

Hacking Firefox™

More Than 150 Hacks, Mods,
and Customizations

Mel Reyes

01_596500 ffirs.qxd 6/30/05 2:34 PM Page iii

01_596500 ffirs.qxd 6/30/05 2:34 PM Page ii

Hacking Firefox™

01_596500 ffirs.qxd 6/30/05 2:34 PM Page i

01_596500 ffirs.qxd 6/30/05 2:34 PM Page ii

Hacking Firefox™

More Than 150 Hacks, Mods,
and Customizations

Mel Reyes

01_596500 ffirs.qxd 6/30/05 2:34 PM Page iii

Hacking Firefox™: More Than 150 Hacks, Mods, and Customizations

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2005 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN-13: 978-0-7645-9650-6
ISBN-10: 0-7645-9650-0

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1B/SR/QX/QV/IN

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States
Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy
fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the
Publisher for permission should be addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN
46256, (317) 572-3447, fax (317) 572-4355, or online at http://www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR
EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN
MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE
PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF
PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON
SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES
ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A
CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE
AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY
PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET
WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK
WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services or to obtain technical support, please contact our Customer Care Department
within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Library of Congress Control Number: 2005017558

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks ofJohn Wiley & Sons, Inc. and/or its affiliates, in the
United States and other countries, and may not be used without written permission. ExtremeTech and the ExtremeTech logo are
trademarks of Ziff Davis Publishing Holdings, Inc. Used by license. All rights reserved. Firefox is a trademark of Mozilla Foundation.
All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

01_596500 ffirs.qxd 6/30/05 2:34 PM Page iv

About the Author
Mel Reyes, a veteran of technology and programming, is an avid fan and user of Firefox and all
its predecessors. He programs in several languages, works with a variety of technologies, and
runs MRTech.com, which provides free technology news, support, tips, and software. He
works in several industries helping clients with web, desktop, and database application develop-
ment. Mel can be reached by e-mail at mel@mrtech.com.

01_596500 ffirs.qxd 6/30/05 2:34 PM Page v

Credits
Executive Editor
Chris Webb

Contributing Writers
Phil Catelinet
Alex Sirota
Aaron Spuler
Terren Tong

Technical Editors
David Gegenheimer
James Russell

Development Editor
Marcia Ellett

Copy Editor
Maarten Reilingh

Production Manager
Tim Tate

Editorial Manager
Mary Beth Wakefield

Vice President and Executive Group
Publisher
Richard Swadley

Vice President and Publisher
Joseph B. Wikert

Project Coordinator
Erin Smith

Graphics and Production Specialists
April Farling
Jennifer Heleine
Stephanie D. Jumper
Erin Zeltner

Quality Control Technicians
Amanda Briggs
Jessica Kramer
Carl William Pierce
Charles Spencer

Proofreading and Indexing
TECHBOOKS Production Services

Cover Design
Anthony Bunyan

01_596500 ffirs.qxd 6/30/05 2:34 PM Page vi

To my loving and caring family—Wendi, Samantha, and Skylher

01_596500 ffirs.qxd 6/30/05 2:34 PM Page vii

01_596500 ffirs.qxd 6/30/05 2:34 PM Page viii

Foreword
If software is an art—and I think it is—then I must be the only artist in the world who advo-
cates defacing his own work. But if ever there was a product designed for hacking, Firefox is it.
Because Firefox is an open-source project, its lifeblood—its source code—is available to hack-
ers the world over. And I do mean hackers. These guys ship software before they put on pants.

What separates Firefox from other open-source projects is that it isn’t designed for a technical
community. Products like Linux are generally regarded as being “by geeks, for geeks,” but with
Firefox it’s more like “by geeks, for grandmas.” We focus obsessively on the user experience so
that everything just works, right out of the box. Indeed, you may find that when you first start
Firefox, you don’t need to hack it. This odd sensation will be accompanied by symptoms of
hacker withdrawal, including, in severe cases, a sudden willingness to go outside. You’ll find
yourself scoffing at certain parts of Firefox just to feel as if you have something to hack (“Pfft,
I could hack a much cuter fox for their logo”).

No worries: Shortly thereafter, your geeky sense will begin tingling again. Think back to The
Matrix. Where most of the world saw a vibrant 3-D reality, Neo and his crew saw an endless
stream of flashing green code. Okay, so real life (if this is real life) isn’t quite that cool, but you
and I see technology through a different lens than Grandma. She isn’t going to notice—or
care—if her toolbar buttons are five pixels apart instead of seven, but I am, and I want to fix it.
Because we are empowered to change anything, we notice everything.

Besides, hacking isn’t just about fixing what’s wrong. It’s also about making what already works
work for you. Sure, traditional, rectangular context menus work well enough, but wouldn’t pie
menus be better? And yeah, it’s easy enough to click that back button, but it’s ever so far. . .
Why can’t I make a quick gesture with my mouse to go back, wherever it happens to be? Well
enough, good enough—”enough” does not exist in the hacker vocabulary. There is only an esca-
lating sense of “better.”

I began work on Firefox two years ago, when I was 17, and I’m still hacking on it right now in
another window. Firefox is not a business. It is a passion. It is the product of a global commu-
nity of developers fueled by their own drive to create, and no matter how hard we try to polish
it for Grandma, our roots shine through. We urge you to join us; our art is yours.

Blake Ross
Co-creator of Firefox
www.blakeross.com

01_596500 ffirs.qxd 6/30/05 2:34 PM Page ix

01_596500 ffirs.qxd 6/30/05 2:34 PM Page x

Acknowledgments
First and foremost, I thank the most profoundly beautiful, incredibly understanding, rock and
foundation, love of my life—my wife, Wendi. Without her superhuman efforts to manage day-
to-day things, I don’t think this book would have been possible. To my loving daughter Sammi
B., whose smiling pictures and letters gave me the energy on those extremely long and late
nights to continue writing. To my younger and vibrant daughter, Skylher B., for making sure I
didn’t miss any of those important moments in the first year of her life. And to the new addi-
tion who adds a delightful finish to this whole process.

To Can and Bry for being the best babysitters, in-laws, and friends a person could ever have.
Thanks also to the rest of my family, friends, and coworkers for lending an ear and for the
words of encouragement.

Special thanks to the great efforts and massive contributions made to this book and for the
expertise supplied by Phil Catelinet, Alex Sirota, Aaron Spuler, and Terren Tong. Thanks, guys!

Finally, I thank Chris Webb and Marcia Ellett of Wiley for their patience, indulgence, and the
opportunity they have afforded me with this endeavor.

01_596500 ffirs.qxd 6/30/05 2:34 PM Page xi

01_596500 ffirs.qxd 6/30/05 2:34 PM Page xii

Introduction
“And so at last the beast fell and the unbelievers rejoiced. But all was not lost, for from the ash
rose a great bird. The bird gazed down upon the unbelievers and cast fire and thunder upon
them. For the beast had been reborn with its strength renewed, and the followers of Mammon
cowered in horror.”

from The Book of Mozilla, 7:15

Assumptions
To use this book and reap its benefits, you should have a solid foundation in using Windows/
Linux and Mozilla Firefox. This book covers basic to advanced hacks, the majority of which are
compatible with any platform that the Firefox 1.0 official release currently runs on.

Using This Book and What You Will Find Here
To use this book, all you need to do is have a basic understanding of how Firefox works, how to
install it, and how to find files on your computer. As you read, you will begin to unravel the
marvels of coding for Firefox using the basics of Cascading Style Sheets (CSS) and JavaScript
and then later diving into XML User Interface Language (XUL) and the Cross Platform
Component Object Model (XPCOM). The final goal is being able to create extensions that
will allow you to customize Firefox to your heart’s content.

This book starts by giving you a brief overview of how to hack manually, how to hack with
extensions, and then a quick glance at what you will need to do to back up critical files so that
you can practice safe hacking.

Then it breaks down each of the individual components of Firefox from interface to rendering
to privacy and walks you through hacking and modifying key files to apply tons of possible
interface and functionality changes. It also includes a great list of proven extensions with which
you can modify core features of Firefox, as well as the look and feel of the interface.

In addition, this book covers the grassroots efforts that Mozilla and Firefox have become
known for among developers—the ability to use the highly extendable Mozilla programming
language and interface to modify any aspect of the browser by creating extensions, and also
how you can change the appearance of the browser by creating themes.

01_596500 ffirs.qxd 6/30/05 2:34 PM Page xiii

Conventions Used in This Book
As you read this book, you will find boxed icons that highlight additional information of inter-
est. The informational icons include the following:

This icon indicates special information relating to the current section that you may find useful.

This icon indicates information that explains the best way to do something or alerts you to spe-
cial considerations you should be aware of when performing a routine task.

This icon indicates a reference to related information in another chapter.

This icon indicates cautionary information, alerting you to potential hazards encountered within
the tasks at hand.

Being a Part of the Community
The Mozilla initiative, in existence for more than seven years now, is the divine spawn of the
Netscape Corporation. Several years spent in planning and restructuring have lead to some
incredible products, including the Mozilla Suite, Firefox, Thunderbird, and many other smaller
projects. Several of these projects are currently official releases, with Firefox being the flagship,
standalone browser. The key to the Mozilla community is that it is now an official nonprofit
international organization with many volunteers who help in debugging, hacking, and docu-
menting the interface and features.

The community of people who use and create for Mozilla is tremendous, and as large as it is, it
still requires the assistance of all users, basic or experienced, to find and submit bugs that may
come up or to submit requests for options that are currently not available.

While you might hear a lot about the Mozilla organization, this book also covers the other
supporting sites and individual initiatives, such as the XULPlanet, MozillaZine, MozDev,
Extension Room, and Extension Mirrors sites. All of these help users and programmers
support the Mozilla efforts by hosting web forums, extension homepages, and independent
projects.

xiv Introduction

01_596500 ffirs.qxd 6/30/05 2:34 PM Page xiv

Searching and Submitting Firefox Bugs
The Bugzilla site (http://bugzilla.mozilla.org) is the core management center for
tracking and communicating bugs and requests for enhancements (RFEs), and to check on the
latest development efforts for future releases.

Your first visit to Bugzilla might be a little daunting, but, as you read this book, you should be
able to understand and maybe even help with issues in the currently released builds by search-
ing and submitting your findings and bugs to the Bugzilla site.

Though registration is not required for searching, you should register and get a Bugzilla user
account to help communicate bugs and workarounds and to receive patch status on bug reports
you submit. The key thing to remember when submitting a bug is that you should thoroughly
search the Bugzilla database using different permutations of keywords that can describe your
problems. For example, suppose this was the issue at hand: “My browser crashed during an
online SSL secure transaction at MyRustyRedChevyTruck.biz.” Before submitting a bug, do
some digging, check to see if it is a bug with any secure site or just the one you had a problem
with. Once you have deduced whether it involves all secure web sites or just this site, you can
go into the Bugzilla database. You can search to see whether this is a known bug, if a future
major release includes the fix, or if there is a workaround.

The initial search that you should do would be for “MyRustyRedChevyTruck.biz.” If this
search does not bring back any results, do additional searches for “SSL crash” or “browser crash
secure site.” Each permutation of searches you do will help in removing duplicate bug reports,
which, in the end, will reduce overhead in managing, categorizing, and tracking bugs.

If, after thorough researching, you conclude that yours is a unique bug, go ahead and submit a
new bug by selecting the correct form entries on the Bugzilla site. Pay close attention when
classifying your submission, as doing so will expedite your request and remove the categoriza-
tion burden from the developers. If you are confused about classifying the bug, just do your
best; the category owners will sort it into the correct bucket. After submitting a bug, you will
receive communication from the Mozilla team and possibly other users who will confirm or
resolve the issue. If your submitted bug is a legitimate bug, it will be queued for further testing
and troubleshooting.

xvIntroduction

01_596500 ffirs.qxd 6/30/05 2:34 PM Page xv

Contents at a Glance
Foreword . ix
Acknowledgments . xi
Introduction . xiii

Part I: Basic Hacking . 1
Chapter 1: Hacking Firefox Boot Camp . 3
Chapter 2: Hacking Around Manually . 17
Chapter 3: Hacking Extensions . 33
Chapter 4: Hacking Themes and Icons . 57

Part II: Hacking Performance, Security, and Banner Ads 81
Chapter 5: Performance Tweaks and Hacks . 83
Chapter 6: Hacking Security and Privacy . 101
Chapter 7: Hacking Banner Ads, Content, Images, and Cookies 119

Part III: Hacking Menus, Toolbars, and the Status Bar 139
Chapter 8: Hacking Menus . 141
Chapter 9: Hacking Toolbars and the Status Bar . 157

Part IV: Hacking Navigation, Downloads, and Searching 177
Chapter 10: Hacking Navigation and Tab Browsing . 179
Chapter 11: Download and Plugin Hacks . 197
Chapter 12: Search Hacks . 223

Part V: Installation, Automation, Tools, and Tricks 241
Chapter 13: Hacking Installation and Deployment . 243
Chapter 14: Backing Up and Managing Your Profile/Settings 267
Chapter 15: Hacking Tools for Web Programmers . 281

Part VI: Creating Extensions and Themes 297
Chapter 16: Understanding Mozilla Programming . 299
Chapter 17: Creating Extensions . 321
Chapter 18: Creating Themes . 381

Index . 405

02_596500 ftoc.qxd 6/30/05 2:35 PM Page xvi

Contents
Foreword . ix

Acknowledgments . xi

Introduction . xiii

Assumptions . xiii
Using This Book and What You Will Find Here xiii
Conventions Used in This Book . xiv
Being a Part of the Community . xiv
Searching and Submitting Firefox Bugs . xv

Part I: Basic Hacking

Chapter 1: Hacking Firefox Boot Camp 3
Installing the Document Inspector Gadget . 3
Editing and Programming Text Tools . 7
Using the JavaScript Console . 8
What and Where Is My Profile? . 10

Finding Your User Path . 10
Express Pass to Your Profile Path . 12

Backing It Up Before Hacking It Up . 13
Saving the Installer, Extensions, and Theme Files 13
Backing Up Critical Files . 14

Summary . 16

Chapter 2: Hacking Around Manually 17
Using Hidden about:config to Hack . 17
Hacking Your Profile Settings . 19

Hacking the prefs.js File . 19
Hacking the user.js File . 22

Hacking Browser and Web Page Content . 23
Hacking the userChrome.css File . 23
Hacking the userContent.css File . 25

Basic Hacking with Extensions . 26
Hacking with the chromEdit Extension . 27
Hacking with the Configuration Mania Extension 28
Hacking with the Preferential Extension . 29
Hacking an Extension’s Options . 30

Summary . 32

02_596500 ftoc.qxd 6/30/05 2:35 PM Page xvii

Chapter 3: Hacking Extensions . 33
Understanding Older versus Newer Extensions 34

Recovering from Disabled Older Extensions 34
Removing Older Extensions . 36
Starting Over without Losing All Your Settings 37

Why Won’t Some Extensions Install? . 39
Installing Remotely versus Locally . 39
Using MR Tech’s Local Install Extension 40
Where Did It Get Installed? . 41

Hacking Older Extensions . 42
Changing Supported Version Number . 43
Modifying Code within an Extension . 44

Hacking the Extension Manager . 48
Listing Your Extensions and Themes . 48
Hacking with the Slim Extension List Extension 51
Hacking with the EMbuttons Extension 51

Recommended Extensions by Category . 53
Summary . 55

Chapter 4: Hacking Themes and Icons 57
Changing the Window’s Background Color . 58

Using a Tiled Image for the Window’s Background 62
Reducing Space around Toolbar Icons . 65

Hacking Themes . 67
Reenabling Dynamic Theme Switching . 67
Hacking Older Themes . 68
Recovering from Disabled Older Themes 69

Why Won’t Some Themes Install? . 70
Installing Remotely versus Locally . 70
Using the Local Install Extension . 71
Hacking via userChrome.css . 72

Hacking Website Icons . 77
Enabling Icons for Bookmarks and Websites 77
Removing Favicons Manually . 77
Removing Icons with the Delete Icons Extension 79

Recommended Themes . 79
Summary . 80

Part II: Hacking Performance, Security, and Banner Ads

Chapter 5: Performance Tweaks and Hacks 83
Deviating from RFC Specs . 83

Hacking Simultaneous Connections . 84
Pipelining Hacking . 85
Other Hacks . 86

xviii Contents

02_596500 ftoc.qxd 6/30/05 2:35 PM Page xviii

Optimizing Page Rendering . 86
Hacking Page Rendering . 87
Unblocking Error Dialogs . 88
Disabling Smooth Scrolling . 88

Bandwidth and Processor-Specific Optimizations 88
Optimizing Disk and Memory Cache . 91

Changing Disk Cache Location . 91
Viewing, Changing Size, and Cleaning Your Disk Cache 92
Increasing Memory Cache Size . 93

Windows Memory Optimization Hack . 94
Venturing into Optimized Third-Party Builds . 96
Spring Cleaning . 98

Refreshing Your XUL Cache File . 99
Cleaning Up after Uninstalling or Upgrading 99

Summary . 100

Chapter 6: Hacking Security and Privacy 101
Concerns with Saving Form or Login Data . 101
Creating a Master Password . 104
Covering Your Tracks . 104
Cleaning Up Browsing History . 105

Cache . 106
Download Manager . 106
History . 107

Blocking Unwanted Cookies . 109
Reviewing Stored Cookies and Removing Them 110
Preemptively Blocking Known Undesirable Cookies 110

Using the Mozilla Update Service . 111
Disabling Extension Installation . 114
Disabling Suspicious JavaScript Features . 114
Disabling Windows shell: Protocol . 115
Anti-Phishing Measures and Tools . 116
Summary . 117

Chapter 7: Hacking Banner Ads, Content, Images, and Cookies 119
Using the Block Image Function . 120
Using Built-in Content Handling to Block Ads 123
Blocking Rules with the Adblock Extension . 127

Blocking Nuisance Images . 127
Using Simple Blocking Rules . 129
Understanding Regex Pattern Matching 131
Starter Regex Samples Expression Rules 132
Blocking JavaScript and DHTML Tricks 134

Blocking Cookies Options and Tools . 134
Tools for Cleaning Unwanted Cookies . 136
Summary . 137

xixContents

02_596500 ftoc.qxd 6/30/05 2:35 PM Page xix

Part III: Hacking Menus, Toolbars, and the Status Bar

Chapter 8: Hacking Menus . 141
Hacking Menus Manually . 141

Hiding Menu Options . 143
Hack Menu Spacing . 145
Hack Menu Fonts and Style . 146

Hacking Menus with Extensions . 147
Hacking Menu Icons . 150

Theme-Supported, Customized Menu Icons 150
Hacking with the CuteMenus Extension 153

Summary . 155

Chapter 9: Hacking Toolbars and the Status Bar 157
Removing and Changing Toolbar Buttons . 157
Showing System Icons . 159
Show Mozilla Update Icon . 162
Adding Customized Toolbar Buttons . 162

The EMButtons Extension . 163
The Toolbar Enhancements Extension . 164

Adding Useful Toolbars . 166
Using the Googlebar Extension . 166
Using the Yahoo! Toolbar Extension . 168
Using the Web Developer Extension . 169

Hacking the Status Bar . 170
Current Date/Time with Statusbar Clock Extension 170
Display the Weather with ForecastFox . 171
Playing Music with the FoxyTunes Extension 173
On-the-Fly Proxy Switching with the SwitchProxy Extension 173
The StockTicker Extension . 174

Summary . 175

Part IV: Hacking Navigation, Downloads, and Searching

Chapter 10: Hacking Navigation and Tab Browsing 179
Setting Your Home Page . 179

Specifying a Single Home Page . 179
Specifying Multiple Home Pages . 180

Opening New Windows . 183
Tab Browsing Hacking . 184

Using userChrome.css to Hack Tabs . 185
Bring Back Those Lost Tabs . 186
Using Extensions to Hack Tab Browsing 188

xx Contents

02_596500 ftoc.qxd 6/30/05 2:35 PM Page xx

Better Browsing through Better Mousing . 191
Using Configuration Mania to Adjust Your Mouse Scrolling 193
Show Your Artistic Side with Mouse Gestures 194

Summary . 196

Chapter 11: Download and Plugin Hacks 197
Hacking Download Behavior . 198

Clearing Download History . 198
Other Useful Hacks . 201

Hacking Downloads with Extensions . 202
Showing Downloads in the Status Bar Using the

Download Statusbar Extension . 202
Showing Download Manager in the Sidebar or Tab

with Download Manager Tweak Extension 204
Disabling Blank Download Windows with the Disable Targets

for Downloads Extension . 206
Sorting Downloads to Directories with the Download Sort Extension . . . 208

Hacking MIME Types . 209
Understanding File MIME Types . 209
Using the Mimetype Editor and LiveHTTPHeaders Extensions 210

Hacking External Download Managers . 213
Using Launchy to Handle External Programs 214
Using FlashGot to Handle External Programs 215
Seamless Download Integration . 215

Hacking Plugins . 216
Checking Installed Plugins with about:plugins 217
Using Available Plugins without Reinstalling 218
Disabling Plugin Support for Specific File Extensions 220

Summary . 221

Chapter 12: Search Hacks . 223
Adjusting the Default Google Search . 223
Using Quick Searches . 224
Hacking the Search Box . 225
Searching from the Web Page Itself . 227

Web Searches Using the Context Menu 227
Define Words in Web Pages . 227
Add Translation Tools to Your Menus . 230
Put Your Search Results in a Sidebar . 230
Open Your Search Results Quickly with Linky 232
Turning Nonlinked Links into Linkable Links 234

Searching within the Web Page . 235
Recommended Search Extensions . 237

Googlebar . 237
Ultrabar . 238
Yahoo! Toolbar . 239

Summary . 240

xxiContents

02_596500 ftoc.qxd 6/30/05 2:35 PM Page xxi

Part V: Installation, Automation, Tools, and Tricks

Chapter 13: Hacking Installation and Deployment 243
Built-in Installer Options . 243

Using Command-Line Options . 244
Extracting the Installer . 245
Command-Line Installer Extraction . 246
Hacking the Configuration INI File . 247

Installation and Profile Customization Options 249
Automated Profile Creation . 249
Adding Global Extensions and Themes 250
Deploying Plugins . 251
Create a Custom Windows Desktop Icon 253
Hacking the Desktop Icon with Nullsoft Installer Script 253
Other Notable Deploy Tools . 256

Creating a Custom Installer . 256
Custom Nullsoft Scriptable Install System Installer 257
Other Notable NSIS Code . 260
Hacking Microsoft Windows Installers . 260

Summary . 265

Chapter 14: Backing Up and Managing Your Profile/Settings 267
Before You Begin, Back Up . 267
Finding and Using the Hidden Profile Manager 268
Creating and Deleting Profiles . 268

What’s in a Profile? . 270
Move Your Profiles Around . 271
Creating a Portable Profile . 273
Manually Backing Up Critical Data . 274
Automatic Backups of Critical Files . 275
Unofficial Mozilla Backup Tool . 275
Backing Up Plugins and Other Components 276

Recommended Extensions for Backups . 277
Bookmark Backup . 277
Bookmarks Synchronizer . 278
fireFTP . 279

Summary . 280

Chapter 15: Hacking Tools for Web Programmers 281
Configuration Hacking . 281

Browser . 282
HTTP Network . 282
Debug . 283

Organizing Web Research . 283

xxii Contents

02_596500 ftoc.qxd 6/30/05 2:35 PM Page xxii

The Godfather of Web Programming Extensions 284
Key Web Developer Features . 285

Hacking Tools of the Trade . 286
HTML Hacking Tools . 286
Navigation and Link Hacking Tools . 291
JavaScript and XUL Hacking Tools . 292
Page Validation Hacking Tools . 294

Summary . 296

Part VI: Creating Extensions and Themes

Chapter 16: Understanding Mozilla Programming 299
Understanding Mozilla Technologies . 299

XUL: XML User Interface Language . 300
JavaScript . 303
Cascading Style Sheets . 307
The Document Object Model . 309
XPCOM: Cross Platform Component Object Model 314

Introduction to Firefox Extension Programming 316
What Are Firefox Extensions? . 316
The Extension Manager . 318

Summary . 320

Chapter 17: Creating Extensions . 321
Tools for Creating Extensions and Themes . 321

Text Editor . 321
ZIP Format Compression Tool . 322
Graphics Editor . 323

Building Your First Extension . 323
Introduction to Chrome . 323
Creating the SiteLeds Extension . 326

Extension Programming Techniques . 346
Understanding the Browser Chrome . 346
More XUL . 351
Firefox Customization Options . 366
Advanced Packaging . 373
Tips and Tricks . 377

Summary . 380

Chapter 18: Creating Themes . 381
Tools for Creating Themes . 381

Text Editor . 382
Image/Graphics Editor . 382
ZIP-Format Compression Tool . 382

xxiiiContents

02_596500 ftoc.qxd 6/30/05 2:35 PM Page xxiii

Building Your First Theme . 382
Define and Create Your Theme’s Core Files 383
Generate a Custom GUID . 386
Customizing Chrome . 387
Using the DOM Inspector . 387
Understanding CSS . 389
Creating Needed Graphics . 389
Overlay Default Icons . 390
Graphics Locations . 393
Icon Conversion . 395
Supporting Popular Extension Buttons . 396
Packaging the Files . 399
Creating an Update Definition File . 399
Testing . 400
Using the DOM Inspector . 400
Deploying Your Theme . 401
Creating JavaScript Installer Links . 401
Making Your Theme Public . 401
Supporting Different Operating-System Platforms 402
Hacking Existing Themes . 402

Summary . 403

Index . 405

xxiv Contents

02_596500 ftoc.qxd 6/30/05 2:35 PM Page xxiv

Basic Hacking

Chapter 1
Hacking Firefox Boot Camp

Chapter 2
Hacking Around Manually

Chapter 3
Hacking Extensions

Chapter 4
Hacking Themes and Icons

part

in this part

03_596500 pt01.qxd 6/30/05 2:36 PM Page 1

03_596500 pt01.qxd 6/30/05 2:36 PM Page 2

Hacking Firefox
Boot Camp

Gearing up to hack Mozilla Firefox is as simple as understanding
some basic Internet browser features, installing some tools, and
being able to find files on your computer system. Then it gets just a

tad more complicated. This chapter starts things off by discussing the dif-
ferent methods for hacking Firefox that are covered in this book and how
things will progress. Try not to get bogged down with the onslaught of top-
ics that are covered here, because many of them are covered in depth
throughout the book.

