
Matthew Turland

php|architect’s
Guide to
Web Scraping
with PHP

php|architect’s Guide to
Web Scraping

with PHP

by Matthew Turland

php|architect’s Guide to Web Scraping
Contents Copyright ©2009–2010 Matthew Turland – All Rights Reserved
Book and cover layout, design and text Copyright ©2004-2010 Marco Tabini & Associates, Inc. – All Rights Reserved

First Edition: March 2010
ISBN: 978-0-9810345-1-5
Produced in Canada
Printed in the United States

No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or
by means without the prior written permission of the publisher, excet in the case of brief quotations
embedded in critical reviews or articles.

Disclaimer
Although every effort has been made in the preparation of this book to ensure the accuracy of the
information contained therein, this book is provided ”as-is” and the publisher, the author(s), their
distributors and retailers, as well as all affiliated, related or subsidiary parties take no responsibility
for any inaccuracy and any and all damages caused, either directly or indirectly, by the use of such
information. We have endeavoured to properly provide trademark information on all companies and
products mentioned in the book by the appropriate use of capitals. However, we cannot guarantee the
accuracy of such information.

Marco Tabini & Associates, The MTA logo, php|architect, the php|architect logo, NanoBook and the
NanoBook logo are trademarks or registered trademarks of Marco Tabini & Associates, Inc.

Written by Matthew Turland

Published by Marco Tabini & Associates, Inc.
28 Bombay Ave.
Toronto, ON M3H 1B7
Canada

(416) 630-6202 / (877) 630-6202
info@phparch.com / www.phparch.com

Publisher Marco Tabini

Technical Reviewer Luke Giuliani

Layout and Design Arbi Arzoumani

Managing Editor Beth Tucker Long

Finance and Resource Management Emanuela Corso

Cover picture Vladimir Fofanov

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Contents

Credits xiii

Foreword xvii

Chapter 1 — Introduction 1
Intended Audience . 1
How to Read This Book . 2
Web Scraping Defined . 2
Applications of Web Scraping . 3
Appropriate Use of Web Scraping . 4
Legality of Web Scraping . 4
Topics Covered . 4

Chapter 2 — HTTP 7
Requests . 8

GET Requests . 9
Anatomy of a URL . 10
Query Strings . 11
POST Requests . 12
HEAD Requests . 13

Responses . 13
Headers . 15

Cookies . 15
Redirection . 16

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

vi ” CONTENTS

Referring URLs . 16
Persistent Connections . 17
Content Caching . 18
User Agents . 18
Ranges . 19
Basic HTTP Authentication . 20
Digest HTTP Authentication . 21

Wrap-Up . 24

Chapter 3 — HTTP Streams Wrapper 27
Simple Request and Response Handling . 28
Stream Contexts and POST Requests . 29
Error Handling . 31
HTTP Authentication . 32
A Few More Options . 33
Wrap-Up . 33

Chapter 4 — cURL Extension 35
Simple Request and Response Handling . 36
Contrasting GET and POST . 36
Setting Multiple Options . 38
Handling Headers . 38
Debugging . 39
Cookies . 40
HTTP Authentication . 41
Redirection . 42
Referers . 42
Content Caching . 42
User Agents . 42
Byte Ranges . 43
DNS Caching . 43
Timeouts . 44
Request Pooling . 44
Wrap-Up . 46

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CONTENTS ” vii

Chapter 5 — pecl_http PECL Extension 49
GET Requests . 50
POST Requests . 50
Handling Headers . 52
Debugging . 54
Timeouts . 54
Content Encoding . 54
Cookies . 55
HTTP Authentication . 56
Redirection and Referers . 57
Content Caching . 57
User Agents . 57
Byte Ranges . 57
Request Pooling . 58
Wrap-Up . 59

Chapter 6 — PEAR::HTTP_Client 61
Requests and Responses . 62
Juggling Data . 64
Wrangling Headers . 65
Using the Client . 66
Observing Requests . 67
Wrap-Up . 68

Chapter 7 — Zend_Http_Client 71
Basic Requests . 71
Responses . 72
URL Handling . 73
Custom Headers . 73
Configuration . 74
Connectivity . 75
Debugging . 75
Cookies . 76
Redirection . 77
User Agents . 77

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

viii ” CONTENTS

HTTP Authentication . 78
Wrap-Up . 78

Chapter 8 — Rolling Your Own 81
Sending Requests . 81
Parsing Responses . 83
Transfer Encoding . 84
Content Encoding . 85
Timing . 86

Chapter 9 — Tidy Extension 89
Validation . 89
Tidy . 90
Input . 90
Configuration . 91
Options . 92
Debugging . 93
Output . 96
Wrap-Up . 96

Chapter 10 — DOM Extension 99
Types of Parsers . 100
Loading Documents . 100
Tree Terminology . 101
Elements and Attributes . 103
Locating Nodes . 103
XPath and DOMXPath . 104
Absolute Addressing . 105
Relative Addressing . 107
Addressing Attributes . 107
Unions . 108
Conditions . 108
Resources . 109

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CONTENTS ” ix

Chapter 11 — SimpleXML Extension 113
Loading a Document . 113
Accessing Elements . 114
Accessing Attributes . 115
Comparing Nodes . 117
DOM Interoperability . 117
XPath . 117
Wrap-Up . 118

Chapter 12 — XMLReader Extension 121
Loading a Document . 122
Iteration . 123
Nodes . 124
Elements and Attributes . 124
DOM Interoperation . 127
Closing Documents . 127
Wrap-Up . 127

Chapter 13 — CSS Selector Libraries 129
Reason to Use Them . 129
Basics . 130
Hierarchical Selectors . 132
Basic Filters . 132
Content Filters . 134
Attribute Filters . 134
Child Filters . 136
Form Filters . 136
Libraries . 138

PHP Simple HTML DOM Parser . 138
Zend_Dom_Query . 138
phpQuery . 139
DOMQuery . 139

Wrap-Up . 140

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

x ” CONTENTS

Chapter 14 — PCRE Extension 143
Pattern Basics . 144
Anchors . 145
Alternation . 146
Repetition and Quantifiers . 146
Subpatterns . 147
Matching . 148
Escaping . 150
Escape Sequences . 150
Modifiers . 153
Wrap-Up . 154

Chapter 15 — Tips and Tricks 157
Batch Jobs . 157
Availability . 158
Parallel Processing . 158
Crawlers . 159
Forms . 159
Web Services . 161
Testing . 161
That’s All Folks . 162

Appendix A — Legality of Web Scraping 165

Chapter B — Multiprocessing 169

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Credits

I know this section probably isn’t why you purchased this book, but I encourage you
to read on anyway. One of the things I learned during my time in college is that, even
if I don’t retain all that is taught to me, having even a vague awareness of that knowl-
edge serves to broaden and improve my perspective. I believe the same is true of
knowing more about the author when reading a book they’ve written, in particular
the people who contributed to that person’s life and perseverence through the com-
pletion of their work. The people described here are good people and they deserve
to be remembered.

Whitney
I’ve spent many nights and weekends writing this book. It was a time sink for

months. It was also part of my own personal quest to better myself, show my capa-
bilities, and share something I had to offer. I can’t imagine that’s an easy thing for a
spouse to understand or support for as long as it took to finish the book, but my wife
did. That’s not something for which I can offer sufficient words to describe, let alone
recompense, so I won’t try. I’ll simply say that I hope you enjoy this book because,
were it not for her, it would not exist.

MTA
Before I really started working on the book, I tried pitching the abstract to a few

of the bigger names in technical publishing with no success. It ended up being for
the better, though, because the PHP community is my target audience. In hind-
sight, I don’t think I could have ended up with a better publisher to that end than
php|architect. At the time, I only had a single article on the subject in php|architect
Magazine to my name. Liz reviewed the proposal and pitched it to Marco, who made
the decision to accept it, and Beth reviewed it once the initial manuscript was com-

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

xiv ” CONTENTS

pleted. Each had a hand in ensuring the book became a polished published work
and I’ll be thankful for their efforts long after the book is in print.

Luke
I could not have asked for a better technical editor than Luke Giuliani. He has a

meticulousness and exceptional attention to detail that occasioanlly surpassed my
own, but for the most part is an enjoyable quality we both share. Even when I got
stuck in a rut, he was always there to offer motivation and encouragement. His ad-
visement offered not only corrections and suggestions related to the content of the
book itself, but also guidance on its organization and presentation to maximize clar-
ity. I severely doubt that my book would be nearly as polished as the copy you see in
front of you had it not been for Luke’s participation. I owe him a great deal.

Ben
Ben is a man for whom I have immense respect. He is willing to assert his opin-

ions, including the importance of developing and adhering to web standards. Our
discussions on topics from the HTTP protocol to interpretation of the Roy Fielding’s
dissertation on REST have engaged and inspired me. As the light at the end of the
tunnel to this book’s completion became visible, I began to consider how much it
would merit from a foreword by someone with his expertise when it was published.
When I approached him about it and asked if he would do the honors, he happily
accepted. As wonderful as it felt to finish the project, his valuation of it made the
victory that much sweeter.

Friends
The term “friend” is not one that I use lightly. It has long been a belief of mine that

family is not something held within a bloodline, but in how people treat one another,
and I hold friends in the same regard. There is a special group of people within the
PHP community to whom I apply this term. They are too many to name, but each
has at one point or another offered critique, suggestion, or moral support whenever
I needed it. I think each will know who they are. However small they might consider
what they gave, I hope they know its importance and my gratitude for it.

You
While it can take a while longer to write one, time spent reading a book is also a

personal investment. This book has made its way through a long journey of devel-
opment to your hands. You are its audience. I appreciate the time you’re taking to
read this book and hope that it proves to be time well spent. Regardless of what your

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CONTENTS ” xv

opinion of it might be once you’ve read it, I encourage you to write a review, discuss
it on your preferred social networking site, or e-mail me at me@matthewturland.com
and let me know what your thoughts are.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Foreword

Web scraping is the future of the Web.
I didn’t believe that when Matthew first approached me, asking me to write the

foreword to this book. In fact, I thought quite the opposite. Web scraping? Isn’t that
an old topic — something we used to do in the early days of web development? Why
would I want to read about web scraping? Isn’t it unethical?

And you’re probably asking yourself some of the same questions.
So, I started to think about it — about what web scraping really is — and the more I

considered it, the more it reminded me of Tim Berners-Lee’s vision of a web of linked
data, of semantic data, connected together and open for all to share and use. Is not
web scraping simply the act of getting data from one source and parsing it to use in
your own applications? Is this not the goal of the Semantic Web?

When the Web began, its purpose was to share data. The educational and research
communities used the Web to display data and link it through hyperlinks to other
data. Since XML and, much less, web services and data feeds did not exist in the early
days, it became common practice to write scripts to fetch data from other websites,
parse the HTML received, process the data in some way, and then display it on one’s
own website.

One of my earliest experiences with web scraping was in 1998 when I wanted to
display up-to-date news headlines on a website. At the time, a particular news web-
site (which shall remain unnamed) provided HTML snippets of news headlines for its
customers to embed on their websites. I, however, was not a customer, yet I figured
out a way to grab the raw HTML, parse it, and display it on my website. As unethical
as this may be — and I don’t advocate this behavior at all — I was participating in
what I would later find out is called “web scraping.”

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

xviii ” CONTENTS

Today, there are many services out there providing news feeds, and there are plenty
of code libraries that can parse this data. So, with the proliferation of web services
and public APIs, why is web scraping still so important to the future of the Web? It is
important because of the rise of microformats, Semantic Web technologies, the W3C
Linking Open Data Community Project, and the Open Data Movement. Just this year
at the TED conference, Tim Berners-Lee spoke of linked data saying, “We want the
data. We want unadulterated data. We have to ask for raw data now.”

The future of the Web is in providing and accessing raw data. How do we access
this raw data? Through web scraping.

Yes, there are legal issues to consider when determining whether web scraping is a
technique you want to employ, but the techniques this book describes are useful for
accessing and parsing raw data of any kind found on the Web, whether it is from a
web service API, an XML feed, RDF data embedded in a web page, microformats in
HTML, or plain old HTML itself.

There is no way around it. To be a successful web programmer, you must master
these techniques. Make them part of your toolbox. Let them inform your software
design decisions. I encourage you to bring us into the future of the Web. Scrape the
Web within the bounds of the law, publish your raw data for public use, and demand
raw data now!

Ben Ramsey
Atlanta, Georgia
June 28, 2009

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Chapter 1

Introduction

If you are looking to get an idea of what this book is about or whether you are a mem-
ber of its intended audience, this chapter is for you. It will provide some background
on the material to be covered in the pages to follow and address some common re-
lated concerns that may be pertinent. If you have a good high-level idea of what web
scraping is and would like to jump straight into the more technical content in this
book, you can safely skip on ahead to the next chapter.

Intended Audience

This book is targeted at developers of an intermediate or advanced level who already
have a fair amount of comfort programming with PHP 5. You should be aware of
object-oriented programming principles such as inheritance, abstraction, and en-
capsulation as well as how these principles relate to the PHP 5 object model. The
book will detail general concepts and use PHP as a (very qualified) means to the
end of illustrating these concepts with practical examples. Knowledge of the HTTP
protocol, XML concepts and related PHP extensions, or JavaScript will also prove
particularly helpful.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

2 ” Introduction

How to Read This Book

If you come across a PHP function with which you are not familiar, try pointing your
preferred web browser at http://php.net/functionname where functionname is the
name of the function in question. This will generally direct you to either that func-
tion’s entry in the manual or the landing page for the manual section that contains
that function entry.

Beyond that, the chapters can be read independently, but do interrelate in such a
way that reading the book from cover to cover may be useful to form a more complete
understanding of the material.

Web Scraping Defined

Web scraping is a process involving the retrieval a semi-structured document from
the internet, generally a web page in a markup language such as HTML or XHTML,
and analysis of that document in order to extract specific data from it for use in an-
other context. It is commonly (though not entirely accurately) also known as screen
scraping. Web scraping does not technically fall within the field of data mining be-
cause the latter implies an attempt to discern semantic patterns or trends in large
data sets that have already been obtained. Web scraping applications (also called in-
telligent, automated, or autonomous agents) are concerned only with obtaining the
data itself through retrieval and extraction and can involve data sets of significantly
varied sizes.

You might be saying to yourself that web scraping sounds a lot like acting as a client
for a web service. The difference is in the intended audience of the document and, by
proxy, the document’s format and structure. Web services, because of their intended
purpose, are inherently bound by the requirement to generate valid markup in order
to remain useful. They must maintain consistent standard formatting in order for
machines to be capable of parsing their output.

Web browsers, on the other hand, are generally a lot more forgiving about handling
visual rendering of a document when its markup is not valid. As well, web browsers
are intended for human use and the methods in which they consume information do
not always fall parallel to the way machines would consume it when using an equiv-
alent web service. This can make development of web scraping applications difficult

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Introduction ” 3

in some instances. Like the obligation of a web service to generate valid markup, a
web browser has certain responsibilities. These include respecting server requests
to not index certain pages and keeping the number of requests sent to servers within
a reasonable amount.

In short, web scraping is the subset of a web browser’s functionality necessary to
obtain and render data in a manner conducive to how that data will be used.

Applications of Web Scraping

Though it’s becoming more common for web sites to expose their data using web
services, the absence of a data source that is tailored to machines and offers all the
data of a corresponding web site is still a common situation. In these instances, the
web site itself must effectively become your data source, and web scraping can be
employed to automate the consumption of the data it makes available. Additionally,
web services are also used to transfer information into external data systems. In their
absence, web scraping can also be used to integrate with such systems that don’t
offer web services, but do offer a web-based interface for their users.

Another application of web scraping that is likely more well-known is the develop-
ment of automated agents known as crawlers, which seek out resources for storage
and analysis that will eventually comprise the search results they deliver to you. In
the earliest days of the internet, this type of data was sought out manually by human
beings, a slow and tedious process which limited how quickly a search engine could
expand its offerings. Web scraping provided an alternative to allow computers to do
the grunt work of finding new pages and extracting their content.

Lastly, web scraping is one way – not the only way or necessarily the recommended
way, but certainly a way – to implement integration testing for web applications. Us-
ing its abilities to act as a client in extracting and transmitting data, a web scraping
application can simulate the browser activity of a normal user. This can help to en-
sure that web application output complies with its expected response with respect
to the application’s requirements.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

4 ” Introduction

Appropriate Use of Web Scraping

Some data providers may only offer a web site while others may offer APIs that do
not offer equivalent data in a conducive format or at all. Some web services may in-
volve an extensive authentication process or be unavailable for public consumption.
Unreliability of web service endpoints compared to web sites may also make them
unfeasible to use. It is in situations like these that web scraping becomes a desirable
alternative.

It is common practice to avoid making changes that break backward-compatibility
with existing applications that use web service APIs, or to version them to allow ap-
plication vendors time to transition to new revisions. As such, web services are sig-
nificantly less prone to be altered than the markup structure of pages on a web site,
especially without advance warning. This is especially true of sites that change fre-
quently, which can drastically affect the stability of applications that employ web
scraping.

In a nutshell, web scraping should be used as a last resort when no other feasible
options for acquiring the needed data are available.

Legality of Web Scraping

The answer to this question is a bit extensive and veers off into “legal land.” As such,
it is included in Appendix A to avoid detracting from the primary purpose of the
book.

Topics Covered

You’re obviously reading chapter 1 now, which provides a brief introduction to web
scraping, answers common questions, and leads into the meat of the book.

• Chapter 2 deals with relevant details of the HTTP protocol, as HTTP clients are
used in the process of document retrieval. This includes how requests and re-
sponses are structured and various headers that are used in each to implement
features such as cookies, HTTP authentication, redirection, and more.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Introduction ” 5

• Chapters 3-7 cover specific PHP HTTP client libraries and their features, usage,
and advantages and disadvantages of each.

• Chapter 8 goes into developing a custom client library and common concerns
when using any library including prevention of throttling, access randomiza-
tion, agent scheduling, and side effects of client-side scripts.

• Chapter 9 details use of the tidy extension for correcting issues with retrieved
markup prior to using other extensions to analyze it.

• Chapters 10-12 review various XML extensions for PHP, compare and contrast
the two classes of XML parsers, and provide a brief introduction to XPath.

• Chapter 13 is a study of CSS selectors, comparisons between them and XPath
expressions, and information on available libraries for using them to query
markup documents.

• Chapter 14 explores regular expressions using the PCRE extension, which can
be useful in validating scraped data to ensure the stability of the web scraping
application.

• Chapter 15 outlines several general high-level strategies and best practices for
designing and developing your web scraping applications.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Chapter 2

HTTP

The first task that a web scraping application must be capable of performing is the
retrieval of documents containing the information to be extracted. If you have used
a web browser without becoming aware of all that it does “under the hood” to render
a page for your viewing pleasure, this may sound trivial to you. However, the com-
plexity of a web scraping application is generally proportional to the complexity of
the application it targets for retrieving and extracting data.

For targets consisting of multiple pages or requiring retention of session or au-
thentication information, some level of reverse-engineering is often required to de-
velop a corresponding web scraping application. Like a complex mathematics prob-
lem with a very simple answer, the development of web scraping applications can
sometimes involve more analysis of the target than work to implement a script ca-
pable of retrieving and extracting data from it.

This sort of reconnaisance requires a decent working knowledge of the HyperText
Transfer Protocol or HTTP, the protocol that powers the internet. The majority of
this chapter will focus on familiarization with that protocol. The end goal is that you
become capable of performing the necessary research to learn how a target applica-
tion works such that you are capable of writing an application to extract the data you
want.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

8 ” HTTP

Requests

The HTTP protocol is intended to give two parties a common method of commu-
nication: web clients and web servers. Clients are programs or scripts that send
requests to servers. Examples of clients include web browsers, such as Internet Ex-
plorer and Mozilla Firefox, and crawlers, like those used by Yahoo! and Google to
expand their search engine offerings. Servers are programs that run indefinitely and
do nothing but receive and send responses to client requests. Popular examples in-
clude Microsoft IIS and the Apache HTTP Server.

You must be familiar enough with the anatomy and nuances of HTTP requests
and responses to do two things. First, you must be able to configure and use your
preferred client to view requests and responses that pass between it and the server
hosting the target application as you access it. This is essential to developing your
web scraping application without expending an excessive amount of time and en-
ergy on your part.

Second, you must be able to use most of the features offered by a PHP HTTP client
library. Ideally, you would know HTTP and PHP well enough to build your own client
library or fix issues with an existing one if necessary. In principle, however, you
should resort to finding and using an adequate existing library first and constructing
one that is reusable as a last resort. We will examine some of these libraries in the
next few chapters.

Supplemental References

This book will cover HTTP in sufficient depth as it relates to web scraping, but should
not in any respect be considered a comprehensive guide on the subject. Here are a
few recommended references to supplement the material covered in this book.

• RFC 2616 HyperText Transfer Protocol – HTTP/1.1
(http://www.ietf.org/rfc/rfc2616.txt)

• RFC 3986 Uniform Resource Identifiers (URI): Generic Syntax
(http://www.ietf.org/rfc/rfc3986.txt)

• “HTTP: The Definitive Guide” (ISBN 1565925092)
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

HTTP ” 9

• “HTTP Pocket Reference: HyperText Transfer Protocol” (ISBN 1565928628)

• “HTTP Developer’s Handbook” (ISBN 0672324547)

• Ben Ramsey’s blog series on HTTP (http://benramsey.com/http-status-codes)

GET Requests

Let’s start with a very simple HTTP request, one to retrieve the main landing page of
the Wikipedia web site in English.

GET /wiki/Main_Page HTTP/1.1
Host: en.wikipedia.org

The individual components of this request are as follows.

• GET is the method or operation. Think of it as a verb in a sentence, an action
that you want to perform on something. Other examples of methods include
POST and HEAD. These will be covered in more detail later in the chapter.

• /wiki/Main_Page is the Uniform Resource Identifier or URI. It provides a
unique point of reference for the resource, the object or target of the opera-
tion.

• HTTP/1.1 specifies the HTTP protocol version in use by the client, which will
be detailed further a little later in this chapter.

• The method, URL, and HTTP version collectively make up the request line,
which ends with a<CR><LF> (carriage return-line feed) sequence, which cor-
responds to ASCII characters 13 and 10 or Unicode characters U+000D and
U+000A respectively. (See RFC 2616 Section 2.2 for more information.)

• A single header Host and its associated value en.wikipedia.org follow the re-
quest line. More header-value pairs may follow.

• Based on the resource, the value of the Host header, and the pro-
tocol in use (HTTP, as opposed to HTTPS or HTTP over SSL),

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

10 ” HTTP

http://en.wikipedia.org/wiki/Main_Page is the resulting full URL of the
requested resource.

i
URI vs URL
URI is sometimes used interchangeably with URL, which frequently leads to confusion
about the exact nature of either. A URI is used to uniquely identify a resource, indicate
how to locate a resource, or both. URL is the subset of URI that does both (as opposed
to either) and is what makes them usable by humans. After all, what’s the use of being
able to identify a resource if you can’t access it! See sections 1.1.3 and 1.2.2 of RFC 3986
for more information.

GET is by far the most commonly used operation in the HTTP protocol. Accord-
ing to the HTTP specification, the intent of GET is to request a representation of a
resource, essentially to “read” it as you would a file on a file system. Common ex-
amples of formats for such representations include HTML and XML-based formats
such as XHTML, RSS, and Atom.

In principle, GET should not modify any existing data exposed by the application.
For this reason, it is considered to be what is called a safe operation. It is worth
noting that as you examine your target applications, you may encounter situations
where GET operations are used incorrectly to modify data rather than simply return-
ing it. This indicates poor application design and should be avoided when develop-
ing your own applications.

Anatomy of a URL

If you aren’t already familiar with all the components of a URL, this will likely be
useful in later chapters.

http://user:pass@www.domain.com:8080/path/to/file.ext?query=&var=value#anchor

• http is the protocol used to interact with the resource. Another example is
https, which is equivalent to http on a connection using an SSL certificate for
encryption.

• user:pass@ is an optional component used to instruct the client that Basic
HTTP authentication is required to access the resource and that user and pass

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

HTTP ” 11

should be used for the username and password respectively when authenti-
cating. HTTP authentication will be covered in more detail toward the end of
this chapter.

