433
OrganizationalUnit class, 440–441

attributes, 441
looking up organizational

units, 441
organizational units (AD), 373–375

creating, 373–374
defining additional

properties, 374
deleting, 375

Organization object class, 440
Organizer property (meetings), 561
ORIG_PATH_INFO (PHP

variable), 141
ou attribute (OrganizationalUnit

class), 441
<outboundRules> configuration

element, 172
OUTER JOIN expression

(T-SQL), 257
Output Cache, 117, 126–129

configuring using command
line, 128

configuring using configuration
elements, 129

configuring using IIS
Manager, 126–128

OUTPUT clause (T-SQL), 267, 269
overrideMode attribute, 54

specifying rights for individual
settings, 56

P
parameter data types (PDO), 315
parameterizing statements, 291,

293–294
PDO driver and, 312

ParentFolderId property (EWS), 511,
513

ParentFolderIds parameter, 514
password attribute

(<virtualDirectory>), 53
passwords

Active Directory (AD)
changing, 466
forced changes, 465

finding users or computers not
requiring a password or
with a password that never
expires, 445

PHP scripts and, 283
path attribute (IIS), 48

 product_list .php sample program 617

physicalPath attribute
(<virtualDirectory>), 53

policy attribute for configuration
collection caching/
profiles, 129

port number (URLs), 139
PostalAddressIndex property

(contacts), 543
PowerShell

configuration files and, 42
Exchange Server 2010

configuring shared ports, 481
installing features, 481
installing role services, 481
issuing certificate, 487

POX Autodiscover service, 494
predefined variables, 138–143

CGI, 139–140
PHP and IIS, 140–141

prepared statements, 299–303,
336–337

binding parameters and values
with, 312

PDO driver and, 311–313
prepare() method, 300, 302
primary data files (extension

.mdf), 226
PRIMARY file group (SQL

Server), 226–229, 232, 237,
243, 244, 247, 250

primaryGroupID attribute, 448
primary keys, 243–246

changing, 244
defining when creating

table, 243–244
PrincipalName, impersonation by

using, 588
print operators (AD), 452
private statement in Cache-Control

header, 122
procedures (T-SQL), 274–278

sp_databases, 274–275
sp_help, 276
sp_pkeys

T-SQL statements, 278
sp_spaceused, 275
sp_tables, 275–276

product_list.php sample
program, 280–282

Adventure Works product
output, 282

freeing result and closing
database connection, 284

opening database
connection, 283

retrieving result, 284
sending query, 283

main program, 413–417
searching for groups, 439
searching for users, 434–435
SID conversion, 436
type information and search

definitions, 419–420
user search, 445–446
viewing attribute classes, 428
viewing group type, 440
viewing object classes, 424–425
viewing search results, 416–417
viewing user account state, 437

PHP LDAP extension
activating, 398–399
communication process, 399–400
configuring, 398–403
establishing encrypted connection

to AD from PHP, 401–405
LDAPConnection.php

script, 400–401
OpenLDAP

configuring, 402
testing encrypted

connection, 402
verifying connection

certificate, 403
testing encrypted LDAP

connection, 402
PHP Manager

configuring PHP
new version, 79
setting up file monitoring, 65

installing, 61–62
additional PHP versions, 62

setting the level of error
reporting, 189

start screen, 62
PHP modules, 8
PHP objects

converting XML response to PHP
object, 515

evaluating response message
from FindItem operation
(EWS), 521

PHP scripts
in root folder of public zone, 89
not executing, 197
passwords and, 283

PHP_SELF (PHP variable), 141, 151
PHP SOAP extension

converting XML response to PHP
object, 515

generating correct XML, 517
php_value statement (.htaccess

file), 66
PHP with FastCGI (see FastCGI)
PhysicalAddresses property

(contacts (EWS)), 540

PHP_INI_ALL change mode, 63
php.ini file

activating extensions in, 492
path and host dependent

configuration in, 65–66
PHP_INI_PERDIR change mode, 63
PHP_INI_SYSTEM change mode, 63
PHP_INI_USER change mode, 63
PHP interpreter, 63
PHP LDAP Browser (PLB), 413–421

configuring schema search, 442
conversion functions, 421
converting object GUID, 432
converting Windows

timestamps, 436
determining if users are members

of a group, 448
displaying attribute description

in, 429
entry form, 414
evaluating search results, 415–416
finding all attributes calculated

automatically, 443
finding all attributes in global

catalog, 443
finding all distribution

groups, 447
finding all groups containing a

certain member, 447
finding all members of a

group, 448
finding all object classes derived

from an object class, 444
finding all object classes with

certain attribute, 442
finding all possible attributes for a

certain object, 443
finding all users who have not

logged on since a certain
time, 446

finding groups without
members, 447

finding users changed after a
certain date, 445

finding users created before a
certain date, 445

finding users or computers not
requiring a password or
with a password that never
expires, 445

finding users with locked or
deactivated accounts, 445

formatting LDAP entry, 417–419
general search for domain

objects, 431
LDAPConnection class, 415
looking up organizational

units, 441

618 product_list .php sample program

Rewrite action type (URL
Rewrite), 144

ToLower function, 162
UrlDecode function, 162
UrlEncode function, 162
variables, 162

<rewrite> configuration
elements, 167

<rewriteMap> configuration
element, 172

<rewriteMaps> configuration
element, 171

Role-Based Access Control
(RBAC), 479

roles, 344
role services, 480–481
ROLLBACK TRANSACTION

(T-SQL), 326
root directory path, 27
root folder

installing PHP, 87–89
of public zone, PHP scripts in, 89

RoutingType property (email
addresses (EWS)), 542

ROW_NUMBER() function
(T-SQL), 265

rowversion data type (SQL
Server), 237

<rule> configuration element inside
of <outboundRules>, 174

<rules> configuration
elements, 168–169

S
sAMAccountName attribute (Active

Directory), 434, 439
SAVE TRANSACTION (T-SQL), 326
scalar function, 338
schemas, 422–430

attribute classes, 426–430
attributes for, 427
finding and viewing, 428
syntax, 428–430
syntax, adding additional

information to, 430
userPrincipalName, 426

context, 421
CREATE SCHEMA command, 238
domain objects, 431–441

contact information, 433
converting object GUID, 432
converting Windows

timestamps, 436
general attributes for, 431–438
general search for, 431
personal information, 433
searching for users, 434–435