If you understand some basic web programming tools, such as CSS,
JavaScript, and XML, you are one step ahead of the game. Conversely, if
you are not well versed in these technologies, you will find plenty of exam-
ples and references to guide you along your hack training.

First, we cover some of the key tools you should use to get an edge when
hacking Firefox. Tools covered include the Document Inspector, basic text
editors, and JavaScript Console. A good portion of this chapter helps you
find your personalized Firefox settings in your Profile directory and then
highlights the key features of most of the files. As you continue to read this
book, you will tap into many of the key components of your profile. Then
we will approach the different methods of hacking the browser using some
of the functionality included with the browser, such as about:config and the
JavaScript Console. Finally, you’ll learn the basics of changing your prefer-
ences and interface by manually hacking the prefs.js, user.js,
userChrome.css, and userContent.css files. After getting all your gear, you
will begin your quest to understand the core technologies involved in hack-
ing just about every aspect of Mozilla Firefox.

Installing the Document
Inspector Gadget
Out of the box, the Firefox Installer has two installation modes: Standard
and Custom. If you have already done a Standard installation, you will be
missing a key hacking and programming component: the Document
Inspector, or DOM Inspector.

˛ Installing the
Document Inspector

˛ Editing text tools

˛ Using the JavaScript
Console

˛ Your profile
explained

˛ Backing up before
hacking

chapter

in this chapter

by Mel Reyes

04_596500 ch01.qxd 6/30/05 2:37 PM Page 3

4 Part I — Basic Hacking

The Document Inspector extension is a development tool used to analyze the Document
Object Model (DOM) of web pages or the Firefox interface, and is very useful in digging
deeper into the core structure of web pages, the Firefox browser window, and browser elements.
Currently, this browser development tool is available only from Firefox’s main installation pro-
cess. Later in this chapter and throughout the book, you will begin to see how web page docu-
ment model standards fit into Firefox’s interface customization.

So you want to install the Document Inspector (also called the DOM Inspector), but you
already have Firefox installed? No problem. Simply reinstall Firefox, but instead of choosing
the Standard installation type, choose the Custom installation type.

Follow the prompts until you get to the Select Components screen. Select Developer Tools, by
clicking the checkbox as shown in Figure 1-1, to install the Document Inspector tool.

FIGURE 1-1: Install the Document Inspector tool

Once you have completed this installation or reinstallation, you will notice the DOM Inspector
in your Tools menu is now available to all profiles on the system. You can use this tool as a
resource for dissecting bits and pieces of web pages and the Firefox interface. Figure 1-2 shows
the DOM Inspector view of a web page that is currently loaded in the main browser. Note that
the hierarchy for the currently loaded web page is displayed in the left-hand panel, with each
level or node grouped by the HTML-defined hierarchy and code. Additionally, details on the
currently selected node are displayed in the right-hand panel; this panel becomes useful when
hacking the Firefox interface.

04_596500 ch01.qxd 6/30/05 2:37 PM Page 4

5Chapter 1 — Hacking Firefox Boot Camp

FIGURE 1-2: DOM Inspector document tree and object properties

Occasionally, I have noticed that running the DOM Inspector on a fresh install or reinstall did
not yield the desired results or did not work at all. To correct this, I have tried either unin-
stalling Firefox and then reinstalling with the Developer Tools option enabled, or creating a
new Firefox profile. Unless you are running an older version of Firefox that prompts you if you
want to delete all the program files, the Firefox uninstaller retains all the supporting plugins
and other files that it might need. If prompted to delete all Firefox program files, do not con-
firm this prompt; doing so will require reinstallation of plugin support for features such as
Macromedia Flash, Shockwave, QuickTime and/or RealPlayer. Historically, uninstalling and
reinstalling and/or creating a new profile have been the two methods that I have used to resolve
mysterious Firefox issues when I could not consistently reproduce them.

For information on how to use the Profile Manager to create a new Firefox profile, visit the
incredibly useful MozillaZine Knowledge Base at http://kb.mozillazine.org/Profile_
Manager.

While having a pretty hierarchy tree of your HTML is nice, the real benefit of the DOM
Inspector is using it to hack Firefox itself. Firefox is built on a cross-platform extensible user
interface language called XUL, which is based on XML standards and was created to support
Mozilla applications. The user interfaces for the Mozilla Suite, Firefox, Thunderbird, and
Sunbird all use XUL to create and display the user interface. This interface foundation is the
core element that helps all these programs run on different operating systems. The interface is
a collection of object definitions used to create each of the elements on the screen.

04_596500 ch01.qxd 6/30/05 2:37 PM Page 5

6 Part I — Basic Hacking

Using the DOM Inspector can easily help you walk through the hierarchy used to create the
actual windows displayed by Firefox. To load the browser window’s XUL hierarchy, just follow
these steps:

1. In the main browser window navigate to any external web site, such as http://
www.mrtech.com.

2. Open the DOM Inspector from the Tools menu. At this point, the web site opened in
the previous step will be parsed.

3. From the File menu, choose the entry from the Inspect a Window menu option that
corresponds with the site opened in the first step, in this case, “MRTech.com - Mozilla
Firefox.”

After following these steps, the nodes or page elements for the main browser window are
loaded and available for visual inspection, as shown in the left-hand Document - DOM Nodes
panel of Figure 1-3. For future reference, you can use the following location or URL for the
main Firefox browser window to quickly browse the node tree: chrome://browser/
content/browser.xul.

After you have the nodes listed in the left panel for the browser.xul page, just click on Inspect
to the right of the location bar to open a window to browse the actual page on the bottom half
of the screen (also shown in Figure 1-3).

FIGURE 1-3: DOM Inspector with Firefox’s browser.xul loaded

04_596500 ch01.qxd 6/30/05 2:37 PM Page 6

7Chapter 1 — Hacking Firefox Boot Camp

To find the internal name or id of a specific Firefox window element, I like to use the Select
Element By Click option from the Search menu. Once you have selected this, you can click on
any of the screen elements on the bottom half of the window and the DOM Inspector jumps
to the actual definition for that element within the hierarchy. There you can easily access the
internal id associated with the element and use that for future coding or manipulation.

The Select Element By Click option works only after you have clicked on Inspect next to the
location bar.

Using the DOM Inspector and Figure 1-3, I will now explain how XUL is used to build the
main Firefox browser window. As you see from this figure, there is a XUL object or node called
toolbox with an id of navigator-toolbox. This object defines the top-level toolbar container on
the main browser window. This container holds the three individual toolbar objects that are
visible in the main window. They are toolbar-menubar, nav-bar, and PersonalToolbar. Digging
deeper, the nav-bar toolbar object has a toolbarbutton object defined as back-button. This
object holds the object information for the Back button, which is displayed on the browser
window’s navigation toolbar, and the fun continues from there with the rest of the interface
XUL definitions.

All in all, the DOM Inspector is the most useful tool to begin digging around and understand-
ing the interface elements that make up the Firefox windows.

Editing and Programming Text Tools
Another tool you will need is a good text-file editor. While the basic text editor that comes
with the operating system works for some people, I have found that more functionality is desir-
able when working with web or Firefox files. Choose an editor with good code syntax high-
lighting or with other advanced options.

Key attributes to look for in a good programming editor or interface include the following:

� Is it actively developed?

� Can it support Windows, UNIX, Mac OS, and Unicode text-file formats?

� Does it have customizable tab stops or multi- or tabbed-file support?

� Is it free?

Using the editor provided by your operating system may work for you for now, but you may
find yourself being a little more productive if you opt for a more up-to-date editor. Several
good freeware text editors are actively developed and contain features that even the most
diehard vi expert could grow to appreciate and love. Additional coverage on better program-
ming editors is available in Chapter 16. One text editor that I have used in the past is EditPad,
which works on Windows and Linux-based systems. I have also used the following Windows-
based editors: Notepad++, PSPad, and the quick and simple Win32Pad.

04_596500 ch01.qxd 6/30/05 2:37 PM Page 7

8 Part I — Basic Hacking

You also have a few options for Linux distributions, including KDevelop, Nedit, Kate for
KDE, or GEdit for GNOME. Apple Mac users have a lot of options for editors, including
BBEdit, jEdit, and Mellel.

In addition to these editors, you can download and install the chromeEdit extension, featured in
Chapter 2, for basic editing of the user.js, userChrome.css, and userContent.css files. For more
information or to download chromeEdit, visit http://cdn.mozdev.org/chromedit/.

To download any of the aforementioned editors, just visit their sites:

� BBEdit: http://www.barebones.com/products/bbedit/

� EditPad: http://www.just-great-software.com/

� jEdit: http://www.jedit.org/

� Kdevelop: http://www.kdevelop.org/

� Mellel: http://www.redlers.com/

� Nedit: http://www.nedit.org/

� Notepad++: http://notepad-plus.sourceforge.net/uk/site.htm

� PSPad: http://www.pspad.com/en/

� Win32Pad: http://www.gena01.com/win32pad/

For more options and information on programming editors and software, visit http://www
.thefreecountry.com/programming/editors.shtml.

Using the JavaScript Console
The JavaScript Console is a very handy debugging tool, is a built-in feature of Firefox, and
does not require special installation. If you are a web developer or are planning on creating
Firefox extensions, the JavaScript Console is the tool that you want to tap into to make sure
you use the proper JavaScript syntax and to help you find your coding bugs.

To open the console, select JavaScript Console from the Tools menu. The console shows you
three different types of information: Errors, Warnings, and Messages.

When first opened, JavaScript Console shows all messages for your current browser session, as
illustrated in Figure 1-4. The console shows errors only if there are any; this includes errors for
all sites visited since Firefox was last opened up. If there are no messages displayed, Firefox has
not encountered JavaScript errors on any of the pages you have navigated to so far.

04_596500 ch01.qxd 6/30/05 2:37 PM Page 8

9Chapter 1 — Hacking Firefox Boot Camp

FIGURE 1-4: JavaScript errors displayed in console window

A key feature of the console is its ability to jump to the offending code if you click the Source
File: link just below the error message. Doing so opens the View Source window directly to the
line number referenced in the message, as shown in Figure 1-5.

FIGURE 1-5: Source code of offending JavaScript code

04_596500 ch01.qxd 6/30/05 2:37 PM Page 9

10 Part I — Basic Hacking

Chapter 15 dives deeper into using the console and covers how to enable some of the advanced
debugging preferences. The chapter also shows you how the JavaScript Console is a good area
to display status messages while debugging and creating your extensions.

What and Where Is My Profile?
Your settings are stored in a Firefox directory or profile, which Firefox creates right after your
first install. Your profile contains all your Firefox-specific settings, including but not limited to
the following:

� Extensions

� Themes

� Bookmarks

� Saved form values

� Saved passwords

Additionally, your profile contains any imported settings from Internet Explorer, Netscape 6/7,
or Mozilla browsers.

Losing any part of your profile can be extremely annoying; Chapter 2 covers how to hack settings
in your Firefox profile.

To work with your current profile manually, you first need to find the root directory where your
personal settings are stored. To do this, you must follow the directions specific to your operat-
ing system, shown in the next section. This operating system–dependent “settings” directory is
referred to as your %UserPath% as we continue. From there, you will be able to find the path
and directory structure in which Firefox has stored your user profile.

Finding Your User Path
Each operating system has a different directory to which it saves your user settings. Most
applications take advantage of this operating system “user path” to store their settings, so as not
to collide with other users who might log into the same computer. Firefox does the same; it
uses this directory to create the user’s profile. The challenge is that each operating system uses a
different naming and directory structure to store these files and settings. Making life even more
complicated, different versions of the same operating system (for example, Windows) use dif-
ferent structures. Peruse the following subsections to find the operating system you are cur-
rently using, and read how to find your user path.

04_596500 ch01.qxd 6/30/05 2:37 PM Page 10

11Chapter 1 — Hacking Firefox Boot Camp

Using Windows?
If you are using Windows, your user directory should look similar to this:

� Windows 2000/XP: C:\Documents and Settings\<LOGINNAME>\Application Data\

� Windows NT: c:\Windows\Profiles\<LOGINNAME>\

� Windows 9x/ME: C:\Windows\Application Data\Mozilla\Firefox

The drive (C:\ above) and location of the default Windows directory may vary based on your
custom installation.

Using Linux/UNIX?
If Linux/UNIX is your modus operandi, you should expect to find your Firefox profile in a
directory similar to ~/.mozilla/firefox.

Firefox Profile Name History Lesson

Throughout its development cycle, Firefox has been through a few changes. Earlier develop-
ment and testing builds saved the profile and settings to the following Phoenix directory:

%UserPath%\Phoenix\Profiles\

Phoenix was the original name for the Mozilla browser–only project; this made perfect sense for
the profile directory name. Even though the project name changed to Firebird for legal reasons,
the Phoenix Profile directory persisted. Finally, after additional legal and copyright wrangling,
the name Firefox was born. Not too long after this, the development version of Firefox included
an automated migration of most of the profile entries and files from the Phoenix directory to the
Firefox directory:

%UserPath%\Firefox\Profiles\

But it did not end there. The final decision made was that for new installations the root profile
directory should live in harmony with the core common Mozilla directory structure and eventu-
ally become the following:

%UserPath%\Mozilla\Firefox\Profiles\

So if you have been testing Firefox for a long time now, you may have two or three directories,
but only one is your current working Profile directory.

04_596500 ch01.qxd 6/30/05 2:37 PM Page 11

12 Part I — Basic Hacking

Using Mac OS?
Finally, for all you Apple aficionados, your directory structure should be something similar to
~/Library/Application Support/Firefox.

Now that you have found your user directory, this will now be referred to as %UserPath% and
will be used to track down where Firefox has stored your profile.

For official information on locating your Firefox profile, visit http://www.mozilla.org/
support/firefox/edit#profile.

Express Pass to Your Profile Path
One nice feature that Firefox finally enabled is human-readable settings for the profile.ini file
with the direct or relative path to the current profile(s). Prior to this, profile information was
stored in binary format only, and automating and scripting Firefox profiles was difficult to do.
The profiles.ini file lives in the now common path for Firefox Profiles, which is as follows:
%UserPath%\Mozilla\Firefox\.

The profiles.ini file will look similar to the following if this was the first time you installed
Firefox:

[General]
StartWithLastProfile=1

[Profile0]
Name=default
IsRelative=1
Path=default\zsryldfv.slt

In this first example, notice that the IsRelative setting is equal to 1, which is a Boolean
toggle for true. This means that the path is relative to the common Mozilla Firefox path of
%UserPath%\Mozilla\Firefox\, so the full directory path would look something like
%UserPath%\Mozilla\Firefox\default\zsryldfv.slt.

Note that zsryldfv in the path is a randomly generated directory name and varies from sys-
tem to system. If you had previously installed earlier builds of Firefox that stored the profiles in
other places, the profiles.ini file might look something like this:

[General]
StartWithLastProfile=1

[Profile0]
Name=default
IsRelative=0
Path=%UserPath%\Firefox\Profiles\default\zsryldfv.slt

Moreover, you will notice that IsRelative is zero or false, so the Path entry in the file reads
as-is, or absolute, and that is where you will find your current profile.

04_596500 ch01.qxd 6/30/05 2:37 PM Page 12

13Chapter 1 — Hacking Firefox Boot Camp

Backing It Up Before Hacking It Up
As with any hack or modification to a program, being able to restore to a previously working
state is critical. Luckily, Firefox hacking and modifications are primarily text file based and can
usually be restored very easily. For the most part in this book, we will not be hacking the binary
or low-level executables of Firefox. However, you are introduced to hacking several key text
files to either hack or repair your system.

This section prepares you to prepare your system for hacking and quickly points out how to
back up your extensions, themes, and critical files such as your profile, and so on.

Saving the Installer, Extensions, and Theme Files
In preparation for any hacking adventure, make sure if you have to rebuild that you have all the
necessary files that you previously used.

1. Make sure you create a Backup directory in a reliable location. Best practices dictate that
you create a Backup folder either on your desktop or in a common backup location. This
is where you want to store backups of your preferences, extensions, and any other sup-
porting files.

2. Make sure you save the original installation file for Firefox. This will come in handy
when you want to reinstall a fresh copy of the base application. Even though you proba-
bly will not do this often, there are some sections in this book where you will want to
reinstall.

Unhide Your %UserPath% and Enable File Extensions for Windows

For Windows systems such as Windows 2000 and XP, the %UserPath% may be hidden, and a
file’s extensions may not be visible. To correct this situation on these systems, just follow these
steps:

1. Open Windows Explorer by selecting the Run option from the Start menu.

2. Enter explorer.exe and press OK.

3. On the menu bar, select Tools ➪ Folder Options, and in the View tab uncheck the “Hide
extensions for known file types” option.

4. Then check the “Show hidden files and folders” option and click OK at the bottom of this
dialog box.

At this point, the file listing should refresh, and hidden directories and file extensions will be
available within all application and file/folder dialogs.

04_596500 ch01.qxd 6/30/05 2:37 PM Page 13

14 Part I — Basic Hacking

3. Review your currently installed extensions by going to the Extensions manager in the
Tools Menu (choose Tools ➪ Extensions). If you have none, you are all set. If you do
have extensions installed, you should do the following.

a. Go down the list of extensions in the Extensions window, right-click each
extension, and choose Visit Home Page from the right-click menu.

b. Almost every extension’s support page should allow you to download the XPI
or extension file by right-clicking on the download or install links and saving the
file to the Backup folder you created in Step 1.

c. Some sites use JavaScript code to install their extension. For these, you will just
have to bookmark the site and revisit them in case of emergency.

4. Do the same thing for Themes that you did for Extensions. Just open the Themes win-
dow (choose Tools ➪ Themes), run down the list of Themes, right-click each extension
and choose Visit Home Page from the right-click menu for each theme, and save all of
the individual Java Archive (JAR) or themes files to the backup directory.

Backing Up Critical Files
Now that you have all the core installation files backed up, you can proceed by backing up your
profile. To ease into hacking Firefox, I recommend using the free MozBackup tool for
Windows systems, shown in Figure 1-6, to back up and then restore your Firefox profile. Linux
and Mac users should focus on finding and backing up the profile directory completely, which
is also an option for Windows users. Chapter 2 covers the use for some of the files that are
nicely packaged by MozBackup, and below is a list that describes some of the key files.

FIGURE 1-6: MozBackup backup selection screen

04_596500 ch01.qxd 6/30/05 2:37 PM Page 14

15Chapter 1 — Hacking Firefox Boot Camp

For more information or to download MozBackup, visit http://mozbackup.jasnapaka
.com/.

Some of the critical profile files include the following:

� bookmarks.html: Where all the bookmark entries are stored and can be viewed with any
browser.

� cookies.txt: Contains all cookies currently stored for all sites.

� pref.js: Contains all of the Firefox settings and customizations that you have made —
for example, changing the homepage, location of last download folder, and so on.

� hostperm.1: Contains cookie and image permissions that have been enabled.

� formhistory.dat: Contains autocomplete data for form fields on web pages.

� user.js, chrome/userContent.css, and chrome/userChrome.css: Are not created by
default and should be backed up if you have created or modified them.

To make a backup of your Firefox profile on Windows systems using MozBackup, follow these
steps:

1. Download and install MozBackup.

2. Close all Firefox windows and run MozBackup.

3. Click Next on the Welcome screen.

4. Select the “Backup a profile” option if not already selected and the Mozilla Firefox list-
ing at the bottom of the Operation Type screen and then click Next.

5. Select the profile you want to back up. (Most installations will have only one profile
listed.) You can also select a different path to save the file and then click the Next
button.

6. Choose whether you want the backup password protected, and follow the prompts if
you do.

7. Select the components that you want backed up. To save space and time, leave the Cache
entry unchecked and then click Next.

At this point, the backup begins and a PCV file is created with the date as part of the
filename — Firefox 1.0.3 (en-US) - 7.10.2005.pcv, for example. One reason I like this tool is
that it uses standard ZLib or Zip file compression to bundle the files, not a proprietary format.
This means that the file is compatible with any extraction program that supports Zip files. You
can open the file directly in your compression program of choice, or just rename the file exten-
sion from .pcv to .zip and quickly scan through and extract specific files.

Additionally, you can run through the MozBackup file to selectively restore any of the files that
have been bundled by selecting Restore a Profile from the Operation Type screen. On the next
screen, you select the profile and the backup file to restore from and then proceed by picking
the files to restore.

04_596500 ch01.qxd 6/30/05 2:37 PM Page 15

16 Part I — Basic Hacking

If you use a Linux or Mac system, or you just want to cover all bases, make sure that you can
find your profile and make a complete backup of the profile directory before proceeding.
Chapter 2 covers how to find your profile, or you can visit the MozillaZine Knowledge Base
article here at http://kb.mozillazine.org/Profile_Folder#Firefox.

While there are other, less critical files that you might want to back up in the installation path
for the main application, the files covered here are really the core user files for running Firefox;
the rest are plugins and additions that are covered in Chapters 11, 13, and 14.

So now you are ready to hack, right? Keep in mind that the backup that you just completed is
an early cut of your profile. You will go through several iterations, hacks, and modifications
throughout this book, and you may eventually want to revert to a previous version. Keeping
backups of major milestones and achievement points will help you restore to one of your more
recent working profiles. I can’t stress enough how annoying it is to lose months’ worth of book-
marks, hacks, installed extensions, and settings because I was too lazy to do a backup.

Chapter 14 gives you some additional tools and methods for backing up, which should make life
a little easier.