• :8080 is another optional segment used to instruct the client that 8080 is the
port on which the web server listens for incoming requests. In the absence of
this segment, most clients will use the standard HTTP port 80.

• /path/to/file.ext specifies the resource to access.

• query=&var=value is the query string, which will be covered in more depth in
the next section.

• #anchor is the fragment, which points to a specific location within or state of
the current resource.

Query Strings

Another provision of URLs is a mechanism called the query string that is used to
pass request parameters to web applications. Below is a GET request that includes
a query string and is used to request a form to edit a page on Wikipedia.

GET /w/index.php?title=Query_string&action=edit
Host: en.wikipedia.org

There are a few notable traits of this URL.

• A question mark denotes the end of the resource path and the beginning of the
query string.

• The query string is composed of key-value pairs where each pair is separated
by an ampersand.

• Keys and values are separated by an equal sign.

Query strings are not specific to GET operations and can be used in other operations
as well. Speaking of which, let’s move on.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

12 ” HTTP

i
Query String Limits
Most mainstream browsers impose a limit on the maximum character length of a
query string. There is no standardized value for this, but Internet Explorer 7 appears to
hold the current least common denominator of 2,047 bytes at the time of this writing.
Querying a search engine should turn up your preferred browser’s limit. It’s rare for
this to become an issue during development, but it is a circumstance worth knowing.

POST Requests

The next most common HTTP operation after GET is POST, which is used to submit
data to a specified resource. When using a web browser as a client, this is most often
done via an HTML form. POST is intended to add to or alter data exposed by the
application, a potential result of which is that a new resource is created or an exist-
ing resource is changed. One major difference between a GET request and a POST
request is that the latter includes a body following the request headers to contain the
data to be submitted.

POST /w/index.php?title=Wikipedia:Sandbox&action=submit HTTP/1.1
Host: en.wikipedia.org

wpAntispam=&wpSection=&wpStarttime=20080719022313&wpEdittime=200807190
22100&&wpScrolltop=&wpTextbox1=%7B%7BPlease+leave+this+line+alone+%28s
andbox+heading%29%7D%7D+%3C%21--+Hello%21+Feel+free+to+try+your+format
ting+and+editing+skills+below+this+line.+As+this+page+is+for+editing+e
xperiments%2C+this+page+will+automatically+be+cleaned+every+12+hours.+
--%3E+&wpSummary=&wpAutoSummary=d41d8cd98f00b204e9800998ecf8427e&wpSav
e=Save+page&wpPreview=Show+preview&wpDiff=Show+changes&wpEditToken=%5C
%2B

A single blank line separates the headers from the body. The body should look famil-
iar, as it is formatted identically to the query string with the exception that it is not
prefixed with a question mark.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

HTTP ” 13

i URL Encoding
One trait of query strings is that parameter values are encoded using percent-encoding
or, as it’s more commonly known, URL encoding. The PHP functions urlencode and
urldecode are a convenient way to handle string values encoded in this manner. Most
HTTP client libraries handle encoding request parameters for you. Though it’s called
URL encoding, the technical details for it are actually more closely associated with the
URI as shown in section 2.1 of RFC 3986.

HEAD Requests

Though not common when accessing target web applications, HEAD requests are
useful in web scraping applications in several ways. They function in the same way
as a GET request with one exception: when the server delivers its response, it will
not deliver the resource representation that normally comprises the response body.
The reason this is useful is that it allows a client to get at the data present in the
response headers without having to download the entire response, which is liable
to be significantly larger. Such data can include whether or not the resource is still
available for access and, if it is, when it was last modified.

HEAD /wiki/Main_Page HTTP/1.1
Host: en.wikipedia.org

Speaking of responses, now would be a good time to investigate those in more detail.

Responses

Aside from the first response line, called the status line, responses are formatted very
similarly to requests. While different headers are used in requests and responses,
they are formatted the same way. A blank line separates the headers and the body in
both requests and responses. The body may be absent in either depending on what
the request operation is. Below is an example response.

HTTP/1.0 200 OK
Date: Mon, 21 Jul 2008 02:32:52 GMT

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

14 ” HTTP

Server: Apache
X-Powered-By: PHP/5.2.5
Cache-Control: private, s-maxage=0, max-age=0, must-revalidate
Content-Language: en
Last-Modified: Mon, 21 Jul 2008 02:06:27 GMT
Content-Length: 53631
Content-Type: text/html; charset=utf-8
Connection: close

[body...]

Aside from headers, the main difference in content between requests and responses
is in the contents of the request line versus the status line.

• 1.0 is the minimum HTTP protocol version under which the response can be
correctly interpreted by the client.

• 200 is a response status code and OK is its corresponding human-readable de-
scription. It indicates the result of the server attempting to process the request,
in this case that the request was successful.

Status codes are divided into five classes distinguished by the first digit of the code.
Below is a brief summary of each class. See section 10 of RFC 2616 for further de-
scriptions of circumstances under which specific status codes may be received.

• 1xx Informational: Request received, continuing process.

• 2xx Success: Request received, understood, and accepted.

• 3xx Redirection: Client must take additional action to complete the request.

• 4xx Client Error: Request could not be fulfilled because of a client issue.

• 5xx Server Error: Request was valid but the server failed to process it.

Moving right along, let us examine headers in more depth.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

HTTP ” 15

Headers

An all-purpose method of communicating a variety of information related to re-
quests and responses, headers are used by the client and server to accomplish a
number of things including retention of state using cookies and identity verification
using HTTP authentication. This section will deal with those that are particularly ap-
plicable to web scraping applications. For more information, see section 14 of RFC
2616.

Cookies

HTTP is designed to be a stateless protocol. That is, once a server returns the re-
sponse for a request, it effectively “forgets” about the request. It may log information
about the request and the response it delivered, but it does not retain any sense of
state for the same client between requests. Cookies are a method of circumventing
this using headers. Here is how they work.

• The client issues a request.

• In its response, the server includes a Set-Cookie header. The header value is
comprised of name-value pairs each with optional associated attribute-value
pairs.

• In subsequent requests, the client will include a Cookie header that contains
the data it received in the Set-Cookie response header.

Cookies are frequently used to restrict access to certain content, most often by re-
quiring some form of identity authentication before the target application will indi-
cate that a cookie should be set. Most client libraries have the capability to handle
parsing and resending cookie data as appropriate, though some require explicit in-
struction before they will do so. For more information on cookies, see RFC 2109 or
its later (though less widely adopted) rendition RFC 2965.

One of the aforementioned attributes, “expires,” is used to indicate when the client
should dispose of the cookie and not persist its data in subsequent requests. This
attribute is optional and its presence or lack thereof is the defining factor in whether
or not the cookie is what’s called a session cookie. If a cookie has no expiration value

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

16 ” HTTP

set, it will persist for the duration of the client session. For normal web browsers, this
is generally when all instances of the browser application have been closed.

Redirection

The Location header is used by the server to redirect the client to a URI. In this
scenario, the response will most likely include a 3xx class status code (such as 302
Found), but may also include a 201 code to indicate the creation of a new resource.
See subsection 14.30 of RFC 2616 for more information.

It is hypothetically possible for a malfunctioning application to cause the server to
initiate an infinite series of redirections between itself and the client. For this reason,
client libraries often implement a limit on the number of consecutive redirections it
will process before assuming that the application being accessed is behaving inap-
propriately and terminating. Libraries generally implement a default limit, but allow
you to override it with your own.

Referring URLs

It is possible for a requested resource to refer to other resources in some way. When
this happens, clients traditionally include the URL of the referring resource in the
Referer header. Yes, the header name is misspelled there and intentionally so. The
commonality of that particular misspelling caused it to end up in the official HTTP
specification, thereby becoming the standard industry spelling used when referring
to that particular header.

There are multiple situations in which the specification of a referer can occur. A
user may click on a hyperlink in a browser, in which case the full URL of the resource
containing the hyperlink would be the referer. When a resource containing markup
with embedded images is requested, subsequent requests for those images will con-
tain the full URL of the page containing the images as the referer. A referer is also
specified when redirection occurs, as described in the previous section.

The reason this is relevant is because some applications depend on the value of the
Referer header by design, which is less than ideal for the simple fact that the header
value can be spoofed. In any case, it is important to be aware that some applications
may not function as expected if the provided header value is not consistent with

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

HTTP ” 17

what is sent when the application is used in a browser. See subsection 14.36 of RFC
2616 for more information.

Persistent Connections

The standard operating procedure for an HTTP request is as follows.

• A client connects to a server.

• The client sends a request over the established connection.

• The server returns a response.

• The connection is terminated.

When sending multiple consecutive requests to the same server, however, the first
and fourth steps in that process can cause a significant amount of overhead. HTTP
1.0 established no solution for this; one connection per request was normal behav-
ior. Between the releases of the HTTP 1.0 and 1.1 standards, a convention was infor-
mally established that involved the client including a Connection header with a value
of Keep-Alive in the request to indicate to the server that a persistent connection was
desired.

Later, 1.1 was released and changed the default behavior from one connection per
request to persist connections. For a non-persistent connection, the client could in-
clude a Connection header with a value of close to indicate that the server should
terminate the connection after it sent the response. The difference between 1.0 and
1.1 is an important distinction and should be a point of examination when evaluat-
ing both client libraries and servers hosting target applications so that you are aware
of how they will behave with respect to persistent connections. See subsection 8.1 of
RFC 2616 for more information.

There is an alternative implementation that gained significantly less support in
clients and servers involving the use of a Keep-Alive header. Technical issues with
this are discussed in subsection 19.7.1 of RFC 2068, but explicit use of this header
should be avoided. It is mentioned here simply to make you aware that it exists and
is related to the matter of persistent connections.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

18 ” HTTP

Content Caching

Two methods exist to allow clients to query servers in order to determine if resources
have been updated since the client last accessed them. Subsections of RFC 2616
section 14 detail related headers.

The first method is time-based where the server returns a Last-Modified

header (subsection 29) in its response and the client can send that value in an
If-Modified-Since header (subsection 25) in a subsequent request for the same re-
source.

The other method is hash-based where the server sends a hash value in its re-
sponse via the ETag header (subsection 19) and the client may send that value in an
If-None-Match header (subsection 26) in a subsequent request for the same resource.

If the resource has not changed in either instance, the server simply returns a 304
Not Modified response. Aside from checking to ensure that a resource is still avail-
able (which will result in a 404 response if it is not), this is an appropriate situation
in which to use a HEAD request.

Alternatively, the logic of the first method can be inverted by using an
If-Unmodified-Since header (subsection 28), in which case the server will return a
412 Precondition Failed response if the resource has in fact been modified since the
provided access time.

User Agents

Clients are sometimes referred to as user agents. This refers to the fact that web
browsers are agents that act on behalf of users in order to require minimal interven-
tion on the user’s part. The User-Agent header enables the client to provide infor-
mation about itself, such as its name and version number. Crawlers often use it to
provide a URL for obtaining more information about the crawler or the e-mail ad-
dress of the crawler’s operator. A simple search engine query should reveal a list of
user agent strings for mainstream browsers. See subsection 14.43 of RFC 2616 for
more information.

Unfortunately, some applications will engage in a practice known as user agent
sniffing or browser sniffing in which they vary the responses they deliver displayed
based on the user agent string provided by the client. This can include completely

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

HTTP ” 19

disabling a primary site feature, such as an e-commerce checkout page that uses
ActiveX (a technology specific to Windows and Internet Explorer).

One well-known application of this technique is the robots exclusion stan-
dard, which is used to explicitly instruct crawlers to avoid accessing individual
resources or the entire web site. More information about this is available at
http://www.robotstxt.org. The guidelines detailed there should definitely be ac-
counted for when developing a web scraping application so as to prevent it from
exhibiting behavior inconsistent with that of a normal user.

In some cases, a client practice called user agent spoofing involving the specifica-
tion of a false user agent string is enough to circumvent user agent sniffing, but not
always. An application may have platform-specific requirements that legitimately
warrant it denying access to certain user agents. In any case, spoofing the user agent
is a practice that should be avoided to the fullest extent possible.

Ranges

The Range request header allows the client to specify that the body of the server’s
response should be limited to one or more specific byte ranges of what it would nor-
mally be. Originally intended to allow failed retrieval attempts to resume from their
stopping points, this feature can allow you to minimize data transfer between your
application and the server to reduce bandwidth consumption and runtime of your
web scraping application.

This is applicable in cases where you have a good rough idea of where your target
data is located within the document, especially if the document is fairly large and
you only need a small subset of the data it contains. However, using it does add one
more variable to the possibility of your application breaking if the target site changes
and you should bear that in mind when electing to do so.

While the format of the header value is being left open to allow for other range
units, the only unit supported by HTTP/1.1 is bytes. The client and server may both
use the Accept-Ranges header to indicate what units they support. The server will
include the range (in a slightly different format) of the full response body in which
the partial response body is located using the Content-Range header.

In the case of bytes, the beginning of the document is represented by 0. Ranges use
inclusive bounds. For example, the first 500 bytes of a document would be specified

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

20 ” HTTP

as 0-499. To specify from a point to the end of the document, simply exclude the
later bound. The portion of a document beginning from the byte 500 going to its end
is represented as 500-.

If a range is specified that is valid with respect to the resource being requested, the
server should return a 206 Partial Content response. Otherwise, it should return a
416 Requested Range Not Satisfiable response. See sections 14.35 and 14.16 of RFC
2616 for more information on the Range and Content-Range headers respectively.

Basic HTTP Authentication

Another less frequently used method of persisting identity between requests is HTTP
authentication. Most third-party clients offer some form of native support for it.
It’s not commonly used these days, but it’s good to be aware of how to derive the
appropriate header values in cases where you must implement it yourself. For more
information on HTTP authentication, see RFC 2617.

HTTP authentication comes in several “flavors,” the more popular two being Basic
(unencrypted) and Digest (encrypted). Basic is the more common of the two, but the
process for both goes like this.

• A client sends a request without any authentication information.

• The server sends a response with a 401 status code and a WWW-Authenticate

header.

• The client resends the original request, but this time includes an Authorization

header including the authentication credentials.

• The server either sends a response indicating success or one with a 403 status
code indicating that authentication failed.

In the case of Basic authentication, the value of the Authorization header will be
the word Basic followed by a single space and then by a Base64-encoded sequence
derived from the username-password pair separated by a colon. If, for example, the
username is bigbadwolf and the password is letmein then the value of the header
would be Basic YmlnYmFkd29sZjpsZXRtZWlu where the Base64-encoded version of the
string bigbadwolf:letmein is what follows Basic.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

HTTP ” 21

Digest HTTP Authentication

Digest authentication is a bit more involved. The WWW-Authenticate header returned
by the server will contain the word “Digest” followed by a single space and then by a
number of key-value pairs in the format key=“value” separated by commas. Below is
an example of this header.

WWW-Authenticate: Digest realm="testrealm@host.com",
qop="auth,auth-int",
nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",
opaque="5ccc069c403ebaf9f0171e9517f40e41"

The client must respond with a specific response value that the server will verify be-
fore it allows the client to proceed. To derive that value requires use of the MD5 hash
algorithm, which in PHP can be accessed using the md5 or hash functions. Here is the
process.

• Concatenate the appropriate username, the value of the realm key provided
by the server, and the appropriate password together separated by colons and
take the MD5 hash of that string. We’ll call this HA1. It shouldn’t change for
the rest of the session.

<?php
$ha1 = md5($username . ’:testrealm@host.com:’ . $password);
?>

• Concatenate the method and URI of the original request separated by a colon
and take the MD5 hash of that string. We’ll call this HA2. This will obviously
vary with your method or URI.

<?php
$ha2 = md5(’GET:/wiki/Main_Page’);
?>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

22 ” HTTP

• Initialize a request counter that we’ll call nc with a value of 1. The value of this
counter will need to be incremented and retransmitted with each subsequent
request to uniquely identify it. Retransmitting a request counter value used in
a previous request will result in the server rejecting it. Note that the value of
this counter will need to be expressed to the server as a hexadecimal number.
The dechex PHP function is useful for this.

<?php
$nc = 1;
?>

• Generate a random hash using the aforementioned hashing functions that
we’ll call the client nonce or cnonce. The time and rand functions may be use-
ful here. This can (and probably should) be regenerated and resent with each
request.

<?php
$cnonce = md5($_SERVER[’REMOTE_ADDR’] . microtime(true));
?>

• Take note of the value of the nonce key provided by the server, also known
as the server nonce. We’ll refer to this as simply the nonce. This is ran-
domly generated by the server and will expire after a certain period of time,
at which point the server will respond with a 401 status code. It will modify
the WWW-Authenticate header it returns in two noteworthy ways: 1) the key-
value pair stale=TRUE will be added; 2) the nonce value will be changed. When
this happens, simply rederive the response code as shown below with the new
nonce value and resubmit the original request (not forgetting to increment the
request counter).

• Concatenate HA1, the server nonce (nonce), the current request counter (nc)
value, the client nonce you generated (cnonce), an appropriate value (most

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

HTTP ” 23

likely “auth”) from the comma-separated list contained in the qop (quality of
protection) key provided by the server, and HA2 together separated by colons
and take the MD5 hash of that string. This is the final response code.

<?php
$response = implode(’:’, array(

$ha1,
$nonce,
dechex($nc),
$cnonce,
’auth’,
$ha2

));
?>

• Lastly, send everything the server originally sent in the WWW-Authenticate

header, plus the response value and its constituents (except the password ob-
viously), back to the server in the usual Authorization header.

Authorization: Digest username="USERNAME",
realm="testrealm@host.com",
nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",
uri="/wiki/Main_Page",
qop="auth",
nc=00000001,
cnonce="0a4f113b",
response="6629fae49393a05397450978507c4ef1",
opaque="5ccc069c403ebaf9f0171e9517f40e41"

Some third-party clients implement this, some don’t. Again, it’s not commonly used,
but it’s good to be aware of how to derive the appropriate header value in cases where
you must implement it yourself. For more information on HTTP authentication, see
RFC 2617.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

24 ” HTTP

Wrap-Up

At this point, you should feel comfortable looking at HTTP requests and responses
and be capable deducing information about them by analyzing their individual com-
ponents. The next few chapters will expound upon this information by reviewing
several commonly used PHP HTTP client implementations.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Chapter 3

HTTP Streams Wrapper

At this point, you should be fairly well-acquainted with some of the general concepts
involved in using an HTTP client. The next few chapters will review some of the
more popular mainstream client libraries, particularly common use cases and the
advantages and disadvantages of each. This client covered in this chapter will be the
HTTP streams wrapper.

PHP 4.3 saw the addition of the Streams extension to the core. According to the
related section of the PHP manual, the intention was to provide “a way of general-
izing file, network, data compression, and other operations which share a common
set of functions and uses.” Streams introduced several concepts, one of which is a
wrapper. The job of a wrapper is to define how a stream handles communications
in a specific protocol or using a specific encoding. One such protocol for which a
wrapper is available is HTTP.

The advantage to the HTTP streams wrapper is that there is very little to learn in
terms of the API. It’s fairly easy to get something simple working quickly. The disad-
vantage is that it’s very minimalistic in terms of the feature set offered. It gives you
the ability to send HTTP requests without having to construct them entirely on your
own (by specifying the body and optionally any headers you want to add) and access
data in the response. That’s about it. The ability to debug requests is one example of
a feature that it does not include at the time of writing.

The fact that the wrapper is written in C is a bit of a double-edged sword. On the
positive side, there is a substantial performance difference between C code and PHP

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

28 ” HTTP Streams Wrapper

code (though it is more noticeable in a high load environment). On the negative
side, you have to either know C or depend on the community to deliver patches in a
timely fashion for any issues that may arise. This also applies to extensions written
in C that will be covered in subsequent sections.

The streams wrapper is part of the PHP core and as such has no installation re-
quirements beyond that of PHP itself.

Simple Request and Response Handling

Here’s a simple example of the HTTP streams wrapper in action.

<?php
$response = file_get_contents(’http://localhost.example’);
print_r($http_response_header);
?>

There are a few things to note.

• The allow_url_fopen PHP configuration setting must be enabled for this to
work, which it is in most environments.

• In this example, the file_get_contents function call is equivalent to making a
GET request for the specified URL ’http://localhost.example’.

• $response will contain the response body after the call to the
file_get_contents function completes.

• $http_response_header is implicitly populated with the HTTP response status
line and headers after the file_get_contents call because it uses the HTTP
streams wrapper within the current scope.

While this example does work, it violates a core principle of good coding prac-
tices: no unexpected side effects. The origin of $http_response_header is not en-
tirely obvious because PHP populates it implicitly. Additionally, it’s more restric-
tive because the variable is only populated within the scope containing the call to
file_get_contents. Here’s a better way to get access to the same data from the re-
sponse headers.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

HTTP Streams Wrapper ” 29

<?php
$handle = fopen(’http://localhost.example’, ’r’);
$response = stream_get_contents($handle);
$meta = stream_get_meta_data($handle);
print_r($meta[’wrapper_data’]);
?>

Let’s step through this.

• The resource $handle is created to read from the URL
http://localhost.example.

• The stream_get_contents function is called to read the remaining data on the
stream pointed to by the $handle resource into $response.

• The stream_get_meta_data function is called to read metadata for the stream
pointed to by the $handle resource into $meta.

• The wrapper_data index of the $meta array outputs the same array as
$http_response_header would within the current scope. So long as $handle is
accessible within the current scope, stream_get_meta_data() can be called on
it. This makes it more flexible than $http_response_header.

Stream Contexts and POST Requests

Another concept introduced by streams is the context, which is basically a set of
configuration options used in a streams operation. A context is created by pass-
ing an associative array of context options and their corresponding values to the
stream_context_create function. One use of contexts with regard to the HTTP
streams wrapper is making POST requests, as the wrapper uses the GET method by
default.

<?php
$context = stream_context_create(array(

’http’ => array(
’method’ => ’POST’,
’header’ => implode("\r\n", array(

’Content-Type: application/x-www-form-urlencoded’,
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

30 ” HTTP Streams Wrapper

’Referer: http://localhost.example’
)),
’content’ => http_build_query(array(

’param1’ => ’value1’,
’param2’ => ’value2’

))
)

));

$response = file_get_contents(
’http://localhost.example/process’,
false,
$context

);
?>

Here is a walk-through of this example.

• ’http’ is the streams wrapper being used.

• ’POST’ is the HTTP method of the request.

• The ’header’ stream context setting is populated with a string containing
HTTP header key-value pairs, in this case for the Content-Type and Referer

HTTP headers. The Content-Type header is used to indicate that the request
body data is URL-encoded. When multiple custom headers are needed, they
must be separated by a carriage return-line feed (“\r\n” also known as CRLF)
sequence. The implode function is useful for this if key-value pairs for headers
are stored in an enumerated array.

• The http_build_query function is being used to construct the body of the re-
quest. This function can also be used to construct query strings of URLs for
GET requests.

• http://localhost.example/process is the URL of the resource being requested.

• file_get_contents is called to execute the request, the options for which are
passed via the context $context created using stream_context_create.

• The body of the response is returned and stored in the variable $response.
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

HTTP Streams Wrapper ” 31

Error Handling

Before PHP 5.3.0, an HTTP streams wrapper operation resulting in an HTTP error
response (i.e. a 4xx or 5xx status code) causes a PHP-level warning to be emitted.
This warning will only contain the HTTP version, the status code, and the status
code description. The function calls for such operations generally return false as a
result and leave you without a stream resource to check for more information. Here’s
an example of how to get what data you can.

<?php
function error_handler($errno, $errstr, $errfile, $errline,

array $errcontext) {

// $errstr will contain something like this:
// fopen(http://localhost.example/404): failed to open stream:
// HTTP request failed! HTTP/1.0 404 Not Found

if ($httperr = strstr($errstr, ’HTTP/’)) {

// $httperr will contain HTTP/1.0 404 Not Found in the case
// of the above example, do something useful with that here

}
}

set_error_handler(’error_handler’, E_WARNING);

// If the following statement fails, $stream will be assigned false
// and error_handler will be called automatically
$stream = fopen(’http://localhost.example/404’, ’r’);

// If error_handler() does not terminate the script, control will
// be returned here once it completes its execution
restore_error_handler();
?>

This situation has been improved somewhat in PHP 5.3 with the addition of the
ignore_errors context setting. When this setting is set to true, operations result-
ing in errors are treated the same way as successful operations. Here’s an example of
what that might look like.