Reporting Services (SQL
Server), 201

Request Blocking template, 153
request filter feature, 101–109

configuring, 89
double-escaped character

filtering, 102
filtering file name extensions, 101,

106–109
filtering with rules, 107–109
general settings, 101

character filter, 102
defining, 102–106
defining from command

line, 105–106
defining in IIS Manager,

104–105
request limits, 102

hiding URL segments, 101
limits to length of individual HTTP

headers, 101
PHP coding, 104
query string filtering, 101
restrictions of permitted HTTP

verbs, 101
rule-based filtering, 101
URL coding of query string, 104
URL coding rules, 103
URL filtering, 101

RequestFilteringModule (IIS), 34
request limits, 71–73, 102

configuring using command
line, 73

configuring using configuration
file, 73

configuring using IIS Manager, 72
RequestServerVersion SOAP

header, 523
REQUEST_URI (PHP variable), 141
RequiredAttendees property

(meetings), 561
resource limits, 91
Resources property (meetings), 561
ResponseClass (EWS), 514, 526
ResponseCode (EWS), 514, 526
retrieving data as streams, 306–308
retrieving results, 280, 284, 297–299

as objects, 297–298
individual fields, 299
PDO driver, 314–316

ReturnDatesAsStrings (database
connection option), 290

RETURN statement
(T-SQL), 333–334

REVERT statement (SQL Server), 360
REVOKE command (T-SQL), 356,

357

product_list.php sample program
(continued)

sqlsrv_connect() function, 283,
285

sqlsrv_fetch_array() function, 284,
295, 297, 298, 299, 300

sqlsrv_free_stmt() function, 284,
295, 300

sqlsrv_query() function, 283
utils.php script, 285

protocol identifiers, 286
ProtocolSupportModule (IIS), 34
Public Key Infrastructure (PKI), 381
public statement in Cache-Control

header, 122

Q
querying data (see T-SQL

statements)
QUERY_STRING ($_SERVER), 140
query string filtering, 101
query string (URLs), 139

R
RDBMS (relational database

management systems), 225
READ COMMITTED (SQL

Server), 327
READ UNCOMMITTED (SQL

Server), 327
real data type (SQL Server), 235
Recurrence property

(appointments), 562
recursive expressions (CTEs), 262
Redirect action type (URL

Rewrite), 144
variables, 162

REFERENCES permission (SQL
Server), 353

register_globals (PHP security
setting), 90

Register New PHP Version function
in PHP Manager, 62

regular expressions, 157–159
control characters, 158–183

relational databases, 257
ReminderDueBy property

(EWS), 511, 560
ReminderIsSet property (EWS), 511,

560
ReminderMinutesBeforeStart

property (EWS), 511, 560
remote access, 16–17
<remove> element (IIS), 45
REPEATABLE READ (SQL

Server), 328

 security 619

configuring PHP, 90–92
error output and logs

settings, 91
general settings, 90
resource limits settings, 91
session management

settings, 92
HTTPS, 109

authentication with client
certificates, 114–115

creating keys and
certificates, 109–110

retrieving information about
connection, 113

setting up binding, 110–111
setting up user certificate, 112
set up encrypted

connection, 110–113
SSL Settings feature, 111–112

identity and access rights, 96–98
anonymous authentication, 97
application pool identity, 96
path logon information, 97
securing PHP application, 98

impersonation, 587–590
by using email address, 589
by using PrincipalName, 588
by using SID, 590
granting rights, 587

installing IIS role services, 93
request filter feature (see request

filter feature)
stored procedures (see stored

procedures)
structuring PHP

application, 86–90
folder structure, 87
installing root folder or virtual

directory, 87–89
parts of application, 86
properties, 86
specifying executable files,

89–90
user authentication, 92–95

authentication against AD, 95
basic, 92
digest, 92
retrieving authentication in

PHP, 95
setting up using command

line, 94
setting up using IIS

Manager, 93–94
Windows, 92

Web Server (IIS) roles, 480

Exchange Web Services (EWS)
Boolean expressions, 549
comparison expressions, 549
defining search in request,

552–557
expressions, 548–550
finding certain properties,

548–551
for contacts, 556–557
search form for contacts, 553
SearchParameters class, 554–

558
WSDL search expressions, 550

for .user.ini files, 66
full-text search, 319–326

CONTAINS statement, 323–325
CONTAINSTABLE(), 323–325
exact search queries, 323–325
expressions for, 325
free-text search, 325
language selection, 320
searching with index, 323–326

full-text (see full-text search)
groups without members, 447
LDAP, 415

evaluating search results,
415–416

viewing search results, 416–417
primary group of an object, 449
schema, 442
users changed after a certain

date, 445
users created before a certain

date, 445
users or computers not requiring

a password or with a password
that never expires, 445

users with locked or deactivated
accounts, 445

with ANR, 444
search operation (LDAP), 392
SearchParameters class, 554–556

searching for contacts, 556–557
search_products_img.php, 307
search_products.php sample

program, 294–297
secondary data files (extension

.ndf), 226
security, 85–116

authorization rules, 98–100
defining rules from command

line, 100
defining rules via IIS

Manager, 99–100
installing authorization IIS role

service, 99

SID conversion, 436
user account information, 434
users, 433
viewing user account state, 437

DROP SCHEMA command, 239
Group object class, 438–440

attributes, 438
searching for groups, 439
viewing group type, 440

modifying EWS schema, 518
modifying for WSDL search

expressions, 550
object classes, 422–426

attributes for, 423–424
attributes of top object

class, 423
categories, 424
finding and viewing, 424–426
vs. object categories, 426

object names, 238
objects and, 353
OrganizationalUnit class, 440–441

looking up organizational
units, 441

saved location, 422
searching in, 442
SQL Server, 238–239
URLs, 139
(see also XML Schema)

SCRIPT_FILENAME ($_SERVER), 141
SCRIPT_NAME ($_SERVER), 140, 151
scripts (AD), 455–458

AD_util.php, 457
LDAPConnection class, 456–457
modify_ldap.php, 455–456

searching
all attributes calculated

automatically, 443
all attributes in global

catalog, 443
all distribution groups, 447
all groups containing a certain

member, 447
all members of a group, 448
all object classes derived from an

object class, 444
all object classes with certain

attribute, 442
all possible attributes for a certain

object, 443
all users who have not logged on

since a certain time, 446
calendar, 582–586

complete PHP example, 583–
586

determining if users are members
of a group, 448

620 SELECT command (T-SQL)

SQL Injection, 291–292
SQL Server

accessing data from PHP (see
accessing data in SQL Server
from PHP)