Summary
This chapter is geared to help set the foundation for the rest of the book. To do so, I wanted to
focus on having an understanding of some of the basic tools, such as the DOM Inspector and
JavaScript Console, which will be referenced throughout the chapters. Additionally, the pur-
pose of a profile was explained, as well as how to find it. Finally, the importance of backing up
installation files, extensions, and your profile before you begin hacking was stressed. With this
quick run-through of Firefox basics, we can now move on to bigger and better things.

04_596500 ch01.qxd 6/30/05 2:37 PM Page 16

Hacking Around
Manually

Here is where we will lay the groundwork for what will be an exciting
adventure into hacking Firefox. The about:config screen and the
prefs.js and user.js files are covered here. We won’t be taking it for a

hair-raising ride yet, just kicking the tires for the time being. This chapter
covers the fundamentals around the prefs.js file and user.js file. These files
are critical to your settings; please do not try to edit them until you have
created a backup of your profile, which is explained in Chapter 1.

Using Hidden about:config to Hack
about:config is one of the many hidden gems that you will find in Firefox.
What about:config does is give you a visual interface where you can find the
name of a preference and see or change its current value. You can also add
new or hidden preferences via this interface. To open the about:config page,
all you have to do is type about:config in the location bar (this is where you
would normally type a web address) and press Enter.

The basic layout of the about:config screen is a list with the following four
columns:

� Preference Name: This column is the actual preference name used
by Firefox.

� Status: The Status is one of two different values: default or user set.
This is what you use to determine whether a preference has its origi-
nal or modified values.

� Type: This column lists the type of preference, Boolean, integer, or
string. These help Firefox understand how to use the preference.

� Value: The value for the preference correlates to the preference
name and type.

˛ Using hidden
about:config to
change settings

˛ Hacking your profile
settings

˛ Browser and web
page content
hacking

˛ Basic hacking with
extensions

chapter

in this chapter

by Mel Reyes

05_596500 ch02.qxd 6/30/05 2:39 PM Page 17

18 Part I — Basic Hacking

Figure 2-1 shows about:config in action.

FIGURE 2-1: The about:config preference editing screen

To update or modify a value just double-click on the row. Boolean values will automatically
toggle, and integer/string values will bring up a prompt. You can also right-click on the list to
accomplish any of the following:

� Copy a name or value.

� Create a new/missing preference.

� Toggle to another value or reset back to the default value.

To further aid in finding preferences, you can use the Filter location bar just above the list; type
in any part of a preference name, and the list will automatically filter down to preference names
that contain that value. Just delete the typed filter or click Show All on the right-hand side to
show all preferences again.

Typing in a filter of “throbber” brings up the browser.throbber.url preference, which just so
happens to be the only preference entry with “throbber” in it, as shown in Figure 2-2.

05_596500 ch02.qxd 6/30/05 2:39 PM Page 18

19Chapter 2 — Hacking Around Manually

FIGURE 2-2: Results of searching for “throbber” in about:config

One excellent reference for preference names and descriptions is available on the Preferential
Extension web site. This extension and web page, though somewhat dated, contain names
and descriptions for the Mozilla Suite, Firefox, and Thunderbird preferences that you can
tweak and hack. You can find the web site at http://preferential.mozdev.org/
preferences.html.

Hacking Your Profile Settings
This section covers how to manually make setting changes to your Firefox profile using the
prefs.js and user.js files. Both files are plain text files, but only prefs.js is created with a default
installation. The syntax used in each file is the same, is very strict, and is covered here, but
make sure to carefully review manual changes to either before hacking away.

Hacking the prefs.js File
Firefox uses a file called prefs.js to store customized preference settings in a name-value pair
function in the root of your profile directory. This name-value pair directly coincides with the
Preference Name and Value on the about:config screen, covered in the previous section. Key
features available via the Tools ➪ Options menu, plus customizations such as homepage and
extension settings, are stored in this file.

05_596500 ch02.qxd 6/30/05 2:39 PM Page 19

20 Part I — Basic Hacking

The foundation for these settings is a JavaScript call to user_pref with a key and a value. The
basic format of this call is as follows:

user_pref(“SystemPreference”) = “MyValue”;

The preference key is SystemPreference, and the key’s associated value is MyValue. The
prefs.js file may contain a small number of preference entries or quite a few if you have cus-
tomized several browser options or installed any extensions. Figure 2-3 shows the prefs.js file
open in a standard text editor.

FIGURE 2-3: Default prefs.js created with a new profile

Customized variables from the prefs.js are populated only once, when the browser starts up,
and are saved only when Firefox is completely shut down. Keep this in mind, because manually
modifying the prefs.js file while Firefox is open will nullify your prefs.js hacking efforts. This is
because the file is overwritten with what Firefox has in memory when it shuts down. Each cus-
tomized preference entry is stored one per line in this file. In the case of a browser crash, any
recent preferences changes are lost. Firefox has built-in default values, which are used if a pref-
erence setting is not explicitly included or modified in the prefs.js file.

Here is a basic example of how to modify the prefs.js file. In the about:config search example
illustrated in the previous section, you found browser.throbber.url as the Preference Name
when searching for “throbber.” The throbber is your activity indicator; it is the moving status
icon on the top-right side of the browser window. The throbber URL or web page loads if you
click on the throbber at any point. Please note this is different from your homepage, which is
associated with your startup page, new window, and so on.

05_596500 ch02.qxd 6/30/05 2:39 PM Page 20

21Chapter 2 — Hacking Around Manually

Keeping in mind that you have to close out all your Firefox browser windows, you can now
drill into the %UserPath% and Profiles directory structure to find and open the prefs.js file.
The basic format that you want to use is to mimic the name/value keys format as follows:

user_pref(“browser.throbber.url”) =
“http://www.hackingfirefox.com/”;

Note that this is actually one continuous line, although it appears on two lines here.

Once you have opened up the prefs.js file in your editor, you can do a search for throbber to see
if that entry already exists and change it. If the entry does not exist, you can manually type it
in, or you can go directly to the end of the prefs.js file and add your entry there. Adding an
entry to the bottom of the prefs.js file works very well because Firefox reads this file in sequen-
tially and the last key-value association is the pair that is used. While there is extreme merit in
forcing yourself to find and manually update the actual entry needed, I have found myself with
prefs.js files as large as 500 to 700 lines long depending on how many extensions or options I
have played around with. Hunting and pecking for multiple preferences is not at the top of my
list. Call it laziness or call it genius for tapping into the quick-turnaround techniques of copy
and paste, but you know which one I prefer; now you can decide for yourself.

For example, you can see in the following that the prefs.js already has a custom entry for the
throbber:

user_pref(“browser.throbber.url”) =
“http://www.hackingfirefox.com/”;
user_pref(“SystemPreference1”) = “MyValue”;
user_pref(“SystemPreference2”) = “MyValue”;
user_pref(“SystemPreference3”) = “MyValue”;
user_pref(“SystemPreference4”) = “MyValue”;

Then you can just add the new entry to the bottom, like this:

user_pref(“browser.throbber.url”) =
“http://www.hackingfirefox.com/”;
user_pref(“SystemPreference1”) = “MyValue”;
user_pref(“SystemPreference2”) = “MyValue”;
user_pref(“SystemPreference3”) = “MyValue”;
user_pref(“SystemPreference4”) = “MyValue”;
user_pref(“browser.throbber.url”) = “http://www.mrtech.com/”;

When Firefox initially reads in the prefs.js it sets the browser.throbber.url preference equal to
http://www.hackingfirefox.com/. Then it continues parsing the additional entries
and finds that browser.throbber.url preference value is now equal to http://www.mrtech
.com/, so the earlier value is negated. When Firefox shuts down, it writes a single row for each
preference with the latest value; in this case, browser.throbber.url is equal to http://www
.mrtech.com/. Future startups will not mention the http://www.hackingfirefox
.com/ site again.

05_596500 ch02.qxd 6/30/05 2:39 PM Page 21

22 Part I — Basic Hacking

Hacking the user.js File
The user.js file is very much like the prefs.js file in format and functionality. The key difference
is that the user.js file is used to set or reset preferences to a default value. Upon restarting the
browser, the user.js settings supersede the stored values of the prefs.js file. The user.js file is
static and does not get manipulated by Firefox; it is used only to set or reset values in the
prefs.js file. So, using this file you can easily deploy a common set of hacks to all users in an
organization or to your friends. The user.js file is not initially created with the default profile
settings and must be created when needed. For example, if I had five computers on which I
wanted to synchronize some basic Firefox preferences, I would create one user.js file and add
entries such as the following:

// Set link for Throbber icon click
user_pref(“browser.throbber.url”) = “http://www.mrtech.com/”;

// Turn on Find As You Type (FAYT)
user_pref(“accessibility.typeaheadfind”, true);

//Autostart FAYT
user_pref(“accessibility.typeaheadfind.autostart”, true);

// Search all text with FAYT
user_pref(“accessibility.typeaheadfind.linksonly”, false);

// Set FAYT Timeout in Milliseconds
user_pref(“accessibility.typeaheadfind.timeout”, 3000);

Once the user.js file is created, I can close Firefox and copy the file to the profile directory on
each computer. The next time and every time the browser is loaded after that, these settings
will supersede the values that are stored in the prefs.js file, even if the user manually changed
the prefs.js, used about:config, or changed the preferences in the Tools ➪ Options menu.
Making preference changes that conflict with values in the user.js within a browsing works only
for the remainder of the time the browser is opened; closing and relaunching Firefox forces the
user.js settings to be reapplied.

A key thing to remember is that removing values from the user.js file will not automatically
remove them for the prefs.js; you must do this manually Therefore, if you want to reset or
remove a preference you should include a line with the original default value in the user.js, as
follows:

user_pref(“SystemPreference”) = “DefaultValue”;

Or, optionally, you should make sure that the values are completely reset, close Firefox, and
remove the setting from both the user.js and the prefs.js files. While theoretically you can use
the user.js file as a one-time feature to set values, I have always been concerned with third-
party tools or extensions tapping into specific preferences. For this reason, I always collect my
defaults and have the user.js apply these defaults each time. This way, I am assured that my set-
tings and preferences are strictly adhered to and applied every time I start up Firefox.

05_596500 ch02.qxd 6/30/05 2:39 PM Page 22

23Chapter 2 — Hacking Around Manually

For more speed, performance, security, and other hacks visit MR Tech’s Mozilla, Firefox &
Thunderbird Hacks at http://www.mrtech.com/hacks.html.

Hacking Browser and Web Page Content
This section explains how to modify the browser’s interface and manipulate content. The
userChrome.css and userContent.css are Cascading Style Sheet files that use specific rules to
manipulate many visual aspects of the browsing experience. Some aspects include menu or web
page font sizes, spacing around toolbar icons or web page images, and hiding menus or menu
options or other screen elements. The userChrome.css file is used to manipulate the Firefox
interface, while userContent.css is used to manipulate actual web pages.

For official Mozilla examples for customizing the userChrome.css or userContent.css files, visit
http://www.mozilla.org/unix/customizing.html.

Hacking the userChrome.css File
This section gives you a fundamental understanding of how to use userChrome.css to modify
your browser’s appearance. Examples that are more advanced and more details on how to mod-
ify this file appear in coming chapters. The userChrome.css file is located in the chrome subdi-
rectory of your profile; on default or new builds, this file does not exist. A sample file called
userChrome-example.css comes with new installations of Firefox and contains some basic
examples. To test the examples in this section, you can edit the userChrome-example.css file
and copy it into the chrome directory in your profile folder as userChrome.css.

The userChrome.css file is really a Cascading Style Sheet (CSS), very much like those that you
use for normal HTML web pages. Where a style sheet on a web page usually modifies visual
elements of the page, such as graphics, colors, placement, and so on, the userChrome.css file
modifies visual elements of the entire Firefox interface, what we like to call chrome.

How is this possible? you may ask. Well, this is just one of the many fundamental differences
between the Mozilla base code and other browsers, let alone other development platforms.
Since shortly after Netscape began the Mozilla project, the Mozilla has aimed to create core
low-level components with top-layer user interfaces that are cross-platform compatible. This
cross-platform focus spawned the ability to create a customizable and extensible user interface.
This customizable user interface initiative led to the creation of Mozilla’s XML User Interface
Language (XUL), as well as CSS support for interface and dialog presentation. Later chapters
dig into the browser’s user interface model and dissect a few of the key screens.

To continue with a simple example, assume that we know that the id or name for the throbber
icon is throbber-box. Now that we have that, you can change the display property of this ele-
ment to either hide it or to change its visual properties, such as space padding and so on.

To hide the throbber on the browser chrome, the entry in the userChrome.css file would look
like this:

05_596500 ch02.qxd 6/30/05 2:39 PM Page 23

24 Part I — Basic Hacking

#throbber-box {
display: none !important;

}

When you restart the browser, you will notice that the throbber is gone. Using common CSS
techniques, the default style of the throbber box has been overwritten to change its presenta-
tion.

For a good list of interface ids that are available and that are accessible via userChrome.css cus-
tomizations, visit http://www.extensionsmirror.nl/index.php?showtopic=96.

This next example changes some of the properties around the throbber box instead of hiding it.
The basic properties we will modify are border, margins, and padding. Where the border is
drawn around the object, padding is added within the boundaries of the border, and margins
are added outside the border boundaries:

#throbber-box {
border: 1px solid BLUE !important;

padding-left: 5px !important;
padding-right: 5px !important;

margin-left: 20px !important;
margin-right: 20px !important;

}

Additionally, let’s increase the width of the search bar by adding the following code:

#search-container, #searchbar {
-moz-box-flex: 300 !important;

}

This change just about doubles the current width of the search bar for easier viewing of long
search strings.

Figure 2-4 shows Firefox without customizations.

FIGURE 2-4: Plain throbber in top-right corner

05_596500 ch02.qxd 6/30/05 2:39 PM Page 24

25Chapter 2 — Hacking Around Manually

Figure 2-5 shows Firefox with throbber and search-bar customizations.

FIGURE 2-5: Throbber with border, spacing, and margin customizations, and wider search bar

What you should notice is a blue 1-pixel border around the throbber, with 5 pixels of padding
space to the left and right inside the border, and 20 pixels of margin spacing outside the border.
Additionally, the search bar is now wider and will resize dynamically if the window becomes
smaller. The properties that are included here are standard Cascading Style Sheet properties.

For full CSS Level 1 standards and documentation, visit http://www.w3.org/TR/REC-CSS1/.
Additionally, for CSS Level 2 standards, visit http://www.w3.org/TR/REC-CSS2/.

Hacking the userContent.css File
Much like userChrome.css, the userContent.css file uses CSS standards to allow you to manip-
ulate properties. The key difference is that userContent.css alters the style or layout of the web
page content instead of user interface elements. The userChrome.css file is also located in the
chrome subdirectory of the profile, and a sample userChrome-example.css file is included with
new profiles. To test the examples in this section, you can edit the userContent-example.css file
and copy it into the chrome directory in your profile folder as userContent.css.

Later in the book, you see how to use the userContent.css file to block unwanted advertise-
ments. This section includes a basic example of how to manipulate the browser’s content to
show a red dashed border around links that target a new window. The changes applied in this
example modify web page links with targets of _new and _blank. These targets tell the
browser to open a new window with the content from the link when clicked.

The syntax for this customization is much like that of the previous userChrome.css example:

/* Put dashed red border around links that open a new window */
:link[target=”_blank”], :link[target=”_new”],
:visited[target=”_blank”], :visited[target=”_new”] {

border: thin dashed red;
padding: 2px !important;

}

05_596500 ch02.qxd 6/30/05 2:39 PM Page 25

26 Part I — Basic Hacking

Both the border and padding property should look familiar and behave the same as in the pre-
vious example. The key difference here is that the intended object is a link that has a target of
either _blank or _new.

Notice the dashed borders (they will appear red on your screen) around links on the page
shown in Figure 2-6.

FIGURE 2-6: Customizations applied by userContent.css to a page

Alternatively, you can split the style, one for a normal link and one for a visited link, where the
visited link would have a different-colored border, in this case blue:

/* Put dashed red border around links that open a new window */
:link[target=”_blank”], :link[target=”_new”] {

border: thin dashed red;
padding: 2px !important;

}

/* Put dashed blue border around visited links that open a new
window */
:visited[target=”_blank”], :visited[target=”_new”]{

border: thin dashed blue;
padding: 2px !important;

}

Basic Hacking with Extensions
Using extensions can lead to some of your best hacking. The concept of extensions is straight-
forward, and the availability and diversity of extensions are incredible. The extensions discussed
in this section have excellent features and each is briefly covered with references to the key
features that will help you in hacking your browser experience. While hacking extensions
themselves is covered in Chapter 3, this section covers basic extensions that you can use to hack

05_596500 ch02.qxd 6/30/05 2:39 PM Page 26

27Chapter 2 — Hacking Around Manually

preferences, settings, and the Firefox interface. The chromEdit extension is best suited for edit-
ing the user.js, userChrome.css, and userContent.css files, while Configuration Mania and
Preferential extensions are great tools for tweaking preferences and settings. These extensions
are tried and true and have become indispensable tools in my everyday hacking.

Hacking with the chromEdit Extension
When working with the four key files that Firefox uses for customization, you may quickly find
it an annoyance to have to browse over to a separate editor and then load up the file you need.
Whether it is the userChrome.css, userContent.css, or user.js file, chromEdit gives you an edit-
ing environment right in a browser window (see Figure 2-7).

The chromeEdit extension creates a multitab window with editing capabilities for each, except
prefs.js, which is available only in this screen in read-only mode. Because the prefs.js file is
overwritten when you close your browser, it really does not make sense for this editor to allow
modifications to the file while the browser is open. It does let you view it, though, so you can
reference existing preferences that are already set in the file.

FIGURE 2-7: The chromEdit window with edit tabs

For more information or to download chromEdit, visit http://cdn.mozdev.org/
chromedit/.

When changing any of the files, make sure you click Save on each window to ensure your
changes are applied. Much like editing these files manually, the changes will not take effect
until the next full browser restart.

05_596500 ch02.qxd 6/30/05 2:39 PM Page 27

28 Part I — Basic Hacking

By default, chromEdit is opened in a separate window. To have it open in a tab instead, just add
the following user preference to the user.js file:

user_pref(“extensions.chromedit.openintab”, true);

Hacking with the Configuration Mania Extension
The Configuration Mania extension allows you to tweak several of the preferences that are not
available via the standard Preferences screen (see Figure 2-8). Given the incredible flexibility of
Firefox, this tool really comes in handy when you need to change the low-level settings to
improve performance, usability, or navigation, or for development purposes. Each section has
several options, which are categorized by the following:

� Browser

� HTTP Network

� Chrome Uninstaller

� Mouse Wheel

� Keyboard Navigation

� Master Password

� Debug

This extension is a good way to get around having to find preference names and values to
tweak your browser and can be used to get your feet wet with hacking Firefox preferences and
tweaking hidden settings.

FIGURE 2-8: Configuration Mania window with several tweaking and hacking options

05_596500 ch02.qxd 6/30/05 2:39 PM Page 28

29Chapter 2 — Hacking Around Manually

You can find the Configuration Mania homepage at http://members.lycos.co.uk/
toolbarpalette/confmania/index_en.html.

Hacking with the Preferential Extension
The Preferential extension, while dated, offers an incredibly easy interface to view all current
and available preferences in a hierarchical mode, as shown in Figure 2-9. Once the interface
has been opened and after each of the categories has been populated, you can peruse each set-
ting by expanding and collapsing each key in the hierarchy. Preferential creates a hierarchical
view based on the groupings and separation of preferences by the period(s) in the preference
name. Preferential builds a hierarchy tree where, for example, browser.throbber.url would have
a top hierarchy level of browser, a subhierarchy level of browser.throbber, and one property of
browser.throbber.url, as shown in Figure 2-10. The number of levels is driven by the number of
period-separated values in the preference name. So a preference such as font.default would
have one level only, font, and a preference such as sessionsaver.static.default.cookies would have
a hierarchy tree of three levels: sessionsaver, then sessionsaver.static, and then sessionsaver.
static.default. The final level would be the value of sessionsaver.static.default.cookies.

FIGURE 2-9: Preferential window with top-level browser tree expanded

One great benefit of this extension is that it can show you a description for many of the com-
mon preferences. However, because the extension is not actively being maintained, some
descriptions may be blank. Another great feature is that you can delete a preference tree with-
out having to search through files or other dialogs. All you have to do is click on the tree level
that you want to remove and then right-click and delete. To accomplish this with about:config,
you would have to reset each individual setting. For example, suppose you just installed the
Session Saver extension and after using it realized that you really didn’t want it, so you unin-
stalled it. While uninstalling removes the files and the extension information from your profile,
it does not remove your customized settings from your prefs.js file. Typically, you would have to
close Firefox, open the prefs.js file, remove the sessionsaver entries, save the file, and relaunch
Firefox. Optionally, you could open the about:config tool from the main browser window, apply
a filter of “sessionsaver,” and then right-click and reset each value, which for this extension

05_596500 ch02.qxd 6/30/05 2:39 PM Page 29

30 Part I — Basic Hacking

could total over 30 entries. Using Preferential you avoid all this; you quickly peruse your setting
and just delete the top-level hierarchy of sessionsaver, and all 30+ settings would be removed
without your having to restart Firefox or reset each value.

When launching this extension (by choosing Tools ➪ Advanced Preferences . . .) you see the
progress dialog showing you the status as it populates the whole tree.

Figure 2-10 shows the Preferential window with an expanded preference view.

For more information or to download Preferential, visit http://preferential.mozdev
.org/.

FIGURE 2-10: Preferential window with top-level “browser.throbber” tree expanded

To edit the preference, just right-click and choose Edit Selected from the context menu.
Most interface preferences changes take effect on restart; although some should be available
immediately.

You may receive a misleading warning when launching Preferential which states that it needs to
“launch an external application.” This is a false-positive warning and should be ignored. Press
OK or Cancel; neither option will launch an external application.

Hacking an Extension’s Options
When you install an extension, an entry gets created in the Extensions manager (see Fig-
ure 2-11), which can be opened up from the Tools menu. Several extensions have additional
customizations and properties that you can tweak. To open up the options for an extension
(if any), just select the extension desired and click the Options button or right-click to bring up
the context menu.

05_596500 ch02.qxd 6/30/05 2:39 PM Page 30

31Chapter 2 — Hacking Around Manually

FIGURE 2-11: Extension Manager window with right-click context menu

Remember that not all extensions have an option dialog, but many do. The Options button is
grayed out unless options are available for the extension. Additionally, each extension that does
have an options dialog varies in size and options.

For example, Figure 2-12 shows the options dialog for the Bookmark Backup extension.

FIGURE 2-12: Bookmark Backup allows you to modify the default files to back up.

The Bookmark Backup extension options illustrated here create copies of the select files to
either the default directory or to a custom directory each time you close your browser. The files
are saved in directories by weekday: one for Monday, one for Tuesday, and so on.

05_596500 ch02.qxd 6/30/05 2:39 PM Page 31

32 Part I — Basic Hacking

Summary
This chapter begins the whirlwind of hacking Firefox by introducing the about:config func-
tionality that is built into Firefox, then jumping right into ways of hacking the profile settings.
You met the prefs.js, user.js, userChrome.css, and userContent.css files, and learned how to best
use each one to get started with hacking Firefox. Finally, this chapter introduced three great
hacking extensions: chromEdit, Configuration Mania, and Preferential.

05_596500 ch02.qxd 6/30/05 2:39 PM Page 32

Hacking Extensions

Folks who hopped on the Mozilla bandwagon early enough have seen a
monstrous coding effort with regards to locking down the interface
and developing methods of enhancing or extending the browser.

Seeing the changes firsthand has given me a true appreciation for the
Mozilla movement and the developers behind the curtains. From version to
version prior to the 1.0 release of Firefox, there were numerous changes to
the backend calls that were available, as well as many refinements to how
the browser handled, stored, and installed extensions. This combined with
the fundamental differences between how the Mozilla Suite and Firefox
handle extensions has led to some major hacking by extension developers
and users, yours truly included. While the concept and approach for creat-
ing extensions for Mozilla and Firefox are similar, there are some basic dif-
ferences. These differences and the need to port or convert Mozilla Suite
coding efforts to Firefox may warrant actual hacking of Firefox’s base exten-
sion install file or the cross-platform installer (XPI) to get them working
properly.