<?php
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

32 ” HTTP Streams Wrapper

$context = stream_context_create(
array(

’http’ => array(
’ignore_errors’ => true

)
)

);

$stream = fopen(’http://localhost.example/404’, ’r’, false, $context);

// $stream will be a stream resource at this point regardless of
// the outcome of the operation
$body = stream_get_contents($stream);
$meta = stream_get_meta_data($stream);

// $meta[’wrapper_data’][0] will equal something like HTTP/1.0 404
// Not Found at this point, with subsequent array elements being
// other headers
$response = explode(’ ’, $meta[’wrapper_data’][0], 3);
list($version, $status, $description) = $response;
switch (substr($status, 0, 1)) {

case ’4’:
case ’5’:

$result = false;
default:

$result = true;
}
?>

HTTP Authentication

The HTTP stream wrapper has no context options for HTTP authentication creden-
tials. However, it is possible to include the credentials as part of the URL being ac-
cessed. See the example below. Note that credentials are not pre-encoded; this is
handled transparently when the request is made. Also, note that this feature only
works when Basic HTTP authentication is used; Digest authentication must be han-
dled manually.

<?php
$response = file_get_contents(

’http://username:password@localhost.example’
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

HTTP Streams Wrapper ” 33

);
?>

A Few More Options

Below are a few other stream context options for the HTTP streams wrapper that may
prove useful.

• ’user_agent’ allows you to set the user agent string to use in the operation.
This can also be set manually by specifying a value for the User-Agent header
in the ’header’ context option value.

• ’max_redirects’ is used to set the maximum number of redirections that the
operation will process prior to assuming that the application is misbehaving
and terminating the request. This option is only available in PHP 5.1.0 and up
and uses a default value of 20.

• ’timeout’ is used to set a maximum limit on the amount of time in seconds that
a read operation may be allowed to execute before it is terminated. It defaults
to the value of the default_socket_timeout PHP configuration setting.

All other features utilizing headers must be implemented manually by spec-
ifying request headers in the ’header’ context option and checking either
$http_response_header or the ’wrapper_data’ index of the array returned by the
stream_get_meta_data function for response headers.

Wrap-Up

For more information about the HTTP streams wrapper itself, see
http://www.php.net/manual/en/wrappers.http.php.

For details about the context options specific to the wrapper, see
http://www.php.net/manual/en/context.http.php.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Chapter 4

cURL Extension

The cURL PHP extension, available since PHP 4.0.2, wraps a library called libcurl
that implements client logic for a variety of internet protocols including HTTP and
HTTPS. Its API is fairly small and applications of it consist mostly of calls to set con-
figuration options and their respective values.

cURL assumes fewer default configuration values than the HTTP streams wrap-
per, like whether or not to process redirections and how many of them to process.
The disadvantage to this is that, combined with the rich feature set of the extension,
PHP code to use cURL is often more verbose than equivalent code using other client
libraries.

Like the streams wrapper, the cURL extension is written in C and has the same
pros and cons in that respect. cURL uses a session handle (of the PHP resource data
type) with which configuration settings can be associated in a similar fashion to how
they are associated with contexts for stream wrappers. Also like stream contexts,
cURL session handles can be used multiple times to repeat the same operation until
passed to the curl_close function.

The cURL extension is included in the PHP core, but must either be compiled into
PHP or installed as a separate extension. Depending on the runtime environment’s
operating system, this may involve installing a package in addition to the OS PHP
package.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

36 ” cURL Extension

Simple Request and Response Handling

<?php
$ch = curl_init(’http://localhost.example/’);
curl_setopt($ch, CURLOPT_RETURNTRANSER, true);
$response = curl_exec($ch);
curl_close($ch);
?>

Let’s look at this line by line.
• curl_init is called and passed ’http://localhost.example/path/to/form’ as

the URL for the request. Note this parameter is optional and can also be speci-
fied by calling curl_setopt with the cURL session handle ($ch in this case), the
CURLOPT_URL constant, and the URL string.

• curl_setopt is called to set the configuration setting represented by the
CURLOPT_RETURNTRANSFER parameter to have a value of true. This setting will
cause curl_exec to return the HTTP response body in a string rather than out-
putting it directly, the latter being the default behavior.

• curl_exec is called to have it execute the request and return the response body.

• curl_close is called to explicitly close the cURL session handle, which will no
longer be reusable after that point.

A useful setting worth mentioning early on is CURLOPT_VERBOSE, which outputs debug-
ging information when set to true. This output is sent to either stderr (the default)
or the file referenced by the value of the CURLOPT_STDERR.

Contrasting GET and POST

Obviously the cURL extension has other functions, but by and large most HTTP re-
quests made using the cURL extension will follow the sequence of operations shown
in the above example. Let’s compare this with a POST request.

<?php
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

cURL Extension ” 37

$data = array(
’param1’ => ’value1’,
’param2’ => ’value2’,
’file1’ => ’@/path/to/file’,
’file2’ => ’@/path/to/other/file’

);

$ch = curl_init();
curl_setopt($ch, CURLOPT_URL, ’http://localhost.example/process’);
curl_setopt($ch, CURLOPT_POST, true);
curl_setopt($ch, CURLOPT_POSTFIELDS, $data);
curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
$response = curl_exec($ch);
curl_close($ch);
?>

Here are the differences between this example and the previous one.

• The URL is passed using the curl_setopt function this time, just to show how
to do it without passing it to the curl_init function. This is important when
reusing cURL session handles with different URLs.

• CURLOPT_POST is set to true to change the request method to POST.

• CURLOPT_POSTFIELDS is an associative array or preformatted query string to be
used as the data for the request body. Files can be uploaded by specifying a
value where the first character is @ and the remainder of the value is a filesys-
tem path to the file intended for upload.

Here are a few other cURL configuration setting constants related to the request
method.

• CURLOPT_HTTPGET: Boolean that, when set to true, explicitly resets the request
method to GET if it’s been changed from the default.

• CURLOPT_NOBODY: Boolean that, when set to true, excludes the body from the
response by changing the request method to HEAD.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

38 ” cURL Extension

Setting Multiple Options

If you’re working with PHP 5.1.3+ you have access to the curl_setopt_array function,
which allows you to pass in an associative array of setting-value pairs to set with a
single function call. If you’re working with an older version of PHP, the function is
relatively easy to write.

Using this function results in not only less and cleaner code, but in the case of
the native C function it also results in fewer function calls and by proxy improved
performance.

<?php
if (!function_exists(’curl_setopt_array’)) {

function curl_setopt_array($ch, $options) {
foreach ($options as $setting => $value) {

curl_setopt($ch, $setting, $value);
}

}
}

$ch = curl_init();
$opts = array(

CURLOPT_URL => ’http://localhost.example’,
CURLOPT_RETURNTRANSFER => true

);
curl_setopt_array($ch, $opts);
$response = curl_exec($ch);
curl_close($ch);
?>

Handling Headers

CURLOPT_HEADER holds a boolean flag that, when set to true, will cause headers to be
included in the response string returned by curl_exec.

Another option for getting at some of the data included in the response headers,
such as the HTTP response code, is to use the curl_getinfo function as shown in the
following example. For more on what other information this function offers, see its
entry in the PHP manual.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

cURL Extension ” 39

<?php
$ch = curl_init();
// ...
$response = curl_exec($ch);
$info = curl_getinfo($ch);
$responsecode = curl_getinfo($ch, CURLINFO_HTTP_CODE);
?>

CURLOPT_HTTPHEADER holds an enumerated array of custom request header name-
value pairs formatted like so.

<?php
$ch = curl_init();
curl_setopt($ch, CURLOPT_HTTPHEADER, array(

’Accept-Language: en-us,en;q=0.5’,
’Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7’,
’Keep-Alive: 300’,
’Connection: keep-alive’

));
?>

Debugging

Previously mentioned in the last section on handling headers, the curl_getinfo func-
tion also enables you to view requests being sent by cURL. This can be quite useful
when debugging. Below is an example of this feature in action.

<?php
$ch = curl_init();
curl_setopt_array(array(

CURLOPT_RETURNTRANSFER => true,
CURLINFO_HEADER_OUT => true

));
curl_exec($ch);
$request = curl_getinfo($ch, CURLINFO_HEADER_OUT);
?>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

40 ” cURL Extension

• CURLOPT_RETURNTRANSFER is set to true in the curl_setopt_array call even
though the return value of curl_exec isn’t captured. This is simply to prevent
unwanted output.

• CURLINFO_HEADER_OUT is set to true in the curl_setopt_array call to indicate that
the request should be retained because it will be extracted after the request is
made.

• CURLINFO_HEADER_OUT is specified in the curl_getinfo call to limit its return
value to a string containing the request that was made.

Cookies

<?php
$cookiejar = ’/path/to/file’;

$ch = curl_init();

$url = ’http://localhost.example’;
curl_setopt($ch, CURLOPT_URL, $url);
curl_setopt($ch, CURLOPT_COOKIEJAR, $cookiejar);
curl_exec($ch);

$url = ’http://localhost.example/path/to/form’;
curl_setopt($ch, CURLOPT_URL, $url);
curl_setopt($ch, CURLOPT_COOKIEFILE, $cookiejar);
curl_exec($ch);

curl_close($ch);
?>

Here is a quick list of pertinent points.
• After the first curl_exec call, cURL will have stored the value of the the
Set-Cookie response header returned by the server in the file referenced by
’/path/to/file’ on the local filesystem as per the CURLOPT_COOKIEJAR setting.
This setting value will persist through the second curl_exec call.

• When the second curl_exec call takes place, the CURLOPT_COOKIEFILE setting
will also point to ’/path/to/file’. This will cause cURL to read the contents of

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

cURL Extension ” 41

that file and use it as the value for the Cookie request header when the request
is constructed.

• If $cookiejar is set to an empty string, cookie data will persist in memory rather
than a local file. This improves performance (memory access is faster than
disk) and security (file storage may be more open to access by other users and
processes than memory depending on the server environment).

In some instances it may be desirable for the CURLOPT_COOKIEJAR value to have
a different value per request, such as for debugging. In most cases, however,
CURLOPT_COOKIEJAR will be set for the first request to receive the initial cookie data
and its value will persist for subsequent requests. In most cases, CURLOPT_COOKIEFILE
will be assigned the same value as CURLOPT_COOKIEJAR after the first request. This will
result in cookie data being read to include in the request, followed by cookie data
from the response being written back (and overwriting any existing data at that loca-
tion) for use in subsequent requests. On a related note, if you want cURL to begin a
new session in order to have it discard data for session cookies (i.e. cookies without
an expiration date), you can set the CURLOPT_COOKIESESSION setting to true.

If you want to handle cookie data manually for any reason, you can set the value
of the Cookie request header via the CURLOPT_COOKIE setting. To get access to the re-
sponse headers, set the CURLOPT_HEADER and CURLOPT_RETURNTRANSFER settings to true.
This will cause the curl_exec call to return the entire response including the head-
ers and the body. Recall that there is a single blank line between the headers and
the body and that a colon separates each header name from its corresponding value.
This information combined with the basic string handling functions in PHP should
be all you need. Also, you’ll need to set CURLOPT_FOLLOWLOCATION to false in order
to prevent cURL from processing redirections automatically. Not doing this would
cause any cookies set by requests resulting in redirections to be lost.

HTTP Authentication

cURL supports both Basic and Digest HTTP authentication methods, among others.
The CURLOPT_HTTPAUTH setting controls the method to use and is set using constants
such as CURLAUTH_BASIC or CURLAUTH_DIGEST. The CURLOPT_USERPWD setting is a string

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

42 ” cURL Extension

containing the authentication credentials to use in the format ’username:password’.
Note that this has to be set for each request requiring authentication.

Redirection

CURLOPT_FOLLOWLOCATION can be set to true to have cURL automatically place pro-
cess redirections. That is, it will detect Location headers in the server response and
implicitly issue requests until the server response no longer contains a Location

header. To set the maximum number of Location headers to have cURL pro-
cess automatically before terminating, use the CURLOPT_MAXREDIRS setting. To have
authentication credentials persist in requests resulting from redirections, set the
CURLOPT_UNRESTRICTED_AUTH setting to true.

Referers

CURLOPT_REFERER allows you to explicitly set the value of the Referer header. Setting
CURLOPT_AUTOREFERER to true will cause cURL to automatically set the value of the
Referer header whenever it processes a Location header.

Content Caching

CURLOPT_TIMECONDITION must be set to either CURL_TIMECOND_IFMODSINCE or
CURL_TIMECOND_IFUNMODSINCE to select whether the If-Modified-Since or
If-Unmodified-Since header will be used respectively.

CURLOPT_TIMEVALUE must be set to a UNIX timestamp (a date representation using
the number of seconds between the UNIX epoch and the desired date) to indicate
the last client access time of the resource. The time function can be used to derive
this value.

User Agents

CURLOPT_USERAGENT can be used to set the User Agent string to use.
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

cURL Extension ” 43

Byte Ranges

CURLOPT_RESUME_FROM can be used to set a single point within the document from
which to start the response body. This will cause the Range header to be set with a
value of X- where X is the specified starting point.

In order to specify multiple ranges, CURLOPT_RANGE accepts a string in the same for-
mat as the Range header (ex: X-Y,Z-).

DNS Caching

You may notice that code using the cURL extension appears to run faster than code
using streams. The reason for this is that cURL implements its own DNS cache,
which is more likely to be apparent if your operating system or internet service
provider does not provide one.

DNS, or Domain Name System, is a system used to derive an IP address for a do-
main name in a manner similar to how phone directories are used to obtain a phone
number for a person using their name. The process of obtaining an IP address for a
domain name, called a DNS lookup, can be a costly operation in terms of the time
required.

Because the results of DNS lookups don’t change often, DNS caching is often used
to retain the results of lookups for a certain time period after they are performed.
This can be done at multiple levels including the source code level as with cURL,
natively at the OS level, or via software like nscd or dnsmasq run either locally or on
remote servers such as those used by internet service providers.

cURL DNS caching is enabled by default. Some situations like debugging may
warrant disabling it, which can be done by setting CURLOPT_DNS_USE_GLOBAL_CACHE to
false. cURL will also by default retain the results of DNS lookups in memory for two
minutes. To change this, set the CURLOPT_DNS_CACHE_TIMEOUT setting to the number of
seconds a result should remain in the cache before expiring.

Also noteworthy is the fact that cURL DNS caching is not thread-safe. Threading
is a particular style of parallel processing. The most common implementation of
threading consists of multiple threads of execution contained within a single oper-
ating system process that share resources such as memory. Because of this, it may

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

44 ” cURL Extension

operate unpredictably in a threaded environment such as Windows Server or *NIX
running a threaded Apache MPM such as worker.

If you are using the HTTP streams wrapper or either of the PHP-based HTTP client
libraries covered in this chapter and you have access to install software on your
server, you may want to install a local DNS caching daemon to improve perfor-
mance. Try nscd or dnsmasq on *NIX. Writing DNS caching into your own client
will be covered in a later chapter on writing your own HTTP client.

Timeouts

CURLOPT_CONNECTTIMEOUT is a maximum amount of time in seconds to which a con-
nection attempt will be restricted for a cURL operation. It can be set to 0 to disable
this limit, but this is inadvisable in a production environment. Note that this time
includes DNS lookups. For environments where the DNS server in use or the web
server hosting the target application is not particularly responsive, it may be neces-
sary to increase the value of this setting.

CURLOPT_TIMEOUT is a maximum amount of time in seconds to which the execu-
tion of individual cURL extension function calls will be limited. Note that the value
for this setting should include the value for CURLOPT_CONNECTTIMEOUT. In other words,
CURLOPT_CONNECTTIMEOUT is a segment of the time represented by CURLOPT_TIMEOUT, so
the value of the latter should be greater than the value of the former.

Request Pooling

Because it is written C, the cURL extension has one feature that cannot be replicated
exactly in libraries written in PHP: the ability to run multiple requests in parallel.
What this means is that multiple requests can be provided to cURL all at once and,
rather than waiting for a response to be received for the first request before moving
on to sending the second, all requests will be sent and processed as responses are
returned. This can significantly shorten the time required to collectively complete
all the requests. However, care should be taken not to overload a single host with
requests when using this feature.

<?php
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

cURL Extension ” 45

$ch1 = curl_init(’http://localhost.example/resource1’);
curl_setopt($ch1, CURLOPT_RETURNTRANSFER, true);
/* other curl_setopt calls */

$ch2 = curl_init(’http://localhost.example/resource2’);
curl_setopt($ch2, CURLOPT_RETURNTRANSFER, true);
/* other curl_setopt calls */

$mh = curl_multi_init();
curl_multi_add_handle($mh, $ch1);
curl_multi_add_handle($mh, $ch2);

$running = null;
do {

curl_multi_exec($mh, $running);
} while ($running > 0);

$ch1_response = curl_multi_getcontent($ch1);
$ch2_response = curl_multi_getcontent($ch2);

curl_multi_remove_handle($mh, $ch1);
curl_close($ch1);

curl_multi_remove_handle($mh, $ch2);
curl_close($ch2);

curl_multi_close($mh);
?>

• Two cURL session handles $ch1 and $ch2 are initialized and configured nor-
mally. Note that more than two can be used in this type of operation; two
merely satisfy the purpose of this example.

• A cURL multi handle $mh is initialized and the two session handles are added
to it.

• A loop is used in conjunction with the flag $running to repeatedly check (i.e.
poll) the multi handle for completion of all contained operations.

• curl_multi_getcontent is used on the two session handles to get the response
bodies of each.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

46 ” cURL Extension

• The session handles are individually removed from the multi handle and
closed using curl_multi_remove_handle and curl_close respectively.

• The multi handle is closed using curl_multi_close.

Note that this is a fairly simple example that waits until all requests
have completed before attempting to process them. If you want
to process requests as soon as they return, see the source code at
http://code.google.com/p/rolling-curl/source/browse/#svn/trunk for an example
of how to do this.

Wrap-Up

For more information on the cURL extension, see
http://php.net/manual/en/book.curl.php.

For information on installing the cURL extension, see
http://php.net/manual/en/curl.installation.php.

For information on the cURL extension configuration constants, see
http://php.net/manual/en/function.curl-setopt.php.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Chapter 5

pecl_http PECL Extension

The pecl_http extension became available in PHP 5 and gained a class for HTTP re-
sponses in PHP 5.1. Like the cURL extension, it also wraps the libcurl library and
has similar advantages as a result, such as its internal DNS cache. While the cURL
extension uses resources and configuration options to more closely mimic libcurl’s
own API, the pecl_http extension offers the same features in the form of procedural
and object-oriented APIs. As a result, code that uses pecl_http is generally shorter
than equivalent code using the cURL extension.

Another major difference is that the cURL extension is considered to be part of the
PHP core, which means that it is more likely to be present in most environments
supporting PHP. In contrast, pecl_http must be installed via the pecl installer or
compiled manually from source. In either case, the extension requires the PHP and
libcurl development headers to be present in order to compile properly. Not techni-
cally being part of the PHP core, it is less likely to be present or available in shared
hosting environments depending on the hosting provider. This may be a concern for
code that is intended to be distributed for use in a variety of environments.

To install pecl_http via the pecl installer, PEAR must be installed (see
http://pear.php.net/manual/en/installation.php). A package for PEAR may also be
available through your OS package manager. Once it is installed, simply issue the
command pecl install pecl_http. To install from source, download the latest ver-
sion from http://pecl.php.net/get/pecl_http. Note that this requires the header
files for the PHP version you are using, which are contained in the PHP source tar-

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

50 ” pecl_http PECL Extension

balls available for download at http://www.php.net/downloads.php or possibly also
through your OS package manager.

GET Requests

<?php
// Procedural
$response = http_get(’http://localhost.example’, null, $info);

// Object-oriented
$request = new HttpRequest(’http://localhost.example’);
$response = $request->send();
?>

• After the http_get call, $response will be a string containing the body of the
response and $info will contain an associative array with information about
the request and response. null is used in place of an array of request options
that will be covered in more detail shortly.

• The HttpRequest block is an object-oriented equivalent of the http_get proce-
dural call and offers a more explicit (albeit slightly less concise) API for setting
and getting data about the request and response.

• The constructor for the HttpRequest class has two additional optional param-
eters not shown here: a constant representing the request method (the default
is HTTP_METH_GET for a GET request) and an associative array of request options
as included in the http_get call.

POST Requests

<?php
$data = array(

’param1’ => ’value1’,
’param2’ => ’value2’

);
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

pecl_http PECL Extension ” 51

$files = array(
array(

’name’ => ’file1’,
’type’ => ’image/jpeg’,
’file’ => ’/path/to/file1.jpg’

),
array(

’name’ => ’file2’,
’type’ => ’image/gif’,
’file’ => ’/path/to/file2.gif’

)
);

$options = array(
’referer’ => ’http://localhost.example/’

);

// Procedural
$response = http_post_fields(

’http://localhost.example/process’,
$data,
$files,
$options,
$info

);

// Object-oriented
$request = new HttpRequest;
$request->setUrl(’http://localhost.example/process’);
$request->setMethod(HTTP_METH_POST);
$request->setPostFields($data);
$request->setPostFiles($files);
$request->setOptions($options);
$response = $request->send();
?>

• http_post_fields, setPostFields, and setPostFiles are used to set the request
method to POST and to specify that the extension should handle constructing
and encoding the POST body with the provided data. If you are handling this
aspect of the request yourself, use http_post_data or setRawPostData instead.

• setUrl is used to set the URL of the HttpRequest instance rather than the con-
structor, just as an example.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

52 ” pecl_http PECL Extension

• After HttpRequest is instantiated, its request method is explicitly set using the
constant HTTP_METH_POST.

• Request options are passed in this time, specifically the value for the Referer

header. They are specified as the fourth parameter of http_post_fields and
via setOptions.

• As with the GET request, the return values of http_post_fields and send are of
the same types (string and HttpMessage) as their respective counterparts in the
earlier GET example.

• Because http_post_fields does not have an object to use in retaining state, it
instead allows the option to pass in a fifth parameter $info in which it will store
information about the request and response. See http://php.net/http_get for
an example of the information stored in $info.

i Alternative Methods and More Options
For request method constants beyond GET and POST used by the procedural API, see
http://php.net/manual/en/http.constants.php. For more on available request options
for both APIs, see http://php.net/manual/en/http.request.options.php.

Handling Headers

When using the procedural API, limited request header information is available
via the $info parameter of functions to issue requests. Response headers are in-
cluded in the string returned by those function calls. When the string is passed to
http_parse_message, it returns an object with a headers property, which is an asso-
ciative array of header values indexed by header name.

Custom request headers can be set via the ’headers’ request option, which is for-
matted as an associative array with header names for keys pointing to correspond-
ing header values (as opposed to cURL, which uses an enumerated array with one
header name-value pair per array item). Below is an example of custom headers in a
request options array.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

pecl_http PECL Extension ” 53

<?php
$opts = array(

’headers’ => array(
’User-Agent’ => ’Mozilla/5.0 (X11; U; ...’,
’Connection’ => ’keep-alive’

)
);
$request = new HttpRequest;
$request->setOptions($opts);
?>

The object-oriented API offers several slightly less cumbersome solutions compared
to the procedural API as shown in the examples below.

<?php
$request = new HttpRequest;
// configure $request
$request->send();

// only returns custom set request headers
print_r($request->getHeaders());

// returns all request headers
$requestmessage = $request->getRequestMessage();
print_r($requestmessage->getHeaders());

// returns a specific request header
echo $requestmessage->getHeader(’User-Agent’);

// both return all response headers
$responsemessage = $request->getResponseMessage();
print_r($responsemessage->getHeaders());
print_r($request->getResponseHeader());

// both return a single response header
echo $responsemessage->getHeader(’Content-Length’);
echo $request->getResponseHeader(’Content-Length’);
?>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

54 ” pecl_http PECL Extension

Debugging

Debugging transmitted requests and responses with pecl_http is actually pretty
simple. Configure and send a request, then call the getRawRequestMessage and
getRawResponseMessage methods on the request instance as shown below.