AccessLog table, 358, 359
authentication, 287–288
CHECK_EXPIRATION, 347, 348
CHECK_POLICY, 347, 348
code pages, 236
Configuration Manager, 214
configuring for remote

access, 214–216
enabling TCP/IP, 214
sharing access in Windows

Firewall, 215–216
creating database roles, 351–352

using SSMS, 351–352
using T-SQL, 352

creating logins, 346–348
creating users, 348–351

using SSMS, 348–350
using T-SQL-DDL, 351

database principals, 344–345
database users, 345
roles, 345

databases (see databases)
data types, 234–237

dates and time, 237
numeric, 234–235
sorting of string data type,

236–237
strings and binary data,

235–237
suffixes for sort orders, 236

full-text search, 319–326
creating catalog using

SSMS, 321
creating catalog using

T-SQL, 322
creating index using SSMS, 321
creating index using T-SQL, 322
exact search queries, 323–325
free-text search, 325
language selection, 320
searching with index, 323–326

installing, 202–211
Client Tools Connectivity, 203
Database Engine Configuration

page, 205
Database Engine Services, 203
full-text search module, 320
installing .NET Framework, 202
Instance Configuration

page, 204
Management Tools, 203
Mixed Mode option, 205
Ready To Install page, 205

sites, 19–26
adding additional bindings, 24–25

using command line, 25
using IIS Manager, 24–25

defining, 50–51
managing, 26
setting up, 20–24

using command line, 22
using IIS Manager, 20–22

testing, 23–24
sites (system.applicationHost), 50
Size property (EWS), 511
smalldatetime data type (SQL

Server), 237
smallint data type (SQL Server), 234
smallmoney data type (SQL

Server), 235
SNAPSHOT (SQL Server), 328
sn attribute (Active Directory), 433
SoapClient class, 501, 507
SOAP header

RequestServerVersion, 523
SoapHeader class, 523
SOAP (PHP extension), 491, 499

SoapClient class, 501
SOAP (Simple Object Access

Protocol), 491
Contact element, 539
errors caused by references and

accessors, 531–532
ExchangeSoapClient

class, 501–505
overview, 502–503
using, 504–505

GetFolder operation, 504, 505
message elements, 499
messages, 506
object-oriented alternatve for

parameters, 507
PHP listings, 506
PHP working with EWS WSDL, 500
testing EWS WSDL file, 501
WSDL structure, 499
XML namespaces, 506

sp_databases procedure
(T-SQL), 274–275

sp_help command (T-SQL), 277
sp_helpconstraint command

(T-SQL), 277
sp_helpdb command (T-SQL), 275
sp_help procedure (T-SQL), 276
sp_pkeys procedure (T-SQL), 278
sp_spaceused procedure

(T-SQL), 275
sp_tables procedure

(T-SQL), 275–276
sqlcmd command line tool, 213

SELECT command (T-SQL), 253
ORDER BY clause, 256
recursive expressions, 262
ROW_NUMBER() function, 265
selecting all columns, 254
subqueries, 259–260
TOP() function, 263–264
with calculation in selected

columns, 254
SELECT permission (SQL

Server), 353
SERIALIZABLE (SQL Server), 328
Server Manager

Add Module Mapping, 9
Handler Mappings item, 9
installing AD DS, 370–371
installing IIS, 4–5
installing IIS role services

authentication role services, 93
authentication with client

certificates, 114
URL Authorization, 99

installing IIS server roles, 480–481
installing .NET Framework, 202
installing Tracing module, 190
Server Roles

Web Server (IIS), 4–5
SERVER_NAME ($_SERVER), 140
SERVER_PORT ($_SERVER), 140
SERVER_PROTOCOL

($_SERVER), 140
server roles, 344

installing, 368–369
server rules (URL Rewrite), 144
session handler

WinCache, 130, 133–134
session management

settings, 92
session storage, 75–76
SET DEFAULT command

(T-SQL), 247
SetItemField function (UpdateItem

(EWS), 543
SET NULL command (T-SQL), 247
<set> within element

<serverVariables>, 170
shared memory, 286
SID

conversion, 436
impersonation by using, 590

<site> configuration element, 51
site configuration elements, 50–51
siteDefaults element (sites

section), 51
site element (sites section), 51
site parameter (appcmd), 49

 sum(expression) (T-SQL) 621

keys
defining foreign keys, 248–249
defining primary key, 245–246

managing permissions, 355–356
defining through objects,

355–356
defining through principals, 356

schema
creating, 238
deleting, 238

tables
changing values, 270
creating, 241
deleting, 243
deleting datasets, 273
inserting, 267

Start property (calendar), 560
start TLS operation (LDAP), 392
StaticCompressionModule (IIS), 34
StaticFile handler, 8

content caching attributes, 125
StaticFileModule (IIS), 34
st attribute (Active Directory), 434,

441
STDERR (standard error

output), 188, 194–196, 198
and FastCGI module, 195

stored procedures, 331–338,
358–361

access rights for restricted read
permissions, 359

adding log entry, 359
calling, 333
calling from PDO, 337–338
calls from PHP, 336–337
control structures, 334–335
defining, 332–333
EXECUTE AS statement, 360, 361
output parameters and return

values, 333–334
REVERT statement, 360
security through

permissions, 358–359
T-SQL transactions and, 328
variables, 331–332

str2sid() function, 436, 449
Stream (PHP data type), 305
streams, 306–309

inserting data as, 308–309
PDO driver and, 315–316
retrieving data as, 306–308

String (PHP data type), 305
Subject property (EWS), 511, 539,

560
subqueries, 259

dependent, 260
sum(expression) (T-SQL), 255

T-SQL (see T-SQL)
Unicode, 236
users and permissions, 343–362
users impersonating other

users, 360
SQL Server Express

installing, 206–209
manually, 206–207
troubleshooting

installation, 207
with Web PI, 208

SQL Server PHP extensions
installing, 209–211

manually, 209–210
Web PI, 211

parameter types, 336
PHP data types, 305
transaction level constants, 329
transactions, 329

sqlsrv_begin_transaction()
function, 329

sqlsrv_close() function, 284, 289,
290

sqlsrv_commit() function, 329
sqlsrv_connect() function, 283, 285,

287, 289, 290
sqlsrv_execute() statement, 299,

300
sqlsrv_fetch_array() function, 284,

295, 297, 298, 299, 300
sqlsrv_free_stmt() function, 284,

295, 300
sqlsrv_prepare() statement, 299,

300
sqlsrv_query() function, 283
sqlsrv_query() statement, 283, 293,

299, 300
sqlsrv_rollback() function, 329
SSL Settings feature, 111–112
SSMA for MySQL

installing and registering, 220
SSMS (SQL Server Management

Studio), 211–213
creating database roles

using, 351–352
creating logins using, 346–347
creating users using, 348–350
databases