Despite the .xpi file extension, the basic file format of an exten-
sion is a standard compressed ZIP file.

The following section covers what you might have to do to get an aban-
doned or older extension working for you in the latest release. This chapter
is also a good primer for understanding the fundamentals of extensions,
from how they are packaged to how to quickly get older extensions and
functionality back up and running. Later in this chapter, I’ll walk you
through the process of cleaning up your profile and references to older
extensions so that you have a clean slate to start installing extensions and
themes again.

˛ Understanding
older versus newer
extensions

˛ Why won’t some
extensions install
from a web site?

˛ Hacking older
extensions

˛ Hacking the
Extension Manager

˛ Recommended
extensions by
category

chapter

in this chapter

by Mel Reyes

06_596500 ch03.qxd 6/30/05 2:41 PM Page 33

34 Part I — Basic Hacking

Understanding Older versus Newer Extensions
If you were an early adopter of Firefox, you know that the old method of managing extensions
was completely revamped and moved from the Tools ➪ Options submenu to a new interface
called the Extension Manager, shown in Figure 3-1. This move, coupled with the changes in
the format of the definition file embedded within each XPI, temporarily caused some major
bumps in the road for users due to version incompatibilities, installation issues, and profile cor-
ruption. These were eventually smoothed out with updates from the extension developers.
Some of the reasoning behind the changes included a need to track, disable, uninstall, and pro-
vide additional extension options for users.

FIGURE 3-1: Firefox’s new Extension Manager window

Prior to the 1.0 release, Firefox development went through several version milestones (such as
version 0.8 or 0.9). In the later development cycles, the formatting for how to package an
extension changed, and a new standard was set specifically to help better manage compatibility,
installation, and so on. There were several ways of recovering from older released builds and
extensions—for example, by just upgrading an extension or hacking the original extension
installer. Others required an outright fresh start. Because of the number of changes from earlier
builds, it is always recommended that you create a new profile to correct legacy issues, but I do
not subscribe to that school of thought. I’ve always wanted to know what was going on under-
neath that I could hack around and fix.

Recovering from Disabled Older Extensions
When upgrading from one of these earlier builds, access to older extensions was no longer
available because the interface was removed from the Tools ➪ Options submenu and only
newly formatted extensions were listed in the Extension Manager. If you planned it right, you
could have modified the disabling of obsolete extensions by changing the extensions
.disabledObsolete hidden preference from true to false in your prefs.js or user.js file prior
to upgrading and would have saved yourself some time.

user_pref(“extensions.disabledObsolete”, false);

06_596500 ch03.qxd 6/30/05 2:41 PM Page 34

35Chapter 3 — Hacking Extensions

If you make this change prior to upgrading to a newer version of Firefox, your extensions are
not automatically disabled. This does run the risk of making Firefox crash or become inopera-
ble and should be used cautiously. (Making backups of your profile is always recommended.)
Because this is a hidden preference and information on it is difficult to find, we now come to
the reason to hack the XPI file or to use extensions such as Show Old Extensions and
Extension Uninstaller. With these extensions, you have a fighting chance of recovering or
cleaning up your profile without having to scrap all the stored settings by creating a new one.
In my experience, well over 90 percent of the extensions worked perfectly. They simply lacked
the 1.0 version label updated in the install.rdf or installer manifest file that is embedded within
the XPI file.

When first upgrading to one of the builds with the newer Extension Manager, one of my most
used extensions was probably Show Old Extensions. It allows you to see older extensions in
your Extension Manager. This was very important because several extensions had not been
updated to support this newer format and this was the only way to access the options for an
older extension, let alone see what version you had installed without having to dig into the
chrome directory or the chrome.rdf file.

You can download the Show Old Extensions extension at http://www.pikey.me.uk/
mozilla/.

In Figure 3-2, you see that using Show Old Extensions shows the Extension Uninstaller exten-
sion with a bright red icon, which denotes that it is an older extension. Without the Show Old
Extensions extension, none of the older extensions installed would show up on the list.

FIGURE 3-2: Extension Uninstaller as displayed by Show Old Extensions

If it is installed, you will need to disable the Slim List Extension extension for Show Old
Extensions to work properly.

06_596500 ch03.qxd 6/30/05 2:41 PM Page 35

36 Part I — Basic Hacking

Removing Older Extensions
Now that you can see your old extensions, you can use this tool to get back up and running.
When upgrading from versions 0.8 through the 0.9 Preview to version 1.0, all extensions that
were not 1.0-compatible were automatically disabled unless you had the extensions
.disabledObsolete preference set to false. During the upgrade, some extensions were
checked against the Mozilla Update site to find upgraded versions, but the site usually did not
have an update. If no compatible update was found, it was left as a disabled extension. So you
now had two issues: The extension was disabled, and if you did not have Show Old Extensions
installed, you were not able to access them. With Show Old Extensions installed, you could try
to enable the extension and see if it would work as is; at the very least, you had some informa-
tion as to the extensions you had installed. So you could move on to upgrading and uninstalling
older versions.

While some have had little to no luck with Extension Uninstaller, my experience has been pos-
itive in using this to clean house with both Firefox and the Mozilla Suite. This extension adds
a submenu to your Tools menu called Extension Uninstaller that, when launched, pops up a
custom dialog listing all old extensions. Because Extension Uninstaller is in the older extension
format, you can see how to uninstall it using its own features.

Figure 3-3 shows that installing Extension Uninstaller also installs a supporting extension
called Extension Uninstaller API. This is an advanced programming interface that allows oth-
ers to tap into common uninstall functionality. To open the window, select Extension
Uninstaller from the Tools menu.

FIGURE 3-3: Main Extension Uninstaller dialog

All old extensions can be uninstalled at the same time. After restarting Firefox, you should not
see a reference to them in the Extension Manager.

06_596500 ch03.qxd 6/30/05 2:41 PM Page 36

37Chapter 3 — Hacking Extensions

To uninstall an extension, follow these steps:

1. Select it from the list.

2. Click Uninstall.

3. Confirm the “Are you SURE...” dialog by clicking OK.

4. Close the confirmation dialog.

Repeat these steps until you have uninstalled all of your older extensions and then restart your
Firefox. When uninstalling the Extension Uninstaller, you’ll notice that the option is removed
from both the Extension Manager and the Tools menu.

In the irony of all ironies, you can uninstall the Extension Uninstaller using itself. Just follow the
steps above and select the Extension Uninstaller and API entries to uninstall and restart your
browser.

You can download the Extension Uninstaller extension at http://www.mozmonkey.com/
extuninstaller/.

Starting Over without Losing All Your Settings
Starting over using the steps listed in this section is the easiest way to remove all old references
and still keep your settings, saved login, cookies, and so on. What you want to do is remove the
files and directories associated with the old and new extensions and themes. I have personally
done this more times than I really want to admit to, but here goes. Using the location of your
profile that you found from Chapter 1, you will now dig in and find the items to delete.

If you plan on reinstalling extensions and themes immediately afterward, skip to the “Listing
Your Extensions and Themes” section in this chapter to make sure you have all the names and
links you will need to easily and quickly rebuild.

Step 1
First, you want make sure that you close Firefox completely and make a backup of your pro-
file before you continue. Closing Firefox completely assures that any files that are in use are
not locked for backing up and also makes sure that files like prefs.js, bookmarks.html, and
formhistory.dat files are properly flushed and saved to the hard drive. In this example, my
profile is saved to C:\...\Firefox\Profiles\default\zsryldfv.slt\.

Taking it from there, find and open the chrome directory (see Figure 3-4). At this point, you
want to remove all the files and directories except for the following (if they exist):

� userChrome.css

� userContent.css

06_596500 ch03.qxd 6/30/05 2:41 PM Page 37

38 Part I — Basic Hacking

Extensions such as BugMeNot and Sage create noncritical temporary files in the chrome direc-
tory, which are re-created when reinstalling and using them for the first time. These are safe to
delete.

FIGURE 3-4: Firefox Profile directory before cleanup; under Windows XP

Step 2
Remove the extensions directory located in the Profile directory. This is the location for all
of the newer extensions and themes and should probably be cleaned up every now and then
anyway.

Step 3
Firefox creates a fast load file that is located in the root of your Profile directory and is called
either xul.mfl or xul.mfasl, depending on your operating system. This file is a compilation of
the currently install browse interface or XUL customizations. It is refreshed or re-created when
Firefox closes, but it is imperative to remove it if you have completed Steps 1 and 2, as refer-
ences to extensions that the XUL cache file contains will be invalidated by these steps.

That’s it. You are now ready to reopen Firefox, and you’re back to your original clean slate with
regards to extensions and themes. Firefox recovers itself by re-creating all the necessary files
and directories it needs to continue loading. Your preferences and other settings are still intact,
and you can proceed with rebuilding your arsenal.

06_596500 ch03.qxd 6/30/05 2:41 PM Page 38

39Chapter 3 — Hacking Extensions

Why Won’t Some Extensions Install?
Have you ever tried installing an extension from a site only to find that the extension will not
install as promised? Were you able to figure out how to install it? This section covers why some
sites do not install properly and how to get around these limitations.

There are two ways that an extension can be properly installed from a web server. One is by
having the web server send the correct Mime Type associated with the extension file; the other
is by using the built-in JavaScript functionality available to Mozilla applications. Some web-
hosting providers and some extensions developers still do not properly handle extensions, leav-
ing it up to the user to figure things out. From the web-hosting standpoint, all the developer or
hosting provider has to do is add an XPI mime-type to the server’s configuration.

Chapter 11 contains more information on Mime Types.

The entry below can be easily added to Apache .htaccess or httpd.conf files to add prompt
Mime Type support for XPI file extensions that are associated with Firefox Extensions:

AddType application/x-xpinstall .xpi

This Mime Type can also be added to Microsoft IIS web server by selecting the MIME Map
or MIME Types options from the IIS Manager’s Properties dialog for the site in question.

Despite the ease of this step, some web-hosting providers may not allow changes to site set-
tings, leaving the developer with no quick server-based solutions. Knowing this, developers
should use the standard JavaScript functionality to prompt Firefox to download the file as an
extension, but they fail to do that as well. So that leaves you downloading an XPI file to your
hard drive and not knowing what to do with it.

Developers who want to add Extension JavaScript installation support to links can use the fol-
lowing code:

<a href=”extension.xpi” onClick=”if(typeof(InstallTrigger)!=Æ
’undefined’) {var InstallXPI = {‘Extension Installation’:
‘extension.xpi’}; InstallTrigger.install(InstallXPI); return
false;}” type=” application/x-xpinstall”>Install Extension Here

This code gives both support for left-click installation as well as for right-click and “Save Link
As” support.

The following is an explanation of how to install an extension remotely (or from a site that
does prompt you), and how to install an extension locally from your hard drive. Where and
how an extension is saved to your profile is also covered.

Installing Remotely versus Locally
Installing remotely is virtually a no-brainer, thanks to the beauty of Firefox. If everything is as
it should be, you simply click on the install or extension link. You get a time-delayed confirma-
tion screen, as shown in Figure 3-5. Click OK, and the extension adds itself to your list and is
available when you restart your browser.

06_596500 ch03.qxd 6/30/05 2:41 PM Page 39

40 Part I — Basic Hacking

FIGURE 3-5: Firefox Extension Install prompt

Easy, right? But what do you do when it prompts you to download? The best thing to do is to
save the file to a common location such as your desktop. Then all you have to do from within
Firefox is open the file.

1. Select File ➪ Open File.

2. Navigate to your desktop or the directory you saved the file to.

3. Type *.xpi and press Enter in the File name: input box.

4. Select the XPI extension file you just downloaded and click Open.

At this point, Firefox displays the standard installation dialog. Alternatively, you can open the
Extension Manager and drag the extension file into that window to achieve the same results.

Another great drag-and-drop tip is that you can drag and drop multiple extension files to the
main browser window or Extensions Manager window to install more than one extension at
a time.

Keep in mind that drag-and-drop extension functionality is not available on all operating
systems.

Using MR Tech’s Local Install Extension
One thing that really bothered me with regards to the Extension and Theme Managers was the
inconsistency between Firefox and other products such as Thunderbird and, most recently,
NVU in providing an Install button in the manager window. So I hacked together MR Tech’s
Local Install (see Figure 3-6), whose roots started with the Install New Theme extension by
Bradley Chapman.

06_596500 ch03.qxd 6/30/05 2:41 PM Page 40

41Chapter 3 — Hacking Extensions

FIGURE 3-6: MR Tech’s Local Install extension installation

Originally, I wanted just to mirror for the Extension Manager the Install button functionality
that Bradley had created for the Theme Manager. Version 1.0 was quickly built and released.
Since then, File menu, shortcut keys, and international localizations have been added.

More features are planned for the future. The basic idea is that you can now easily choose local
copies of extensions and themes. For extensions, it automatically defaults to a *.xpi file type,
and for themes, it defaults to a *.jar file type, making it easier to distinguish those files from
others you might have saved in the same directory.

For more information or to download MR Tech’s Local Install, visit http://www.mrtech
.com/extensions/.

Where Did It Get Installed?
Firefox uses an XML-based file to store a listing of extensions and themes; the file is formatted
to Resource Description Framework (RDF) specifications. The Extensions.rdf file is located
in the extensions directory of your profile, as shown in Figure 3-7. The new standard in creat-
ing and installing an extension is to assign your extension or theme a unique 32-character
Globally Unique Identifier (GUID). GUIDs are generated using a combination of variables to
create a globally unique id. For example, the GUID for MR Tech’s Local Install extension is

06_596500 ch03.qxd 6/30/05 2:41 PM Page 41

42 Part I — Basic Hacking

{9669CC8F-B388-42FE-86F4-CB5E7F5A8BDC}. Now all you have to do is find the
directory corresponding to that GUID in the extensions directory to find the supporting files
for my extension.

To create a GUID for your own testing or development, visit http://www.hoskinson
.net/webservices/guidgeneratorclient.aspx.

FIGURE 3-7: Firefox’s extension directory

When you add a new extension or theme, a temporary copy is placed in the temp folder under
the extension directory. When you restart, the extension is installed or reinstalled in its
prospective directory.

Hacking Older Extensions
Hacking an extension, old or new, is relatively easy; all you really need is a decent compression
program that handles ZIP files and a decent text editor. Despite the file extension of .xpi, an
extension is really just a standard ZIP file. So you can easily open or extract the contents using
any common compression program.

06_596500 ch03.qxd 6/30/05 2:41 PM Page 42

43Chapter 3 — Hacking Extensions

Changing Supported Version Number
You might come across an extension that you believe will work well with the latest release of
Firefox but just has not been updated to include the 1.0 versioning in the install.rdf file embed-
ded within the XPI. That is when you whip out your compression tools. (My preference on
Windows systems is 7-Zip.) Using 7-Zip to update an extension’s supported Firefox version
numbers is a breeze; but first, let’s configure it properly to make it easier to use.

You can download 7-Zip at http://www.7-zip.org/.

To configure 7-Zip for easy access to all archives, just make sure you have Shell Integration
enabled by following these steps:

1. Open the 7-Zip Manager program.

2. Select Tools ➪ Options.

3. Click on the Plugins tab.

4. Click on the Options tab (see Figure 3-8).

5. Make sure that the Integrate 7-Zip to shell context menu is enabled.

FIGURE 3-8: 7-Zip Plugin options configuration window

Optionally, you can also have it as a Cascaded context menu so you don’t clutter up your right-
click menu with too many options.

At this point, all you have to do is find the extension you saved locally and choose Open
archive from the right-click menu. If you enabled the cascaded context menu option, Open
archive will be under a 7-Zip submenu. Figure 3-9 displays the contents of the extension.

06_596500 ch03.qxd 6/30/05 2:41 PM Page 43

44 Part I — Basic Hacking

FIGURE 3-9: 7-Zip File Manager window

Now you just have to select the install manifest or install.rdf file and either press the F4 func-
tion key or choose the File ➪ Edit submenu to load the file for editing. Once opened, look for
the maxVersion string, which should look similar to this:

<em:targetApplication> <!-- Firefox -->
<Description>

<em:id>{ec8030f7-c20a-464f-9b0e-13a3a9e97384}</em:id>
<em:minVersion>0.7</em:minVersion>
<em:maxVersion>0.9</em:maxVersion>

</Description>
</em:targetApplication>

Now you can change the maxVersion line value of 0.9 to 1.0, save the file, and exit your text
editor. The 7-Zip Manager detects that you have updated the install.rdf file and prompts you
to update the extension file with the change you just made. Confirming this dialog posts your
updated file into the XPI file, and now you are ready to install it.

The left and right tags that compose the maxVersion line are standard XML encapsulation
tags, where the em: prefix is the encapsulating namespace used to group elements and
attributes for the Extension Manager properties in the install manifest.

Modifying Code within an Extension
One of the beautiful things with having extensions packaged as standard Zip files is that you
can easily uncompress, modify, and repackage them to review the code or fix any lingering
issues you may have found. That said, let’s briefly look at the anatomy of an extension so that
you will know what you will see once you extract an extension file.

06_596500 ch03.qxd 6/30/05 2:41 PM Page 44

45Chapter 3 — Hacking Extensions

Internal Extension Structure
The basic structure of an extension, as shown in Figure 3-10, requires at a bare minimum for
1.0 support an install.rdf file. This file is the manifest detailing the information the Firefox
extension installation process needs to install your extension.

FIGURE 3-10: Extracted contents of the Local Install extension

The install.js and license.txt files are optional. The install.js file is required only if your exten-
sion needs to support Firefox versions prior to 0.9. Versions prior to 0.9 used the original
extension installation process, so install.js is no longer required to support newer versions of the
browser. The license.txt file is primarily there for informational purposes and is not used by the
extension; you may choose to omit or remove it.

Once you have extracted the main XPI file, you will have one additional file to extract: a JAR
file, which is located in the chrome directory. Once again, much like the XPI file, the JAR file
is a ZIP file. The JAR file contains the actual content and code for the extension and may con-
tain several subdirectories. Figure 3-11 shows the JAR file for the Local Install extension, as
well as the contents extracted with its subdirectories. Just as you opened the XPI file to view
the contents, you can extract the contents of the JAR file in Windows by right-clicking the
JAR file and selecting Extract to NAME\ (where NAME is the name of the JAR file). I find
extracting the contents to a subdirectory makes it easier for me, but you can also choose the
Extract Here option.

06_596500 ch03.qxd 6/30/05 2:41 PM Page 45

46 Part I — Basic Hacking

FIGURE 3-11: Extracted contents of the JAR file in the extension’s chrome directory

7-Zip is not the only compression tool for Windows that has viewing, editing, or extracting fea-
tures; however, it is a fast and free alternative.

The primary structure of an extension may consist of the following directories:

� content

� locale

� skin

While the exact role each of these directories plays is further covered in Chapters 16 and 17,
the directories are briefly covered here. As you can see from Figure 3-12, the content directory
is the primary location for the extension’s code, whether that is JavaScript, XUL, or other sup-
porting files.

The locale, skin, defaults, or components directories and content are supporting features to an
extension and may not exist in all extensions. The most common directories that you will see
are locale and skin, which are discussed here. The defaults and components directories are pri-
marily used for advanced extension programming and are covered in Chapter 17.

The locale directory exists with extensions that offer translations or locale-specific text. Firefox
checks to determine if there is a match between the local system’s locale and one found in
the install.rdf manifest file. If no match is found, it should default to en-US or the English
translation. Many extensions offer a multitude of translations, but this varies from extension to
extension.

06_596500 ch03.qxd 6/30/05 2:41 PM Page 46

47Chapter 3 — Hacking Extensions

FIGURE 3-12: File listing of the content directory

The skin directory exists if the extension is using any Cascading Style Sheets or images to alter
an existing Firefox window or to define the style of an extension-created window.

Basic Methods for Modifying Content
With an understanding of the basic structure of an extension, you can begin perusing the code
and making changes or fixing bugs. While Chapter 17 covers how to officially package an
extension and its contents, you can use one of the following two methods to make quick
changes to files within the XPI archive:

� You can use the File ➪ Edit features of tools such as 7-Zip, WinRar, or WinZip to edit
files within the XPI or JAR files. This is probably the easiest approach because most
compression tools detect changes to the edited file and prompt you to update the main
extension file. This is the same method you used in the previous section to edit the
Firefox maxVersion number in the install.rdf file.

� You can extract and edit the files into directories as you did through this section to view
the contents. Then you can drag the file(s) into the appropriate directory within your
compression tool. While most tools offer drag-and-drop functionality, some may not,
and you should revert to the previous method for quick edits.

The methods described in the following sections are basic and may be seem very elementary,
but they are the quickest way to update extensions when needed. More advanced methods are
covered in Chapter 17.

06_596500 ch03.qxd 6/30/05 2:41 PM Page 47

48 Part I — Basic Hacking

Hacking the Extension Manager
The Extension Manager is the hub for managing all of your installed extensions. This section
covers ways to enhance its functionality by documenting your installed extensions and themes,
changing the visual appearance of the window, or adding needed functionality. ListZilla and
Info Lister both provide an interface for you to document the extensions or themes you have
installed, each with great features. Slim Extension List and EMbuttons both modify the exten-
sion or themes manager and add functionality. Local Install provides additional local installa-
tion support.

Listing Your Extensions and Themes
After using and adding different extensions and themes to my daily arsenal of tools, I started to
get frustrated with a few things, such as tracking the extensions and themes I had installed,
making the extension list easier to read, and adding toolbar buttons for both extension and
theme managers. That’s where ListZilla, InfoLister, Slim Extension List, and EMButtons
come in handy. While ListZilla and InfoLister have similar features, some find InfoLister a lit-
tle more feature rich.

Using the ListZilla Extension
Once installed, ListZilla creates a ListZilla option in the Tools menu. Selecting the menu
allows you to save a list of your Extensions or Themes to the following formats:

� HTML

� Text

� vbCode

Each option prompts you for a file location and name and saves the corresponding file. Figure
3-13 shows an example of the HTML output generated by the Export Extension List option.

One nice feature that both the ListZilla and InfoLister extensions have is the ability to create
links to an extension’s homepage when choosing HTML for your output.

For more information or to download ListZilla, visit http://roachfiend.com/archives/
2005/03/03/listzilla/.

06_596500 ch03.qxd 6/30/05 2:41 PM Page 48

49Chapter 3 — Hacking Extensions

FIGURE 3-13: Sample HTML output using ListZilla

Using the InfoLister Extension
Much like ListZilla, the InfoLister extension allows you to save a list of extensions and themes,
but it also goes beyond this with features such as the following:

� Plugin information

� Current Firefox build version

� Autosave functionality

� Output format customization

� FTP capabilities

Figure 3-14 shows sample HTML output generated by InfoLister. Additionally, Figure 3-15
shows the Customize Output options available.

06_596500 ch03.qxd 6/30/05 2:41 PM Page 49

50 Part I — Basic Hacking

FIGURE 3-14: Sample HTML output using InfoLister

FIGURE 3-15: Customize Output options in InfoLister

06_596500 ch03.qxd 6/30/05 2:41 PM Page 50

51Chapter 3 — Hacking Extensions

For more information or to download InfoLister, visit http://mozilla.klimontovich
.ru/infolister/.

Hacking with the Slim Extension List Extension
This extension does two simple things: It decreases the amount of space each listing needs, and
it sorts the list alphabetically. In Figures 3-16 and 3-17, you see the before and after results of
using this extension.

FIGURE 3-16: Before installing Slim Extension List

For more information or to download Slim Extension List, visit http://v2studio.com/
k/moz/.