<?php
$request = new HttpRequest(’http://localhost.example/index.php’);
// configure $request
$request->send();

// returns a string containing the entire request
echo $request->getRawRequestMessage();

// returns a string containing the entire response
echo $request->getRawResponseMessage();
?>

Timeouts

As with cURL, pecl_http has options for handling timeouts.
The ’timeout’ request option, which corresponds to CURLOPT_TIMEOUT, is the maxi-

mum number of seconds an entire request may take before timing out.
Likewise the ’connecttimeout’ request option, the counterpart for

CURLOPT_CONNECTTIMEOUT, is the maximum number of seconds that a connection
attempt, which includes DNS resolution, may take.

Finally the ’dns_cache_timeout’ request option, which is equivalent to
CURLOPT_DNS_CACHE_TIMEOUT, is the maximum number of seconds that a DNS
cache entry will be retained and defaults to 120 seconds (two minutes).

Content Encoding

If you are unfamiliar with content encoding, see “Content Encoding” in Chapter 8 for
more information. To enable it when using pecl_http, the ’compress’ request option
must be set to true.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

pecl_http PECL Extension ” 55

Note that this requires libz support to be enabled. You can check for this by exe-
cuting the phpinfo function within a PHP script or running php -ri http from com-
mand line. If libz support is not enabled, the technique detailed in Chapter 8 for
handling encoded content can be used on the return value of the request object’s
getResponseBody method.

Cookies

<?php
$requestcookies = array(

’foo’ => ’foovalue’,
’bar’ => ’barvalue’

);

$cookiejar = ’/path/to/cookiejar’;

// Procedural
$options = array(

’cookie’ => $requestcookies,
// - OR -
’cookiestore’ => $cookiejar

);

$response = http_get(’http://localhost.example’, $options);
$parsedresponse = http_parse_message($response);
$responsecookies = array_map(

’http_parse_cookie’,
$parsedresponse->headers[’Set-Cookie’]

);

// Object-oriented
$request = new HttpRequest(’http://localhost.example’);
$request->enableCookies();
$request->setCookies($cookies);
$request->addCookies(array(’baz’ => ’bazvalue’));
$request->send();
$responsecookies = $request->getResponseCookies();
?>

• Like cURL, pecl_http allows cookie data to be specified manually. Unlike
cURL, pecl_http handles most of the formatting for you. Simply specify an

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

56 ” pecl_http PECL Extension

associative array of cookie name-value pairs for the ’cookie’ request option. If
your cookie values are already encoded, set the ’encodecookies’ request option
to false.

• Also like cURL, pecl_http includes an option to use a file for storing cookie
data. Unlike cURL, pecl_http always uses the same data source for both read
and write operations. That is, it consolidates the CURLOPT_COOKIEFILE and
CURLOPT_COOKIEJAR options into the ’cookiestore’ request option.

• Because the procedural API lacks the persistent scope that is a defining char-
acteristic of the object-oriented API, extracting cookie values for uses beyond
storage and persistence is somewhat involved. http_parse_message is used to
parse the headers and body from a string containing an HTTP response mes-
sage into an object for easier access. http_parse_cookie is then applied to
Set-Cookie header values to parse the cookie data from them.

• In HttpRequest the enableCookies method explicitly sets CURLOPT_COOKIEFILE to
an empty string so that cookie data is persisted in memory. setCookies accepts
an associative array of cookie name-value pairs just like the ’cookie’ request
option. addCookies does the same thing, but merges the array contents into
any existing cookie data rather than deleting the latter as setCookies does.

• Once the send method is called on $request, cookie data from the response is
retrieved by calling the getResponseCookies method.

HTTP Authentication

The ’httpauth’ request option is used to set credentials in the format
’username:password’. The type of HTTP authentication to use is specified via
the ’httpauthtype’ request option using one of the pecl_http HTTP_AUTH_* constants,
which are similar to those intended for the same purpose in the cURL extension.

Lastly, the ’unrestrictedauth’ request option can be set to true if authentication
credentials should be included in requests resulting from redirections pointing to a
different host from the current one.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

pecl_http PECL Extension ” 57

Redirection and Referers

Intuitively, the ’redirect’ request option is used to set the maximum number of redi-
rections to process before automatically terminating. Not so intuitively, it defaults to
0, which means that processing of redirections is disabled and you must explicitly
set this request option to a value greater than 0 to enable it.

The ’referer’ request option can be used to set the value of the Referer request
header. Alternatively, it can be set via the ’headers’ request option (more on that
shortly) when using the procedural API or the setHeaders and addHeaders methods
of the HttpRequest class when using the object-oriented API.

Content Caching

The ’lastmodified’ request option accepts a UNIX timestamp to be used as the value
for the If-Modified-Since or If-Unmodified-Since request header.

Likewise, the ’etag’ request option accepts a string to be used as the value for the
If-Match or If-None-Match request header.

User Agents

The ’useragent’ request option can be used to set a custom user agent string for the
request.

Byte Ranges

Like cURL, pecl_http includes request options for a single resume point and multiple
byte ranges. The former is ’resume’ and accepts an integer for the starting point. The
latter is ’range’ and is formatted as an array of enumerated arrays each containing
a pair of integers representing a single byte range. What follows is an example of
setting byte ranges within a request options array.

<?php
$opts = array(

’range’ => array(
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

58 ” pecl_http PECL Extension

array(0, 1023), // first 1024 bytes (KB)
array(3072, 4095) // fourth 1024 bytes (KB)

)
);
?>

Alternatively, it can be set using custom headers via the ’headers’ request option.

<?php
$opts = array(

’headers’ => array(
’User-Agent’ => ’Mozilla/5.0 (X11; U; ...’,
’Connection’ => ’keep-alive’

)
);
?>

Request Pooling

pecl_http also inherits cURL’s support for request pooling, or sending and processing
multiple requests in parallel. Like other features, pecl_http implements it in a more
succinct fashion. Oddly enough, it is one feature that is limited to pecl_http’s object-
oriented API and has no equivalent in its procedural API. It is implemented in the
form of the HttpRequestPool class.

<?php
$request1 = new HttpRequest;
// configure $request1

$request2 = new HttpRequest;
// configure $request2

$request3 = new HttpRequest;
// configure $request3

$pool = new HttpRequestPool($request1, $request2);
$pool->attach($request3);
$pool->send();
?>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

pecl_http PECL Extension ” 59

• The HttpRequestPool constructor accepts a variable number of arguments, all
of which should be preconfigured HttpRequest instances.

• Request instances can also be added via the attach method of the
HttpRequestPool class.

• send is called on the pool instance to transmit all requests and blocks until
all responses are received. Once complete, all request instances contain their
respective sets of response data as if they had been sent individually.

Wrap-Up

For more information on the pecl_http extension, see http://php.net/http.
For more information on its request options,

http://php.net/manual/en/http.request.options.php.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Chapter 6

PEAR::HTTP_Client

The PHP Extension and Application Repository (PEAR) project houses a library of
reusable components written in PHP and a package system for distributing them,
one of which is the HTTP_Client package that will be covered in this section. PEAR
spurred the creation of the PECL project, a repository of C extensions from which
the pecl_http extension discussed in the previous section originates.

One trait of many components in PEAR is backward compatibility with older ver-
sions of PHP. The HTTP_Client package itself only requires 4.3.0, while the latest and
last version of the PHP 4 branch is 4.4.9. As such, this client may be a good solution
when feature requirements are more advanced than what the HTTP streams wrap-
per natively supports and the intended runtime environment is restricted to an older
PHP version. Otherwise, if you still want an HTTP client written in PHP, have a look at
Zend_Http_Client as described in the next section. It should go without saying that
support for PHP 4.x has ceased and that it is highly advisable to run a more current
stable version of PHP in production environments.

PHP source tarballs have a configure option to include PEAR when compil-
ing. Some operating systems may have a package for PEAR apart from PHP it-
self. Once PEAR is installed, pear install HTTP_Client should be sufficient to in-
stall PEAR::HTTP_Client. There is also the option to manually download tarballs for
the necessary PEAR packages (HTTP_Client, HTTP_Request, Net_URL, and Net_Socket),
though this is a bit more difficult to maintain in the long term as updates are re-
leased.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

62 ” PEAR::HTTP_Client

i PEAR Developments
At the time of writing, efforts are being put into PEAR 2, the successor to the current
incarnation of the PEAR project. This will include a newer package distribution sys-
tem and ports or revamps of many existing packages to bring them up-to-date with
features available in PHP 5. However, because there is currently little in the way of
stable ported code for PEAR 2, coverage in this book will be limited to PEAR 1.

Requests and Responses

There are two ways to perform HTTP requests with the related PEAR components:
HTTP_Request and HTTP_Client. The latter composes the former to add capabilities
such as handling redirects and persisting headers, cookie data, and request param-
eters across multiple requests. Here’s how to perform a simple request and extract
response information when using HTTP_Request directly.

<?php
require_once ’HTTP/Request.php’;

$request =& HTTP_Request(’http://localhost.example’);
$request->setMethod(HTTP_REQUEST_METHOD_GET);
$request->setURL(’http://localhost.example’);
$response = $request->sendRequest();
?>

• The HTTP_Request constructor has two parameters, both of which are optional.
The first is a string containing the URL for the request; note that the setURL

method is an alternative way to specify a value for this. The second is a param-
eters array, which will be discussed later.

• By default, the GET method is used. setMethod is used to change this using
constants, the names for which are formed by prefixing the desired request
method with HTTP_REQUEST_METHOD_ as in HTTP_REQUEST_METHOD_GET.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

PEAR::HTTP_Client ” 63

• sendRequest intuitively dispatches the request and obtains the response. It re-
turns either true to indicate that that request succeeded or an error object (of
the PEAR_Error class by default) if an issue occurred.

Issues that cause errors include environmental requirements of the component not
being met or the target of the request exceeding the redirect limit. PEAR::isError is
used to determine if the sendRequest call resulted in an error. If the request is sent
successfully, several methods of the request object are available to extract response
information.

<?php
if (!PEAR::isError($response)) {

$code = $request->getResponseCode();
$reason = $request->getResponseReason();
$body = $request->getResponseBody();
$cookies = $request->getResponseCookies();
$headers = $request->getResponseHeader();
$contentType = $request->getResponseHeader(’Content-Type’);

}
?>

Here are a few specifics about the response information methods.

• getResponseCode returns an integer containing the HTTP status code.

• getResponseReason returns a string containing a description that corresponds
to the HTTP status code.

• getResponseCookies returns false if no cookies are set; otherwise it returns an
enumerated array of associative arrays each of which contains information for
an individual cookie such as its name, value, and expiration date.

• getResponseHeader will return an associative array of all headers indexed by
header name (in all lowercase) if no parameter is passed to it; otherwise, it
takes a single string parameter containing a specific header name for which it
will return the value.

sendRequest does not modify any parameters set by you that are specific to the re-
quest (as opposed to the response). That is, request instances can be reused and

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

64 ” PEAR::HTTP_Client

individual parameters modified only as needed to change what differs between con-
secutive requests. To “start fresh” with an existing request instance, simply explicitly
call its constructor method.

<?php
$request =& new HTTP_Request;
// ...
$request->HTTP_Request();
// all parameters previously set will be cleared
?>

Juggling Data

HTTP_Requestmakes data management pretty easy and straightforward, so it’s all cov-
ered in this section.

<?php
$request =& new HTTP_Request(’http://localhost.example’);

// GET
$request->addQueryString(’variable’, ’value’);
$request->addRawQueryString(’foo=bar’);

// POST
$request->addPostData(’variable’, ’value’);
$request->clearPostData();

// COOKIE
$request->addCookie(’variable’, ’value’);
$request->clearCookies();

// FILES
$request->addFile(’fieldname’, ’/path/to/file’, ’text/plain’);
?>

• addRawQueryString isn’t named very intuitively, as it actually overwrites any
query string that you’ve previously set.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

PEAR::HTTP_Client ” 65

• By default, addQueryString and addPostData will URL-encode the variable
value. To prevent this if your data is already pre-encoded, pass the value true

as the third parameter to either method.

• clearPostData and clearCookies reset internal variables used to store data
passed in by addQueryString and addPostData respectively.

• setURL and addQueryString or addRawQueryString can be used together to con-
trol the content of the internal variable for the URL of the request. getURL can
be used to see the effects of these during development.

• addFile is intended to simulate uploading a file via a file input field in an HTML
form. For forms with multiple file upload files with the same name, pass an
array of file paths as the second parameter and (optionally) an array of corre-
sponding file MIME types as the third parameter.

• To send the contents of a file as the entire body of a request, use
file_get_contents to retrieve the file contents into a string and pass that to
the setBody method of the request instance.

Wrangling Headers

Handling headers is also relatively straightforward. The only header-specific conve-
nience method that’s included is for handling Basic HTTP authentication, as shown
below.

<?php
$request =& new HTTP_Request;
$request->addHeader(’name’, ’value’);
$request->removeHeader(’name’);
$request->setBasicAuth(’username’, ’password’);
?>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

66 ” PEAR::HTTP_Client

Using the Client

HTTP_Client persists explicit sets of headers and requests parameters across multiple
requests, which are set using the setDefaultHeader and setRequestParameter meth-
ods respectively. The client constructor also accepts arrays of these. Default headers
and request parameters can be cleared by calling reset on the client instance.

Internally, the client class actually creates a new instance of HTTP_Request per re-
quest. The request operation is set depending on which of the client instance meth-
ods are called; get, head, and post are supported.

The capabilities of the client described up to this point can all be accomplished
by reusing the same request instance for multiple requests. However, the client also
handles two things that the request class does not: cookies and redirects.

By default, cookies are persisted automatically across requests without any addi-
tional configuration. HTTP_Client_CookieManager is used internally for this. For cus-
tom cookie handling, this class can be extended and an instance of it passed as the
third parameter to the client constructor. If this is done, that instance will be used
rather than an instance of the native cookie manager class being created by default.

The maximum number of redirects to process can be set using the setMaxRedirects

method of the client class. Internally, requests will be created and sent as needed to
process the redirect until a non-redirecting response is received or the maximum
redirect limit is reached. In the former case, the client method being called will re-
turn an integer containing the response code rather than true as the request class
does. In the latter case, the client method will return an error instance. Note that
the client class will process redirects contained in meta tags of HTML documents in
addition to those performed at the HTTP level.

To retrieve information for the last response received, use the currentResponse

method of the client instance. It will return an associative array containing the keys
’code’, ’headers’, and ’body’ with values corresponding to the return values of request
methods getResponseCode, getResponseHeader, and getResponseBody respectively.

By default, all responses are stored and can be accessed individually as shown be-
low. To disable storage of all responses except the last one, call enableHistory on the
client instance and pass it false.

<?php
for ($client->rewind(); $client->valid(); $client->next()) {

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

PEAR::HTTP_Client ” 67

$url = $client->key();
$response = $client->current();

}
?>

Observing Requests

Both HTTP_Request and HTTP_Client have attach and detach methods for adding and
removing instances of HTTP_Request_Listener. This class implements the observer
design pattern and serves to intercept events that occur during the process of trans-
mitting a request and receiving a response. To create an observer, first create a class
that extends HTTP_Request_Listener as shown below.

<?php
class Custom_Request_Listener extends HTTP_Request_Listener
{

function Custom_Request_Listener()
{

$this->HTTP_Request_Listener();
}

function update(&$subject, $event, $data = null)
{

switch ($event) {
// Request events
case ’connect’: // handle the ’connect’ event
case ’sentRequest’: // ...
case ’disconnect’: // ...

// Response events
case ’gotHeaders’: // ...
case ’tick’: // ...
case ’gztick’: // ...
case ’gotBody’: // ...

// Client events
case ’request’: // ...
case ’httpSuccess’: // ...
case ’httpRedirect’: // ...
case ’httpError’: // ...

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

68 ” PEAR::HTTP_Client

default:
PEAR::raiseError(’Unhandled error: ’ . $event);

}
}

}
?>

• Declare a constructor that calls the parent constructor and performs any
needed custom logic.

• Declare the update method with the signature shown. $subject is the request
or client instance to which the listener is attached. $event is a string containing
one of the events shown in the switch statement.

• $data is data specific to events related to reception of the server response.

• Request and response events occur within HTTP_Request instances. Client
events occur within HTTP_Client instances.

• Note that not all events need to be handled, only those with which you are
concerned.

The attach method in HTTP_Request takes a single parameter, a listener instance.
The equivalent method in HTTP_Client takes two parameters, a required listener in-
stance and an optional boolean flag. When the latter is false (which it is by default),
attached listeners will not be propagated to requests created within the client in-
stance. That is, a listener added will not be notified of request and response events,
only client events. To have an added listener receive all events, explicitly specify the
$propagate parameter to be true when calling attach.

Wrap-Up

For more information on the PEAR packages covered here, see these resources listed
below.

• http://pear.php.net/manual/en/package.http.http-request.php
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

PEAR::HTTP_Client ” 69

• http://pear.php.net/manual/en/package.http.http-client.php

• http://pear.php.net/manual/en/package.http.http-request.listeners.php

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Chapter 7

Zend_Http_Client

Zend Framework (often abbreviated ZF) was conceived in early 2005. Contrary to
PEAR1, ZF tends to remain relatively current in the version of PHP it requires and
often takes advantage of features available in newer versions. As of ZF 1.10.1, PHP
5.2.4 is required.

Designed to take full advantage of the new object system introduced in PHP 5, ZF
has a fully object-oriented API. The project team strives to maintain an E_STRICT
level of compliance and good code coverage via unit testing.

Among the components included in ZF is Zend_Http_Client, an HTTP client library
with a fairly comparable feature set to the others already covered in previous chap-
ters. With that, let’s move into how it works.

Basic Requests

Let’s start with a basic request.

<?php
$client = new Zend_Http_Client;
$client->setUri(’http://localhost.example’);
$response = $client->request();

// This does the same thing
$client = new Zend_Http_Client(’http://localhost.example’);
$response = $client->request(’GET’);

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

72 ” Zend_Http_Client

// Another way to set the request method
$client->setMethod(Zend_Http_Client::GET);
?>

• The URL for the request can either be passed as the first parameter to the
Zend_Http_Client constructor or via the setUri method after the client in-
stance is created. Both methods accept the URI as either a string or an instance
of Zend_Uri_Http.

• The request method of the client is used to dispatch the request, taking an
optional parameter of a string containing the HTTP request method to use.
GET is used by default. The HTTP request method can also be set via the client
setMethod method using the client class constant named for that HTTP request
method.

Responses

The response returned by the client’s request method has a number of useful acces-
sor methods.

<?php
// Returns an integer containing the status code
var_dump($response->getStatus());

// Returns a string containing a description for the status code
var_dump($response->getMessage());

// Returns a string containing the fully decoded response body
var_dump($response->getBody());

// Returns a string containing the unaltered response body
var_dump($response->getRawBody());

// Returns an associative array of headers
var_dump($response->getHeaders());

// Returns a string or array of values for a single header
var_dump($response->getHeader(’Content-Type’));

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Zend_Http_Client ” 73

// Returns TRUE for 100- and 200-level status codes
var_dump($response->isSuccessul());

// Returns TRUE for 400- and 500-level status codes
var_dump($response->isError());
?>

URL Handling

By default, Zend_Http_Client uses Zend_Uri_Http to validate any URI that is passed
into the client. Use of unconventional URLs, particularly those using characters de-
scribed as disallowed by section 2.4.3 of RFC 2396 (the predecessor to RFC 3986),
may cause validation failure. See the code sample below for how to deal with this
situation.

<?php
// $valid will be false because the URL contains a |
$valid = Zend_Uri::check(’http://localhost.example/?q=this|that’);

// Force URLs with disallowed characters to be considered valid
Zend_Uri::setConfig(array(’allow_unwise’ => true));

// $valid will be true because of allow_unwise being enabled
$valid = Zend_Uri::check(’http://localhost.example/?q=this|that’);

// URLs with disallowed characters will be considered invalid again
Zend_Uri::setConfig(array(’allow_unwise’ => false));
?>

Custom Headers

The setHeaders method is the Swiss Army Knife of header management for
Zend_Http_Client. See the example below for the multitude of ways in which headers
can be set.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

74 ” Zend_Http_Client

<?php
// Single header, with header name and value separate
$client->setHeaders(’Host’, ’localhost.example’);

// Single header, with header name and value together
$client->setHeaders(’Host: localhost.example’);

// Single header with multiple values, mainly useful for cookies
$client->setHeaders(’Cookie’, array(

’lang=en-US’,
’PHPSESSID=1a0b82148815944c548caef5ccb884c9’

));

// Multiple headers, with header names and values separate
$client->setHeaders(array(

’Host’ => ’localhost.example’,
’User-Agent’ => ’Zend_Http_Client 1.7.2’

));

// Multiple headers, with header names and values together
$client->setHeaders(array(

’Host: localhost.example’,
’User-Agent: Zend_Http_Client 1.7.2’

));
?>

Configuration

Zend_Http_Client has configuration settings much like the context options of the
HTTP streams wrapper, configuration settings of the cURL extension, and request
options of the pecl_http extension. As shown in the example below, settings are de-
clared in the form of an associative array of setting name-value pairs and can be
passed either as the second parameter to the Zend_Http_Client constructor or later
via its setConfig method.

<?php
$config = array(’timeout’ => 30);

// One way
$client = new Zend_Http_Client(’http://localhost.example’, $config);

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Zend_Http_Client ” 75

// Another way
$client->setConfig($config);
?>

Connectivity

The timeout configuration setting is an integer value specifying the number
of seconds for which the client should attempt to connect to the server be-
fore timing out. In the event of a timeout, an instance of the exception
Zend_Http_Client_Adapter_Exception will be thrown.

By default, the client assumes that only one request will be performed on the con-
nection it establishes. That is, it will automatically include a Connection header with
a value of close. When sending multiple requests to the same host, the keepalive

configuration can be set to true to have all requests sent on the same connection for
improved performance.

Debugging

The last request sent by the client can be obtained in the form of a string via its
getLastRequest method. For the last response received, the corresponding method
getLastResponse can be called. This returns an instance of Zend_Http_Response rather
than a string. To convert this object to a string, call its asString method. See below
for examples of both.

<?php
$requestString = $client->getLastRequest();
$responseObject = $client->getLastResponse();
$responseString = $responseObject->asString();
?>

Note that the storeresponse configuration setting affects how getLastResponse be-
haves. When set to true (the default), it causes the last response received by the
client to be stored for later retrieval. When it is set to false, the response is not stored
and is only available as the return value of the client’s request method. In this case,

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

76 ” Zend_Http_Client

getLastResponse would return null. If you don’t needed the additional availability of
the response, turning this off can lessen resource usage.

Cookies

Zend_Http_Client will accept manually specified cookie name-value pairs via its
setCookie method, but by default will not automatically retain response cookies and
resend them in subsequent requests. To have it do so, simply call setCookieJar with
no parameters. This will cause an instance of the default cookie handling class,
Zend_Http_CookieJar, to be implicitly instantiated.

If you need access to cookie data for something other than propagating it to sub-
sequent requests, there are a few ways to do so. Cookies can be accessed individually
via the cookie jar’s getCookie method, the required parameters for which are a URI
and a cookie name.

<?php
$cookie = $client->getCookieJar()->getCookie(

’http://localhost.example/’,
’cookiename’

);
?>

Note that the URI includes a scheme (http://), a domain (localhost.example), and
a path (/). A single cookie jar instance can store cookie data for multiple domains
and multiple paths on the same domain. In cases where the latter capability is not
used, the path / can be specified so that all cookies set on the specified domain
are available to all paths under that domain. The getMatchingCookies method of
Zend_Http_CookieJar allows cookies to be accessed collectively based on these cri-
teria and returns an array of Zend_Http_Cookie objects by default. See below for ex-
amples.