setting up, 229–230
snapshots, 232
with alternative sort order, 228
with default settings, 228
with file groups, 228

full-text catalog, 321
full-text index, 321
indexes, 250–251

sample database, 217–219
Server Configuration page, 204
SQL Server Feature

Installation, 203
support files, 203

Integration Services, 201
master database and, 225
Migration Assistant for MySQL

(SSMA), 219–223
installing, 219–220

MUST_CHANGE, 347, 348
object names, 238
objects and permissions, 353–355

effective permission, 354
managing using SSMS, 355–356
managing using T-SQL, 356–358
ownership chains, 354

permitting services for certain IP
addresses, 214

schemas, 238–239
server principals, 343

authentication type, 343
creating, 346–352
database level, 343
login, 343
login types, 344
roles, 343
server level, 343
server roles, 344

setting up, 201–224
stored procedures, 358–361

access rights for restricted read
permissions, 359

adding log entry, 359
EXECUTE AS statement, 360
REVERT statement, 360
security through

permissions, 358–359
tables, 239–243

creating, 239–242
creating using SSMS, 241
defining columns, 240
deleting, 243
IDENTITY number, 241

tools, 211–213
sqlcmd command line tool, 213
SQL Server Management Studio

(SSMS), 211–213
T-SQL batch, 213

transactions
isolation levels, 327–328
READ COMMITTED, 327
READ UNCOMMITTED, 327
REPEATABLE READ, 328
SERIALIZABLE, 328
SNAPSHOT, 328

Transact-SQL (see T-SQL; T-SQL
statements)

622 Surname property

isolation levels, 327–328
lost updates, 327
non-repeatable reads, 327
phantom reads, 327
ROLLBACK TRANSACTION, 326
SAVE TRANSACTION, 326
stored procedures and, 328

Transact-SQL (see T-SQL; T-SQL
statements)

Traversal parameter, 514
triggers, 340–342

creating, 340
initiating, 342

troubleshooting
SQL Server Express

installation, 207
TRUNCATE TABLE command

(T-SQL), 273
TrustServerCertificate (database

connection option), 291
T-SQL, 253–278

ALTER TABLE command, 244, 246,
273

batch, 213
CASE queries, 334–335
common table expressions

(CTEs), 261–263
multiple tables, 261
recursive expressions, 262
WITH keyword, 261

constraining queries, 255
CONSTRAINT, 244, 246, 247, 273,

276–278
CONTAINS statement, 323–325
CONTAINSTABLE(), 323–325
control structures, 334–335
count(*) function, 255
CREATE FULLTEXT CATALOG

command, 322
CREATE LOGIN command, 347
CREATE PROCEDURE

statement, 332–333, 360
CREATE SCHEMA command, 238
CREATE TABLE statement, 239,

240
creating database roles using, 352
creating full-text search catalog

and index using, 322
creating logins using, 347–348
CROSS JOIN expression, 257
databases (see databases)
DECLARE statement, 331–332
DELETE command, 271–274

ALTER TABLE, 273
errors during deletion, 272–273

deleting all rows of table, 273
deleting using SSMS, 273–274

time limits for request
processing, 74–75

configuring using command
line, 75

FastCGI limits, 74
PHP limits, 74

time(n) data type (SQL Server), 237
timestamp data type (SQL

Server), 237
TimeZone property (calendar), 560
tinyint data type (SQL Server), 234
ToLower function (Rewrite

action), 162
TOP() function (T-SQL), 263–264
Top object class, 433
TotalItemsInView (FindItem

(EWS)), 514, 517
TraceFile (database connection

option), 291
TraceOn (database connection

option), 291
Trace role service, 190
tracing, 189–193

appcmd list traces command, 193
configuring logging

rules, 191–192
from command line, 192
in IIS Manager, 191

enabling a trace, 190–191
from command line, 191
using IIS Manager, 190

installing Tracing module, 190
PHP messages, 194–195
trace entries, 192–193

TransactionIsolation (database
connection option), 291

transaction log files (extension
.ldf), 226

transactions, 326–330
PHP, 328–329

specifying isolation level, 329
sqlsrv_begin_transaction()

function, 329
sqlsrv_commit() function, 329
sqlsrv_rollback() function, 329

PHP Data Objects (PDO), 330
SQL Server

isolation levels, 327–328
READ COMMITTED, 327
READ UNCOMMITTED, 327
REPEATABLE READ, 328
SERIALIZABLE, 328
SNAPSHOT, 328

T-SQL, 326–327
BEGIN TRANSACTION, 326
COMMIT TRANSACTION, 326
dirty reads, 327

Surname property (contacts
(EWS)), 540, 541

suspicious requests, 34
syntax highlighting in PHP, 76–78

configuring from command
line, 78

configuring in IIS Manager, 76–77
system.applicationHost section

group, 49, 50
system databases, 225–226

distribution database, 226
master database, 225
model database, 226
msdb database, 226
tempdb database, 226

system.webServer section
group, 11, 44, 45, 47–49, 55,
56, 57

T
tables, 239–243

ALTER TABLE command, 244, 246
changing values using SSMS, 270
creating, 239–242

using SSMS, 241
defining columns, 240
deleting, 243

datasets using SSMS, 273
DROP TABLE command, 243
IDENTITY number (SQL

Server), 241
indexes, 249–251

creating, 249–250
inserting using SSMS, 267
primary keys, 243–246

changing, 244
defining when creating

table, 243–244
table-valued functions, 339
tag filters, 165
TAKE OWNERSHIP permission (SQL

Server), 353
tasks

searching for with Restriction
element, 539

TCP/IP, 286
connection limits, 50
enabling for SQL Server, 214

temporary files, 75–76
testing FastCGI settings, 81–82
test_ldap_tls.php file, 402
text data type (SQL Server), 235
tilde and canonical user

directory, 178

 URL Rewrite 623

UpdateItem operation (EWS), 539,
543–548

AppendToItemField function, 543
ChangeKey, 544, 547
changing meeting, 567
DeleteItemField function, 543
requests, 544–547

PHP, 546
XML, 544–545

responses, 547–548
SetItemField function, 543

update() method, 300
UpdateOrders class, 302
UPDATE permission (SQL

Server), 353
update_salesorder_db.php, 300–302
update_salesorder.php, 302–303
upload_product_img.php, 309
UrlDecode function (Rewrite

action), 162
UrlEncode function (Rewrite

action), 162
URL filtering, 101
urlinfo.php file, 142–143
URL Rewrite, 137–184

Abort Request action type, 144,
152

Add Condition dialog box, 160
adding notices to pages, 180–181
Add Mapping dialog box, 155
Add Precondition dialog box, 164
Add Request Blocking Rule dialog

box, 153
Add Rewrite Maps dialog box, 155
Add Rule(s) dialog box

adding a direct rule, 147
adding rewrite rule, 150
Request Blocking template, 153
Test Patterns button, 159
User-Friendly URL template, 153