Hacking with the EMbuttons Extension
EMButtons brings with it a mixed bag of options. Its key feature is the ability to add toolbar
icons for the Extension or Theme Manager windows, but it also has some nice hidden features
that are accessible via the Options window. The Options window, as shown in Figure 3-18, has
preferences to sort the Extension or Theme Manager entries. It additionally has an enhance-
ment for the Extension Manager to increase the response time in showing the listed extensions
and one to collapse the listing even tighter than Slim Extension List does.

06_596500 ch03.qxd 6/30/05 2:41 PM Page 51

52 Part I — Basic Hacking

FIGURE 3-17: After installing Slim Extension List

FIGURE 3-18: EMbuttons options menu

For more information or to download EMButtons, visit http://moonwolf.mozdev.org/.

06_596500 ch03.qxd 6/30/05 2:41 PM Page 52

53Chapter 3 — Hacking Extensions

Recommended Extensions by Category
Table 3-1 provides a list of my recommended extensions by category. These are listed in the
forums on my site at http://www.mrtech.com/, as well as Mozilla Updates and several
other major Mozilla extension sites.

Table 3-1: Recommended Extensions

Category Description

General Enhancements

AdBlock Blocks virtually (99.9%) all banner ads

Alt-Text for Link Shows links’ destination URL in tooltips

CuteMenus Adds icons to most menu items

Grease Monkey Allows you to add or modify web page behavior

Launchy Opens links/mailtos with external apps

Linkification Highlights and linkifies plain text link

Linky Opens/downloads all or selected links, and so on

MR Tech’s Local Install Theme/extension local install options

Popup ALT Shows legacy image alt tag tooltips

Reload Every Schedules reloading of a web page

RIP Helps remove unwanted content from a web page

Sage Lightweight RSS and ATOM feed aggregator

ScrapBook Saves web pages and easily manages notes

Slim Extension List Makes items in extension list shorter

TargetAlert Tries to append an icon to link

URLid Creates URL-specific style customizations

WebMailCompose Makes mailto: links load your webmail

Download Extensions

Disable Targets For Downloads Disables download targets by extension

Download Manager Tweak Downloads manager options

Download Sort Download files and sort them into specific directories

Download Statusbar Shows download info on the status bar

FlashGot Customize support for download with external applications

Continued

06_596500 ch03.qxd 6/30/05 2:41 PM Page 53

54 Part I — Basic Hacking

Table 3-1 (continued)

Firefox Hacking Extensions

Bookmark Backup Backs up bookmarks and other core files

ChromEdit Edits your Mozilla configuration files

Configuration Mania Allows you to configure hidden preferences

Extension Developer Extension Development Tool

Extension Uninstaller Uninstalls older extensions

Preferential Accessible GUI tree for preferences

Information Extensions

Listzilla Creates list of current themes and extensions

InfoLister Creates list of current themes and extensions

Status Bar Extensions

Download Statusbar Shows download info on the status bar

ForecastFox Highly customizable weather forecasts

FoxyTunes Adds Audio Playback options to status bar

Gmail Notifier Allows checking for new Gmail messages

Statusbar Clock Adds the date/time to your status bar

Tab-Browsing Extensions

Single Window Basic tab-browsing options

Tab Mix Great compilation of tab browser tweaks

Tabbrowser Extensions Adds tons of tab-browsing options/tweaks

Tabbrowser Preferences Adds GUI options for hidden tab browser

undoclosetab Allows you to open recently closed tabs

Toolbar Extensions

EMbuttons Adds themes/extensions buttons and options

Firefox UltraBar Search engine and blog toolbar

GoogleBar Adds a Google toolbar to the browser

Toolbar Enhancements Adds useful toolbar buttons and options

Yahoo! Companion Adds Yahoo! Companion toolbar

06_596500 ch03.qxd 6/30/05 2:41 PM Page 54

55Chapter 3 — Hacking Extensions

Web Programmer Extensions

BBCode Context menu access to BBCODE/HTML code

EditCSS On-the-fly editing/testing of page style

Html Validator Checks HTML pages for correctness, based on Tidy.

Live Http Headers Adds HTTP header to page info tab

Make Link Builds html or bbcode links in clipboard

Mime Type Editor Mozilla’s Mime Type helper application

Named Anchors Shows Named Anchors on Page Info window

ScrapBook Save and manage web sites and notes easily

User Agent Switcher Changes agent string sent to web sites

View Cookies New cookies tab in the Page Info dialog

Web Developer Adds many useful Web developer features

Summary
Personally, I think that extensions are the most significant enhancement to web browsing that
has come out in a very long time. Dedicating an entire chapter to understanding how Firefox
handles extensions and how to hack them was easy for me to envision. Add to that the cus-
tomization options available to the extension manager and a nice list of extensions to wrap
things up, and you have a chapter chock full of goodies.

06_596500 ch03.qxd 6/30/05 2:41 PM Page 55

06_596500 ch03.qxd 6/30/05 2:41 PM Page 56

Hacking Themes
and Icons

One of the great features of Firefox is its ability to dynamically ren-
der the interface, or chrome, using Cascading Style Sheets to over-
lay the screen’s style. The browser’s interface is created using

Extensible User-Interface Language (XUL), which is an extremely powerful
and robust markup language that allows you to create all the elements of a
screen or dialog using standards such as XML, JavaScript, CSS, and internal
calls.

Themes are small files installed in Firefox that modify its interface without
affecting any functionality. Themes do this by referencing an XUL window
and then the individual object names defined in the XUL file to assign or
change the layout, images, or presentation style associated with objects
defined in the XUL window. Each object (button, label, and so on) has an
id assigned to it and is defined in the file. For the main browser window,
this XUL file is called browse.xul and is located deep in the browser.jar in
the chrome subdirectory where you installed Firefox.

As in the previous chapter, this chapter tackles issues that may arise when
installing themes. Like extensions, themes have undergone similar transfor-
mations because of changes in the way later versions of Firefox install them.
These changes, coupled with changes to graphical interface elements and
styles throughout the development cycle prior to the 1.0 release, may cause
themes to lack proper support for their final released builds. This chapter
demonstrates some basic techniques to modify the interface, provides assis-
tance in rebuilding or recovering from older themes, and shows you other
techniques to hack the interface.

For more information on Cascading Style Sheet standards and
implementation documentation, visit http://www.w3.org/
Style/CSS/.

˛ Hacking the
interface

˛ Hacking themes

˛ Hacking web site
icons

˛ Recommended
themes

chapter

in this chapter

by Mel Reyes

07_596500 ch04.qxd 6/30/05 3:26 PM Page 57

58 Part I — Basic Hacking

Changing the Window’s Background Color
Although changing the background color of the Firefox browser window seems trivial, it does
allow you to dive a little deeper into some of the defined elements of the main browser window
while providing another example of how to use the userChrome.css file, Cascading Style
Sheets, and some creativity. This example highlights the specific ids and names assigned to
the browser elements as they are defined in the main browser.xul. Starting from a clean slate,
Figure 4-1 provides a reference for the original color scheme for a standard Windows
installation.

FIGURE 4-1: Standard window showing window, menu, and tabs

The next step in this process is to begin identifying the XUL id of each of the screen compo-
nents. Again, the focus of these early exercises is not to fully elaborate on how to get the ids,
but how to hack them. Later, in Chapters 16–18, you have the chance to dive through the
whole object model for Firefox. The initial focus is on the background color for the menu bar,
toolbar, and the status bar, which have ids of menubar, toolbar, and statusbarpanel,
respectively.

07_596500 ch04.qxd 6/30/05 3:26 PM Page 58

59Chapter 4 — Hacking Themes and Icons

Now you need to focus on creating a range of colors that you can access. Luckily, you can refer-
ence standards at web sites such as http://www.w3.org/TR/2001/WD-css3-color-
20010305#colorunits for color selection and support for CSS syntax. You want a standard
Red-Green-Blue (RGB) representation of the color of choice, which you can refer to by a
name such as silver, in the hexadecimal format, #C0C0C0, or by allowing the browser to extract
the RGB values using the following syntax: rgb(192,192,192). Once you have determined
what color you want to use, you can pull together the code needed to assign the background
color. For this example, I wanted to go a little lighter than silver, so I chose #E0E0E0.

Comments in Cascading Style Sheets files are blocked out with slashes and asterisks, like this: /*
MY NOTE HERE */. Also, if there is an existing userChrome.css with a @namespace line, as in
the following example, all plain text has to be pasted below this line.

/* Change Main Window Colors */

menubar, toolbar, statusbarpanel {
-moz-appearance: none !important;
background-color: #E0E0E0 !important;

}

When we break out the syntax, you see the basic structure defining the elements menubar,
toolbar, and statusbarpanel and then associating a style using CSS code. Standard CSS
formatting calls for curly braces to delineate the beginning and end of formatting.

The first line within the brackets has a property of -moz-appearance with a format of
none followed by a key instruction of !important. This line tells the browser that the
default style for objects with ids of menubar, toolbar, and statusbarpanel should be
ignored and that this style should be used. This style change works because of the CSS instruc-
tion of !important used on each line. As defined by CSS standards, the original style defini-
tion takes precedence over a user-defined style of the same name. With the !important style
instruction in place, Firefox implements the user-defined style instead of any previously
defined style with the same name. I like to do this to clear the formatting. Doing so ensures
that I have a clean slate, even if I am using a custom theme that might otherwise alter the
appearance.

To apply these changes, you can either edit the userChrome.css manually from your profile\
chrome directory or use an extension such as ChromEdit to easily access this file and paste the
lines in. Once you have updated and saved the userChrome.css, you need to restart the browser
for the changes to take effect. Figure 4-2 displays the updated browser window after the back-
ground style changes have been applied.

One of the first things that you might notice after the initial joy of updating colors is that not
all browser window elements are updated to reflect the color changes. Because we defined only
the menu bar, toolbar, and status bar panel in the userChrome.css for changes, several other
elements, such as menus, tabs, dialogs, and so on, are not updated, as shown in Figure 4-3.

07_596500 ch04.qxd 6/30/05 3:26 PM Page 59

60 Part I — Basic Hacking

FIGURE 4-2: Main window updated with new color scheme

FIGURE 4-3: Browser window with mismatched color schemes

07_596500 ch04.qxd 6/30/05 3:26 PM Page 60

61Chapter 4 — Hacking Themes and Icons

As you can see, a few more objects and ids need to be added for full colorization. For simplic-
ity’s sake, these are given to you here. Now we can add menus, popups, dialog boxes, tabs, side-
bars, and other ids to cover the full range of elements that need updating. Again, just edit the
userChrome.css file by replacing the previous snippet you pasted in with the following one and
restarting Firefox:

/* Change Main Window Colors II: adding tab area, toolbar menus,
right-click menus and other screen elements */

menus, menubar, toolbar, statusbarpanel,
.tabbrowser-tabs, tab:not([selected=”true”]),
menupopup, popup, dialog, toolbox,
window, page, vbox, button, caption,
sidebarheader, prefwindow {

-moz-appearance: none !important;
background-color: #E0E0E0 !important;

}

One key entry that should stand out in this list is tab:not([selected=”true”]). This
entry is a variation on a plain tab element; it causes the tab that is selected to stand out for
easier visibility. Without this entry, it would be difficult to determine which tab is active. This
entry causes the active tab, the “Mozilla Firefox Start Page” tab, to retain your system default
colors while the background tabs have the color change applied, as shown in Figure 4-4.

FIGURE 4-4: Main window after updating menus, tab bar, and so on

07_596500 ch04.qxd 6/30/05 3:26 PM Page 61

62 Part I — Basic Hacking

You can play with the color, font, and font size of the active tab by adding the following before
or after the snippet you just added:

/* Change visual appearance of selected tab */

tab[selected=”true”] {
-moz-appearance: none !important;
background-color: #F0F0F0 !important;
font-family: Arial, Helvetica, sans-serif !important;
font-size: 110% !important;
font-weight: bold !important;

}

To vary the background tab appearance even more, you can change the opacity, font, and font
size with the following code. Remember that most text background style changes that you can
make using Cascading Style Sheets can also be implemented to browser window elements. For
best results and easier reading, add this code above or below the two example CSS definitions
that we just covered:

/* Change visual appearance of background tab(s) */

tab:not([selected=”true”]) {
-moz-appearance: none !important;
-moz-opacity: 0.6 !important;
font-family: Arial, Helvetica, sans-serif !important;
font-size: 90% !important;

}

These changes are illustrated in Figure 4-5. Notice that distinguishing between active and
background tabs is much easier.

You may have to add or omit some of the style entries in the preceding examples, depending on
the theme you are using or the extensions you have installed because of the changes that they
might apply.

Using a Tiled Image for the Window’s Background
While the following basic example is readily available on the Mozilla.org site (specifically from
the Mozilla Firefox FAQ page at http://www.mozilla.org/support/firefox/
tips), this section shows you how to extend it to your liking and to get it to work for you.

/* Use a background image for the toolbars:
(Substitute your image file for background.gif) */

menubar, toolbox, toolbar, .tabbrowser-tabs {
background-image: url(“background.gif”) !important;
background-color: none !important;
}

The beauty of this hack is that it shares the same screen elements as the previous section, where
you modified the background colors, so all you have to do is mock up the same ids and screen
elements to your liking.

07_596500 ch04.qxd 6/30/05 3:26 PM Page 62

63Chapter 4 — Hacking Themes and Icons

FIGURE 4-5: Main window with tab after enhancing the tab appearance

Before hacking the style and adding screen elements, though, you need to know how to refer-
ence the image so that Firefox knows where to read it. The background-image CSS prop-
erty uses a Uniform Resource Locator (URL) to find the file. While typically one would relate
a URL with a web site, this is merely a way of specifying the path to the file.

The easiest way to have the userChrome.css file find the image is to save it to the same direc-
tory as the userChrome.css, which is under your profile’s chrome directory. You can, however,
hardcode the full path to the file if you want to. Additionally, any image or background that
you find can be used for the window background, but you may want to avoid images that are
not specifically meant to be tiled, as they may not be visually appealing.

To save an image from a web page, just right-click on the page, select View Background Image,
and then save the image locally. You can also search the Internet for “web page background
images,” and tons of sites come up.

Using the basic example from the Firefox FAQ page mentioned earlier, we will fill in some of
the missing pieces. In reality, the example is not missing anything; it just makes for a better
experience if not just the primary elements on the page have a background image. The follow-
ing example is a mirror copy of the background colors example with the addition of style
changes from the previous Firefox window color background example. Figure 4-6 displays a
beautiful lavender marble background that is applied to the main browser window.

07_596500 ch04.qxd 6/30/05 3:26 PM Page 63

64 Part I — Basic Hacking

/* Using a Tiled Image for Window’s Background and more */

menus, menubar, toolbar, statusbarpanel,
.tabbrowser-tabs, tab:not([selected=”true”]),
menupopup, popup, dialog, toolbox,
window, page, vbox, caption,
sidebarheader, prefwindow {

-moz-appearance: none !important;
background-image: url(“lavender.jpg”) !important;
background-color: none !important;

}

FIGURE 4-6: Main window with background image

As in the background color examples, you need to enter and save this code into your
userChrome.css file and restart Firefox. For this example, I pulled an image from a background-
testing page that I created back in the Netscape 2.0 era: http://www.mrtech.com/
backgrounds/. Specifically, I picked image number 14 or 14.jpg and saved it in my profile’s
chrome directory as lavender.jpg. You can use this same page to test how different font colors
display using a unique array of background image colors and textures.

07_596500 ch04.qxd 6/30/05 3:26 PM Page 64

65Chapter 4 — Hacking Themes and Icons

One cool trick you can do is break up the elements and give them different background images.

Reducing Space around Toolbar Icons
One of my pet peeves with many themes is the amount of space padding around toolbar icons
when using the text label on the toolbar. Most theme layouts are geared toward using the stan-
dard icon size without text, but I prefer using small icons with text descriptions—and most
themes, including the default theme, do not have optimal spacing in this mode. Whether you
have selected Icons and Text or Text with or without Use Small Icon, Firefox adds just a bit too
much spacing, which bloats the toolbar.

To customize your toolbar, right-click on the toolbar and choose Customize from the popup
menu.

Once again, to apply this example, enter the following in your userChrome.css, save, and restart
Firefox:

/* Reducing Space Around Toolbar Icons */

.toolbarbutton-1,
toolbar[mode=”text”] .toolbarbutton-text {
padding: 3px 3px 0px 3px !important;
margin: 0px 0px 0px 0px !important;
min-width: 0px !important;
display: -moz-box;

}

.toolbarbutton-menubutton-stack,

.toolbarbutton-menubutton-button,

.toolbarbutton-menubutton-stack:hover,

.toolbarbutton-menubutton-button:hover,

.toolbarbutton-menubutton-stack:hover:active,

.toolbarbutton-menubutton-button:hover:active {
padding: 0px 0px 0px 0px !important;
margin: 0px 0px 0px 0px !important;
min-width: 0px !important;
display: -moz-box;

}

A larger space gain is realized when you have toolbar text labels enabled.

Figure 4-7 displays the default theme with toolbar text enabled. Figure 4-8 shows the effects of
applying the toolbar style changes with small icons.

07_596500 ch04.qxd 6/30/05 3:26 PM Page 65

66 Part I — Basic Hacking

FIGURE 4-7: Main window with small icons and toolbar text enabled

FIGURE 4-8: Main window with toolbar-spacing hack applied

07_596500 ch04.qxd 6/30/05 3:26 PM Page 66

67Chapter 4 — Hacking Themes and Icons

To achieve the tightest fit, you can override the padding, margin, and minimum width for the
toolbar buttons by setting most to zero and tweaking some of the padding. To do this, you have
to change the properties for all toolbar button types and any associated actions such as hover
and active. The toolbar[mode=”text”] .toolbarbutton-text line handles spac-
ing when in text-only mode.

Hacking Themes
This section dives into what you will need to know to accomplish the following:

� Enable dynamic theme switching

� Install older unsupported themes

� Install extensions locally

� Extend some popular extensions

� Clean up web icons or favicons

Reenabling Dynamic Theme Switching
One nice feature that was disabled during one of the late pre-1.0 builds was the ability to
dynamically switch the browser’s theme without restarting. The decision to disable this by
default was made to allow more time to resolve some chrome refresh switching issues.
Fortunately, there is a hidden preference to reenable this feature, if you dare. Why such an omi-
nous tone? Well, historically, dynamic theme switching support has been very spotty; in the
final Firefox 1.0 release, it was disabled as a default and will be revisited for a future release.
Depending on the theme installed, userChrome.css customizations, and other considerations,
enabling this feature may cause temporary toolbar, menu, or page misalignments, all of which
are quickly resolved by closing and relaunching Firefox.

Because it is a hidden preference, my approach is to add the modified preference to the user.js
file to make it easier to manage any additional hacks that I want. This approach also helps with
remembering hacks long after you have applied them.

The user.js file is in your profile directory.

Add the following code to the user.js file. Once you have saved the entry, you must restart
Firefox, and dynamic theme switching will be enabled. You may experience some browser dis-
play issues when switching, but mainstream and updated themes generally seem to handle this
feature well.

// 1.0 Preview disables dynamic theme switching,
// this re-enables dynamic theme switching.
user_pref(“extensions.dss.enabled”, true);

07_596500 ch04.qxd 6/30/05 3:26 PM Page 67

68 Part I — Basic Hacking

In JavaScript or .JS files, double forward slashes (//) denote a comment.

Additionally, you can edit the extensions.dss.enabled preference using the about:config
utility (just type about:config in the location bar).

Hacking Older Themes
Themes suffer from the same versioning issue that plagues extensions when it comes to sup-
porting older versions. This is not an issue per se; it’s simply something that you might have to
address when working with older themes and extensions. These controls were put in place to
assure proper support in the event that the underlying core code was changed for any reason;
they make the browser as stable as possible relative to third-party extension or theme code.

Firefox themes are images packaged with code and bundled into a JAR file. JAR files are com-
pressed files that use ZLIB or the standard ZIP file compression format to store files together.
To begin hacking them, you must download the JAR file locally. Most sites will give you an
Install and/or an alternate download link; in either case, you can try right-clicking and saving
the JAR file locally.

Embedded in the root of the theme’s JAR file is the install.rdf file, which holds installation
information and, more important, the minimum and maximum supported browser versions.
Using any ZIP-supported compression program, you can open or extract the contents of the
theme JAR file. The entries you are looking for are usually formatted as follows:

<em:minVersion>0.8</em:minVersion>
<em:maxVersion>0.9</em:maxVersion>

This tells Firefox that the current theme supports earlier versions of Firefox only, versions 0.8
through 0.9, which are pre-1.0 release builds. Similarly, you may experience this issue with
future releases of Firefox 1.1, 1.2, 2.0, and so on, and may need to hack a theme to support
them accordingly while you wait for the theme developer to come out with an update.

As discussed in Chapter 3, any ZIP-supported tool can be used to edit a theme. Running
under Windows, 7-Zip is my tool of choice. Figure 4-9 shows the contents of the ever-so-
beautiful Phoenity theme. From here, you can easily edit the install.rdf file, and after you close
your editor, 7-Zip prompts you to update the JAR file.

To edit the install.rdf, follow these steps:

1. Highlight the install.rdf file in the main 7-Zip window.

2. Choose File ➪ Edit or press the F4 key.

3. Apply your changes and close your editor.

4. Confirm updating of the theme jar file.

07_596500 ch04.qxd 6/30/05 3:26 PM Page 68

69Chapter 4 — Hacking Themes and Icons

FIGURE 4-9: Phoenity theme contents viewed in 7-Zip

At this point, you are ready to install the theme and have Firefox properly recognize it as com-
patible with your version. The only possible drawback to hacking a theme is when it does not
support all of the newly added screen elements. This happens when a new feature, toolbar, or
screen has been added to Firefox, and third-party themes do not have associated graphics. The
most common example of this is the Mozilla Update graphic indicator that shows up next to
the browser’s throbber on the right side of the Firefox window. Because this feature was intro-
duced later in the pre–1.0 release era, some themes do not contain the images needed to display
properly. Minor inconsistencies like these are the things that you may or may not be able to live
with when hacking different themes.

Recovering from Disabled Older Themes
Much like installing extensions, installing a newer version of Firefox may disable some of your
themes. This is a built-in feature to protect you from unsupported older code and to assure a
clean, stable environment.

Unlike extensions, there are really no tools or hacking extensions to recover from the truly old
themes easily. You can try hacking the theme’s JAR file, as described in the previous section, or
checking the Mozilla Update site or the theme developer’s web site.

07_596500 ch04.qxd 6/30/05 3:26 PM Page 69

70 Part I — Basic Hacking

If you want to keep your existing profile and would like to clean up the directory and manually
remove any lingering theme or extension files, just hop on over to the “Starting Over without
Losing All Your Settings” section in Chapter 3.

In my experience, doing this cleanup every now and then yields the best experience without
having to completely rebuild features such as password prompts, hacks, and so on.

Because of several changes made from earlier builds, it is highly recommended that you create a
new profile if you had previously tested development versions of Firefox.

Why Won’t Some Themes Install?
Have you ever tried installing a theme from a site only to find that the theme will not install as
promised? Were you able to figure out how to install it? This section covers why some sites do
not install properly and how to get around these limitations.

Much like many extensions, many themes suffer from poor installation support from web
pages. To alleviate this issue, use the standard Mozilla JavaScript functionality to prompt
Firefox to download the file as an extension. Developers should have set this up for you, but
because some do not, you may end up downloading to your hard drive a JAR file that you may
not know what to do with. Read on to learn how to install a theme remotely or from a site that
does prompt you, but, more important, how to install a theme locally from your hard drive.
Where and how a theme is saved to your profile are also covered.

If you want to add JavaScript theme installation support to links that you develop, you can use
the following code:

<a href=”theme.jar” onClick = “if (typeof(InstallTrigger) !=
‘undefined’) {InstallTrigger.installChrome(InstallTrigger.SKIN,
‘theme.jar’, ‘Theme Installation’); return false;}”
type=”application/x-zip-compressed”>Install Theme Here

The code above gives support for left-click installation as well as right-click and Save Link As
support.