<?php
// All cookies for the domain localhost.example
$cookies = $cookiejar->getMatchingCookies(

’http://localhost.example/’
);

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Zend_Http_Client ” 77

// All cookies for the domain localhost.example with a path or
// subpath of /some/path
$cookies = $cookiejar->getMatchingCookies(

’http://localhost.example/some/path’
);

// All non-session cookies for the domain localhost.example
$cookies = $cookiejar->getMatchingCookies(

’http://localhost.example/’,
false

);
?>

Alternatively, getAllCookies can be used to access all cookies contained in the cookie
jar instance. When a cookie jar is only used to store cookies for a single domain,
getAllCookies offers a more concise method than getMatchingCookies to retrieve all
cookies for that domain. Like getMatchingCookies, getAllCookies also returns an ar-
ray of Zend_Http_Cookie objects by default.

Redirection

The maxdirects configuration setting is an integer indicating the maximum num-
ber of redirections to perform before terminating. Upon termination, the client
will simply return the last response it received. The isRedirect method of
Zend_Http_Response returns true for responses with a 300-level status code.

Sections 10.3.2 and 10.3.3 of RFC 2616 indicate that when a redirection occurs,
both the request method and parameters should be retained. In practice, most
clients don’t behave this way. Instead, parameters are cleared and the method re-
verts to GET. For consistency with other clients, Zend_Http_Client behaves this way
by default. To force it to be compliant with the RFC, the strictredirects configura-
tion setting can be set to true.

User Agents

The useragent configuration setting contains the user agent string to use and de-
faults to ’Zend_Http_Client’.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

78 ” Zend_Http_Client

HTTP Authentication

As of writing, Zend_Http_Client only supports Basic HTTP authentication. According
to the Zend Framework Reference Guide, support for Digest is planned. To set HTTP
authentication credentials, call the client’s setAuthmethod and pass in the username
and password.

Wrap-Up

For the reference guide section on Zend_Http_Client, see
http://framework.zend.com/manual/en/zend.http.html.

For API documentation on all classes in the Zend_Http package, see
http://framework.zend.com/apidoc/core/classtrees_Zend_Http.html.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Chapter 8

Rolling Your Own

First, it should go without saying that it’s generally better to use and build upon an
existing library rather than trying to roll your own from scratch. For one thing, you
can get a number of features “for free” that way with no work required on your part.
For another, developers outside of your team and projects work on those libraries,
and in the words of Eric S. Raymond, “Given enough eyes, all bugs are shallow.”

However, it certainly doesn’t hurt to be familiar with this information even if you
don’t plan to build your own client. Doing so gives you more capability to trou-
bleshoot issues with existing libraries and contribute patches back to their project
teams.

Whatever your motivation, here we go.

Sending Requests

In addition to wrappers for specific protocols, the streams extension also offers
socket transports for dealing with data at a lower level. One of these socket trans-
ports is for TCP, or Transmission Control Protocol, which is a core internet protocol
used to ensure reliable delivery of an ordered sequence of bytes. The socket trans-
port facilitates sending a raw data stream, in this case a manually constructed HTTP
request, to a server.

<?php
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

82 ” Rolling Your Own

$stream = stream_socket_client(’tcp://localhost.example:80’);
$request = "GET / HTTP/1.1\r\nHost: localhost.example\r\n\r\n";
fwrite($stream, $request);
echo stream_get_contents($stream);
fclose($stream);

/*
Example output:
HTTP/1.1 200 OK
Date: Wed, 21 Jan 2009 03:16:43 GMT
Server: Apache/2.2.9 (Ubuntu) PHP/5.2.6-2ubuntu4 with Suhosin-Patch
X-Powered-By: PHP/5.2.6-2ubuntu4
Vary: Accept-Encoding
Content-Length: 12
Connection: close
Content-Type: text/html

Hello world!

*/
?>

• The stream_socket_client function is used to establish a connection with the
server, returning a connection handle resource assigned to $stream.

• tcp:// specifies the transport to use.

• localhost.example is the hostname of the server.

• :80 specifies the port on which to connect to the server, in this case 80 because
it is the standard port for HTTP. The port to use depends on the configuration
of the web server.

• $request contains the request to be sent to the server, where individual lines
are separated with a CRLF sequence (see Chapter 2 “GET Requests”) and the
request ends with a double CRLF sequence (effectively a blank line) to indi-
cate to the server that the end of the request has been reached. Note that the
request must contain the ending sequence or the web server will simply hang
waiting for the rest of the request.

• The fwrite function is used to transmit the request over the established con-
nection represented by $stream.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Rolling Your Own ” 83

• The stream_get_contents function is used to read all available data from the
connection, in this case the response to the request.

• The fclose function is used to explicitly terminate the connection.

Depending on the nature and requirements of the project, not all facets of a request
may be known at one time. In this situation, it is desirable to encapsulate request
metadata in a data structure such as an associative array or an object. From this, a
central unit of logic can be used to read that metadata and construct a request in the
form of a string based on it.

Manually constructing requests within a string as shown in the example above also
doesn’t have ideal readability. If exact requests are known ahead of time and do not
vary, an alternative approach is storing them in a data source of some type, then re-
trieving them at runtime and sending them over the connection as they are. Whether
it is possible to take this approach depends on the level of variance in requests going
between the web scraping application and the target application.

If the need arises to manually build query strings or URL-encoded POST request
bodies, the http_build_query function allows this to be done using associative arrays.

Parsing Responses

Once you’ve received a response, the next step is obtaining the data you need from
it. Taking the response from the last example, let’s examine what this might look like.

<?php
// Split the headers and body into separate variables
list($headers, $body) = explode("\r\n\r\n", $response, 2);

// Remove the status line from the headers
list($status, $headers) = explode("\r\n", $headers, 2);

// Parse the headers segment into individual headers
preg_match_all(

"/(?P<name>[^:]+): (?P<value>[^\r]+)(?:$|\r\n[^ \t]*)/U",
$headers,
$headers,
PREG_SET_ORDER

);
?>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

84 ” Rolling Your Own

Logic to separate individual headers must account for the ability of header values to
span multiple lines as per RFC 2616 Section 2.2. As such, preg_match_all is used here
to separate individual headers. See the later chapter on PCRE for more information
on regular expressions. If a situation necessitates parsing data contained in URLs
and query strings, check out the parse_url and parse_str functions. As with the re-
quest, it is generally desirable to parse response data into a data structure for ease of
reference.

Transfer Encoding

Before parsing the body, the headers should be checked for a few things. If a
Transfer-Encoding header is present and has a value of chunked, it means that the
server is sending the response back in chunks rather than all at once. The advan-
tage to this is that the server does not have to wait until the entire response is com-
posed before starting to return it (in order to determine and include its length in the
Content-Length header), which can increase overall server throughput.

When each chunk is sent, it is preceded by a hexadecimal number to indicate the
size of the chunk followed by a CRLF sequence. The end of each chunk is also de-
noted by a CRLF sequence. The end of the body is denoted with a chunk size of 0,
which is particularly important when using a persistent connection since the client
must know where one response ends and the next begins.

The strstr function can be used to obtain characters in a string prior to a newline.
To convert strings containing hexadecimal numbers to their decimal equivalents,
see the hexdec function. An example of what these two might look like in action is
included below. The example assumes that a request body has been written to a
string.

<?php
$unchunked = ’’;
do {

if ($length = hexdec(strstr($body, "\r\n", true))) {
$body = ltrim(strstr($body, "\r\n"));
$unchunked .= substr($body, 0, $length);
$body = substr($body, $length + 2);

}
} while ($length > 0);

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Rolling Your Own ” 85

?>

See Section 3.6.1 and Appendix 19.4.6 of RFC 2616 for more information on chunked
transfer encoding.

Content Encoding

If the zlib extension is loaded (which can be checked using the extension_loaded

function or executing php -m from command line), the client can optionally include
an Accept-Encoding header with a value of gzip,deflate in its request. If the server
supports content compression, it will include a Content-Encoding header in its re-
sponse with a value indicating which of the two compression schemes it used on the
response body before sending it.

The purpose of this is to reduce the amount of data being sent to reduce band-
width consumption and increase throughput (assuming that compression and de-
compression takes less time than data transfer, which is generally the case). Upon
receiving the response, the client must decompress the response using the original
scheme used by the server to compress it.

<?php
// If Content-Encoding is gzip...
$decoded = gzinflate(substr($body, 10));

// If Content-Encoding is deflate...
$decoded = gzuncompress($body);
?>

• Yes, the function names are correct. One would think that gzinflate would be
used to decode a body encoded using the deflate encoding scheme. Appar-
ently this is just an oddity in the naming scheme used by the zlib library.

• When the encoding scheme is gzip, a GZIP header is included in the response.
gzinflate does not respond well to this. Hence, the header (contained in the
first 10 bytes of the body) is stripped before the body is passed to gzinflate.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

86 ” Rolling Your Own

See RFC 2616 Section 3.5 for more information on content encoding. RFC 1951 cov-
ers specifics of the DEFLATE algorithm on which the deflate encoding scheme is
based while RFC 1952 details the gzip file format on which the gzip encoding scheme
is based.

Timing

Each time a web server receives a request, a separate line of execution in the form
of a process or thread is created or reused to deal with that request. Left unchecked,
this could potentially cause all resources on a server to be consumed by a large re-
quest load. As such, web servers generally restrict the number of requests they can
handle concurrently. A request beyond this limit would be blocked until the server
completed an existing request for which it had already allocated resources. Requests
left unserved too long eventually time out.

Throttling is a term used to describe a client overloading a server with requests
to the point where it consumes the available resource pool and thereby delays or
prevents the processing of requests, potentially including requests the client itself
sent last. Obviously, it’s desirable to avoid this behavior for two reasons: 1) it can be
construed as abuse and result in your IP being banned from accessing the server; 2)
it prevents the client from being consistently functional.

Most web browsers will establish a maximum of four concurrent connections per
domain name when loading a given resource and its dependencies. As such, this is
a good starting point for testing the load of the server hosting the target application.
When possible, measure the response times of individual requests and compare that
to the number of concurrent requests being sent to determine how much of a load
the server can withstand.

Depending on the application, real-time interaction with the target application
may not be necessary. If interaction with the target application and the data it han-
dles will be limited to the userbase of your web scraping application, it may be pos-
sible to retrieve data as necessary, cache it locally, store modifications locally, and
push them to the target application in bulk during hours of non-peak usage. To dis-
cern what these hours are, observe response time with respect to the time of day in
which requests are made to locate the time periods during which response times are
consistently highest.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Chapter 9

Tidy Extension

At this point, you should have completed the retrieval phase of the web scraping pro-
cess and have your raw response body ready and awaiting analysis. Congratulations
on making it to the halfway mark.

While other response formats are certainly possible, chances are good that you are
dealing with a markup-based language like HTML or XHTML. As such, this chapter
and subsequent chapters will deal specifically with those formats. More often than
not, HTML will be the language in use.

There are a number of available XML-focused PHP extensions that can deal with
markup, which will be reviewed in chapters to follow. While these extensions do
provide some support for HTML and are even somewhat forgiving about malformed
markup, well-formed XHTML is their ideal input. This being the case, the first step
in the analysis process is to perform any necessary cleanup on the response body in
order to minimize the number of issues that can be encountered later during analy-
sis.

Validation

The World Wide Web Consortium (W3C) provides a markup validation service in
order to promote adherence to web standards. You can access this service by going
to http://validator.w3.org. It accepts markup to be tested by URL, file upload, or

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

90 ” Tidy Extension

direct input. This will give you an indication of what issues, if any, your document
has with markup malformation.

Tidy

There are two ways to proceed in cleaning up markup malformations. One is man-
ual, involves the use of basic string manipulation functions or regular expression
functions, and can quickly become messy and rather unmanageable. The other is
more automated and involves using the tidy extension to locate and correct markup
issues. While the process is configurable, it obviously lacks the fine-grained control
that comes with handling it manually.

The majority of this chapter will focus on using tidy to correct markup issues. For
those issues that tidy cannot handle to your satisfaction, the approach mentioned
earlier involving string and regular expression functions is your alternative. Regular
expressions will be covered in more detail in a later chapter.

The tidy extension offers two API styles: procedural and object-oriented. Both
offer mostly equivalent functionality (relevant differences will be covered later) and
which to use is really a matter of preference. Though both API styles use objects of
the tidy class, it is recommended that only one style be used as much as is feasible
for the sake of consistency in syntax. Code examples in this chapter will use both
styles.

Input

Before correcting markup issues in a set of markup data, the data has to be parsed
into a tidy object. More often than not markup data will already be contained within
a string when it is ready to be parsed, but may also be stored in an external file. See
below for example of how to handle either of these cases.

<?php
// Procedural
$tidy = tidy_parse_string($string, $config);
$tidy = tidy_parse_file($filename, $config);

// Object-oriented
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

Tidy Extension ” 91

$tidy = new tidy;
$tidy->parseString($string, $config);
$tidy->parseFile($filename, $config);
?>

Configuration

Like the cURL extension, the tidy extension operates largely on the concept of con-
figuration; hence, $config parameters are present in all calls in the above example.
Unlike most other extensions, this parameter can actually be one of two things: an
associative array of setting-value pairs or the path to an external configuration file.

The configuration file format is somewhat similar to individual style settings in a
CSS stylesheet. An example is shown below. It’s unlikely that a non-developer will
need to access the configuration settings and not the PHP source code using tidy
as well. As such, separation into an external configuration file is really only useful
for the sake of not cluttering source code with settings. Additionally, because the
configuration file is read from disk, it may pose performance concerns when in high
use.

// single-line comment
/* multi-line comment */
indent: false /* setting: value */
wrap: 78

When using the object-oriented API, an alternative to using configuration files is
subclassing the tidy class and overriding its parseString and parseFile methods to
automatically include specific configuration setting values. This method allows for
easy reuse of tidy configurations.

<?php
class mytidy extends tidy {

private $_default = array(
’indent’ => false,
’wrap’ => 78

);
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

92 ” Tidy Extension

public function parseFile($filename, $config, $encoding,
$use_include_path=false) {
return parent::parseFile(

$filename,
array_merge($this->_default, $config),
$encoding,
$use_include_path

);
}

public function parseString($filename, $config, $encoding,
$use_include_path=false) {
return parent::parseString(

$filename,
array_merge($this->_default, $config),
$encoding,
$use_include_path

);
}

}
?>

• array_merge is used to consolidate default parameter values in the $_default

property into the specified $config array. Any parameters specified in the orig-
inal $config array will take precedence over corresponding parameters speci-
fied in $_default.

• parseFile and parseString pass the modified $config parameter with all other
provided parameters to their respective methods in the tidy class and return
the resulting return value.

Options

Tidy includes a large number of configuration options, only a few of which are rele-
vant in the context of this book.

Two options deal with output formats applicable for web scraping: output-html

and output-xhtml. Both are specified as boolean values. These options are mutu-
ally exclusive, meaning that only one can be set to true at any given time. Generally
output-xhtml is preferable, but may not always be feasible to use. It’s important to

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Tidy Extension ” 93

compare tidy output to the original document to confirm that correction of docu-
ment malformations hasn’t resulted in data loss.

Document encoding is one area where issues may arise later depending on the
configuration of tidy when it’s used. For example, the XMLReader extension uses
UTF-8 encoding internally, which may be problematic if your input document’s en-
coding conflicts. input-encoding and output-encoding can be used to control the
assumed encoding for each.

Other options are useful mainly for debugging purposes and should generally be
turned off in production environments. This is a good reason for subclassing the tidy

class to control default option values, so that two separate sets are easily accessible
for different development environments.

Three of these options are indent, indent-spaces, and indent-attributes. The first
of these, indent, is a boolean value indicating whether tidy should apply indentation
to make the hierarchical relationships between elements more visually prominent.
indent-spaces is an integer containing the number of whitespace characters used
to denote a single level of indentation, defaulting to 2. Lastly, indent-attributes
is a boolean value indicating whether each individual attribute within an element
should begin on a new line.

Speaking of attributes, sort-attributes can be set to alpha in order to have ele-
ment attributes be sorted alphabetically. It is set to none by default, which disables
sorting.

If lines within a document tend to be long and difficult to read, the wrap option
may be useful. It’s an integer representing the number of characters per line that tidy
should allow before forcing a new line. It is set to 68 by default and can be disabled
entirely by being set to 0.

Having no empty lines to separate blocks can also make markup difficult to read.
vertical-space is a boolean value intended to help with this by adding empty lines
for readability. It is disabled by default.

Debugging

As good a job as it does, tidy may not always be able to clean documents. When
using tidy to repair a document, it’s generally a good idea to check for what issues it
encounters.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

94 ” Tidy Extension

There are two types of issues to check for when using tidy for web scraping anal-
ysis: warnings and errors. Like their PHP counterparts, warnings are non-fatal and
generally have some sort of automated response that tidy executes to handle them.
Errors are not necessarily fatal, but do indicate that tidy may have no way to handle
a particular issue.

All issues are stored in an error buffer regardless of their type. Accessing informa-
tion in and about this buffer is one area in which the procedural and object-oriented
APIs for the tidy extension differ.

<?php
// Procedural
$issues = tidy_get_error_buffer($tidy);

// Object-oriented
$issues = $tidy->errorBuffer;
?>

Note that errorBuffer is a property of the $tidy object, not a method. Also note
the slight difference in naming conventions between the procedural function and
the object property, versus the consistency held throughout most other areas of the
APIs.

The error buffer contained within a string is in and of itself mostly useless. Below
is a code sample derived from a user contributed comment on the PHP manual page
for the tidy_get_error_buffer function. This parses individual components of each
issue into arrays where they are more easily accessible.

<?php
preg_match_all(

’/^(?:line (?P<line>\d+) column (?P<column>\d+) -)?’ .
’(?P<type>\S+): (?:\[(?:\d+\.?){4}]:)?(?P<message>.*)?$/m’,
$tidy->errorBuffer, // or tidy_get_error_buffer($tidy)
$issues,
PREG_SET_ORDER

);

print_r($issues);

/*
Example output:

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Tidy Extension ” 95

Array
(

[0] => Array
(

[0] => line 12 column 1 - Warning: <meta> element not
empty or not closed

[line] => 12
[1] => 12
[column] => 1
[2] => 1
[type] => Warning
[3] => Warning
[message] => <meta> element not empty or not closed
[4] => <meta> element not empty or not closed

)
)

*/
?>

The tidy extension also provides a way to get at the number of warnings and errors
that are encountered without requiring that you manually parse the error buffer. Un-
fortunately and rather oddly, this is only supported in the procedural API. However,
adding it to the object-oriented API by subclassing the tidy class is fairly simple. Ex-
amples of both are shown below.

<?php
// Procedural
$warnings = tidy_warning_count($tidy);
$errors = tidy_error_count($tidy);

// Object-oriented
class mytidy extends tidy {

public function warningCount() {
return tidy_warning_count($this);

}
public function errorCount() {

return tidy_error_count($this);
}

}
?>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

96 ” Tidy Extension

Output

Obtaining the resulting output of tidy repairing a document is fairly simple.

<?php
// Procedural
$output = tidy_get_output($tidy);

// Object-oriented
$output = (string) $tidy;
?>

While the object-oriented API offers no public declaration of the magic method
__toString, it can be cast to a string as well as output directly using the echo con-
struct.

Wrap-Up

This concludes the chapter. At this point, you should have your obtained document
in a format suitable for input to an XML extension. The following few chapters will be
devoted to using specific extensions to searching and extracting data from repaired
documents.

For the PHP manual section on the tidy extension, see http://php.net/tidy.
For documentation on the tidy library itself, see

http://tidy.sourceforge.net/#docs.
For a tidy configuration setting reference, see

http://tidy.sourceforge.net/docs/quickref.html.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Chapter 10

DOM Extension

Once the retrieved markup document has been cleaned up so that it validates, the
next step is extracting useful data from it. For this, the ideal approach is to take
advantage of the fact that the document is valid markup and apply an XML extension
to it. PHP has several of these and the next few chapters will be devoted to covering
them.

The namesake of this chapter is the Document Object Model (DOM) extension.
This extension gets its name from a standardized language-independent API for
navigating and manipulating valid and well-formed XML and HTML documents.
The standard is maintained and recommended by the World Wide Web Consortium
(W3C), an organization devoted to emerging internet-related standards. The chap-
ter won’t cover the DOM extension in its entirety, only parts that are relevant and
essential to web scraping.

i
DOM XML
The DOM extension is only available in PHP 5. Its PHP 4-compatible predecessor, the
DOM XML extension, has a somewhat different API but shares many of the same con-
cepts. Examples in this chapter will be restricted to the DOM extension. The related
section of the PHP manual can be consulted for equivalent specifics in the DOM XML
extension at http://php.net/manual/en/book.domxml.php.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

100 ” DOM Extension

Types of Parsers

Before going much further, you should be aware that there are two types of XML
parsers: tree parsers and pull parsers. Tree parsers load the entire document into
memory and allow you to access any part of it at any time as well as manipulate it.
Pull parsers read the document a piece at a time and limit you to working with the
current piece being read.

The two types of parsers share a relationship similar to that between the
file_get_contents and fgets functions: the former lets you work with the entire doc-
ument at once and uses as much memory needed to store it, while the latter allows
you to work with a piece of the document at a time and use less memory in the pro-
cess.

When working with fairly large documents, lower memory usage is generally the
preferable option. Attempting to load a huge document into memory all at once has
the same effect on the local system as a throttling client does on a web server: in
both cases, resources are consumed and system performance is debilitated until the
system eventually locks up or crashes under the stress.

The DOM extension is a tree parser. In general, web scraping does not require
the ability to access all parts of the document simultaneously. However, the type of
data extraction involved in web scraping can be rather extensive to implement using
a pull parser. The appropriateness of extension over the other depends on the size
and complexity of the document.

Loading Documents

The DOMDocument class is where use of the DOM extension begins. The first thing to
do is instantiate it and then feed it the validated markup data. Note that the DOM ex-
tension will emit warnings when a document is loaded if that document is not valid
or well-formed. To avoid this, see the previous chapter on using the tidy extension.
If tidy does not eliminate the issue, errors can be controlled as shown in the example
below. Note that errors are buffered until manually cleared, so make a point of clear-
ing them after each load operation if they are not needed to avoid wasting memory.

<?php
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

DOM Extension ” 101

// Buffer DOM errors rather than emitting them as warnings
$oldSetting = libxml_use_internal_errors(true);

// Instantiate a container for the document
$doc = new DOMDocument;

// Load markup already contained within a string
$doc->loadHTML($htmlString);

// Load markup saved to an external file
$doc->loadHTMLFile($htmlFilePath);

// Get all errors if needed
$errors = libxml_get_errors();

// Get only the last error
$error = libxml_get_last_error();

// Clear any existing errors from previous operations
libxml_clear_errors();

// Revert error buffering to its previous setting
libxml_use_internal_errors($oldSetting);
?>

Tree Terminology

Once a document is loaded, the next natural step is to extract desired data from it.
However, doing so requires a bit more knowledge about how the DOM is structured.
Recall the earlier mention of tree parsers. If you have any computer science back-
ground, you will be glad to know that the term “tree” in the context of tree parsers
does in fact refer to the data structure by the same name. If not, here is a brief run-
down of related concepts.

A tree is a hierarchical structure (think family tree) composed of nodes, which exist
in the DOM extension as the DOMNode class. Nodes are to trees what elements are to
arrays: just items that exist within the data structure.

Each individual node can have zero or more child nodes that are collectively rep-
resented by a childNodes property in the DOMNode class. childNodes is an instance
of the class DOMNodeList, which is exactly what it sounds like. Other related proper-

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

102 ” DOM Extension

ties include firstChild and lastChild. Leaf nodes are nodes that have no children,
which can be checked using the hasChildNodes method of DOMNode.

All nodes in a tree have a single parent node, with one exception: the root node
from which all other nodes in the tree stem. If two nodes share the same parent,
they are appropriately referred to as sibling nodes. This relationship is shown in the
previousSibling and nextSibling properties in DOMNode.

Lastly, child nodes of a node, child nodes of those child nodes, and so on are collec-
tively known as descendant nodes. Likewise, the parent node of a node, that parent
node’s parent node, and so on are collectively known as ancestor nodes.

An example may help to showcase this terminology.

<html>
<body>
<ul id="thelist">
Foo
Bar

</body>
</html>

• html is the root node.

• body is the first (and only) child of html.

• ul is the first (and only) child of body.

• The li nodes containing Foo and Bar are the first and last child nodes of ul
respectively.

• The li node containing Bar node is the next sibling of the li node containing
Foo.