Add Rules To Enable User-Friendly
URLs dialog box, 153

Add Rule With Rewrite Map dialog
box, 156

Apache module mod_rewrite
converting rules, 181–182

binding of a host name, 176
Blank Rule template, 147, 150,

152, 166
canonical host name, 176
canonical user

directories, 177–179
Custom Response action

type, 144, 151, 171
distributed rules, 144
Edit Rewrite Map dialog box, 155
hotlinking, preventing, 179–180
HTTP headers, 168, 170

sp_helpdb command, 275
stored procedures (see stored

procedures)
subqueries, 259–260
sum(expression), 255
transactions, 326–327

BEGIN TRANSACTION, 326
COMMIT TRANSACTION, 326
dirty reads, 327
isolation levels, 327–328
lost updates, 327
non-repeatable reads, 327
phantom reads, 327
ROLLBACK TRANSACTION, 326
SAVE TRANSACTION, 326
stored procedures and, 328

TRUNCATE TABLE command, 273
UPDATE command, 268–271

changing values in tables by
using SSMS,, 270

common table expressions
(CTEs), 269

OUTPUT clause, 269
specifying which rows to

change, 269
WHERE clause, 268

variables, 331–332
WHERE clause, 255

UPDATE command, 268
versus HAVING keyword, 256

WHILE loops, 334–335
WITH keyword, 261

T-SQL- DDL, 347
creating logins using, 347–348
creating users using, 351

type mapping and EWS, 518

U
unbind operation (LDAP), 392
UNENCODED_URL (IIS only) (PHP

variable), 141
Unicode, 236
Unicode-ready code, 104
UNIQUE clause (T-SQL), 249
uniqueidentifier data type (SQL

Server), 237
UPDATE command

(T-SQL), 268–271
changing values in tables by using

SSMS,, 270
common table expressions

(CTEs), 269
OUTPUT clause, 269
specifying which rows to

change, 269
WHERE clause, 268

DENY command, 356, 357
DROP SCHEMA command, 239
DROP TABLE command, 243
EXECUTE statement, 333
FETCH statement, 265
foreign keys, 272, 273, 277
FREETEXT/FREETEXTTABLE, 325
GRANT command, 356
GROUP BY clause, 255
grouping query data, 255
HAVING keyword, 255

versus WHERE clause, 256
IF/ELSE queries, 334–335
INNER JOIN expression, 257, 258
INSERT command, 266–268

default values, 266
insert table by using SSMS, 267
OUTPUT clause, 267

JOIN expression, 257–259
linking tables to themselves, 259

LEFT OUTER JOIN expression, 258
listing columns of table, 277
listing constraints, 277
listing databases, 274–275
listing tables, 275–276
managing permissions

using, 356–358
manipulating data, 266–274
max(expression), 255
min(expression), 255
N’’, 236
OFFSET statement, 265
ORDER BY clause, 256
OUTER JOIN expression, 257
OUTPUT clause, 269
paging through data, 263–266
prepared statements, 299–303
procedures, 274–278

sp_databases, 274–275
sp_help, 276
sp_pkeys, 278
sp_spaceused, 275
sp_tables, 275–276

querying data, 253–265
querying metadata, 274–278
retrieving table information, 276
RETURN statement, 333–334
REVOKE command, 356, 357
SELECT command, 253

nesting, 259
ROW_NUMBER() function, 265
selecting all columns, 254
TOP() function, 263–264
with calculation in the selected

columns, 254
sorting SELECT query, 256
sp_help command, 277
sp_helpconstraint command, 277

624 URL Rewrite

installing authorization IIS role
service, 99

basic, 92
digest, 92
installing required role

services, 93
retrieving authentication in

PHP, 95
setting up using command

line, 94
setting up using IIS

Manager, 93–94
Windows, 92

user cache (WinCache), 134–136
user directories

canonical, 177–179
converting with child

domains, 178
user-friendly URLs, 175
User-Friendly URL template, 153
.user.ini files

Apache and, 66
cache and, 66
configuring PHP, 66–69
searching for, 66

userName attribute
(<virtualDirectory>), 53

userPassword attribute (domain
objects), 434

userPrincipalName attribute
class, 426

userPrincipalName attribute
(domain objects), 434

users
Active Directory (AD)

changing properties, 376
creating, 375–376, 472–474
deleting, 376, 474–475

determining if users are members
of a group, 448

finding all users who have not
logged on since a certain
time, 446

finding users changed after a
certain date, 445

finding users created before a
certain date, 445

finding users or computers not
requiring a password or
with a password that never
expires, 445

finding users with locked or
deactivated accounts, 445

identity and access rights, 96–98
anonymous authentication, 97
application pool identity, 96
path logon information, 97
securing PHP application, 98

for canonical user directory
URLs using tilde, 178

for redirecting to matching
browser language, 177

for user-friendly URL, 175
hierchy and URL paths, 144–145
parts of, 143
rewrite maps, 154–156
server, 144
setting up, 146–154
time of evaluation, 145

rules, setting up with
wizards, 152–154

Request Blocking template, 153
User-Friendly URL template, 153

search patterns, 157
hotlinking, preventing, 179–180

server variables, 168, 170
server variables, setting, 162–164
setting up, 137–138
tag filters, 165
Test Pattern button, 159
Test Pattern dialog box, 159
user-friendly URLs, 175
User-Friendly URL template, 153
uses for, 137
XML configuration, 167–175

<action> element, 170
<add> within the element

<conditions>, 169–170
<allowedServerVariables>

elements, 168
<customTags> element, 173
<globalRules> elements,

168–169
<outboundRules> element, 172
<rewrite> elements, 167
<rewriteMap> element, 172
<rewriteMaps> element, 171
<rule> element inside of