Installing Remotely versus Locally
Installing remotely is virtually a no-brainer, thanks to the beauty of Firefox. If everything is as
it should be, you simply click on the install or theme link, which produces a confirmation
screen, as shown in Figure 4-10. Click OK, and the theme is added to your list and is available
for use immediately.

FIGURE 4-10: Firefox theme install prompt

07_596500 ch04.qxd 6/30/05 3:26 PM Page 70

71Chapter 4 — Hacking Themes and Icons

If you enabled the Dynamic Theme Switching hack described earlier in this chapter, you can
switch to the new theme without having to restart.

Easy, right? But what do you do when it prompts you to download? The best thing to do is
save the file to a common location such as your desktop. Then all you have to do from within
Firefox is open the file. To open the file, follow these steps:

1. Select File ➪ Open File.

2. Navigate to your desktop or the directory you saved the file to.

3. Select the JAR theme file you just downloaded and click Open.

Firefox displays the standard confirmation prompt. You are now set to install extensions, no
matter how a site delivers them to you.

Another way to open downloaded JAR files is to open the Theme Manager and drag the JAR
file into its window.

Using the Local Install Extension
On thing that really bothered me with regards to the Extension and Theme Managers was the
inconsistency between Firefox and other products such as Thunderbird and, most recently,
NVU in providing an Install button in the manager window. So basically, I hacked together
MR Tech’s Local Install, shown in Figure 4-11, which has its roots in the “Install New Theme”
extension by Bradley Chapman.

FIGURE 4-11: MR Tech’s Firefox Local Install theme installation

07_596500 ch04.qxd 6/30/05 3:26 PM Page 71

72 Part I — Basic Hacking

Originally, I just wanted to mirror for the Extension Manager the Install button functionality
that Bradley had created for the Theme Manager. Version 1.0 was quickly built and released.
Since then, File menu, shortcut keys, and international localizations have been added.

The basic idea is that you can now choose how you can install local copies of extensions and
themes. For extensions, it automatically defaults to an *.xpi file type, and for themes, it defaults
to a *.jar file type, making it easier to distinguish those files from others you might have saved
in the same directory.

You can download the Local Install extension at http://www.mrtech.com/extensions/.

Hacking via userChrome.css
Earlier in this chapter we introduced the manual steps for creating your own style sheets to
change the appearance of the main browser windows and supporting screens. This section dives
into how to use customizations already packaged with some very popular themes.

Several themes have subskins, style sheet modifications that are wrapped up into a CSS file,
which is then bundled within the theme’s JAR file. Doing this makes certain features optional
and allows the themes themselves to be hacked from the userChrome.css.

A generic example of a userChrome.css entry that uses a subskin looks like this:

@import url(“chrome://global/skin/subskin/round.css”);

This tells the browser to look for the round.css file in the registry theme’s chrome path of
://global/skin/subskin/.

If you switch themes and no round.css file is found, the browser continues without failure.
Remember that in your userChrome.css file, all @import lines for subskins or other features
need to be put above the @namespace line, if it exists.

You have to check each individual theme to see if it has subskins and determine the exact path-
and filenames needed to take advantage of the modifications. The following sections cover
some of the popular themes and some of the available hacks.

Hacking Aaron Spuler’s Themes
Aaron Spuler’s collection of themes is by far my most recommended and best-loved collection
of themes under one roof. The style and consistency within each theme is something most
users will appreciate. That coupled with timely updates makes for a great set of themes to adopt
as your primary set.

Themes featured on his site include the following:

� Apollo

� Atlas

� Blue

� iCandy Junior

� Mars

07_596500 ch04.qxd 6/30/05 3:26 PM Page 72

73Chapter 4 — Hacking Themes and Icons

� Neptune

� Playground

� Pluto

� Rain

� Smoke

Two of the several hacks that are available with most of these themes are brushed metal back-
ground and Safari-style tabs, as shown in Figure 4-12.

FIGURE 4-12: Aaron Spuler’s theme hacks

To apply the brushed metal background hack shown in Figure 4-13, just add the following line
to your userChrome.css, save, and restart Firefox:

@import url(“chrome://global/skin/subskin/brushed.css”);

To apply the Safari-style tabs, add the following line:

@import url(“chrome://global/skin/subskin/safaritabs.css”);

To download or install any of Aaron’s themes, visit http://www.spuler.us/.

07_596500 ch04.qxd 6/30/05 3:26 PM Page 73

74 Part I — Basic Hacking

FIGURE 4-13: Aaron Spuler’s Atlas theme with the brushed background subskin applied

Hacking the Mostly Crystal Theme
Another great theme that can be hacked with subskins is Mostly Crystal. Mostly Crystal is
based on Crystal SVG (for Linux) icons created by Everaldo (http://www.everaldo.
com). Several nice features of Mostly Crystal subskins allow for rounded corners, toolbar
tweaks, and using menu icons, as shown in Figure 4-14.

Here are just some of the great hacks you can apply that are specific to the Mostly Crystal
theme, as shown in Figure 4-15:

/* Use SMALL throbber image regardless of toolbar size. */
@import url(“chrome://global/skin/subskin/throbber-sm.css”);

/* Change the Plain Dropmarkers for address bar and menulists to
images. */
@import url(“chrome://global/skin/subskin/dropmarker.css”);

/* Show icons for menuitems (English only). */
@import url(“chrome://global/skin/subskin/menuitems.css”);

/* Use stylized address and search bars. */
@import url(“chrome://global/skin/subskin/rounded.css”);

07_596500 ch04.qxd 6/30/05 3:26 PM Page 74

75Chapter 4 — Hacking Themes and Icons

FIGURE 4-14: Mostly Crystal subskins samples

FIGURE 4-15: Mostly Crystal with subskin hacks applied

07_596500 ch04.qxd 6/30/05 3:26 PM Page 75

76 Part I — Basic Hacking

To download or install the Mostly Crystal theme, visit http://www.tom-cat.com/
mozilla/ firefox.html.

Hacking the Phoenity Theme
Phoenity has become my theme of choice for several reasons, but mostly because of its small,
simple icons. Besides its support for extensions with icon functionality, it boasts support for
several other applications and has its own Firefox subskins.

These are just some of the multitude of great options that you have with regards to being able
to hack the Phoenity skin, as shown in Figure 4-16.

Use this snippet to apply Phoenity icons to the menus:

@import url(“chrome://browser/skin/subskins/cutermenus.css”);

To update the icons used by buttons, add this to the userChrome.css:

@import url(“chrome://browser/skin/subskins/cutebuttons.css”);

For smooth, rounded corners around the location and search bars, use this line:

@import url(“chrome://browser/skin/subskins/roundedbars.css”);

To download or install the Phoenity theme, visit http://phoenity.com/firefox.html.

FIGURE 4-16: Phoenity theme with subskin hacks applied

07_596500 ch04.qxd 6/30/05 3:26 PM Page 76

77Chapter 4 — Hacking Themes and Icons

Hacking Website Icons
A web site icon or favicon is a 16 × 16 pixel icon that is viewable on the location bar of most
browsers; Firefox also has the capability of displaying this icon as the bookmark’s icon. This
section covers how to make sure that you have favicon support enabled; how to remove it man-
ually; and, briefly, how to use the Delete Icons extensions.

Enabling Icons for Bookmarks and Websites
By default, Firefox tries to load a site’s favicon to display it on the location bar and as the book-
mark’s icon. The standard favicon format is an ICO or icon file, but Firefox also supports GIF,
JPEG, PNG, MNG, XBM, and BMP formatted icons. The default file that Firefox looks for,
if it is not specified in the web page, is favicon.ico on the root of the web server the page is
being loaded from.

While the default display of icons is 16 × 16 pixels, Firefox resizes icons to display properly in
the location bar and bookmarks. Additionally, the maximum size for icons to be saved with
bookmarks is 16K.

Some tweaking extensions allow you to enable or disable the loading of favicons by modifying
the following preferences listed. My preference is to have both entries in my user.js file to make
sure they are always set to my preferred setting of true.

user_pref(“browser.chrome.favicons”, true);
user_pref(“browser.chrome.site_icons”, true);

Sites can specify the name and the location for their favicon file with HTML entries such as
the following:

<link href=”favicon.ico” rel=”SHORTCUT ICON”>
<link rel=”icon” href=”favicon.ico” type=”image/x-icon”>
<link rel=”shortcut icon” href=”favicon.ico” type=”image/x-icon”>

In Firefox, favicon.ico can be replaced with any GIF, JPEG, PNG, MNG, XBM, or BMP formatted
icon (for example, favicon.gif and so on).

For a web service to create favicons from your own pictures, visit http://www.html-kit
.com/favicon/.

Removing Favicons Manually
While this task seems trivial, it does involve some digging into the bookmarks.html file. This
file is formatted as a standard HTML file with specific syntax to allow Firefox to parse it prop-
erly. This file is loaded once on startup and saved when the browser shuts down. Special atten-
tion should be made to close all Firefox windows before editing it, as all changes will be lost if

07_596500 ch04.qxd 6/30/05 3:26 PM Page 77

78 Part I — Basic Hacking

Firefox is left open. You can use this to your advantage if sites have malformed or corrupt favi-
cons, or if the bookmark file becomes corrupt. Additionally, if sites update their favicon, the
favicon will not get updated in the bookmarks.html file.

The bookmarks.html file is located in the root of your profile directory and should be backed up
before editing.

The bookmark file uses a standard HTML link to store the information for each bookmark
with special properties, as illustrated in the following:

<A HREF=”http://www.spreadfirefox.com/” LAST_CHARSET=”UTF-8”
ID=”rdf:#$4wPhC3”>

Additional properties that are stored within the link tag, if available, include:

� LAST_VISIT

� LAST_MODIFIED

� SHORTCUTURL

� ICON or favicon

The ICON property holds a base64 or text equivalent of the binary icon file that is downloaded
from the site. Because of this conversion, the ICON property’s value is very long. A bookmark
that contains an icon image will look similar to the following link:

<A HREF=”http://www.mozilla.org/products/firefox/central.html”
ICON=”” LAST_CHARSET=”ISO-8859-1”
ID=”rdf:#$GvPhC3”>

For the sake of keeping the preceding example short, 778 characters were removed where you
see SNIPPED in the ICON property of the link.

To remove the ICON or favicon, just follow these steps:

1. Close all Firefox windows.

2. Make a backup of bookmarks.html.

3. Load the bookmark file from your profile directory into any text editor, preferably one
with HTML syntax highlighted to make it easier to read.

4. Page through or do a search for the offending web address.

5. Scroll over to the ICON property for that site and remove all values within the quotes for
the ICON property, including the ICON tag.

07_596500 ch04.qxd 6/30/05 3:26 PM Page 78

79Chapter 4 — Hacking Themes and Icons

The resulting tag should look like this:

<A HREF=”http://www.mozilla.org/products/firefox/central.html”
LAST_CHARSET=”ISO-8859-1” ID=”rdf:#$GvPhC3”>

The next time you visit that link in your bookmarks, the favicon will be fetched again and
saved to your bookmarks.

Removing Icons with the Delete Icons Extension
If you want to facilitate removing bookmark icons, this is the extension you want to try. This
extension adds a Delete Icon property to the right-click context menu for bookmarks and a
Delete Icons entry to the Tools menu. The bookmark option removes just the individual icon
that was right-clicked; the Tools menu option can remove all icons and allow you to start over.
As a proponent of housecleaning, I like to do a full sweep every now and then, and this exten-
sion makes it very easy.

To get Delete Icons, visit http://www.gozer.org/mozilla/extensions/.

Recommended Themes
I use several criteria used to make theme recommendations, including frequency of updates,
extendibility, and version compatibility. Keeping themes updated is critical, considering the
multitude of options as well as updates that are made to the underlying rendering code. The
following extensions have historically been very good in maintaining compatibility and provid-
ing extended features such as subskins and support for popular extensions:

� Atlas: http://www.spuler.us/atlas/

� Doodle Plastik and Doodle Classic: http://home.student.uu.se/dana3949/
doodle/

� iCandy Junior: http://www.spuler.us/icandyjr/

� Lila: http://www.deviantart.com/deviation/12834861/

� Mostly Crystal: http://www.tom-cat.com/mozilla/

� Noia 2.0 Lite: http://www.deviantart.com/deviation/5706856/

� Noia 2.0 eXtreme: http://www.deviantart.com/deviation/12834861/

� Phoenity: http://www.phoenity.com/firefox.html

� Playground: http://www.spuler.us/playground/

� Pluto: http://www.spuler.us/pluto/

� Qute: http://quadrone.org/graphics/

� Toy Factory: http://www.projectit.com/freestuff.html#toyfactory

07_596500 ch04.qxd 6/30/05 3:26 PM Page 79

80 Part I — Basic Hacking

Summary
This chapter is a good primer for theme development and understanding some of the funda-
mentals of how themes work. The chapter highlights different approaches to hacking the
Firefox user interface with colors, background images, and changing the spacing around icons.
It also taps into installing themes remotely and locally, then moves right into applying hacks to
themes that support subskins or Cascading Style Sheet modifications. Finally, it tackles how to
manually hack favicons or website icons, as well as how to hack them with the Delete Icons
extensions.

07_596500 ch04.qxd 6/30/05 3:26 PM Page 80

Hacking
Performance,
Security, and
Banner Ads

Chapter 5
Performance Tweaks
and Hacks

Chapter 6
Hacking Security and Privacy

Chapter 7
Hacking Banner Ads,
Content, Images, and
Cookies

part

in this part

08_596500 pt02.qxd 6/30/05 2:43 PM Page 81

08_596500 pt02.qxd 6/30/05 2:43 PM Page 82

Performance Tweaks
and Hacks

Hack it, tweak it, and make it scream down the information highway.
This chapter covers several of the much-touted hacks that you will
find on the Internet, as well as some other less popular but very useful

hacks. You will get the skinny on the what, how, and why of them. More
important, you’ll see how to customize them to fit your current setup and sit-
uation. The primary method of hacking for this section is adjusting key hid-
den preferences.

Deviating from RFC Specs
Warning: The following hacks may make your browser download faster
than your eyes can handle. Okay, kidding aside, the following hacks are a set
that has generated a lot of controversy because it breaks away from industry
standards. Based on RFC specification numbers 2068, 2616, and others, the
defined and recommended maximum number of simultaneous connections
using HTTP/1.0 Internet protocol is four. For HTTP/1.1, the defined and
recommended number is two. These hacks bump this number up; they also
increase the number of connections per server. If you are using dial-up
access, these hacks will be marginally beneficial and are really geared more
for DSL, cable, and corporate networks; customizing these settings is cov-
ered in the “Bandwidth and Processor-Specific Optimizations” section later
in this chapter.

RFC stands for Request for Comment. These specifications are
published to create technology standards for communication
protocols and other application implementations.

These RFC standards are in place to balance a web server’s performance
under heavy traffic by providing a certain level of quality of service for all
users. However, as many users have realized, leeching and improved down-
load performance are necessary when cruising through the net or download-
ing large files. This, coupled with the fact that the RFC was originally
published in 1997, really begs for some radical changes to be taken. So you
deal with the problem directly by increasing the number of concurrent con-
nections made to a server for a page request.

˛ Deviating from RFC
specs

˛ Optimizing page
rendering

˛ Bandwidth and
processor-specific
optimizations

˛ Optimizing disk and
memory cache

˛ Windows memory
optimization

˛ Venturing into
optimized third-
party builds

˛ Spring cleaning

chapter

in this chapter

by Mel Reyes

09_596500 ch05.qxd 6/30/05 2:47 PM Page 83

84 Part II — Hacking Performance, Security, and Banner Ads

A request is any communication from Firefox to a web server; such requests include the call to
download the page and each element that the page refers to (for example, graphics, JavaScript
files, Cascading Style Sheets, and so on).

Hacking Simultaneous Connections
To edit these settings, you can use the built-in about:config utility, add the entries to the bot-
tom of your prefs.js, or add them to the user.js file. My preference is the latter because it makes
it easier to update and manage all my tweaks and hacks without having to weed through all the
other settings or screens. Figure 5-1 displays the defaults for the four settings that we hack in
this section.

FIGURE 5-1: The about:config utility with the network preferences

While performance is genuinely good for single-page browsing with default settings, loading
multiple pages or loading pages with tons of supporting content, such as thumbnail images,
may take some time to queue up and download. Moreover, if you have created a multipage
bookmark or homepage or, like me, have JavaScript-triggered buttons to blast open 4 to 12
sites in tabs simultaneously, you know the importance of downloading all pages and page ele-
ments as fast as possible.

09_596500 ch05.qxd 6/30/05 2:48 PM Page 84

85Chapter 5 — Performance Tweaks and Hacks

Here is the code you can add to the user.js file:

user_pref(“network.http.max-connections”, 96);
user_pref(“network.http.max-connections-per-server”, 32);
user_pref(“network.http.max-persistent-connections-per-proxy”,

24);
user_pref(“network.http.max-persistent-connections-per-

server”, 12);

The faint of heart can modify these settings with the Tweak Network Settings extension, which
can be found at http://www.bitstorm.org/extensions/.

The network.http.max-connections hack increases the number of total connections that the
browser will make at one time. The network.http.max-connections-per-server hack breaks this
down to the maximum number of connections per server.

For additional networking preferences, default values, and notes, visit http://www
.mozilla.org/quality/networking/docs/netprefs.html.

Persistent connections are implemented with HTTP web protocols and allow fewer TCP/IP
calls to be initiated to a web server when making multiple requests. This is also known as
keep-alive, because it reuses the active connection to communicate additional requests. The
network.http.max-persistent-connections settings bump the number of simulta-
neous requests that can be made, in effect forcing the download of as many of the page ele-
ments at the same time as possible.

For more information on HTTP/1.1 Persistent Connections standards, visit http://www.w3
.org/Protocols/rfc2616/rfc2616-sec8.html. For HTTP/1.1 performance informa-
tion, visit http://www.w3.org/Protocols/HTTP/Performance/.

Pipelining Hacking
A key feature called pipelining was incorporated into the HTPP/1.1 standard. While this fea-
ture does give a boost to communication between the browser and server, there are some web
servers and proxy servers that may not fully support its use. Pipelining takes several requests
and submits them to the server back to back without waiting for a response, with the expecta-
tion of receiving the requested objects back in the order submitted. The benefit is gained in the
fact that there is less chatter and delay between the browser and server because the browser is
not waiting for a response from the server for the first request before making the next, and
so on.

// Enable Improve Pipelining
user_pref(“network.http.pipelining”, true);
user_pref(“network.http.proxy.pipelining”, true);
user_pref(“network.http.pipelining.firstrequest”, true);
user_pref(“network.http.pipelining.maxrequests”, 8);

09_596500 ch05.qxd 6/30/05 2:48 PM Page 85

86 Part II — Hacking Performance, Security, and Banner Ads

network.http.pipelining.maxrequests is capped at eight, and setting this value to anything
higher will be ignored. The default is four.

Though it is not recommended, I have suffered no ill effects from using network.http
.pipelining.firstrequest. It is not recommended, because Firefox has yet to determine
if the server can handle pipelined requests.

For more information on HTTP pipelining, visit http://www.mozilla.org/projects/
netlib/http/pipelining-faq.html.

Other Hacks
The following tweaks increase the amount of time and number of entries for which the
browser remembers the Domain Name Server (DNS) resolution information. DNS servers are
the bridge between a website’s named address and the TCP/IP address assigned to it.
Increasing the DNS expiration and the number of entries reduces the number of times Firefox
needs to poll to gather this information.

The FTP idle and keep-alive settings use a default of 300. Lowering these shortens the
amount of time that the browser waits before giving up and timing out for FTP connections
and keep-alive callbacks.

user_pref(“network.dnsCacheExpiration”, 86400);
user_pref(“network.dnsCacheEntries”, 256);
user_pref(“network.ftp.idleConnectionTimeout”, 60);
user_pref(“network.http.keep-alive.timeout”, 30);

These hacks help with browser responsiveness but may have some side effects, including prema-
ture timeouts. Use these hacks with this understanding and modify or remove them if you expe-
rience any unforeseen issues with website name resolution, FTP idle connections, and so on.

Optimizing Page Rendering
Page rendering is handled by the internal core technology, called NGLayout, or by Mozilla’s
layout engine. By tweaking the NGLayout paint delay setting, you reduce the amount of time
that the browser waits before it begins rendering a page while downloading, which achieves
some marvelous visual performance. I like this a lot because it enables me to know exactly what
is downloading and to enjoy its rendering in real time without having to wait for all the content
to load. This does take its toll on central processing unit (CPU) utilization, but with today’s
high-end processors and systems, this is less of a factor.

Using tab browsing usually requires less CPU time and memory; pages load faster because
Firefox does not have to render a whole new window. Additional tab browser tweaks and set-
tings can be found in Chapter 10.

09_596500 ch05.qxd 6/30/05 2:48 PM Page 86

87Chapter 5 — Performance Tweaks and Hacks

Hacking Page Rendering
Most of these hacks are scattered all over the Internet, but most take snippets from several key
sources, including the Firefox Tuning information posted in the Firefox Features forum on
MozillaZine.org forums. To access the healthy discussion on tuning Firefox, visit
http://forums.mozillazine.org/viewtopic.php?t=53650.

The TweakFactor.com site summarizes these hacks in a nice clean page, which can be found at
http://www.tweakfactor.com/articles/tweaks/firefoxtweak/4.html.
However, in my experience, the following tweaks are really the core tweaks that help in render-
ing and page timing for display purposes:

user_pref(“nglayout.initialpaint.delay”, 0);
user_pref(“content.notify.ontimer”, true);
user_pref(“content.interrupt.parsing”, true);
user_pref(“content.notify.interval”, 100);
user_pref(“content.notify.threshold”, 100000);
user_pref(“content.notify.backoffcount”, 200);
user_pref(“content.max.tokenizing.time”, 3000000);
user_pref(“content.maxtextrun”, 8191);

The nglayout.initialpaint.delay tweak shown in the preceding code modifies the
amount of time Firefox waits before it begins rendering a page, where the default is 250
(milliseconds). The rest of the content hacks alter the timing for internal reflow and page
generation.

The “content.notify.ontimer” is on by default, but I always like to include it just in
case. This turns on the timer-based reflow management used for rendering. Users upgrading
from pre-1.0 releases may have this preference disabled; setting it to true should rectify this.

The “content.notify.interval” preference sets the amount of time allowed between
reflows and is measured in microseconds, where the default is 250000. Some have balked at
setting this to such a low number, but I have yet to suffer from doing so.

The “content.notify.backoffcount” sets the number of reflows to do before waiting
for the rest of the page to arrive.

The “content.max.tokenizing.time” was implemented to give the user interface
responsiveness while parsing a page. The default for this setting is three times the “content
.notify.interval”. This is the amount of thread processing time to use before releasing
controls to the user interface.

The “content.maxtextrun” preference by default is 8191, but in builds prior to 0.9.5, it
was 8192, and the one-digit difference, based on the notes in the Bugzilla posting, made a
huge difference in rendering due to buffer thrashing and overallocations. This hack is included
just in case you are still on an old build or this setting has not been properly updated. For more
information on this fix, visit
https://bugzilla.mozilla.org/show_bug.cgi?id=77540.

The combination of these hacks should yield a very nice experience when downloading larger
pages or pages with complicated table structures.

09_596500 ch05.qxd 6/30/05 2:48 PM Page 87

88 Part II — Hacking Performance, Security, and Banner Ads

Unblocking Error Dialogs
One annoying feature that really is not a rendering-specific issue is the browser’s popping up a
modal dialog warning that there is an error while connecting to a site. A typical modal dialog
blocks background activity until you respond to its question, usually in the form of an Are-you-
sure-you-want-to-exit? type of dialog. What this tweak does is replace a failed URL’s modal
dialog prompt with an error page. Having used this hack for a long time now, I have found it to
be most useful if you are loading several pages at the same time. In this instance, the error dia-
log actually holds up the whole browser from downloading other background content. Using
this tweak allows the other pages and page elements to load without the lockup.

user_pref(“browser.xul.error_pages.enabled”, true)

One side effect of using this hack is that the displayed URL in the location bar is a pointer to
the internal XUL page that is used to generate and display the error. To rectify this situation,
you can install the Show Failed URL extension, which does as it says; it shows the URL in
question in the location bar. This extension can be downloaded from http://www.pikey.
me.uk/mozilla/#sfu.