• The li node containing Foo is likewise the previous sibling of the li node con-
taining Bar.

• The ul and li nodes are descendants of the body node.
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

DOM Extension ” 103

Elements and Attributes

At this point, the DOM transcends the tree analogy. There are multiple types of
nodes, or to phrase that within the context of the DOM extension, DOMNode has multi-
ple subclasses. The main two you’ll be dealing with are DOMElement for elements and
DOMAttr for attributes. Here are how these concepts apply to the example in the last
section.

• ul is the name of an element.

• id is the name of an attribute of the ul element.

• thelist is the value of the id attribute.

• Foo and Bar are the values of the li elements.

Locating Nodes

Two methods of the DOMDocument class allow you to reduce the number of nodes you
have to traverse to find the data you want fairly quickly.

getElementById attempts to locate a single element that meets two criteria: 1) it
is a descendant of the document’s root element; 2) it has a given id attribute value.
If such an element is found, it is returned as a DOMElement instance; if not, null is
returned.

getElementsByTagName attempts to locate all elements that meet two criteria: 1)
it is a descendant of the document’s root element; 2) it has a given element name
(such as ul). This method always returns a DOMNodeList of any found elements. The
DOMNodeList class has a length property that will be equal to 0 if no elements are
found. It is also iterable, so it can be used as the subject of a foreach loop.

The DOMElement class also has a getElementsByTagName method, which functions
the same way with the exception that located elements will be descendants of that
element instead of the document’s root element.

<?php
// One way get the list items in the last example
$listItems = $doc->getElementsByTagName(’li’);

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

104 ” DOM Extension

// A slightly more specific way (better if there are multiple lists)
if ($list = $doc->getElementById(’thelist’)) {

$listItems = $list->getElementsByTagName(’li’);
}

// Yet another way if the list doesn’t have an id
$lists = $doc->getElementsByTagName(’ul’);
if ($lists->length) {

$list = $lists->item(0);
$listItems = $list->getElementsByTagName(’li’);

}

// Outputs "thelist" (without quotes)
echo $list->getAttribute(’id’);

// Outputs "Foo" on one line, then "Bar" on another
foreach ($listItems as $listItem) {

echo $listItem->nodeValue, PHP_EOL;
}

// Outputs text content inside <ul id="thelist"> and
echo $list->nodeValue;
?>

XPath and DOMXPath

Somewhat similar to the way that regular expressions allow instances of character
patterns to be found within strings, XPath allows instances of node patterns to be
found within XML-compatible documents. Both technologies accomplish their pur-
pose by providing a syntax comprised of meta-characters to express these patterns
in a concise and succinct way. With the DOM extension, support for version 1.0 of
the XPath standard is implemented as the DOMXPath class.

The DOMXPath constructor has a single required parameter: an existing DOMDocument

instance on which queries will be performed. DOMXPath has two other relevant meth-
ods: evaluate and query. Both accept a string containing an XPath expression with
which to query the document as their first parameter.

Optionally, a DOMNode instance associated with the document may be passed in as
the second parameter ($contextNode) for either method. When specified, that node

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

DOM Extension ” 105

will become the context node and query results will be restricted to that node and
its descendants. Otherwise, the root element of the document is assumed to be the
context node.

The difference between evaluate and query is that the latter will always return an
instance of DOMNodeList whereas the former will attempt to return an appropriately
typed result if only one result is found.

Absolute Addressing

The process of using an XPath expression to obtain a set of nodes to which that ex-
pression applies is referred to as addressing. The remainder of the chapter will cover
various aspects of addressing and related expression syntax.

XPath expressions share several similarities with UNIX filesystem paths, both of
which are used to traverse conceptual tree structures. See the example below for
specific instances of this. The previous HTML example used to illustrate various
concepts of markup languages is reused here to showcase XPath addressing.

<?php
// Load a markup document
$doc = new DOMDocument;
$doc->loadHTML(’

<html>
<body>
<ul id="thelist">
Foo
Bar

</body>
</html>

’);

// Configure an object to query the document
$xpath = new DOMXPath($doc);

// Returns a DOMNodeList with only the html node
$list = $xpath->query(’/html’);

// Returns a DOMNodeList with only the body node
$list = $xpath->query(’/html/body’);

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

106 ” DOM Extension

// Also returns a DOMNodeList with only the body node
$list = $xpath->query(’//body’);
?>

• In the first two examples, note that the root element (html) is referenced in the
expression even though it is assumed to be the context node (since no other
node is specified as the second parameter in either query call).

• A single forward slash / indicates a parent-child relationship. /html/body

addresses all body nodes that are children the document’s root html element
(which in this case only amounts to a single result).

• A double forward slash // indicates an ancestor-descendant relationship.
//body addresses all body nodes that are descendants of the context node
(which again only amounts to a single result).

The single and double forward slash operators can be used multiple times and in
combination with each other as shown below.

<?php
// Returns all ul nodes that are descendants of the body node
$list = $xpath->query(’//body//ul’);

// Returns all li nodes that are children of the ul nodes
$list = $xpath->query(’//body//ul/li’);
?>

i
Namespaces
If you attempt to address nodes by their element name and receive no results when it
appears you should, it’s possible that the document is namespacing nodes. The easiest
way to get around this is to replace the element name with a condition.
For example, if you are using the expression ul, an equivalent expression that

disregards the namespace would be *[name()=“ul”]where * is a wildcard for all nodes
and the name function compares the node name against a given value.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

DOM Extension ” 107

Relative Addressing

The above examples use what is called absolute addressing, similar in concept to
absolute filesystem paths. The next example covers use relative addressing.

<?php
// Returns all ul nodes that have li child nodes
$list = $xpath->query(’//body//ul/li/..’);
?>

Where //body//ul/li selects li nodes, //body//ul/li/.. instead selects ul nodes
by using relative addressing (specifically ..) to indicate that the parent node of the
addressed node (li) should be returned rather than the addressed node itself. Com-
pare this with the same sequence used to refer to the parent directory of the current
directory on a UNIX filesystem.

Addressing Attributes

Examples thus far have dealt with element nodes in particular. XPath also supports
the selection of attribute nodes.

// Returns the id attribute nodes of all ul nodes
$list = $xpath->query(’//ul/@id’);

// Returns all ul nodes that have id attribute nodes
$list = $xpath->query(’//ul/@id/..’);

// Returns all id attribute nodes
$list = $xpath->query(’//@id’);
?>

• //ul/@li addresses all id attribute nodes associated with ul element nodes
that are descendants of the context node.

• Note how the use of relative addressing in the second example applies to at-
tributes nodes just as it would apply to child element nodes.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

108 ” DOM Extension

• //@id addresses all id attribute nodes that are descendants of the context node
regardless of the element with which they are associated.

Unions

When addressing nodes, it is possible to perform a single query that uses multiple
expressions. This is referred to as addressing the union of those expressions.

<?php
// Returns the li child nodes of all ul and ol nodes
$list = $xpath->query(’//ol/li|//ul/li’);

// Returns the th and td nodes of all tr nodes
$list = $xpath->query(’//tr/th|//tr/td’);
?>

• The first example returns all list items (li) of both unordered (ul) and ordered
(ol)) lists.

• The second example returns all header (th) and data (td) cells of table rows
(tr).

Conditions

In addition to their surrounding hierarchical structure, nodes can also be addressed
based on conditions.

<?php
// Returns all ul nodes with an id attribute node
$list = $xpath->query(’//ul[@id]’);

// Returns all li child nodes of the ul node with an id of "thelist"
$list = $xpath->query(’//ul[@id = "thelist"]/li’);

// Returns the first ul node that is a descendant of the context node
$list = $xpath->query(’//ul[1]’);

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

DOM Extension ” 109

// Returns the first li child node of each ul node
$list = $xpath->query(’//ul/li[1]’);

// Returns all ul nodes containing an li node with the value "foobar"
$list = $xpath->query(’//ul[li = "foobar"]’);
?>

• Square brackets are used to delimit a conditional expression.

• Element and attribute nodes are denoted the same way within a condition as
they are outside of one. That is, elements are simply referred to by element
name and attribute names are prefixed with @.

• The = operator is used for equality comparisons. The converse, the != opera-
tor, checks for inequality. Other fairly standard comparison operators are also
supported, including <, <=, >, and >=.

• A condition comprised only of a single number is actually short for position()
= # where # is the number used. position is a function that returns the position
of each individual node within the current context.

Resources

Only a fraction of what XPath offers has been covered here, mainly basic concepts
and areas that are most likely to be applicable when using XPath to extract data from
retrieved markup documents. Other functions and operators and more advanced
concepts are detailed further in the resources cited at the end of the chapter. Review
of those resources is highly recommended for more extensive and complex data ex-
traction applications.

• DOM documentation in the PHP manual: http://php.net/dom

• An excellent overview of XML and XPath:
http://schlitt.info/opensource/blog/0704_xpath.html

• More information on XML: http://en.wikibooks.org/wiki/XML:_Managing_Data_Exchange
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

110 ” DOM Extension

• DOM Level 3 Core standard: http://www.w3.org/TR/DOM-Level-3-Core

• DOM Level 3 XPath standard: http://www.w3.org/TR/DOM-Level-3-XPath

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Chapter 11

SimpleXML Extension

Like the DOM extension, the SimpleXML extension provides a tree parser. However,
the DOM extension keeps an API fairly consistent with that of the standard on which
it is based. The API offered by SimpleXML is one that most PHP developers will find
to be less massive, more intuitive and easier to use compared to that of the DOM
extension.

SimpleXML makes use of the flexibility and versatility of PHP arrays by using them
to access both individual elements from a collection with the same element name
as well as element attributes. It also adds iterability to markup documents, making
them simple to traverse.

However, these advantages do not come without cost. Like other tree parsers, Sim-
pleXML must parse the entire document before it can be used. As such, it tends to be
slower when parsing larger documents than a pull parser like XMLReader (which will
be covered later). For a script dealing with a smaller document, however, SimpleXML
works well in a pinch.

Loading a Document

Where DOMDocument is the central class in the DOM extension, SimpleXMLElement is its
counterpart in the SimpleXML extension. Loading a markup document is as simple
as specifying it via the class constructor.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

114 ” SimpleXML Extension

<?php
// Loads markup already contained within a string
$sxe = new SimpleXMLElement($markupString);

// Loads markup contained within an external file
$sxe = new SimpleXMLElement($filePath, null, true);
?>

The constructor’s second parameter (specified as null in the second example shown
above) allows for further configuration of the instance. For documents with less than
valid markup, using the value LIBXML_NOERROR | LIBXML_NOWARNING for this parameter
may be useful as it suppresses error and warning reports.

Finally, the third parameter used in the second constructor call is set to true to
indicate that $filePath is in fact a path to a file containing markup rather than the
markup itself.

Accessing Elements

Use of SimpleXML looks a bit like XPath expressions, except that the same effect is
accomplished programmatically through the API rather than via formatted expres-
sions stored in strings. Unlike XPath expressions, SimpleXML automatically assumes
that element access is relative to the root node.

<?php
$markupString = ’

<html>
<body>
<ul id="thelist">
Foo
Bar

</body>
</html>

’;

// Outputs "Foo" -- note that the "html" element isn’t referenced
$sxe = new SimpleXMLElement($markupString);
echo $sxe->body->ul->li[0];

// Also works, assumes the first "li" element if several are present
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

SimpleXML Extension ” 115

echo $sxe->body->ul->li;

// Also outputs "Foo" -- note that "html" is referenced this time
$doc = new DOMDocument();
$doc->loadHTML($markupString);
$xpath = new DOMXPath($doc);
echo $xpath->evaluate(’/html/body/ul/li[0]’);

// Outputs "ul"
echo $sxe->body->ul->getName(), PHP_EOL;

// Outputs "Foo" then "Bar"
foreach ($sxe->body->ul->li as $li) {

echo $li, PHP_EOL;
}

// Does the same thing
foreach ($sxe->body->ul->children() as $li) {

echo $li, PHP_EOL;
}
?>

When referencing a child element of the current element (via the body property of
$sxe above, for example), note that the child element being accessed is also an in-
stance of SimpleXMLElement. This means it’s not only possible to chain element ac-
cess, but also to reference the last element in such a chain using a variable. See the
first foreach loop shown above for an example of both of these.

Accessing Attributes

Where element access makes use of enumerated arrays for accessing multiple ele-
ments with the same name on the same hierarchical level, attribute access makes
use of associative arrays. The example below uses the same $markupString sample
data as in the previous example.

<?php
// Outputs "thelist"
echo $sxe->body->ul[’id’];

// Outputs "id=thelist"
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

116 ” SimpleXML Extension

foreach ($sxe->body->ul->attributes() as $name => $value) {
echo $name, ’=’, $value, PHP_EOL;

}

// Another way to output "thelist"
$attrs = $sxe->body->ul->attributes();
echo $attrs->id;
?>

What the attributes() method actually returns is a SimpleXMLElement instance that
provides access to attribute names and values in the same way that SimpleXMLElement
normally makes child elements and their values available. As such, the returned
instance can be used as the subject of a foreach loop to iterate over the properties
that it exposes.

<!-- Actual markup -->
<ul id="thelist">

<!-- How attributes() exposes it as a SimpleXMLElement instance -->

<id>thelist</id>

i A Debugging Bug
Bug #44973, which affects the SimpleXML extension, is reported to be present in PHP
5.2.6 and may be present in other versions as well. The bug is exposed when an at-
tempt is made to output a node accessed via a SimpleXMLElement instance using
echo, print_r(), var_dump(), and other similar functions. If the node has both at-
tributes and a text value, the attributes will not be shown in the output of these func-
tions. This does not mean that attribute values are not accessible in this situation; they
simply can’t be output in this fashion unless referenced directly. More information on
this is available at http://bugs.php.net/bug.php?id=44973.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

SimpleXML Extension ” 117

Comparing Nodes

To compare an element or attribute with a string value, you must first explicitly cast
it to a string. Otherwise, it will be treated as an object, which may causes type issues
including emitting errors.

<?php
if ((string) $sxe->body->ul[’id’] == ’thelist’) {

echo htmlentities((string) $sxe->body->ul[’id’]);
}
?>

DOM Interoperability

With both the DOM and SimpleXML extensions being tree parsers, this allows for a
certain degree of interoperability between the two. This can be handy if you prefer
one over the other when refactoring legacy code or if you have use cases for both
within a single application.

<?php
// Converts a SimpleXMLElement to a DOMElement
$domElement = dom_import_simplexml($simpleXmlElement);

// Converts a DOMNode to a SimpleXMLElement
$simpleXmlElement = simplexml_import_dom($domNode);
?>

XPath

Like the DOM extension, SimpleXML also supports XPath. Rather than using a sepa-
rate class for it as the DOM does, the SimpleXMLElement class itself includes a method
for it. Where the query() and evaluate() methods of the DOMXPath class return a
DOMNodeList instance, the xpath method of SimpleXMLElement instead returns an enu-
merated array of SimpleXMLElement instances that match the given XPath expression.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

118 ” SimpleXML Extension

<?php
// Returns all list items from the previous example
$elements = $sxe->xpath(’//ul[@id="thelist"]/li’);

// Outputs "Foo" then "Bar"
foreach ($elements as $li) {

echo $li, PHP_EOL;
}
?>

Wrap-Up

This concludes the chapter. Hopefully it’s given you a good idea of how the Sim-
pleXML extension functions and the ease of use it provides. One thing to note is that
this chapter hasn’t really shown very many practical examples of its usage. This is
best learned simply by experimentation with real world data. Eventually, you will
get a feel for when SimpleXML can be used and when DOM should be the preferred
solution.

For SimpleXML documentation in the PHP manual, see
http://php.net/manual/en/book.simplexml.php.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Chapter 12

XMLReader Extension

The previous two chapters have covered two available XML extensions that imple-
ment tree parsers. This chapter will focus on the XMLReader extension, which im-
plements a pull parser.

As mentioned in the chapter on the DOM extension, pull parsers differ from tree
parsers in that they read documents in a piecewise fashion rather than loading them
into memory all at once. A consequence of this is that pull parsers generally only
traverse documents once in one direction and leave you to collect whatever data is
relevant to you along the way.

Before getting started, a noteworthy point is that XMLReader’s underlying library,
libxml, uses UTF-8 encoding internally. As such, encoding issues will be mitigated
if any document you imported (particularly one that’s been cleaned using the tidy
extension) is encoded appropriately to avoid issues with conflicting encodings.

i
XML Parser
The XML Parser extension, as it is referred to in the PHP manual, is a predecessor
of XMLReader and an alternative for PHP 4 environments. Its API is oriented to a
more event-driven style of programming as opposed to the iterative orientation of
the XMLReader extension. For more information on the XML Parser extension, see
http://php.net/manual/en/book.xml.php.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

122 ” XMLReader Extension

Loading a Document

The focal class of the XMLReader extension is aptly named XMLReader. It doesn’t de-
clare a constructor, but rather offers two methods for introducing XML data into it.

<?php
// Loads a document contained within a string
$doc = XMLReader::xml($xmlString);

// Loads a document from an external file
$doc = XMLReader::open($filePath);
?>

Both of these methods have two additional parameters.
The second parameter is a string specifying the encoding scheme for the in-

put document. It is optional and defaults to ’UTF-8’ if unspecified or speci-
fied as null. Valid values for this parameter aren’t included in the PHP man-
ual, but can be found in the reference for the underlying libxml2 library at
http://www.xmlsoft.org/encoding.html#Default.

The third parameter is an integer value that can be set in bitmask fash-
ion using constants from the libxml extension. This is the preferred method
to configure the parser over using the deprecated setParserProperty() method.
The specific constants that can be used to form the bitmask (using the bit-
wise OR operator |) are listed below. Descriptions for them can be found at
http://php.net/manual/en/libxml.constants.php.

• LIBXML_COMPACT

• LIBXML_DTDATTR

• LIBXML_DTDLOAD

• LIBXML_DTDVALID

• LIBXML_NOBLANKS

• LIBXML_NOCDATA

• LIBXML_NOENT
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

XMLReader Extension ” 123

• LIBXML_NOERROR

• LIBXML_NONET

• LIBXML_NOWARNING

• LIBXML_NSCLEAN

• LIBXML_XINCLUDE

As an example, a call that configured the parser to suppress errors and warnings
might look like this.

<?php
$doc = XMLReader::xml(

$xmlString,
null,
LIBXML_NOERROR | LIBXML_NOWARNING

);
?>

Iteration

The XMLReader instance acts as both an iterator over the entire doc-
ument as well as a data object for the current node pointed to by
that iterator. It contains a set of read-only properties (described at
http://php.net/manual/en/class.xmlreader.php#xmlreader.props) that represent
those of the current node and are updated as the iterator position changes.

<?php
while ($doc->read()) {

// ...
}
?>

The read() method attempts to move the iterator position to the next node and re-
turns a boolean value indicating whether or not it was successful. That is, it returns

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

124 ” XMLReader Extension

false once it reaches the end of the document. As such, it’s perfect for use in a while

loop as shown above.

Nodes

As in other extensions, each node has a type that is stored in the reader’s
nodeType property. The types in which you are generally interested are still el-
ements (XMLReader::ELEMENT) and attributes (XMLReader::ATTRIBUTE), possibly also
text (XMLReader::TEXT) and CDATA (XMLReader::CDATA) elements as well. Addition-
ally, the XMLReader extension has a node type for ending elements (i.e. closing tags),
XMLReader::END_ELEMENT. Its importance will become more obvious in the next sec-
tion.

The example below shows how to check the node type against
an appropriate constant. For a list of these constants, see
http://php.net/manual/en/class.xmlreader.php#xmlreader.constants.

<?php
while ($doc->read()) {

if ($doc->nodeType == XMLReader::ELEMENT) {
var_dump($doc->localName);
var_dump($doc->value);
var_dump($doc->hasValue);

}
}
?>

Also like other extensions, nodes have names. There are two properties for this, name
and localName. The former represents the fully qualified name, including the names-
pace specification, while the latter represents the node name by itself and is the one
you will generally want to use.

Elements and Attributes

Attribute nodes can have values. When the iterator points to an attribute node, the
value property will be populated with the node’s value and the hasValue property can
be used to check for its presence.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

XMLReader Extension ” 125

Element nodes can have attributes. When the iterator points to an element
node, the hasAttributes property indicates the presence of attributes and the
getAttribute() method can be used to obtain an attribute value in the form of a
string.

The example below uses both of these together to parse data from an HTML table.

<?php
$inTable = false;
$tableData = array();

while ($doc->read()) {
switch ($doc->nodeType) {

case XMLREADER::ELEMENT:
if ($doc->localName == ’table’

&& $doc->getAttribute(’id’) == ’thetable’) {
$inTable = true;

} elseif ($doc->localName == ’tr’ && $inTable) {
$row = count($tableData);
$tableData[$row] = array();

} elseif ($doc->localName == ’td’ && $inTable) {
$tableData[$row][] = $doc->readString();

}
break;

case XMLREADER::END_ELEMENT:
if ($doc->localName == ’table’ && $inTable) {

$inTable = false;
}
break;

}
}
?>

This showcases the main difference between pull parsers and tree parsers: the for-
mer have no concept of hierarchical context, only of the node to which the iterator
is currently pointing. As such, you must create your own indicators of context where
they are needed.

In this example, the node type is checked as nodes are read and any node that isn’t
either an opening or closing element is ignored. If an opening element is encoun-
tered, its name ($doc->localName) is evaluated to confirm that it’s a table and its id

attribute value ($doc->getAttribute(’id’)) is also examined to confirm that it has a
value of ’thetable’. If so, a flag variable $inTable is set to true. This is used to indi-

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

126 ” XMLReader Extension

cate to subsequent if branch cases that the iterator points to a node that is within
the desired table.

The next if branch is entered when table row elements within the table are
encountered. A combination of checking the node name and the previously set
$inTable flag facilitates this. When the branch is entered, a new element in the
$tableData array is initialized to an empty array. This array will later store data from
cells in that row. The key associated with the row in $tableData is stored in the $row

variable.
Finally, the last if branch executes when table cell elements are encountered. Like

the row branch, this branch checks the node name and the $inTable flag. If the check
passes, it then stores the current node’s value in the array associated with the current
table row.

Here’s where the XMLREADER::END_ELEMENT node type comes into play. Once the end
of the table is reached, no further data should be read into the array. So, if the end-
ing element has the name ’table’ and the $inTable flag currently indicates that the
iterator points to a node within the desired table, the flag is then set to false. Since
no other tables should theoretically have the same id attribute, no if branches will
execute in subsequent while loop iterations.

If this table was the only one of interest in the document, it would be prudent
to replace the $inTable = false; statement with a break 2; statement. This would
terminate the while loop used to read nodes from the document as soon as the end
of the table was encountered, preventing any further unnecessary read operations.

i readString() Availability
As its entry in the PHP manual notes, the readString() method used in the above ex-
ample is only present when the XMLReader extension is compiled against certain ver-
sions of the underlying libxml library.
If this method is unavailable in your environment, an alternative in the example would
be to have opening and closing table cell checks that toggle their own flag ($inCell for
example) and switch cases for the TEXT and CDATA node types that check this flag
and, when it is set to true, add the contents of the value property from the XMLReader

instance to the $tableData array.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

XMLReader Extension ” 127

DOM Interoperation

One nice feature of the XMLReader extension is the expand() method, which returns
an object of the equivalent DOM extension class for the node to which the itera-
tor currently points. Element nodes, for example, cause this method to return a
DOMElement instance.

The example below illustrates a modification to the previous example and pro-
vides another alternative to the readString() method for getting at the contents of
table cells by taking advantage of this DOM interoperability.

<?php
if ($doc->localName == ’td’ && $inTable) {

$node = $doc->expand();
$tableData[$row][] = $node->nodeValue;

}
?>

Closing Documents

Once all necessary read operations have been conducted on a document, the close()

method of the XMLReader instance should be called to cleanly terminate file access or
otherwise indicate that access to the original data source is no longer needed.