<outboundRules>, 174
<rules> elements, 168–169
<set> within element

<serverVariables>, 170
URLs

coding of query string, 104
coding path, 103
coding rules, 103
hiding URL segments, 101

userAccountControl attribute
(Active Directory), 434, 437

user authentication, 92–95
authentication against AD, 95
authorization rules, 98–100

defining rules from command
line, 100

defining rules via IIS
Manager, 99–100

URL Rewrite (continued)
HTTP headers, setting, 162–164
HTTP_REFERER variable, 163
installing

manually, 138
using Web PI, 138

installing before Trace, 190
multilingual pages, 176–177
multiple host names, 176
New Custom Tags Collection

dialog box, 165
None action type, 144, 152
outbound rules, 164, 172–175

creating, 166
pre-conditions, 164, 173
predefined variables, 138–143

CGI, 139–140
IIS and PHP, 140–141

Redirect action type, 144
variables, 162

redirecting to HTTPS, 180
redirect rules, setting up, 146–149

adding rule, 147–149
flow, 146
HTTP status codes for, 147

Request Blocking template, 153
Rewrite action type, 144

attributes for, 171
ToLower function, 162
UrlDecode function, 162
UrlEncode function, 162
variables, 162

rewrite maps, 154–156, 171–172
creating, 154–155
creating associated rule, 156
inheritence and, 155

rewrite rules, setting up, 149–154
adding rule, 150–154
flow, 149
user-friendly URLs, 153

rule actions, 143, 161–162
functions, 162
types, 144, 161
variables, 162

rule conditions, 143, 160–161,
169–170

adding and editing, 160
back references, 161
condition types, 160

rule patterns, 143, 156–159
regular expressions, 157–159
tag filters, 165
testing, 158
wildcards, 156–157

rules, 143–145
converting Apache module

mod_rewrite, 181–182
for canonical host name, 176

 625

<customTags> element, 173
<globalRules> elements, 168–169
<outboundRules> element, 172
<rewrite> elements, 167
<rewriteMap> element, 172
<rewriteMaps> element, 171
<rule> element inside of

<outboundRules>, 174
<rules> elements, 168–169
<set> within element

<serverVariables>, 170
XML configuration file content, 47
xml data type (SQL Server), 237
XML requests

CreateItem operation (EWS)
calendar meetings, 566–567
calendar meetings,

cancelling, 578–579
email, 533–535

FindItem operation (EWS)
CalendarView, 582
email, 519

GetItem operation (EWS)
appointment conflicts, 580

UpdateItem operation (EWS)
contacts, 544–545

XML responses, 514
cancelling meeting, 579
converting XML response to PHP

object, 515
FindFolder operation (EWS)

email, 514–515
FindItem operation (EWS)

CalendarView, 583
email, 520–521

GetItemResponse (EWS), 581
UpdateItem operation (EWS)

contacts, 548
XML Schema

message elements, 499

installing SQL Server PHP
extensions, 211

installing Tracing module, 190
installing URL Rewrite, 138
installing WinCache, 131
setting up, 12

PHP and IIS, 13
web servers

determining causes of server
problems, 196

WHERE clause (T-SQL), 255
UPDATE command, 268
versus HAVING keyword, 256

WHILE loops (T-SQL), 334–335
WinCache, 117, 129–136

configuration statements for file
cache and opcode cache, 132

detecting changes to PHP files
automatically, 132

file cache, 130
installing

manually, 130
using Web PI, 131

opcode cache, 129, 132–136
session handler, 130, 133–134
status information, 132–133
user cache, 130, 134–136

adding new entry, 134
checking for existence of

entry, 134
deleting all entries in, 134
increasing entry, 134
reading entry, 134

Windows authentication, 94–95,
287–288

Windows Authentication (NTLM,
Negotiate), 92

Windows Firewall, 16–17
World Wide Web Services (HTTP)

option, 17
Windows Registry

configuring individual
configuration files, 67

Windows timestamps,
converting, 436

WITH keyword (T-SQL), 261
WSDL search expressions, 550
WSDL structure for SOAP, 499

testing EWS WSDL file, 501

X
XML configuration, 167–175

<action> element, 170
<add> within the element

<conditions>, 169–170
<allowedServerVariables>

elements, 168

SQL Server
creating users using SSMS,

348–350
creating users using T-SQL-

DDL, 351
SQL Server users and

permissions, 343–362
utils.php script, 285

V
varbinary(max) data type (SQL

Server), 235
varbinary(n) data type (SQL

Server), 235
varchar(max) data type (SQL

Server), 235
varchar(n) data type (SQL

Server), 235
variables

CGI, 139–140
predefined (see predefined

variables)
VIEW DEFINITION permission (SQL

Server), 353
virtual directories, 27–31, 50

installing PHP, 87–89
path logon information, 97
setting up

using IIS Manager, 30
<virtualDirectory> configuration

element, 53
virtualDirectoryDefaults element

(sites section), 51
Visual C++ runtime component

libraries, 7

W
WAS (Windows Process Activation

Service)
HTTP request flow, 32

web caching, 117–136
web.config file

specifying default document, 71
web.config file (IIS), 42, 49
webLimits (system.

applicationHost), 50
Web Platform Installer (Web PI)

installing IIS, 12–14
installing IIS role services

authentication role services, 93
authentication with client

certificates, 114
URL Authorization, 99

installing PHP, 12–14, 61
checking PHP installation, 14

installing SQL Server Express, 208

About the Author
Arno Hollosi works as coordinator in the University Department for Information Technologies
and Business Informatics at CAMPUS 02, Graz, Austria. After studying telematics, he worked at
the Institute for Applied Data Processing, where he focused on cryptography, PKI, and XML.
Later, he worked as the technical lead of a special task force at the Federal Chancellery of the
Republic of Austria, where he was responsible for the IT strategy, and later as a systems archi-
tect and quality manager for Siemens international projects.

	Introduction
	Part I: Internet Information Services (IIS)
	Chapter 1: Setting Up the Work Environment
	Setting Up IIS
	Installing IIS by Using the Server Manager
	Installing from the Command Line

	Setting Up PHP
	Installing PHP
	Available PHP Modules

	Configuring PHP in IIS
	Configuring PHP by Using the IIS Manager
	Configuring PHP from the Command Line

	Installing by Using the Web Platform Installer
	Setting Up the Web PI
	Setting Up IIS and PHP
	Checking Your PHP Installation

	Backing Up Your Configuration
	A First Sample Application
	Remote Access
	Summary

	Chapter 2: IIS Architecture
	Sites
	Setting Up a New Site
	Adding Additional Bindings
	Managing the Website

	Applications
	Paths and Folders
	Setting Up a New Application
	Changing Application Settings

	Virtual Directories
	Setting Up a Virtual Directory by Using IIS Manager
	Setting Up a Virtual Directory from the Command Line

	HTTP Request Flow
	Request Flow Overview
	Application Process Flow

	Modules
	Application Pools
	Setting Up Application Pools by Using IIS Manager
	Setting Up Application Pools from the Command Line
	Application Pool Identity

	FastCGI
	FastCGI vs. CGI
	FastCGI vs. ISAPI

	Summary

	Chapter 3: Configuring IIS
	Configuration Files
	Global Configuration
	Distributed Configuration