For more information on why this preference is not enabled by default, visit the Bugzilla site at
http://bugzilla.mozilla.org/show_bug.cgi?id=28586.

Disabling Smooth Scrolling
Smooth scrolling may be a nice feature, but I can never tell the difference when it is enabled.
However, I have noted a slight performance hit on older computers that have it enabled.

user_pref(“general.smoothScroll”, false);

My preference is to tweak as much power and performance as possible out of the browser and
forgo most of the frills, so this feature ends up getting disabled on my systems.

Bandwidth and Processor-Specific Optimizations
When originally learning these connection, rendering, and pipelining hacks for the Mozilla
Suite and Firefox, I did my own performance testing. I did this at probably just around the
same time other sites had been doing it, but my findings were a little different. My original
approach was to bump up each of the settings by some factor, starting with a factor of 10, and
then work my way down from there. I monitored the following key issues:

� CPU utilization

� Browser responsiveness

� Failed sites

� Broken images

09_596500 ch05.qxd 6/30/05 2:48 PM Page 88

89Chapter 5 — Performance Tweaks and Hacks

While in the end they do not share the same factor, my findings were that the max-connec-
tions settings worked well at four times their default and the persistent-connections worked
well at six times their default. After some testing, 96, 32, 24, and 12 were the magic numbers
for me and so far have proven to be accepted by many users. Table 5-1 shows the test systems
used.

Table 5-1 Test Systems

Computer Type DSL (256k) Cable (1MB) T1 Installed Memory

Intel Pentium II 400 MHz ✓ 1GB

Intel Pentium III 500 MHZ ✓ 256MB

Intel Pentium III 1133 MHz Mobile ✓ ✓ 512MB

Intel Pentium 4 2.8 GHz ✓ 768MB

AMD Athlon 1000 ✓ ✓ 512MB

AMD Athlon XP 2000+ ✓ ✓ 1GB

AMD Athlon 64 3000+ ✓ ✓ 512MB

Based on these system configurations, you can see that the connection hacks suggested work
with a wide range of speed and memory amounts. Despite the fact that newer computers can
render content much faster, I am amazed by the incredible performance of Firefox using the
same settings as older systems. However, you may experience some hiccups and may need to
modify these settings. So here are some suggestions.

As mentioned earlier, there are several sites and forums with recommended values and settings
based on your computer and connection speed. At just about every one of these cyberplaces,
you find a mixed bag of results and recommendations. Because of the many variables that can
affect how you connect and how your system performs, I steer clear of recommending all the
tweaks mentioned on those sites. Instead, I rely on the settings that I have used successfully
and modify those accordingly for my recommendations.

The key to testing is to gauge how your system and connection react based on the changes you
make. In keeping with the factor testing methodology, modem users and others can test the
suggested tweaks and conduct some initial testing to pinpoint what works best. One page that
I use for testing contains a form submit button that is tied to a JavaScript function to blast
open four to eight pages at a time, preferably into tabs. This page can be found at http://
www.hackingfirefox.com/blaster.html.

Chapter 10 covers several tools for customizing your tab browser settings.

09_596500 ch05.qxd 6/30/05 2:48 PM Page 89

90 Part II — Hacking Performance, Security, and Banner Ads

This page helps you gauge how your system and connection handle downloading of multiple
pages and graphics. Again, key factors to monitor are broken pages or images, timeouts, and
CPU utilization. For example, a modem user on a fast computer may want to try a factor of 1.5
or 2 times the default values for simultaneous connections.

user_pref(“network.http.max-connections”, 48);
user_pref(“network.http.max-connections-per-server”, 16);
user_pref(“network.http.max-persistent-connections-per-proxy”,

8);
user_pref(“network.http.max-persistent-connections-per-

server”, 4);

Additionally, for users on a slow computer, modifying the content rendering should help with
CPU utilization:

user_pref(“nglayout.initialpaint.delay”, 125);
user_pref(“content.notify.ontimer”, true);
user_pref(“content.interrupt.parsing”, true);
user_pref(“content.notify.interval”, 300000);
user_pref(“content.notify.threshold”, 300000);
user_pref(“content.notify.backoffcount”, 10);
user_pref(“content.max.tokenizing.time”, 2000000);
user_pref(“content.maxtextrun”, 8191);

There really is no smoking gun when it comes to calculating the best fit for all the PC and
connection speed permutations, but playing around with these settings will help you pinpoint
what works best for you.

Visit http://www.tweakfactor.com/articles/tweaks/firefoxtweak/4.html for
some examples of settings and tweaks based on computer and connection speeds.

To conduct some nonscientific performance testing, take the following steps:

1. Apply the tweaks that fit your system best.

2. Clear the browser’s cache.

3. Exit and restart the browser.

4. Make sure you have JavaScript links set to open into tabs.

5. Open the blaster page at http://www.hackingfirefox.com/blaster.html.

6. Select one of the tests provided—four, six, or eight pages.

7. Monitor CPU utilization, page rendering, broken images, and so on.

Additionally, you can test for browser responsiveness by switching tabs while the pages are
loading. To further stress-test these settings, try scrolling the foreground page with your mouse
wheel while the content is downloading.

09_596500 ch05.qxd 6/30/05 2:48 PM Page 90

91Chapter 5 — Performance Tweaks and Hacks

You can add a Clear Cache toolbar button, as well as other useful buttons, by installing the
Toolbar Enhancements extension from http://clav.mozdev.org/.

Optimizing Disk and Memory Cache
The following hacks are targeted to help you decide where and how much disk and memory to
allocate for Firefox to use. While changing these settings may seem mundane and trivial on
some systems, they can really make a difference on others. Cache, whether disk or memory, is a
local buffering zone that holds a copy of content that has been downloaded and viewed. Disk
Cache is persistent between browsing sessions and stored on the hard drive, which assists
the browser in not having to download content each time it is accessed. Memory Cache is
session-based — that is, once you close Firefox, the memory cache or local buffer is cleared.

If Firefox happens to crash, the entire disk cache is cleared out automatically.

Changing Disk Cache Location
Modifying the location of the disk cache can have a side benefit of freeing up space without
having to repartition or remap directories at the operating-system level. The best benefit,
though, comes if you happen to have two physical hard drives installed. In my experience, mov-
ing a system’s paging file and Firefox’s disk cache to a secondary drive helps performance by
balancing disk reads and writes across both drives.

Before applying this hack, clear your cache directory.

By default, newer computers come with one hard drive and one partition. This, coupled with
the fact that newer hard drives are very fast, means that this hack is not a top priority for very
fast computers. If you are on an older system with a second hard drive or would like to repoint
the disk cache to a RAM drive, this tweak is for you. Here’s how to modify this setting:

// Sample for Windows Users
user_pref(“browser.cache.disk.parent_directory”,

“d:\\temp\\”);

// Sample for Unix/Linux/Mac Users
user_pref(“browser.cache.disk.parent_directory”, “/tmp”);

A subdirectory of cache is created in the directory you choose.

09_596500 ch05.qxd 6/30/05 2:48 PM Page 91

92 Part II — Hacking Performance, Security, and Banner Ads

If the path you have chosen does not exist, Firefox creates it the next time you open it up.
Windows users should make sure that this value has double slashes, as displayed in the preced-
ing code; not including these causes internal parsing errors and possible preference-file corrup-
tion. The only exception to this rule is if you are adding this value via the about:config screen,
in which case, you should not use the double slashes — single slashes will automatically get
converted to double.

Viewing, Changing Size, and Cleaning Your Disk Cache
This first section is more for informational purposes and to point you to your disk cache for
cleaning. As you can see from Figure 5-2, typing about:cache in your browser’s location bar
and pressing Enter brings up the memory and disk cache statistics with the capability of
drilling in and inspecting the entries stored. The first piece of information that you can use is
your current memory and disk cache settings and utilization. The memory cache optimization
hack in the next section and the disk cache size customization that follows give you an indica-
tor of how efficiently you are allocating this space by analyzing the “Storage in use” figures.

FIGURE 5-2: The Information about the Cache Service page

To change the amount of disk space allocated for disk caching, you can modify the following
preference:

user_pref(“browser.cache.disk.capacity”, 76800);

09_596500 ch05.qxd 6/30/05 2:48 PM Page 92

93Chapter 5 — Performance Tweaks and Hacks

The preceding value sets your disk cache to 75MB (75 × 1024KB), where the default is 50,000,
a tad less than 50MB. By monitoring your disk utilization from time to time, you can see how
effective this setting may be. You can also see from Figure 5-2 that the location of your disk
cache is listed, making it easier for you to locate and clean up manually.

As for the memory optimizations, using the about:cache statistics, you will be able to determine
after a period of sustained browsing if the Bugzilla-recommended update of 64 megabytes is
enough for your needs. (See next section.) For some applications or websites, if they are heavy
with DHTML or graphics, monitoring and updating the memory cache may make a huge
difference.

Increasing Memory Cache Size
This hack helps by retaining objects from visited sites in memory so they do not have to be
reloaded from a site or from disk. Memory cache can be populated by either disk cache or
recently downloaded content and is used for browsing history, the Back button, or any similar
feature. Based on Bugzilla bug id # 105344, which you can find at https://bugzilla
.mozilla.org/show_bug.cgi?id=105344#c26, the default memory cache allocations
are listed in Table 5-2.

Table 5-2 Memory Cache Allocations

Installed RAM Automatic Cache Allocation

32MB 2MB

64MB 4MB

128MB 8MB

256MB 14MB

512MB 22MB

1024MB 32MB

2048MB 44MB

4096MB 58MB

While this is a nice allocation for circa 1990, today’s memory prices have yielded default mem-
ory configurations of 512MB to 1GB for most systems and warrant a revisit to the default allo-
cation. After some testing, I have noticed no load or performance hit by allocating more than
the recommended memory for Firefox. Add to this that there are no apparent preallocation
memory increases, and this hack is a no-brainer.

// Amount of per session memory cache to use:
// -1 = dynamically allocate (default),
// 0 = none, n = memory capacity in kilobytes
// If you have the memory to spare, enabling this

09_596500 ch05.qxd 6/30/05 2:48 PM Page 93

94 Part II — Hacking Performance, Security, and Banner Ads

// will run things a little smoother.
// 65536 = 64MB, drop this down you can not spare the RAM
// 32768 = 32MB, etc.

user_pref(“browser.cache.memory.capacity”, 65536);

Do not get overzealous with this hack. There is only so much content one can visit in a day, and
reserving too much memory could possibly lead to unforeseen issues.

Windows Memory Optimization Hack
Windows NT–based operating systems such as Windows NT 4.0, 2000, XP, and 2003 Server
have a built-in feature of clearing or trimming the working set of memory pages when you
minimize a window. Windows does this to clear up used memory and to allow more memory
for other applications. This memory technique usually yields a memory usage reduction of 50
to 95 percent when minimizing a window (or the last window, if several windows are open) and
applies to any program. Figures 5-3 and 5-4 display the significant drop in memory allocation
with the default window minimize behavior.

FIGURE 5-3: Memory utilization before minimizing

So why is this memory trimming so bad for Firefox? Because Firefox renders just about every
visual component and element of the browser, trimming memory used by the browser forces
Firefox to reallocate and rerender all visual elements on the browser as well as the web page
that is loaded, causing some grief and possible hard drive thrashing.

09_596500 ch05.qxd 6/30/05 2:48 PM Page 94

95Chapter 5 — Performance Tweaks and Hacks

// Allows Firefox to maintain its GUI memory
// so that the browser window will snap right back
// after being minimized.
user_pref(“config.trim_on_minimize”, false);

FIGURE 5-4: Memory utilization after minimizing, without this hack

For more information and history on this feature, look up Bugzilla bug number 76831 or visit
https://bugzilla.mozilla.org/show_bug.cgi?id=76831.

When you modify this preference, Firefox minimizes a window without trimming the memory
usage when running under Windows NT–based systems. The upside is that the Firefox win-
dow will definitely snap back without a delay; the downside is that memory usage will stay the
same, and you do not benefit from having Windows trim the memory pages.

For more information about how Windows trims memory or how to avoid this in your pro-
grams, visit the following knowledge-base article: http://support.microsoft.com/kb/
293215.

09_596500 ch05.qxd 6/30/05 2:48 PM Page 95

96 Part II — Hacking Performance, Security, and Banner Ads

Venturing into Optimized Third-Party Builds
Despite the blazing speeds you have already achieved, there are additional, processor-based
optimizations you can attempt. Both Intel and AMD have a core set of features and routines
that are used to handle the operating system’s needs. With the advent of multimedia enhance-
ments and instruction sets such as MMX, 3dNow, SSE, SSE2, and SSE3, optimizing Firefox
to your specific processor type and instruction set helps with responsiveness and page-rendering
speeds. A great resource for choosing a build for your specific operating system and system type
is the MozillaZine.org website at http://forums.mozillazine.org/viewtopic
.hp?t=203504.

How do you determine which enhanced instruction sets your system is capable of? For
Windows users, you can check your system settings from the Control Panel. A more informa-
tive and reliable tool is CPU-Z, from http://www.cpuid.com/. As shown in Figure 5-5,
this program gives you an immediate look into what your processor’s capabilities are.

FIGURE 5-5: Main CPU-Z information screen

The Instructions field in the middle of the CPU-Z screen contains the information on which
you need to focus. Using this, you can see that this system’s maximum supported instruction set
is SSE2 and that it’s an Intel Pentium 4–based processor. Armed with this information, finding
a compatible, optimized build is a snap. The real question is which customized build to use,
and there really is no easy answer to that.

09_596500 ch05.qxd 6/30/05 2:48 PM Page 96

97Chapter 5 — Performance Tweaks and Hacks

Linux users can issue the cat /proc/cpuinfo command in a console window to yield results
similar to the following:

processor : 0
vendor_id : GenuineIntel
cpu family : 6
model : 13
model name : Intel(R) Pentium(R) M processor 1.60GHz
stepping : 6
cpu MHz : 1601.033
cache size : 64 KB
fdiv_bug : no
hlt_bug : no
f00f_bug : no
coma_bug : no
fpu : yes
fpu_exception : yes
cpuid level : 2
wp : yes
flags : fpu vme de pse tsc msr mce cx8 apic sep mtrr pge mca cmov
pat clflush dts acpi mmx fxsr sse sse2 ss tm pbe tm2 est
bogomips : 3170.30

The key elements to look for when running the Linux cpuinfo program are the values from the
flags line, which will contain CPU information for processor support such as sse sse2 in
the preceding code. If the flags are too difficult to decipher, just rely on the model name, which
here is Intel Pentium M processor 1.60GHz.

Most builders provide release versions of their optimized builds, also known as branch or mile-
stone versions. These are usually in line, feature for feature, with the officially released Mozilla
builds, with the exception of some builders who may include fixes to annoying or trivial issues.
Additionally, many builders also create trunk or nightly builds; these builds are literally bleeding-
edge-technology versions of all recent code changes submitted for the next major milestone
version. For the most part, these trunk builds have historically been relatively stable, with the
exception of a few times when sweeping changes and new functionality were introduced. In
these times, trunk builds are not the most pleasant to use. So if you want to dive into the cus-
tom builds arena but do not have the time to rebuild your profile, you may want to stick with
the branch or milestone optimized builds.

For daily updates of optimized builds, visit the MozillaZine Third Party/Unofficial Builds forum at
http://forums.mozillazine.org/viewforum.php?f=42.

Most customized builds come packaged as ZIP and 7z compressed files or self-extracting exe-
cutables. What this means is that they do not have an official installer, and they need to be
extracted before you use them. On the upside, this means that you can keep your current
installed version and still do testing with newer versions. For ZIP or 7z packaged builds, you
need to use tools such as 7-Zip, WinZip, ungzip, and so on to extract their contents. Some
builders provide self-extracting executables for Windows-based systems that automatically
extract to a Firefox directory.

09_596500 ch05.qxd 6/30/05 2:48 PM Page 97

98 Part II — Hacking Performance, Security, and Banner Ads

Always make a backup of your profile directory or any critical files before running any newer
official or optimized build.

From past and present testing of builds, I recommend the following four optimized builds:

� MOOX: Getting and using MOOX builds is as easy as visiting the build definitions
page, http://www.moox.ws/tech/mozilla/mdefs.htm, and seeing which build
you want. These builds are not processor-specific; they are processor feature or instruc-
tion set–specific and are easy to pinpoint from the definitions page. For more informa-
tion and downloads, visit http://www.moox.ws/tech/mozilla/firefox.htm.

� MMOY: These branch and trunk builds are superoptimized with patches not found in
any of the official Mozilla builds. They are not processor-specific, but they are instruc-
tion set–specific. Some enhancements include faster hash algorithms, improved JPEG
rendering, and others. For more information and downloads, visit http://forums
.mozillazine.org/viewtopic.php?t=54487.

� stipe: These branch builds are instruction set–specific and in the past have gotten very
good results and feedback from users. For more information and downloads, visit
http://forums.mozillazine.org/viewtopic.php?t=215104.

� BlueFyre: These are trunk builds and are AMD processor–specific, supporting only
Athlon XP and later. For more information and downloads, visit http://forums
.mozillazine.org/viewtopic.php?t=92495.

Third-party builds use customized application icons for the main application window because of
restrictions in icon and logo usage and to help users know when they are running official builds
versus third-party builds.

After extracting these builds, just find and launch firefox.exe and sit back and enjoy. If Firefox
does not come up properly or you are not happy with it, you can simply close it and remove the
directory you extracted. Your main installed version should still be working properly.

Recent changes in extension and theme processing for Firefox 1.1 may make 1.0 and 1.1 version
switching a hassle. To minimize your headaches, make sure to install new extensions, themes,
and updates with your 1.0 builds.

Spring Cleaning
One of the most recommended fixes for issues that may arise is “Create a New Profile.” While
a lot of users do that, my preference is to dig a littler deeper and try to clean house myself.
While some fixes in the past were preference related, most for me have been file and legacy
configuration issues, mostly with themes and extensions.

09_596500 ch05.qxd 6/30/05 2:48 PM Page 98

99Chapter 5 — Performance Tweaks and Hacks

Refreshing Your XUL Cache File
As mentioned in Chapter 1, XUL is a cross-platform extendable language used to create the
browser’s interface. Additionally, it is the language used by extensions to overlay or modify the
existing Firefox interface. The XUL cache is a collection of these XUL modifications that hold
options, dialogs, and overlays for extensions and created pages. The XUL cache is used to
increase the load and speed of applying extension hacks and rendering the main Firefox inter-
face. My experience has been that extension changes and updates may not clean up discontin-
ued XUL cached pages, and I most often find myself using this tweak when the process of
upgrading extensions takes a turn for the worst.

To remove the XUL cache file, just follow these steps:

1. Close Firefox.

2. Find your profile directory (discussed in Chapter 1).

3. Delete the xul.mfl or the xul.mfasl file.

The size of the XUL cache file increases with the number of extensions you have installed.

This file may range from a few hundred kilobytes to close to a few megabytes. If you are fearful
of any losses, just rename it, but do not worry; the XUL file is re-created the next time you
launch Firefox.

Just to be safe, you should do this every time you upgrade an extension that may have gone
through a lot of feature enhancements or fixes, and after uninstalling any extension. My prefer-
ence is to do so any time I have to dive into the profile directory.

You can disable the XUL cache, but doing this may cause several issues with extensions. Do this
only if you are an extension developer and follow the steps detailed in the MozillaZine knowl-
edge-base instructions at http://kb.mozillazine.org/Dev_:_Tips_:_Disable_
XUL_cache.

Cleaning Up after Uninstalling or Upgrading
For the sake of not repeating the “Starting Over without Losing All Your Settings” section in
Chapter 3, I will just mention this subject here and explain its importance as it relates to per-
formance. Performance issues may arise when upgrading extensions, themes, or the main
browser itself. Using the instructions in Chapter 3, you have a much better chance of being able
to recover your profile’s usability without having to create a new one.

09_596500 ch05.qxd 6/30/05 2:48 PM Page 99

100 Part II — Hacking Performance, Security, and Banner Ads

The key areas where Firefox configurations usually benefit from cleaning up are as follows:

� Configuration issues with extensions, overlays, and upgrades in the Chrome\Overlayinfo
directory

� Older theme JAR files that get copied to the chrome directory instead of the extensions
directory

� Cleanup of some minor extension installer configuration settings or install.rdf properties

� Cleanup of extensions listed in the Extensions.rdf file

� Cleaning up XUL cache file in the main profile directory

After cleaning up your profile, Firefox should return to its default appearance, sans any exten-
sions and themes, allowing you to begin rebuilding your settings.

Summary
This chapter taps into increasing browser performance, decreasing response time, and tweaking
the most out of the Firefox browsing experience. Hacks to the connection, page rendering, disk
and memory caches, and memory usage enhance performance greatly. Additionally, the chapter
covers the use of third-party builds that offer extended fixes and optimizations specific to your
computer’s processor capabilities; these builds offer improvements in rendering images and core
browser functionality, tweaking even more performance in the long run. Finally, the importance
of cleaning up the profile to remove any lingering issues or junk that may have been left behind
by extensions, hacks, and normal use is covered.

09_596500 ch05.qxd 6/30/05 2:48 PM Page 100

Hacking Security
and Privacy

Let’s face it: Privacy and security are two very real concerns. Most peo-
ple don’t like to think about them very much. Fortunately, you’re using
Firefox, so you are already on the right track. Windows users out there

who previously used Internet Explorer are already significantly safer just by
switching browsers. And while Linux folks traditionally tend to be very
knowledgeable when it comes to security concerns, and most Mac users are
generally used to being safe and secure due to their minority, Firefox takes
security and privacy one step further.

The default settings in Firefox are good at protecting your privacy and secu-
rity. But you can make some modifications to protect yourself even more. If
you’re ready to lock down your browser tighter than Fort Knox, let’s get
started.

Concerns with Saving
Form or Login Data
Firefox has the ability to store commonly used form elements and login cre-
dentials. I find this behavior to be incredibly convenient. If you’re using a
public computer, however, or are looking at sensitive information, turning
this option off, either temporarily or permanently, is easy.

To access the settings for form or login data, you must open the Options
window and access the Privacy settings. To do this, select Tools ➪ Options.
If you are using Linux or a Mac, select Edit ➪ Preferences. Then select the
Privacy button on the left side of the Preferences window.

˛ Saved form data
and passwords

˛ Covering your
tracks

˛ Using the update
service

˛ Disabling suspicious
behavior

chapter

in this chapter

by Aaron Spuler

10_596500 ch06.qxd 6/30/05 2:50 PM Page 101

102 Part II — Hacking Performance, Security, and Banner Ads

There are six items available in the Privacy section, but the one we’re concerned with right now
is the second from the top. To expand this section, click on Saved Form Information to access
more options. Figure 6-1 shows this window. (My theme, Neptune, is shown in the screenshot,
so your screen may differ slightly depending on the theme you are using.)

FIGURE 6-1: Privacy settings for Saved Form Information

To purge any previously saved form data, click the Clear button. You will not be prompted to
confirm this action, and there is no reversing this action, so be absolutely sure you want to clear
any saved form data before proceeding. To prevent Firefox from saving any sort of form data in
the future, uncheck “Save information I enter in web page forms and the Search Bar.”

To manage login data, expand the Saved Passwords section. Figure 6-2 shows the options
available. Again, the process is similar to management of saved form data. To purge all previ-
ously stored login credentials, click the Clear button. Unlike the Clear button for saved form
data, you will be prompted with a dialog to confirm your request. To prevent Firefox from sav-
ing any login credentials, uncheck “Remember Passwords.”