Wrap-Up

Hopefully this chapter has given you an idea of how pull parsers work in gen-
eral and when it’s better to use one like XMLReader over a tree parser. For
more information on XMLReader, check out its section in the PHP manual at
http://www.php.net/manual/en/book.xmlreader.php.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Chapter 13

CSS Selector Libraries

This chapter will review several libraries that are built on top of the XML extensions
described in previous chapters. These libraries provide interfaces that uses CSS se-
lector expressions to query markup documents rather than a programmatic API or
XPath expressions. Don’t be concerned if you aren’t familiar with CSS selectors, as
part of this chapter showcases basic expressions alongside their XPath equivalents.

i
CSS Versions
There are multiple versions of the CSS standard and supported selectors vary with
each version. This chapter will cover a subset of those available in CSS3. Versions
of the CSS standard supported by particular libraries are noted where available. A list
of differences between the two common versions, CSS2 and CSS3, can be found at
http://www.w3.org/TR/css3-selectors/#changesFromCSS2.

Reason to Use Them

Before getting into the “how” of using CSS selector libraries, it’s probably best to get
the “why” (and “why not”) out of the way first. It goes without saying that these li-
braries add a layer of complexity to applications that use them, introducing another
potential point of failure. They implement expression parsers in order to take CSS

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

130 ” CSS Selector Libraries

selector expressions as their input and translate them into equivalent userland op-
erations, which can have an impact on performance.

Those points aside, they do offer a syntax that is considered by some to be more in-
tuitive. Most developers these days know at least some CSS and probably have a little
experience with a JavaScript library that uses CSS selectors for node selection on the
client side, such as jQuery. Thus, knowledge of that particular area is transferable to
the server side when libraries based around it are used.

To sum this up, if you’re particularly concerned about performance or simplicity of
the application with regard to the number of components on which it is dependent,
it’s probably best to stick with something like XPath. Otherwise, CSS selector libraries
are worthy of consideration for making use of a common existing skillset.

Even if your decision is to stick with XPath, keep reading. This chapter will also
show some XPath equivalents for each set of explained CSS selectors, which may
help to further your understanding of XPath. Note that these comparions are not
necessarily comprehensive and there may be multiple ways to express the same
thing in any given case.

i jQuery Examples
The documentation for the jQuery library itself actually has excellent visual client-
side examples of selectors. If you find you aren’t certain that you understand
any of the descriptions of CSS selectors that follow, the jQuery demos and
source code will likely prove to be helpful supplements. You can find them at
http://api.jquery.com/category/selectors/.

Basics

Let’s look at a few basic selectors and their results when applied to a markup exam-
ple.

<html>
<body>
<div id="nav">

<ul class="horizontal">
Home

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CSS Selector Libraries ” 131

About Us
Contact Us

</div>
</body>
</html>

• #nav would select the div element because it has an id attribute value of nav.

• li would select all li elements by their node name.

• .horizontal would select the ul element because it has a class of horizontal.
(Note that elements can have multiple classes.)

• * would select all elements in the document.

• li, a would select all li and a elements in the document by combining the
two selectors li and a into a comma-delimited list.

Here are the XPath equivalents along side their respective CSS counterparts. Aside
from the .class selector, the XPath expressions are not significantly longer or more
complex.

Selector CSS XPath
id #nav //*[@id=“nav”]

element li //li

class .horizontal //*[@class=“horizontal”

or starts-with(@class, “horizontal ”)

or contains(@class, “ horizontal ”)

or ends-with(@class, “ horizontal”)]

wildcard * //*

multiple li, a //li|//a

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

132 ” CSS Selector Libraries

Hierarchical Selectors

Now let’s move on to hierarchical selectors, which use document structure as a way
to select elements, using the previous markup example.

• body ul would select all ul elements that are descendants of body elements.

• ul > li would select all li elements that are children of ul elements.

• ul + img would select all img elements that immediately follow a ul sibling el-
ement (i.e. are their next sibling).

• ul ˜ img would select all img elements that follow a ul sibling element (i.e.
come after them and have the same parent node).

The third and fourth items in this list probably look fairly similar. The difference is in
the word “immediately.” By this example, the third item in the list would only select
the Advertisment #1 image because it comes immediately after its ul sibling element
in the document. The fourth item in the list, on the other hand, would select both
images because both follow their ul sibling element.

Selector CSS XPath
ancestor descendant body ul bodyul

parent > child ul > li //ul/li

prev + next ul + img //ul/following-sibling::img[1]

prev ˜ siblings ul ˜ img //ul/following-sibling::img

Basic Filters

The selectors reviewed up to this point in the chapter have always changed the type
of nodes being selected. Conversely, when a filter is appended to an expression, it
merely restricts the returned set of nodes to a subset of those matching the original
expression.

Note that available filters vary per library. Support for filters in jQuery is fairly
comprehensive and as such it is used as the primary reference for sections related to
filters in this chapter.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CSS Selector Libraries ” 133

• li:first selects only the first li node found in the document.

• li:last likewise selects the last li node found in the document.

• li:even selects all evenly positioned nodes in the document beginning from 0.

• li:odd likewise selects all oddly positioned nodes in the document, also be-
ginning from 0.

• li:eq(0) selects the li node with a position of 0 within the set of li nodes (i.e.
the first one) in the document.

• li:gt(0) selects all li nodes with a position greater than 0 within the set of li
nodes (i.e. all but the first one) in the document.

• li:lt(1) selects all li nodes with a position less than 1 within the set of li
nodes (i.e. the first one) in the document.

• :header matches all header nodes. (i.e. h1, h2, etc.)

• :not(:first) negates the :first selector and thus selects all li nodes except
the first one in the document.

Selector CSS XPath
first node li:first //li[1]

last node li:last //li[last()]

even nodes li:even //li[position() mod 2 =

0]

odd nodes li:odd //li[position() mod 2 =

1]

specific node li:eq(0) //li[1]

all nodes after li:gt(0) //li[position() > 1]

all nodes before li:lt(1) //li[position() < 2]

header nodes :header //h1|//h2|//h3|//h4|//h5|

//h6

all nodes not
matching an expression

:not(:first) //*[not(position() =

1)]
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

134 ” CSS Selector Libraries

Note when reading this table that CSS selectors begin set indices at 0 whereas XPath
begins them at 1.

Content Filters

Where basic filters are based mainly on the type of node or its position in the result
set, content filters are based on node value or surrounding hierarchical structure.

• a:contains(“About Us”); selects all a nodes where the node value contains the
substring “About Us”.

• img:empty selects all img nodes that contain no child nodes (including text
nodes).

• li:has(a:contains(“About Us”)) selects all li nodes that contain an a node
with the substring “About Us” in its node value.

• li:parent selects all li nodes that contain child nodes (including text nodes).

Selector CSS XPath
nodes containing text a:contains(“About

Us”)

//a[contains(text(),

“About Us”)]

nodes without
children

img:empty //img[not(node())]

nodes containing a
selector match

li:has(a:contains

(“About Us”))

//li//a[contains(

text(), “About Us”)]

nodes with children li:parent //li[node()]

Attribute Filters

Filters up to this point have been specific to element nodes, but they also exist for
attribute nodes. Attribute filters are surrounded by square brackets in both CSS and
XPath, but differ in that CSS uses mostly operators for conditions while XPath uses
mostly functions. Unlike other filters described in this chapter, support for attribute
filters is fairly universal between different libraries.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CSS Selector Libraries ” 135

• [href] matches all nodes that have an attribute node with the name href.

• [href=“/home”] matches all nodes with an attribute node named href that has
a value of “/home”.

• [href!=“/home”] matches all nodes with an attribute node named href that do
not have a value of “/home”.

• [hrefˆ=“/”] matches all nodes with an attribute node named href and have a
value that starts with “/”.

• [href$=“-us”] matches all nodes with an attribute node named href and have
a value that ends with “-us”.

• [href*=“-us”] matches all nodes with an attribute node named href and have
a value that contains “-us” anywhere within the value.

• [src*=“ad”][altˆ=“Advertisement”] matches all nodes that have both an at-
tribute node named src with a value containing “ad” and an attribute node
named alt with a value starting with “Advertisement”.

Selector CSS XPath
has attribute [href] //*[@href]

has attribute value [href=“/home”] //*[@href=“/home”]

has different attribute
value

[href!=“/home”] //*[@href!=“/home”]

has attribute value
starting with substring

[hrefˆ=“/”] //*[starts-with(@href,

“/”)]

has attribute value
ending with substring

[href$=“-us”] //*[ends-width(@href,

“-us”)]

has attribute value
containing substring

[href*=“-us”] //*[contains(@href,

“-us”)]

multiple attribute
filters

[src*=“ad”][altˆ=

“Advertisement”]

//*[contains(@src,

“ad”) and

starts-with(@alt,

“Advertisement”)]
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

136 ” CSS Selector Libraries

Child Filters

Child filters are fairly similar to the basic filters reviewed earlier, except applied to
child nodes.

• ul:nth-child(2) selects the second child element within each ul node. The
parameter passed to the filter can also be even or odd (which are figured relative
to child position within the parent element) or can use expressions involving
a variable n (such as 3n for every third child).

• li:first-child selects all li nodes that are the first child of their parent node.

• li:last-child likewise selects all li nodes that are the last child of their parent
node.

• li:only-child selects all li nodes that are the only child of their parent node.

Selector CSS XPath
nth child nodes ul:nth-child(2) //ul/*[position() = 2]

first child nodes li:first-child //*/*[name() = “li” and

position() = 1]

last child nodes li:last-child //*/*[name() = “li” and

position() = last()]

only child nodes li:only-child //*/*[name() = “li” and count()

= 1]

Form Filters

Form filters are just a more convenient shorthand for other expressions.

• :input matches all input, textarea, select, and button elements.

• :text, :hidden, :password, :radio, :checkbox, :submit, :image, :reset, and :file

all matches input elements with their respective types.

• :button matches all button elements and input elements of type button.
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

CSS Selector Libraries ” 137

• :enabled matches all form elements that are not disabled, :disabled matches
those that are.

• :checked matches all radio and checkbox elements that are checked.

• :selected matches all option elements that are selected.

Selector CSS CSS Alt XPath
all form

elements
:input input,

textarea,

select, button

//input|//textarea|

//select|//button

form elements
of specific types

:text input

[type=“text”]

//input[type=“text”]

button
elements

:button button,

input[type=

“button”]

//button|//input

[type=“button”]

enabled
elements

:enabled :not([disabled=

“disabled”])

//*[contains(“input

textarea select

button”, name()) and

(not(@disabled) or

@disabled!=

“disabled”])

disabled
elements

:disabled [disabled=

“disabled”]

//*[contains(“input

textarea select

button”, name()) and

@disabled=“disabled”]

checked
elements

:checked :input[checked=

“checked”]

//input[contains

(“checkbox radio”,

@type) and

@checked=“checked”]

selected
elements

:selected option[selected=

“selected”]

//option[@selected=

“selected”]

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

138 ” CSS Selector Libraries

Libraries

At this point, CSS selectors have been covered to the extent that all or a subset of
those supported by a given library are explained. This section will review some li-
brary implementations that are available, where to find them, what feature set they
support, and some advantages and disadvantages of using them.

PHP Simple HTML DOM Parser

The major distinguishing trait of this library is its requirements: PHP 5 and the PCRE
extension (which is pretty standard in most PHP distributions). It has no external de-
pendencies on or associations with other libraries or extensions, not even the stan-
dard XML extensions in PHP.

The implication of this is that all parsing is handled in PHP itself, which makes it
likely that performance will not be as good as libraries that build on a PHP extension.
However, in environments where XML extensions (in particular the DOM extension)
may not be available (which is rare), this library may be a good option. It offers basic
retrieval support using PHP’s filesystem functions (which require the configuration
setting allow_url_fopen to be enabled to access remote documents).

The documentation for this library is fairly good and can be found
at http://simplehtmldom.sourceforge.net/manual.htm. Its main web
site, which includes a link to download the library, is available at
http://simplehtmldom.sourceforge.net. It is licensed under the MIT License.

Zend_Dom_Query

One of the components of Zend Framework, this library was originally created to
provide a means for integration testing of applications based on the framework.
However, it can function independently and apart from the framework and provides
the functionality needed in the analysis phase of web scraping. At the time of this
writing, Zend Framework 1.10.1 requires PHP 5.2.4 or higher.

Zend_Dom_Query makes extensive use of the DOM extension. It supports XPath
through use of the DOM extension’s DOMXPath class and handles CSS expressions
by transforming them into equivalent XPath expressions. Note that only CSS 2 is
supported, which excludes non-attribute filters.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CSS Selector Libraries ” 139

It’s also worth noting that Zend_Dom_Query offers no retrieval functionality. All
methods for introducing documents into it require that those documents be in string
form beforehand. If you are already using Zend Framework, a readily available op-
tion for retrieval is Zend_Http_Client, which is also discussed in this book.

Documentation for Zend_Dom_Query can be found at
http://framework.zend.com/manual/en/zend.dom.query.html. At this
time, there is no officially supported method of downloading only the
Zend_Dom package. The entire framework can be downloaded from
http://framework.zend.com/download/current/ and the directory for the Zend_Dom
package can be extracted from it. An unofficial method of downloading individual
packages can be found at http://epic.codeutopia.net/pack/. Zend Framework
components are licensed under the New BSD License.

phpQuery

phpQuery is heavily influenced by jQuery and maintains similarity to it insofar
as its runtime environment being the server (as opposed to the client) will allow.
It requires PHP 5.2 and the DOM extension as well as the Zend_Http_Client and
Zend_Json components from Zend Framework, which are bundled but can be sub-
stituted with the same components from a local Zend Framework installation.

CSS support is limited to a subset of CSS3. Most jQuery features are supported
including plugin support, with porting of multiple jQuery plugins being planned.
Other components include a CLI utility that makes functionality from the phpQuery
library available from command line and a server component for integrating with
jQuery via calls made from it on the client side. Retrieval support is included in the
form of integration with Zend_Http_Client.

Documentation and download links are available from
http://code.google.com/p/phpquery/. It is licensed under the MIT License.

DOMQuery

This library is actually a project of my own. While still in alpha at the time of this
writing, it is fairly functional and includes a full unit test suite. Like some of the
other libraries mentioned in this chapter, it requires PHP 5 and makes heavy use of
the DOM extension.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

140 ” CSS Selector Libraries

Unlike the others, however, it does not implement a CSS selector parser in order
to offer related functionality. Instead, it does so programmatically through its API.
For example, rather than passing the name of an element (say div) to a central query
method, an element() method accepts the name of an element for which to query.
Though this makes it a bit less concise than other libraries, it also makes it more
expressive and only requires a basic knowledge of DOM concepts in order to operate
it.

It can be downloaded at http://github.com/elazar/domquery/tree/master. The
central class DOMQuery is documented using phpDoc-compatible API docblocks and
the unit test suite offers use cases for each of the available methods.

Wrap-Up

This concludes the current chapter. You should come away from reading it with
knowledge of the pros and cons of using CSS selector-based libraries and situations
where their use is appropriate, specific CSS selectors and possible equivalents for
them in XPath, and particular library implementations to consider.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Chapter 14

PCRE Extension

There are some instances where markup documents may be so hideously malformed
that they’re simply not usable by an XML extension. Other times, you may want
to have a way to check the data you’ve extracted to ensure that it’s what you ex-
pect. Changes to the structure of markup documents may be significant, to the point
where your CSS or XPath queries return no results. They may also be small and sub-
tle, such that while you do get query results, they contain less or different data than
intended.

While either of these tasks could be done with basic string handling functions and
comparison operators, in most cases the implementation would prove to be messy
and unreliable. Regular expressions provide a syntax consisting of meta-characters
whereby patterns within strings are expressed flexibly and concisely. This chapter
will deal with regular expressions as they relate to the Perl-Compatible Regular Ex-
pression (PCRE) PHP extension in particular.

A common bad practice is to use only regular expressions to extract data from
markup documents. While this may work for simple scripts that are only intended to
be used once or very few times in a short time period, it is more difficult to maintain
and less reliable in the long term. Regular expressions simply were not designed for
this purpose, whereas other markup-specific extensions discussed in previous chap-
ters are more suited for the task. It is a matter of using the best tool for the job, and
to that end, this practice should be avoided.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

144 ” PCRE Extension

i POSIX Extended Regular Expressions
Many PHP developers will cut their teeth on regular expressions using the POSIX regu-
lar expression extension, also called the ereg extension. The functions from this exten-
sion are being deprecated in PHP 5.3 in favor of those in the PCRE extension, which
are faster and provide a more powerful feature set. Aside from differences in syntax
for some special character ranges, most ereg expressions require only the addition of
expression delimiters to work with preg functions.

Pattern Basics

Let’s start with something simple: detection of a substring anywhere within a string.

<?php
// Substring detection with a basic string function
$present = (strpos($string, ’foo’) !== false);

// Same with a PCRE function
$present = (preg_match(’/foo/’, $string) == 1);
?>

Notice that the pattern in the preg_match() call is fairly similar to the string used in
the strpos() call. In the former, / is used on either side of the pattern to indicate its
beginning and end. The first character in the pattern string is considered to be the
pattern delimiter and can be any character you specify. When choosing what you
want to use for this character (/ is the most common choice), bear in mind that you
will have to escape it (covered in the Escaping section later) if you use it within the
pattern. This will make more sense a little later in the chapter.

A difference between the two functions used in this example is that strpos() re-
turns the location of the substring within the string beginning at 0 or false if the
substring is not contained within the string. This requires the use of the === oper-
ator to tell the difference between the substring being matched at the beginning of
the string or not at all. By contrast, preg_match() returns the number of matches it
found. This will be either 0 or 1 since preg_match() stops searching once it finds a
match.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

PCRE Extension ” 145

Anchors

You may want to check for the presence of a pattern at the beginning or end of a
string rather than simply checking to see if the pattern is contained anywhere within
the string. The meta-characters for this are collectively referred to as anchors.

<?php
// Beginning of the string with a basic string function
$start = (strpos($string, ’foo’) === 0);

// Same with a PCRE function
$start = (preg_match(’/^foo/’, $string) == 1);

// End of the string with basic string functions
$end = (substr($string, - strlen(’foo’)) == ’foo’);

// Same with a PCRE function
$end = (preg_match(’/foo$/’, $string) == 1);

// Means the same as an exact match with the string
$equal = (preg_match(’/^foo$/’, $string) == 1);
?>

• ˆ (also called the circumflex character) is used at the beginning of an expres-
sion within a pattern to indicate that matching should start at the beginning
of a string.

• Likewise, $ is used to indicate that matching of an expression within a pattern
should stop at the end of a string.

• When used together, ˆ and $ can indicate that the entirety of $string matches
the pattern exactly.

i Start of String or Line
It’s important to note that the behavior of these two operators can vary. By default,
they match the beginning and end of $string. If the multi-line modifier is used, they
match the beginning and end of each line in $string instead. This will be covered in
more detail later in the Modifiers section of this chapter.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

146 ” PCRE Extension

Alternation

It’s possible to check for multiple expressions simultaneously in a single pattern, also
called alternation, using the pipe meta-character |.

<?php
// Matches ’foo’ or ’bar’ or ’baz’ anywhere
$matches = (preg_match(’/foo|bar|baz/’, $string) == 1);
?>

Note that the ˆ and $ are not implicitly applied to all expressions in an alternation;
they must be used explicitly for each expression.

<?php
// $result == 1
$result = preg_match(’/^foo|bar/’, ’abar’);

// $result == 0
$result = preg_match(’/^foo|^bar/’, ’abar’);
?>

The first example returns 1 because ’abar’ contains ’bar’, since ˆ is not applied to
that expression in the pattern. The second example does apply ˆ to ’bar’ and, since
’abar’ begins with neither ’foo’ nor ’bar’, it returns 0.

Repetition and Quantifiers

Part of a pattern may or may not be present, or may be repeated a number of times.
This is referred to as repetition and involves using meta-characters collectively re-
ferred to as quantifiers.

<?php
// Matches ’a’ 0 times or 1 time if present
$matches = (preg_match(’/a?/’, $string) == 1);

// Matches ’a’ 0 or more times, however many that may be
$matches = (preg_match(’/a*/’, $string) == 1);

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

PCRE Extension ” 147

// Matches ’a’ 1 or more times, however many that may be
$matches = (preg_match(’/a+/’, $string) == 1);

// Matches ’a’ 0 times or 1 time if present, same as ?
$matches = (preg_match(’/a{0,1}/’, $string) == 1);

// Matches ’a’ 0 or more times, same as *
$matches = (preg_match(’/a{0,}/’, $string) == 1);

// Matches ’a’ 1 or more times, same as +
$matches = (preg_match(’/a{1,}/’, $string) == 1);

// Matches ’a’ exactly 2 times
$matches = (preg_match(’/a{2}/’, $string) == 1);

?>

Note that any use of curly brackets that is not of the form {X}, {X,}, or {X,Y} will be
treated as a literal string within the pattern.

Subpatterns

You’ll notice in the examples from the previous section that only a single character
was used. This is because the concept of subpatterns hadn’t been introduced yet.
To understand these, it’s best to look an example that doesn’t use them in order to
understand the effect they have on how the pattern matches.

<?php
// Matches ’a’ follow by one or more instances of ’b’
$matches = (preg_match(’/ab+/’, $string) == 1);
?>

Without subpatterns there would be no way to match, for example, one or more
instances of the string ’ab’. Subpatterns solve this pattern by allowing individuals
parts of a pattern to be grouped using parentheses.

<?php
// Matches ’ab’ one or more times
$matches = (preg_match(’/(ab)+/’, $string) == 1);

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

148 ” PCRE Extension

// Matches ’foo’ or ’foobar’
$matches = (preg_match(’/foo(bar)?/’, $string) == 1);

// Matches ’ab’ or ’ac’
$matches = (preg_match(’/a(b|c)/’, $string) == 1);

// Matches ’ab’, ’ac’, ’abb’, ’abc’, ’acb’, ’acc’, etc.
$matches = (preg_match(’/a(b|c)+/’, $string) == 1);
?>

Matching

Subpatterns do a bit more than let you define parts of a pattern to which alternation
or repetition apply. When a match is found, it’s possible to obtain not only the sub-
string from the original string that matched the entire pattern, but also substrings
that were matched by subpatterns.

<?php
if (preg_match(’/foo(bar)?(baz)?/’, $string, $match) == 1) {

print_r($match);
}
?>

The third parameter to preg_match(), $match, will be set to an array of match data if
a match is found. That array will contain at least one element: the entire substring
that matched the pattern. Any elements that follow will be subpattern matches with
an index matching that subpattern’s position within the pattern. That is, the first
subpattern will have the index 1, the second subpattern will have the index 2, and so
on.

If a pattern is conditional (i.e. uses ?) and not present, it will either have an empty
element value in the array or no array element at all.

<?php
if (preg_match(’/foo(bar)?/’, ’foo’, $match) == 1) {

// $match == array(’foo’);
}

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

PCRE Extension ” 149

if (preg_match(’/foo(bar)?(baz)?/’, ’foobaz’, $match) == 1) {
// $match == array(’foo’, ’’, ’baz’);

}
?>

• In the first example, the (bar)? subpattern ends the entire pattern and is not
matched. Thus, it has no entry in $match.

• In the second example, the (bar)? subpattern does not end the entire pattern
and is not matched. Thus, it has an empty entry in $match.

Subpatterns can also contain other subpatterns.

<?php
if (preg_match(’/foo(ba(r|z))?/’, ’foobar’, $match) == 1) {

// $match == array(’foobar’, ’bar’, ’r’);
}
?>

Aside from passing $match to print_r() or a similar function, an easy way to tell what
a subpattern’s position will be in $match is to count the number of opening parenthe-
ses in the pattern from left to right until you reach the desired subpattern.

Using the syntax shown above, any subpattern will be captured (i.e. have its own
element in the array of matches). Captured subpatterns are limited to 99 and total
subpatterns, captured or no, is limited to 200. While this realistically shouldn’t be-
come an issue, it’s best to denote subpatterns that do not require capture using (?:

instead of (to begin them.
Additionally, since PHP 4.3.3, subpatterns may be assigned meaningful names to

be used as their indices in the array of matches when they are captured. To assign a
name to a subpattern, begin it with the syntax (?P<name> instead of (where name is
the name you want to assign to that subpattern. This has the advantage of making
code more expressive and easier to maintain as a result.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

150 ” PCRE Extension

Escaping

There may be instances where you want to include literal characters in patterns that
are usually interpreted as meta-characters. This can be accomplished via a \ meta-
character.