	Configuration Structure
	Sections and Section Groups
	Elements and Configuration Listings
	Moving and Binding Sections
	The Configuration Editor

	Schema and configSections
	Configuring Paths by Using location
	Configuring by Using IIS Manager
	Configuring from the Command Line

	Sites, Applications, and Directories
	Sites
	Applications
	Virtual Directories

	Locking the Configuration
	Locking with configSections
	Locking and Unlocking with location
	Specifying Rights for Individual Settings
	Locking and Unlocking by Using IIS Manager

	Summary

	Chapter 4: Configuring PHP
	Installing PHP Manager
	Configuring PHP
	Recognizing Configuration Changes
	Path and Host-Dependent Configuration in php.ini
	Configuring by Using .user.ini

	Specifying the Default Document
	Specifying the Default Document by Using the IIS Manager
	Specifying from the Command Line
	Defining Directly in the Configuration

	Request Limits
	Configuring by Using the IIS Manager
	Configuring from the Command Line
	Configuring Directly in the Configuration File

	Time Limits for Request Processing
	PHP Limits
	FastCGI Limits

	Session Storage and Temporary Files
	Setting Up PHP Syntax Highlighting
	Configuring Syntax Highlighting by Using the IIS Manager
	Configuring from the Command Line

	Setting Up Different PHP Versions
	Installing a New PHP Version
	Configuring by Using the PHP Manager
	Configuring the Handler Assignment
	Configuring the FastCGI Application
	Testing

	Setting Up Different PHP Configurations
	Summary

	Chapter 5: Security
	Structuring the Application
	Root Folder or Virtual Directory
	Specifying the Executable Files

	PHP Configuration
	User Authentication
	Installing the Required Role Services
	Setting Up User Authentication by Using IIS Manager
	Setting Up User Authentication from the Command Line
	Windows Authentication and Host Names
	Retrieving the Authentication in PHP

	Identity and Access Rights
	Identity of the Application Pool
	Path Logon Information
	Specifying the Identity of the Anonymous User
	Securing the PHP Application

	Authorization Rules
	Installing the Required Role Services
	Defining the Rules by Using IIS Manager
	Defining the Rules from the Command Line

	Request Filter
	Defining General Settings
	Filtering File Name Extensions
	Filtering with Rules

	Encrypted Connections (HTTPS)
	Creating Keys and Certificates
	Setting up an Encrypted Connection
	Authentication with Client Certificates

	Summary

	Chapter 6: Caching
	Caching in the Web
	Caching for a Limited Time
	Mutable Contents
	Caching Conditions
	Specifying the Headers with IIS

	Output Cache
	Configuring by Using IIS Manager
	Configuring from the Command Line
	Configuration Elements

	The WinCache Extension for PHP
	Setting Up the WinCache Extension
	The PHP Opcode and File Cache
	Session Handler
	User Cache

	Summary

	Chapter 7: URL Rewrite
	Setting Up URL Rewrite
	Installing URL Rewrite Manually
	Installing URL Rewrite by Using the Web PI

	Predefined Variables
	Common Gateway Interface Variables
	IIS and PHP Variables
	Merging PHP Script

	Evaluating Rules
	Action Types
	Hierarchy and URL Paths
	Time of the Evaluation

	Setting Up Rules
	Setting Up Redirect Rules
	Setting Up Rewrite Rules
	Additional Action Types
	Setting Up Rules with Templates

	Rewrite Maps
	Creating a Rewrite Map
	Creating an Associated Rule

	Rules in Detail
	Patterns
	Conditions
	Actions
	Setting Server Variables and HTTP Headers
	Outbound Rules
	Tag Filters
	Creating an Outbound Rule

	XML Configuration
	URL Rewrite
	Allowed Server Variables
	Rules
	Conditions
	Server Variables and HTTP Headers
	Actions
	Rewrite Maps
	Outbound Rules
	Single Outbound Rule

	Examples
	User-Friendly URLs
	Canonical Host Name
	Multilingual Pages
	Canonical User Directories
	Preventing the Embedding of Graphics on Foreign Sites
	Redirecting to HTTPS
	Adding a Notice to Each Page

	Converting from Apache mod_rewrite
	Summary

	Chapter 8: Error Messages and Error Search
	Detailed Error Messages
	Disabling Friendly Error Messages in Internet Explorer
	Enabling Detailed Error Messages
	PHP Error Output

	Tracing
	Installing the Tracing Role Service
	Enabling a Trace
	Configuring Logging Rules
	Trace Entries

	PHP Error Messages
	Outputting to STDERR
	PHP Messages in the Trace
	FastCGI and STDERR

	Determining the Causes of Server Problems
	The Server Can’t Be Reached
	PHP Scripts are not Executing

	Summary

	Part II: SQL Server
	Chapter 9: Setting Up SQL Server
	Installing SQL Server
	Configuring SQL Server
	Installing SQL Server Express
	Installing the SQL Server PHP Extension

	SQL Server Tools
	SQL Server Management Studio
	The sqlcmd Command-Line Tool
	The T-SQL Batch

	Configuring for Remote Access
	Enabling the TCP/IP Protocol
	Sharing Access in the Windows Firewall

	Installing the Sample Database
	Migrating MySQL Databases
	Installing the Migration Assistant
	Migrating a MySQL Database

	Summary

	Chapter 10: Databases and Tables
	Databases
	System Databases
	Database Structure
	Setting Up Databases
	Deleting a Database
	Creating a Snapshot

	Data Types
	Numeric Data Types
	Strings and Binary Data
	Dates and Times
	Other Data Types

	Schemas and Object Names
	Object Names
	Creating Schemas
	Deleting Schemas

	Tables
	Creating Tables
	Deleting Tables

	Keys and Indexes
	Primary Keys
	Foreign Keys
	Indexes

	Summary

	Chapter 11: Working with SQL Server
	Querying Data (SELECT)
	Simple SELECT Expressions
	Constraining Queries by Using WHERE
	Grouping Query Data (GROUP BY, HAVING)
	Sorting (ORDER BY)
	Queries with Multiple Tables
	Common Table Expressions (WITH)
	Paging Through Data

	Manipulating Data
	The INSERT Command
	The UPDATE Command
	The DELETE Command

	Querying Metadata
	Listing Databases
	Listing Tables
	Retrieving Table Information
	Listing the Columns of a Table
	Listing Constraints
	Listing Keys and Indexes

	Summary

	Chapter 12: PHP and SQL Server
	Approach and Process
	Preparations
	The Sample Program
	An Overview of the Individual Steps
	Supporting Script

	Database Connections
	Server Names
	Authentication
	Connection Pooling
	More Connection Options