<?php
// Matches literal [
$matches = (preg_match(’/\[/’, $string) == 1);

// Matches literal \
$matches = (preg_match(’/\\/’, $string) == 1);

// Matches expression delimiter /
$matches = (preg_match(’/\//’, $string) == 1);

// Matches any of the standard escape sequences \r, \n, or \t
$matches = (preg_match(’/\r|\n|\t/’, $string) == 1);
?>

Note that it is necessary to double-escape ” in the second example because the

string ’
’ is interpreted to be a single backslash by PHP whether or not it is used

in a regular expression. In other cases, no escaping of ” is needed for the
escape sequence to be interpreted properly.

i Double Escaping
For more information on the reasoning behind the double-escape example in this sec-
tion, see http://php.net/manual/en/language.types.string.php#language.types.string

and the Backslash section of http://php.net/manual/en/regexp.reference.php.

Escape Sequences

There are three ways to match a single character that could be one of several charac-
ters.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

PCRE Extension ” 151

The first way involves using the . meta-character, which will match any single
character except a line feed (“\n”) without use of modifiers (which will be covered
later). This can be used with repetition just like any other character.

The second way requires using special escape sequences that represent a range
of characters. Aside from the escape sequences mentioned in the previous section’s
examples, here are some that are commonly used.

• \d: a digit, 0 through 9.

• \h: a horizontal whitespace character, such as a space or a tab.

• \v: a vertical whitespace character, such as a carriage return or line feed.

• \s: any whitespace character, the equivalent of all characters represented by
\h and \v.

• \w: any letter or digit or an underscore.

Each of these escape sequences has a complement.

• \D: a non-digit character.

• \H: a non-horizontal whitespace character.

• \V: a non-vertical whitespace character.

• \S: a non-whitespace character.

• \W: a character that is not a letter, digit, or underscore.

The third and final way involves using character ranges, which are characters within
square brackets ([and]). A character range represents a single character, but like
normal single characters they can have repetition applied to them.

<?php
// Matches the same as \d
$matches = (preg_match(’/[0-9]/’, $string) == 1);

// Matches the same as \w
$matches = (preg_match(’/[a-zA-Z0-9_]/’, $string) == 1);
?>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

152 ” PCRE Extension

Ranges are respective to ASCII (American Standard Code for Information Inter-
change). In other words, the ASCII value for the beginning character must pre-
cede the ASCII value for the ending character. Otherwise, the warning “Warning:
preg_match(): Compilation failed: range out of order in character class at offset n” is
emitted, where n is character offset within the regular expression.

Within square brackets, single characters and special ranges are simply listed side
by side with no delimiter, as shown in the second example above. Additionally, the
escape sequences mentioned earlier such as \w can be used both inside and outside
square brackets.

i
ASCII Ranges
For an excellent ASCII lookup table, see http://www.asciitable.com.

There are two other noteworthy points about character ranges, as illustrated in the
examples below.

<?php
// Using a literal] in a character range is done like so
$matches = (preg_match(’/[\]]/’, $string) == 1);

// Matches any character that is not ’a’
$matches = (preg_match(’/[^a]/’, $string) == 1);

// Using a literal ^ in a character range is done like so
$matches = (preg_match(’/[\^]/’, $string) == 1);
$matches = (preg_match(’/[a^]/’, $string) == 1);
?>

• To use a literal] character in a character range, escape it in the same manner
in which other meta-characters are escaped.

• To negate a character range, use ˆ as the first character in that character range.
(Yes, this can be confusing since ˆ is also used to denote the beginning of a line
or entire string when it is not used inside a character range.) Note that nega-
tion applies to all characters in the range. In other words, a negated character
range means “any character that is not any of these characters.”

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

PCRE Extension ” 153

• To use a literal ˆ character in a character range, either escape it in the same
manner in which other meta-characters are escaped or do not use it as the
first or only character in the range.

i
ctype Extension
Some simple patterns have equivalent functions available in the ctype library. These
generally perform better and should be used over PCRE when appropriate. See
http://php.net/ctype for more information on the ctype extension and the functions
it offers.

Modifiers

The reason for having pattern delimiters to denote the start and end of a pattern
is that the pattern precedes modifiers that affect the matching behavior of meta-
characters. Here are a few modifiers that may prove useful in web scraping applica-
tions.

• i: Any letters in the pattern will match both uppercase and lowercase regard-
less of the case of the letter used in the pattern.

• m: ˆ and $ will match the beginning and ends of lines within the string (delim-
ited by line feed characters) rather than the beginning and end of the entire
string.

• s (lowercase): The . meta-character will match line feeds, which it does not by
default.

• S (uppercase): Additional time will be spent to analyze the pattern in order
to speed up subsequent matches with that pattern. Useful for patterns used
multiple times.

• U: By default, the quantifiers * and + behave in a manner referred to as “greedy.”
That is, they match as many characters as possible rather than as few as possi-
ble. This modifier forces the latter behavior.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

154 ” PCRE Extension

• u: Forces pattern strings to be treated as UTF-8 encoded strings.

The example below matches because the i modifier is used, which means that the
pattern matches ’a’ and ’A’.

<?php
$matches = (preg_match(’/a/i’, ’A’) == 1);
?>

Wrap-Up

This chapter has covered the most essential aspects of regular expressions that apply
to validation of scraped data. There are more advanced aspects of regular expres-
sions that may be useful in other areas. Further review of the PCRE section of the
PHP manual is encouraged.

For pattern modifiers, see http://php.net/manual/en/reference.pcre.pattern.modifiers.php.
For pattern syntax, see http://php.net/manual/en/reference.pcre.pattern.syntax.php.
For an excellent book on regular expressions, see “Mastering Regular Expressions,”

ISBN 0596528124.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Chapter 15

Tips and Tricks

Chapters preceding this one are intended to lay out pertinent information about the
skills required to build a web scraping application. This chapter focuses more on a
collection of practical applications and methodologies for that material. It is meant
to tie all previously covered material together and round out the book as a whole.
Some topics covered here will be specific to a particular class of web scraping appli-
cations, some will be generally applicable, and most will assume that the application
is intended for long-term use. Hopefully they will all illustrate what matters to con-
sider when designing your application.

Batch Jobs

Web scraping applications intended for long-term use generally function in one of
two ways: real-time or batch.

A web scraping application implemented using the real-time approach will receive
a request and send a request out to the target application being scraped in order to
fulfill the original request. There are two advantages to this. First, any data pulled
from the target application will be current. Second, any data pushed to the target
application will be reflected on that site in nearly the same amount of time it would
take if the data had been pushed directly to the target application. This approach has
the disadvantage of increasing the response time of the web scraping application,

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

158 ” Tips and Tricks

since the client essentially has to wait for two requests to complete for every one
request that would normally be made to the target application.

The batch approach is based on synchronization. For read operations, data is up-
dated on a regular interval. For write operations, changes are stored locally and then
pushed out in batches (hence the name) to the target application, also on a regular
interval. The pros and cons to this approach are the complement of those from the
real-time approach: updates will not be real-time, but the web scraping application’s
response time will not be increased. It is of course possible to use a batch approach
with a relatively low interval in order to approximate real-time while gaining the ben-
efits of the batch approach.

The selection of an approach depends on the requirements of the web scraping
application. In general, if real-time updates on either the web scraping application
or target application are not required, the batch approach is preferred to maintain a
high level of performance.

Availability

Regardless of whether a web scraping application takes a real-time or batch ap-
proach, it should treat the remote service as as potential point of failure and account
for cases where it does not return a response. Once a tested web scraping applica-
tion goes into production, common causes for this are either service downtime or
modification. Symptoms of these include connection timeouts and responses with
a status code above the 2xx range.

An advantage of the batch approach in this situation is that the web scraping ap-
plication’s front-facing interface can remain unaffected. Cached data can be used or
updates can be stored locally and synchronization can be initiated once the service
becomes available again or the web scraping application has been fixed to account
for changes in the remote service.

Parallel Processing

Two of the HTTP client libraries previously covered, cURL and pecl_http, support
running requests in parallel using a single connection. While the same feature can-

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Tips and Tricks ” 159

not be replicated exactly using other libraries, it is possible to run multiple requests
on separate connections using processes that are executed in parallel.

Even if you are using a library supporting connection pooling, this technique is
useful for situations when multiple hosts are being scraped since each host will re-
quire a separate connection anyway. By contrast, doing so in a single process means
it is possible for requests sent earlier to a host with a lower response rate to block
those sent later to another more responsive host.

See Appendix B for a more detailed example this.

Crawlers

Some web scraping applications are intended to serve as crawlers to index content
from web sites. Like all other web scraping applications, the work they perform can
be divided into two categories: retrieval and analysis. The parallel processing ap-
proach is applicable here because each category of work serve to populate the work
queue of the other.

The retrieval process is given one or more initial documents to retrieve. Each time
a document is retrieved, it becomes a job for the analysis process, which scrapes
the markup searching for links (a elements) to other documents, which may be re-
stricted by one or more relevancy factors. Once analysis of a document is complete,
addresses to any currently unretrieved documents are then fed back to the retrieval
process.

This situation of mutual supply will hypothetically be sustained until no docu-
ments are found that are unindexed or considered to be relevant. At that point, the
process can be restarted with the retrieval process using appropriate request head-
ers to check for document updates and feeding documents to the analysis process
where updates are found.

Forms

Some web scraping applications must push data to the target application. This is
generally accomplished using HTTP POST requests that simulate the submission of
HTML forms. Before such requests can be sent, however, there are a few events that

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

160 ” Tips and Tricks

generally have to transpire. First, if the web scraping application is intended to be
presented to a user, a form that is at least somewhat similar must be presented to that
user. Next, data submitted via that form by the user should be validated to ensure
that it is likely to be accepted by the target application.

The applicability of this technique will vary by project depending on requirements
and how forms are structured. It involves scraping the markup of the form in the tar-
get application and using the scraped data to generate something like a metadata
file or PHP source code file that can be dropped directly into the web scraping appli-
cation project. This can be useful to expedite development efforts for target applica-
tions that have multiple forms or complex forms for which POST requests must be
simulated.

For the purposes of formulating a POST request, you will want to query for ele-
ments with the names input, select, textarea, or possibly button that have a name

attribute. Beyond that, here are a few element-specific considerations to take into
account.

• input elements with a type attribute value of checkbox or radio that are not
checked when the form on the web scraping application side is submitted
should not have their value attribute values included when the POST request
is eventually made to the target application. A common practice that negates
this is positioning another element with a type attribute value of hidden with
the same name as the checkbox element before that element in the docu-
ment so that the value of the hidden element is assumed if the checkbox is
not checked.

• select elements may be capable of having multiple values depending on
whether or not the multiple attribute is set. How this is expressed in the POST
request can depend on the platform on which the target application is run-
ning. The best way to determine this is to submit the form on the target appli-
cation via a client that can show you the underlying POST request being made.

• input elements that have a maxlength attribute are restricted to values of that
length or less. Likewise, select elements are restricted to values in the value

attributes of their contained option child elements. Both should be considered
when validating user-submitted data.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Tips and Tricks ” 161

Web Services

Web scraping applications are often built because the target application offers no
web service or data formatted for automated consumption. However, some of these
sites do eventually come to offer a web service after the web scraping application has
already been built. As such, it’s important to keep this potential eventuality in mind
during the design phase.

The introduction of a web service will not negate previously described concerns
regarding retrieval. Latency can still prove to be an issue for an application that at-
tempts to access either the target application or a corresponding web service in real-
time. Ideally, complexity will be reduced and performance increased in the analysis
process when switching from a web scraping application to an API.

However, both areas of code will likely need to be replaced if an API offering does
materialize. As such, it’s important to design an API that approximates a hypotheti-
cal web service offering as closely as possible and centralizes logic that will need to
be replaced in that event. By doing so, existing local application logic that uses the
existing API will require little or no change.

Legalities aside (see Appendix A for more on those), there are reasons to consider
maintaining an existing web scraping application over a new web service offering.
These can include web service data offerings being limited or incomplete by com-
parison or uptime of the web service being below an acceptable tolerance. In the
former case, web scraping logic can be replaced with web service calls where the two
data offerings overlap for increased data reliability. In the latter case, the web scrap-
ing logic can conduct web service calls when the service is available and use cached
data or store data updates locally until the service becomes available again.

Testing

As important as unit testing is to quality assurance for an application, it’s all the more
important to a web scraping application because it’s reliant on its target to remain
unchanged. Queries of markup documents must be checked to assert that they pro-
duce predictable results and data extracted from those markup documents must be
validated to ensure that it is consistent with expectations. In the case of real-time
applications, HTTP responses must also be checked to ensure that the target appli-

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

162 ” Tips and Tricks

cation is accessible and has not changed drastically such that resources are no longer
available at their original locations.

During development, it’s advisable to download local copies of documents to be
scraped and include them as part of the unit test suite as it’s developed. Additionally,
the test suite should include two working modes: local and remote. The former case
would perform tests on the aforementioned local document copies while the latter
would download the documents from the target site in real-time. In the event that
any areas of the web scraping application stop functioning as expected, contrasting
the results of these two working modes can be very helpful in determining the cause
of the issue.

PHPUnit is among the most popular of PHP unit testing frameworks available. See
http://phpunit.de for more information. Among its many features is the option to
output test results to a file in XML format. This feature and others similar to it in both
PHPUnit and other unit testing frameworks is very useful in producing results that
can be ported to another data medium and made accessible to the web scraping ap-
plication itself. This facilitates the ability to temporarily restrict or otherwise disable
functionality in that application should tests relevant to said functionality fail.

The bottom line is this: debugging a web application is like trying to kill a moving
housefly with a pea shooter. It’s important to make locating the cause of an issue
as easy as possible to minimize the turn-around time required to update the web
scraping application to accommodate for it. Test failures should alert developers
and lock down any sensitive application areas to prevent erroneous transmission,
corruption, or deletion of data.

That’s All Folks

Thank you for reading this book. Hopefully you’ve enjoyed it and learned new things
along the way or at least been given food for thought. Ideally, reading this will have
far-reaching effects on how you build web scraping applications in the future and it
will be one of the books you refer back to time and time again. Beyond this book,
what remains to be learned is learned by doing. So, go forth and scrape!

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Appendix A

Legality of Web Scraping

The legality of web scraping is a rather complicated question, mainly due to copy-
right and intellectual property laws. Unfortunately, there is no easy and com-
pletely cut-and-dry answer, particularly because these laws can vary between coun-
tries. There are, however, a few common points for examination when reviewing a
prospective web scraping target.

First, web sites often have documents known as Terms of Service (TOS), Terms or
Conditions of Use, or User Agreements (hereafter simply known as TOS documents
for the sake of reference). These are generally located in an out-of-the-way location
like a link in the site footer or in a Legal Documents or Help section. These types
of documents are more common on larger and more well-known web sites. Below
are segments of several such documents from web sites that explicitly prohibit web
scraping of their content.

• “You specifically agree not to access (or attempt to access) any of the Services
through any automated means (including use of scripts or web crawlers)...” –
Google Terms of Service, section 5.3 as of 2/14/10

• “You will not collect users’ content or information, or otherwise access Face-
book, using automated means (such as harvesting bots, robots, spiders, or
scrapers) without our permission.” – Facebook Statement of Rights and Re-
sponsibilities, Safety section as of 2/14/10

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

166 ” Legality of Web Scraping

• “Amazon grants you a limited license to access and make personal use of this
site ... This license does not include ... any use of data mining, robots, or simi-
lar data gathering and extraction tools.” – Amazon Conditions of Use, LICENSE
AND SITE ACCESS section as of 2/14/10

• “You agree that you will not use any robot, spider, scraper or other automated
means to access the Sites for any purpose without our express written permis-
sion.” – eBay User Agreement, Access and Interference section as of 2/14/10

• “... you agree not to: ... access, monitor or copy any content or information
of this Website using any robot, spider, scraper or other automated means or
any manual process for any purpose without our express written permission;
...” – Expedia, Inc. Web Site Terms, Conditions, and Notices, PROHIBITED
ACTIVITIES section as of 2/14/10

• “The foregoing licenses do not include any rights to: ... use any robot, spi-
der, data miner, scraper or other automated means to access the Barnes & No-
ble.com Site or its systems, the Content or any portion or derivative thereof
for any purpose; ...” – Barnes & Noble Terms of Use, Section I LICENSES AND
RESTRICTIONS as of 2/14/10

Determining whether or not the web site in question has a TOS document will be the
first step. If you find one, look for clauses using language similar to that of the above
examples. Also, look for any broad “blanket” clauses of prohibited activities under
which web scraping may fall.

If you find a TOS document and it does not expressly forbid web scraping, the
next step is to contact representatives who have authority to speak on behalf of the
organization that owns the web site. Some organizations may allow web scraping as-
suming that you secure permission with appropriate authorities beforehand. When
obtaining this permission, it is best to obtain a document in writing and on official
letterhead that clearly indicates that it originated from the organization in question.
This has the greatest chance of mitigating any legal issues that may arise.

If intellectual property-related allegations are brought against an individual as a
result of usage of an automated agent or information acquired by one, assuming
the individual did not violate any TOS agreement imposed by its owner or related
computer use laws, a court decision will likely boil down to whether or not the usage

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Legality of Web Scraping ” 167

of said information is interpreted as “fair use” with respect to copyright laws in the
geographical area in which the alleged offense took place.

Please note that these statements are very general and are not intended to replace
the consultation of an attorney. If TOS agreements or lack thereof and communica-
tions with the web site owner prove inconclusive, it is highly advisable to seek legal
council prior to any attempts being made to launch an automated agent on a web
site. This is another reason why web scraping is a less-than-ideal approach to solving
the problem of data acquisition and why it should be considered only in the absence
of alternatives.

Some sites actually use license agreements to grant open or mildly restricted us-
age rights for their content. Common licenses to this end include the GNU Free
Documentation license and the Creative Commons licenses. In instances where the
particular data source being used to acquire data is not relevant, sources that use
licenses like these should be preferred over those that do not, as legalities are signif-
icantly less likely to become an issue.

The second point of inspection is the legitimacy of the web site as the originating
source of the data to be harvested. Even large companies with substantial legal re-
sources, such as Google, have run into issues when their automated agents acquired
content from sites illegally syndicating other sites. In some cases, sites will attribute
their sources, but in many cases they will not.

For textual content, entering direct quotations that are likely to be unique from the
site into major search engines is one method that can help to determine if the site in
question originated the data. It may also provide some indication as to whether or
not syndicating that data is legal.

For non-textual data, make educated guesses as to keywords that correspond to
the subject and try using a search engine specific to that particular data format.
Searches like this are not intended to be extensive or definitive indications, but
merely a quick way of ruling out an obvious syndication of an original data source.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Appendix B

Multiprocessing

When a PHP script is executed using the CLI SAPI (i.e. from a command line), that
instance of execution exists as a process in the local operating system. The Process
Control (pcntl) extension makes it possible for PHP scripts to perform what is called
a process fork. This entails the original PHP process (then called the parent process)
creating a copy of itself (appropriately called the child process) that includes every-
thing from the data associated with the process to the current point of execution
following the fork instruction.

Once the fork completes, both processes exist and execute independently of each
other. The parent process can fork itself multiple times in succession and retains a
limited awareness of its child processes. In particular, it is notified when any given
child process terminates.

Because each child process is a copy of its parent process, the number of child
processes that can be forked is limited by the hardware resources of the local system.
CPU will merely limit the speed at which all child processes can complete. Memory,
however, can become a bottleneck if the local system’s RAM is exceeded and it has to
resort to using swap space for storage.

This restriction creates the desire to fork as many processes as possible to com-
plete a job in parallel without hitting any resource limits. This is generally achieved
by using a predetermined cap on the number of processes to fork. Once any given
child processes completes, however, it may be desirable to create a new child process

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

170 ” Multiprocessing

in its place to complete another unit of work. An implementation of this is presented
in the example below.

<?php
// Maximum number of child processes to fork
$children_max = 10;

// Counter for current number of child processes
$children_count = 0;

// Temporary variable for the status of a terminated child process
$child_status = null;

// Process identifier, initialized so the parent branch executes
$pid = 1;

while (true) {
if ($pid == -1) {

trigger_error(’Unable to fork process’, E_USER_ERROR);
} elseif ($pid) {

// Parent process

// Check for more work

// Break out of the loop if the job is finished

// Fork another child
$children_count++;
$pid = pcntl_fork();

// Wait to fork more children if the max is reached
if ($children_count == $children_max) {

pcntl_wait($child_status);
$children_count--;

}
} else {

// Child process

// Perform a unit of work

exit;
}

}
?>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Multiprocessing ” 171

i Process Control Resources
For more on the Process Control extension, see
http://php.net/manual/en/book.pcntl.php.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

	Credits
	Foreword
	Introduction
	Intended Audience
	How to Read This Book
	Web Scraping Defined
	Applications of Web Scraping
	Appropriate Use of Web Scraping
	Legality of Web Scraping
	Topics Covered

	HTTP
	Requests
	GET Requests
	Anatomy of a URL
	Query Strings
	POST Requests
	HEAD Requests

	Responses
	Headers
	Cookies
	Redirection
	Referring URLs
	Persistent Connections
	Content Caching
	User Agents
	Ranges
	Basic HTTP Authentication
	Digest HTTP Authentication

	Wrap-Up

	HTTP Streams Wrapper
	Simple Request and Response Handling
	Stream Contexts and POST Requests
	Error Handling
	HTTP Authentication
	A Few More Options
	Wrap-Up

	cURL Extension
	Simple Request and Response Handling
	Contrasting GET and POST
	Setting Multiple Options
	Handling Headers
	Debugging
	Cookies
	HTTP Authentication
	Redirection
	Referers
	Content Caching
	User Agents
	Byte Ranges
	DNS Caching
	Timeouts
	Request Pooling
	Wrap-Up

	pecl_http PECL Extension
	GET Requests
	POST Requests
	Handling Headers
	Debugging
	Timeouts
	Content Encoding
	Cookies
	HTTP Authentication
	Redirection and Referers
	Content Caching
	User Agents
	Byte Ranges
	Request Pooling
	Wrap-Up

	PEAR::HTTP_Client
	Requests and Responses
	Juggling Data
	Wrangling Headers
	Using the Client
	Observing Requests
	Wrap-Up

	Zend_Http_Client
	Basic Requests
	Responses
	URL Handling
	Custom Headers
	Configuration
	Connectivity
	Debugging
	Cookies
	Redirection
	User Agents
	HTTP Authentication
	Wrap-Up

	Rolling Your Own
	Sending Requests
	Parsing Responses
	Transfer Encoding
	Content Encoding
	Timing

	Tidy Extension
	Validation
	Tidy
	Input
	Configuration
	Options
	Debugging
	Output
	Wrap-Up

	DOM Extension
	Types of Parsers
	Loading Documents
	Tree Terminology
	Elements and Attributes
	Locating Nodes
	XPath and DOMXPath
	Absolute Addressing
	Relative Addressing
	Addressing Attributes
	Unions
	Conditions
	Resources

	SimpleXML Extension
	Loading a Document
	Accessing Elements
	Accessing Attributes
	Comparing Nodes
	DOM Interoperability
	XPath
	Wrap-Up

	XMLReader Extension
	Loading a Document
	Iteration
	Nodes
	Elements and Attributes
	DOM Interoperation
	Closing Documents
	Wrap-Up

	CSS Selector Libraries
	Reason to Use Them
	Basics
	Hierarchical Selectors
	Basic Filters
	Content Filters
	Attribute Filters
	Child Filters
	Form Filters
	Libraries
	PHP Simple HTML DOM Parser
	Zend_Dom_Query
	phpQuery
	DOMQuery

	Wrap-Up

	PCRE Extension
	Pattern Basics
	Anchors
	Alternation
	Repetition and Quantifiers
	Subpatterns
	Matching
	Escaping
	Escape Sequences
	Modifiers
	Wrap-Up

	Tips and Tricks
	Batch Jobs
	Availability
	Parallel Processing
	Crawlers
	Forms
	Web Services
	Testing
	That's All Folks

	Legality of Web Scraping
	Multiprocessing