	Database Queries
	Parameterizing Statements
	Retrieving Results
	Prepared Statements

	Data Types
	Converting from PHP to SQL Server
	Converting from SQL Server to PHP
	Streams
	PDO and SQL Server
	PDO Database Access Lifecycle
	Connecting to SQL Server
	Direct Queries and Prepared Statements
	Retrieving Results
	Data Types and Streams

	Summary

	Chapter 13: Advanced Database Functions
	Full-Text Search
	Installing the Module
	Language Selection
	Creating the Catalog and the Index by Using SSMS
	Creating the Catalog and the Index by Using T-SQL
	Search with Full-Text Index

	Transactions
	T-SQL Transactions
	Transaction Isolation Levels
	PHP Transactions
	Transactions Using PHP Data Objects

	Stored Procedures
	Variables
	Defining Procedures
	Calling Procedures
	Output Parameters and Return Values
	Control Structures
	Calls from PHP
	Calling Stored Procedures from PDO

	Custom Functions
	Scalar Functions
	Table-Valued Functions

	Triggers
	Creating a Trigger
	Detailed Explanation
	Initiating the Trigger

	Summary

	Chapter 14: Users and Permissions
	SQL Server Principals
	Server Principals
	Database Principals

	Creating SQL Server Principals
	Creating Logins
	Creating Users
	Creating Database Roles

	Objects and Permissions
	Permissions
	Managing Permissions by Using SSMS
	Managing Permissions by Using T-SQL

	Stored Procedures
	Security Through Permissions
	Execute as User

	Summary

	Part III: Active Directory
	Chapter 15: Setting Up Active Directory
	Overview
	Domains
	Entries

	Installing Active Directory
	Preparation
	Installing the Role
	Installing the Domain Services

	First Steps
	Active Directory Domain Services
	Organizational Units
	Users
	Groups

	Setting Up Active Directory Certificate Services
	Working with Certificates
	Issuing a Certificate for Active Directory
	Exporting the Root Certificate
	Exporting Other Certificates

	Summary

	Chapter 16: LDAP Basics
	LDAP Basics
	Hierarchical Structure
	Classes and Inheritance
	Protocol Elements

	Utilities
	LDP
	ADSI Edit

	Configuring the PHP LDAP Extension
	Activating the LDAP Extension
	Communication Process
	Supporting Script
	Establishing an Encrypted Connection

	Authenticating Users
	Querying Entries
	Sample Program: Searching for Domain Users
	LDAP Filter
	Iterating Through Search Results

	Summary

	Chapter 17: Searching in Active Directory
	The PHP LDAP Browser
	Main Program and User Interface
	Formatting an LDAP Entry
	Type Information and Search Definitions
	Conversion Functions

	The Directory Information Tree and Naming Contexts
	Active Directory Schema
	Object Classes
	Attribute Classes

	Domain Objects
	General Attributes for Domain Objects
	Groups
	Organizational Units

	Concrete Search Examples
	Schema
	ANR
	Users
	Groups

	Summary

	Chapter 18: Writing in Active Directory
	Preparation
	Access Rights
	Error Logging
	Supporting Scripts

	Writing Attributes
	Adding Attributes
	Deleting Attributes
	Changing Attributes
	Encoding and Character Sets

	Practical Examples for Changing Attributes
	Unlocking an Account
	Activating and Deactivating Accounts
	Group Memberships
	Forced Password Change
	Changing Passwords

	Writing Entries
	Adding New Entries
	Deleting Entries
	Moving Entries

	Practical Examples
	Creating a New Group
	Creating a New User
	Deleting a User or a Group

	Summary

	Part IV: Exchange Server
	Chapter 19: Setting Up Exchange Server
	Setting Up Required Services and Features
	General Requirements
	Configuring IIS
	Configuring Features
	Configuring Shared Ports
	Installing the Office System Converter
	Configuring DNS Entries

	Installing Exchange Server
	Configuration After the Installation
	Registering Exchange
	Configuring the Exchange Server Certificate

	Creating a Mailbox
	Summary

	Chapter 20: Exchange Web Services
	Required PHP Extensions
	Autodiscover
	How Autodiscover Searches for Configuration Data
	Configuration Data
	Retrieving Configuration Data
	Alternative Methods for URL Queries

	SOAP and WSDL
	WSDL Structure
	EWS, WSDL, and PHP

	SOAP Messages
	ExchangeSoapClient Class
	Using the ExchangeSoapClient Class

	Information About the Following Chapters
	Shorter SOAP Messages
	Shorter PHP Listings
	Object-Oriented Alternative for Parameters

	Summary

	Chapter 21: Email and Exchange Web Services Basics
	Structure, IDs, and Views
	IDs of Labeled Folders
	Viewing Elements
	Selected Properties of Elements
	Names of Properties

	Finding Folders (FindFolder)
	Selected Properties
	Request
	Response

	Listing Messages (FindItem)
	Limiting the Results (Paging)
	Sorting
	PHP and Replacement Groups
	Request
	Response

	Viewing a Message (GetItem)
	Requesting the Exchange 2010 Mode Within a SOAP Header
	Defining and Filtering the Message Content

	Requesting the Original MIME Content
	Request
	Response
	Example
	Email Attachments (GetAttachment)

	Sending a Message (CreateItem)
	SOAP Errors Caused by References and Accessors
	Request
	Response

	Deleting Messages (DeleteItem)
	XML Messages
	PHP

	Summary

	Chapter 22: Contacts and Search
	Properties of Contacts
	Standard Properties
	Name Properties
	Properties of Email Addresses
	Address Properties

	Changing a Contact (UpdateItem)
	Request
	Response

	Finding Certain Properties
	Expressions
	Preparation: Modifying the Schema

	Defining the Search in a Request
	Complete PHP Example

	Summary

	Chapter 23: Calendar and Impersonation
	Calendar Entries
	Standard Properties
	Meetings
	Recurring Appointments
	Time and Time Zones

	Creating a Common Calendar Entry
	The Request Message
	The Response Message
	Created Entry

	Meetings
	Creating a Meeting
	Creating the Meeting Invitation
	Responding to a Meeting Invitation
	Canceling a Meeting

	Appointment Conflicts
	The Request Message
	The Response Message

	Searching the Calendar
	The Request Message
	The Response Message
	A Complete PHP Example

	Impersonation
	Granting Impersonation Rights
	Impersonation in EWS Operations

	Additional Steps
	Summary

	Appendix A: Example Scripts and Data
	The HTMLPage Class
	The HTML Template
	The DatabaseConnection Class
	Example Database: AdventureWorksLT2008

	Index