With saved form data, it’s all or nothing, but Firefox allows you to selectively manage pass-
words. The Password Manager allows for fine-grained management of passwords. Clicking on
the View Saved Passwords button brings up the Password Manager, as shown in Figure 6-3.

10_596500 ch06.qxd 6/30/05 2:50 PM Page 102

103Chapter 6 — Hacking Security and Privacy

FIGURE 6-2: Privacy settings for saved passwords

FIGURE 6-3: The Password Manager

The Password Manager allows you to view any passwords that you’ve previously told Firefox to
save. If you want to view passwords, click the Show Passwords button. If those passwords are
confidential, I recommend hiding them again after viewing; simply click Hide Passwords. You
have the ability to remove individual sites or remove all sites from the list. Login credentials for
sites that you told Firefox to never save are listed in the Passwords Never Saved tab, with the
option to remove them individually or remove all from the list.

10_596500 ch06.qxd 6/30/05 2:50 PM Page 103

104 Part II — Hacking Performance, Security, and Banner Ads

Creating a Master Password
A Master Password protects access to your stored passwords in the Password Manager. When
you have set a Master Password, you are prompted to enter it before access to the Password
Manager is granted. To create a Master Password, click the Set Master Password. . . button
(shown in Figure 6-2). Be sure to select a Master Password that you will be able to remember,
because if you forget it, there is no way to retrieve that information. Figure 6-4 illustrates the
Change Master Password window.

FIGURE 6-4: The Change Master Password window

Covering Your Tracks
Now that you know how to manage form and login data, let’s talk about how can you further
protect yourself. In general, you should not give any sort of confidential or sensitive informa-
tion out to any website unless that site is using encryption to mask the data from third parties.
To notify you of encryption status, all themes provide a visual clue in the URL bar. Generally,
the URL bar turns from white to yellow and displays a padlock on the right side. Different
themes do things slightly differently — most themes do not stylize the URL bar, but all of my
themes utilize the rounded URL bar, and so do themes by CatThief, Lynchknot, and others.
Figure 6-5 displays the secure-site indicator in the URL bar in both the default theme and my
Neptune theme.

10_596500 ch06.qxd 6/30/05 2:50 PM Page 104

105Chapter 6 — Hacking Security and Privacy

FIGURE 6-5: Secure-site indicator in URL bar

If you wish to remove all traces of information that Firefox has collected during your browser
history, you can do so with one click. Referring to the Privacy settings shown in Figures 6-1
and 6-2, the Clear All button in the bottom-right corner will completely cover your tracks.
When you click Clear All, you are presented with a confirmation dialog in case you acciden-
tally clicked it. After confirming that you wish to clear all data, the following information will
be removed:

� Browsing history

� Cache

� The list of recently downloaded files

� All saved form information and searches

� All cookies

� Saved passwords

Cleaning Up Browsing History
If you were not already aware, Firefox and all other browsers keep track of what sites you have
visited in an effort to make pages load faster. Firefox stores records of the browsing history in
three ways:

� A list of sites you have visited called the History

� A list of files downloaded called the Download History

� A temporary storage area for web page files called the cache

10_596500 ch06.qxd 6/30/05 2:50 PM Page 105

106 Part II — Hacking Performance, Security, and Banner Ads

Cache
Pages you view are stored in a special temporary folder so that next time you visit the page, it
loads faster because the entire page does not need to be downloaded again—only the portions
of the page that have changed. Firefox allows the specification of a maximum size for the cache
folder and the option to delete the contents of that folder. The cache is an all-or-nothing type
of item. You are not allowed to selectively remove items from the cache, but you can remove all
items with the Clear button, as illustrated in Figure 6-6.

FIGURE 6-6: Privacy settings for cache

Download Manager
The Download Manager stores information about which files you have saved from the
Internet. You can access options for how Firefox should remove items from the Download
Manager History in the Privacy Settings window, shown in Figure 6-7.

Before pressing the Clear button, be entirely sure that you want to remove all items, because
you are not prompted for confirmation.

If you wish to remove individual items from the Download Manager History, you can do so in
the Downloads window, shown in Figure 6-8. To open this window, choose Tools ➪ Downloads.
Removing an item is as simple as clicking Remove, which appears next to the item’s name in
the list. There is no confirmation—once you’ve clicked Remove, the entry is gone, and there is
no way to get it back. The Clean Up button in the Downloads window has the same function
as the Clear button in the Download Manager History section of the Privacy Settings window.

10_596500 ch06.qxd 6/30/05 2:50 PM Page 106

107Chapter 6 — Hacking Security and Privacy

FIGURE 6-7: Privacy settings for Download Manager History

FIGURE 6-8: The Downloads window

History
The History is a list of every website you have visited, along with the time of visit. As with the
Download Manager, there are two options to consider in the Privacy Settings window (see
Figure 6-9): You can set the number of days that Firefox stores items in the list of pages vis-
ited, and you can clear the list. You will not be prompted for confirmation when pressing the
Clear button.

10_596500 ch06.qxd 6/30/05 2:50 PM Page 107

108 Part II — Hacking Performance, Security, and Banner Ads

FIGURE 6-9: Privacy settings for History

To view and delete individual items from the History, you must view the History from within
the main browser window. You can open the History in two ways: by selecting Go ➪ History or
selecting View ➪ Sidebar ➪ History (see Figure 6-10). Once the History is visible, you can per-
form searches to find individual items. To delete an item, either right-click the item and select
Delete or highlight the item and press the Delete key.

FIGURE 6-10: The History sidebar

10_596500 ch06.qxd 6/30/05 2:50 PM Page 108

109Chapter 6 — Hacking Security and Privacy

Blocking Unwanted Cookies
You probably are already familiar with the term cookie. If not, here is a quick explanation. A
cookie is a file created by an Internet site to store information on your computer, such as your
preferences when visiting that site. When you visit a site that uses cookies, the site might ask
Firefox to place one or more cookies on your hard disk. Later, when you return to the site,
Firefox sends back the cookies that belong to the site. This allows the site to present you with
information customized to fit your needs. Cookies cannot gather any personal information that
you do not provide, and websites cannot read cookies set by other sites. Figure 6-11 displays
the cookie preferences.

FIGURE 6-11: Privacy settings for cookies

From here, you can set preferences such as the length of time cookies are allowed to stay on
your computer, whether any sites are allowed to store cookies on your computer, and whether
cookies from sites other than the originating site are allowed. The latter case warrants some
explaining: If you are visiting a site, such as http://www.cnn.com, that is partnered with an
advertising site, such as http://www.doubleclick.net, which provides the ads on the
original site, only http://www.cnn.com will be allowed to store cookies on your machine;
http://www.doubleclick.net will not. If the option to limit cookies to the originating
site only is not selected, both sites will be able to store a cookie on your computer, and then
http://www.doubleclick.net would have some information about the site you visited
because its cookie would store some information stating that you had requested the cookie
from http://www.cnn.com—this is how some ad agencies on the Internet are able to track
an individual’s behavior.

10_596500 ch06.qxd 6/30/05 2:50 PM Page 109

110 Part II — Hacking Performance, Security, and Banner Ads

Reviewing Stored Cookies and Removing Them
If you wish to find out what cookies are stored on your computer or remove some cookies, click
on the View Cookies button (shown in Figure 6-11). That opens the Stored Cookies window,
shown in Figure 6-12.

FIGURE 6-12: The Stored Cookies window.

Selecting a cookie from the list at the top displays its information in the lower pane. To remove
a single cookie, highlight it and click the Remove Cookie button. To remove all cookies, click
the Remove All Cookies button. To prevent a removed cookie from coming back, make sure to
check the box beside “Don’t allow sites that set removed cookies to set future cookies.”

Preemptively Blocking Known Undesirable Cookies
What if you know that you don’t ever want to receive cookies from a specific site? Firefox has
the ability to preemptively block any cookies in a list. Click the Exceptions button (shown in
Figure 6-11). In the Exceptions window, you can list what sites are always or never allowed
to store cookies. Figure 6-13 shows the Exceptions window. Simply type the address of the
website in the text box at the top and then click the Block button. From now on, Firefox will
never allow that website to store a cookie on your computer. (If you already have cookies stored
from that site, you will have to remove them using the Stored Cookies window, shown in
Figure 6-12.)

10_596500 ch06.qxd 6/30/05 2:50 PM Page 110

111Chapter 6 — Hacking Security and Privacy

FIGURE 6-13: The Cookie Exceptions window

Using the Mozilla Update Service
The Mozilla Update service allows you to update the extensions and themes installed, as well
as the Firefox program itself. The easiest way to use the update service is to select Advanced
from the list on the left of the Options window, click Software Update, and then click the
Check Now button, as shown in Figure 6-14.

FIGURE 6-14: Advanced settings for updating software

10_596500 ch06.qxd 6/30/05 2:50 PM Page 111

112 Part II — Hacking Performance, Security, and Banner Ads

After you click the Check Now button, Firefox checks for any updates and presents a list if any
are found, as shown in Figure 6-15.

FIGURE 6-15: The Firefox Update window

From here, you can select which updates you wish to install and then click the Install Now but-
ton. Updates to extensions and themes sometimes take effect immediately. If not, the updates
take effect after Firefox is restarted. Firefox updates require the browser to be shut down while
updating files.

There are several other ways to check for updates:

� Extensions only

� Themes only

� Update notification service

For updates to themes or extensions, there is a button in the individual Extensions and Themes
windows for this purpose, as shown in Figure 6-16. The Update Notification Service is the
only way to check for updates to Firefox, themes, and extensions at the same time. The Update
button in both the Extensions and Themes windows checks for updates only for extensions or
themes.

The final method for receiving updates is through the Firefox update notification service.
Different themes do this in different ways. I chose to use the same icons as the default theme
for update notification, while some themes use custom icons. I elected to make the update

10_596500 ch06.qxd 6/30/05 2:50 PM Page 112

113Chapter 6 — Hacking Security and Privacy

notification icons invisible unless there are updates available, while some themes, including the
default, always show the update notification icons. As shown in Figure 6-17, the update notifi-
cation icon is the circle with an up arrow inside it, to the left of the throbber. There are three
different states for update notification:

� A green circle means that everything is up to date.

� A blue circle means that extension(s) and/or theme(s) require updates.

� A red circle means that there is an update to the Firefox browser.

FIGURE 6-16: Extensions and Themes updates

FIGURE 6-17: Update notification on the menu bar

10_596500 ch06.qxd 6/30/05 2:50 PM Page 113

114 Part II — Hacking Performance, Security, and Banner Ads

Disabling Extension Installation
One of the greatest security advantages of using Firefox over Internet Explorer is the way
Firefox handles autoinstallation. While Internet Explorer allows websites to automatically
install items, Firefox never allows anything to be installed unless requested. Before installing
any extensions, you are prompted to ensure that you really want to install. If you’d like to fine-
tune that behavior even further, you can disable extension installation altogether. In the
Options window, under Web Features is where you can find these settings, as shown in
Figure 6-18.

FIGURE 6-18: Web Features in the Options window

You can view and modify which sites are allowed to install extensions without any additional
confirmation by clicking the Allowed Sites button. To disable extension installation entirely,
simply uncheck “Allow web sites to install software.”

Disabling Suspicious JavaScript Features
Sometimes, websites can do tricky things with the JavaScript code embedded in their pages.
You can disable JavaScript completely, but doing so can break the functionality on some web-
sites. To disable JavaScript, simply uncheck “Enable JavaScript.” You can still use JavaScript but
disable suspicious behaviors by clicking on the Advanced. . . button next to the JavaScript
checkbox. I personally allow some of the suspicious behaviors but disable others. My configura-
tion is shown in Figure 6-19.

10_596500 ch06.qxd 6/30/05 2:50 PM Page 114

115Chapter 6 — Hacking Security and Privacy

FIGURE 6-19: The Advanced JavaScript Options window

Disabling Windows shell: Protocol
The Windows shell: protocol is a very dangerous security risk. This protocol affects only
Windows systems, so Linux and Mac systems are safe from this sort of attack. Using the
shell: prefix (instead of the http: prefix) allows access to the files stored on your computer.
If pointed to a nonexistent file, Firefox does not know what to do and eventually crashes. This
problem was discovered and fixed with the release of Firefox 0.9.2. If someone gained access to
your computer, the protocol could be reenabled. To check and see whether you are safe, type
about:config in the address bar. In the filter bar, type shell.

If the network.protocol-handler.external.shell option is set to false, as in
Figure 6-20, you are safe. If it is set to true, you can right-click on it and select Reset; this
deactivates the shell: protocol.

FIGURE 6-20: Disabling the Windows shell: protocol

10_596500 ch06.qxd 6/30/05 2:50 PM Page 115

116 Part II — Hacking Performance, Security, and Banner Ads

Anti-Phishing Measures and Tools
Phishing is an attempt to steal personal information to be used for identity theft. Generally, an
email is sent that looks like a valid site asking you to update personal information. The website
that is linked in the email is actually a fake site that looks identical to the real site and even
has what looks like a valid URL in the address bar. There are ways to tell that the site is fake,
however.

Traditionally, no valid website would ask you to update personal information such as bank-
account numbers, Social Security number, or credit card information via email. If you get such
an email, do not update your information with the link provided!

Phishing scams usually involve some form of spoofing, masking the true URL of a site and
making it look like something else. A spoofed site could make the URL in the address bar say
http://www.mozilla.org, but you could actually be on another site, such as http://
www.spoofed-mozilla.com, for example.

The other way to tell that the site is fake is a little harder, because it involves detecting the site’s
fake URL. The best way to detect a faked URL is by using the Spoofstick extension.
Spoofstick always displays the domain name of the site that you are currently viewing. For
example, if you were at http://www.corestree.com/spoofstick/, Spoofstick would
say “You’re on www.corestreet.com,” as shown in Figure 6-21.

FIGURE 6-21: Spoofstick tells you where you are.

If things are not going right—that is, if you’re on a spoofed site—the URL in the address bar
and the Spoofstick will not match. That’s your cue that things have gone awry. The Spoofstick
extension always shows the real URL that you are visiting and cannot be spoofed with any sort
of trickery.

You can find this extension at http://www.corestreet.com/spoofstick/, along with
a great example of a phishing scheme foiled by Spoofstick. After installing the Spoofstick
extension, simply right-click on the toolbar and select customize. Then you can drag the
Spoofstick button to the location you desire. In Figure 6-21, I hid the Spoofstick button by
going into the Spoofstick configuration.

10_596500 ch06.qxd 6/30/05 2:50 PM Page 116

117Chapter 6 — Hacking Security and Privacy

Summary
This chapter covers several topics that should help you achieve the level of security you desire
in your browsing. Topics covered include form and login data, Master Passwords, cookies,
update service, JavaScript features, and phishing. General information is covered on all aspects
of privacy in Firefox. This chapter does not aim to show every possible combination of
settings—just the range of options available. You can use the information provided to cus-
tomize the security preferences to your liking.

10_596500 ch06.qxd 6/30/05 2:50 PM Page 117

10_596500 ch06.qxd 6/30/05 2:50 PM Page 118

Hacking Banner
Ads, Content,
Images, and
Cookies

Benjamin Franklin once said, “Nothing in life is certain except death
and taxes.” In the Internet-pervasive world, we can make an amend-
ment to those immortal words—”Nothing is certain on the Internet

except ads and more ads.” For better or worse, the Internet has grown into a
largely commercial medium. Many nonmerchant commercial web sites rely
on advertising as a primary source of income. While one of the main goals
of advertising is to get the attention of consumers, it also serves to raise the
ire of users. Many advertisements are distracting at best and annoying at
worst. Firefox includes several tools that help the user fight the deluge of
ads that intrude on the Internet experience. One of the default weapons in
the Firefox repertoire is the built-in popup blocker, which suppresses one of
the most aggravating advertising techniques. While this is a great feature,
this still leaves banner ads, offensive images, cookies, and JavaScript and
DHTML tricks that some sites employ to get around.

This chapter covers some features of Firefox that can reduce the number of
displayed ads. We also cover the Ad-Block extension, which provides a bit
more flexibility than what is included in Firefox. Beyond annoying display
elements is something still linked to advertisements but unseen: cookies.
Cookies can be useful—they allow websites to place a small piece of infor-
mation on your computer to remember who you are. This is great for things
such as forums, so that every visit does not require the user to log in again,
or for e-commerce sites to keep track of items in the shopping cart. The
gray area of cookies comes when marketers use them to track what sites you
have visited and use that information to build a profile of your web brows-
ing habits or send you targeted advertising. In addition to blocking banners
and images, we will look at various methods of blocking cookies.

It is important to note that a lot of nonmerchant web sites do rely on adver-
tising as an important source of revenue. Blocking all ads from your favorite
web sites is probably not the best way to show appreciation for the content
they produce. A web master of a large web site noted dryly, “Users are
always saying, ‘Why are they forcing ads down our throats? We can just go
elsewhere.’ But if that is really the case, why do people try so hard to block
ads instead of going to the theoretical elsewhere?”

˛ Hacking displayed
content and cookies

˛ Using the block
image function

˛ Using built-in
content handling

˛ Using the Ad-Block
extension

˛ Blocking cookies

˛ Third-party cookie
removal tools

chapter

in this chapter

by Terren Tong

11_596500 ch07.qxd 6/30/05 2:52 PM Page 119

120 Part II — Hacking Performance, Security, and Banner Ads

So you should realize that the Internet is an advertisement-subsidized medium, much like tele-
vision and most printed media; it would be a good idea to continue supporting sites that you do
appreciate and frequent on a regular basis by being a bit selective with the techniques covered
in this chapter. As repugnant as advertising is at times, the Internet as it is now is probably
preferable to a subscription-based model where users would have to pay for each individual site
they visit.

Using the Block Image Function
In addition to popup blocking, which by default is turned in with a standard Firefox installa-
tion, Firefox includes a feature that enables the user to block images from specific domains.
This allows users to filter out images from domains that they do not want to see images from,
including sites known for advertising and/or graphic content. However, life is not black and
white, and neither is image blocking. There are caveats to the domain filtering method of
image blocking, as a site may host images you do and do not want to see. Despite the potential
for problems, the block image function is easy to use, available without additional Firefox
extensions, and effective at filtering out the more egregious domains you definitely do not want
to see.

The first method of blocking images is very easy. Fire up a web page, preferably one that is
graphically heavy. Put the mouse cursor over any image and right-click on the image. A menu
like that shown in Figure 7-1 should appear.

FIGURE 7-1: The Block Images command through a right mouse click

Highlighting and clicking Block Images from examplewebsite.tld blocks all images from that
particular web site. (The text of this option always reflects the loaded web site.) Refreshing the
current page should result in a drastically different looking web page without much of its
graphics. If you just blocked images from your favorite web page, don’t worry; later in this sec-
tion, we go through the process of undoing the change. Even if you blocked an actual domain
that you really do not want to see images from, you should not skip this next part, as there are
some important points about the block image function that we examine.

11_596500 ch07.qxd 6/30/05 2:52 PM Page 120

121Chapter 7 — Hacking Banner Ads, Content, Images, and Cookies

There are people who do not want images loaded at all; maybe they are on a very slow dial-up
Internet connection, or they think that a thousand words are worth more than a picture. Those
who are interested in a text-only browser can feel free to check out http://lynx.browser
.org. However, Firefox has the ability to perform a similar function. Select Tools ➪ Options,
and an Options window like that shown in Figure 7-2 appears. Load Images is checked by
default—turning this off removes all graphical elements from web pages indiscriminately. The
indented suboption “for the originating web site only” is far more interesting. Checking this
removes from a web page graphical elements that are not part of the same domain. Suppose
that examplewebsite.tld has advertisements displayed from exampleadvertisers.tld embedded
on its web site. Enabling the “for the originating web site only” option strips images such as
those from exampleadvertisers.tld and any domain other than examplewebsite.tld. Referencing
a subdomain, such as images.examplewebsite.tld, does not seem to be affected.

FIGURE 7-2: Loading Images for the originating web site only

Most advertisements are delivered through an ad server and reside on a different domain from
the content web site, so this technique serves to block many image-based ads. This is still not
the magic solution, however, as this has negative effects in scenarios that do not involve adver-
tisements. One example would be an auction site that has several accompanying pictures to
show off the product. If the auctioneer decided to host pictures on his own personal web space
or through one of the many photo hosting services that are springing up, the images would not
display for someone with the “for the originating web site only” option enabled. Clearly, this
blanket option is not ideal for the majority of users, but fortunately it can be fine-tuned, so
please keep this option turned on as we continue.

11_596500 ch07.qxd 6/30/05 2:52 PM Page 121

122 Part II — Hacking Performance, Security, and Banner Ads

Referring to Figure 7-2, note the Exceptions button beside Load Images. Open up the Options
dialog again, and give that a click. This should bring up the dialog shown in Figure 7-3.

FIGURE 7-3: Image exceptions to allow and block specific sites

If you participated in the earlier exercise of blocking images, now you have the opportunity to
restore images to the site that you experimented on. Simply highlight the web site that should
be restored and click the Remove Site button. When you refresh that particular web page, all
the picture elements should be restored.

As previously mentioned, the “for the originating web site only” option generally blocks too
much, although it does a good job of removing the majority of advertisements. The Exceptions
dialog allows just that—sites that should always be allowed to display pictures can be listed, as
well as sites that you would never want to see pictures from. Think of the “originating web site
only” option as the paranoid approach; with this on, it is up to users to specify sites that they
explicitly allow to pull in third-party pictures. This still does not guarantee that advertisements
or inappropriate images will not sneak in—somewebsite.tld might still pull in ads from
ads.somewebsite.tld, which we already mentioned is not blocked, and visiting inappropri-
atewebsite.tld will still load inappropriate images from that particular domain. Leaving off the
“originating web site only” option would be a more optimistic approach, and instead of the
white list approach previously outlined, this still requires the user to maintain a blacklist of
what sites to block. Neither approach is perfect, and both approaches require a fairly significant
amount of vigilance on the part of the user, but they do offer a start in filtering unwanted
images.

11_596500 ch07.qxd 6/30/05 2:52 PM Page 122

123Chapter 7 — Hacking Banner Ads, Content, Images, and Cookies

Using Built-in Content Handling to Block Ads
Blocking out advertisements based on very specific criteria, such as through a domain name, is
a very low-level approach. While using lists to filter out domains is effective for some larger
advertisers, maintaining a list for the hordes of smaller sites is a daunting proposition. I call this
a low-level approach because it requires personal attention and manual implementation. On the
flip side, I consider blocking advertising with the originating web site option a high-level
approach because it relies on the program to target the fact that advertisements are generally
delivered through a different domain from the one on which the content is hosted. The prob-
lem with this approach is that a lot of legitimate images get filtered out, and the user is still
faced with the low-level problem of having to specify sites to allow. Both the blacklist and the
whitelist approach have their uses, but clearly the devil is in the details; in this case, the small
sites require more work than most users would probably like to put in.

Beyond the fact that most advertisements are delivered by a foreign domain, ads possess other
properties that you can take advantage of from a high-level perspective. For example, advertise-
ments share a lot of attributes, and you can take advantage of this to attack and remove ads on
a more generic basis than filtering through domain names. Taking advantage of share attributes
is somewhat complicated and requires some understanding of HTML and Cascading Style
Sheets (CSS) but is more versatile than the image blocking tricks covered in the previous
section.

Once again, users should navigate to their profile directory folder. Two subfolders are impor-
tant here: the chrome folder and the US/chrome folder.

In the US/chrome folder, there should be two files; userContent-example.css is the one that we
are interested in, and this should be copied to the chrome folder and renamed userContent.css.
Using your text editor of choice, you can open up the userContent.css file that should now be
inside the chrome folder. This file contains the following partial snippet:

/*
* Edit this file and copy it as userContent.css into your
* profile-directory/chrome/
*/

/*
* This file can be used to apply a style to all web pages you view
* Rules without !important are overruled by author rules if the
* author sets any. Rules with !important overrule author rules.
*/

Currently, there is nothing active in the userContent.css file. Everything surrounded by “/*
*/” is commented out, meaning that it serves just as annotation for the author and anyone
reading through the file and is not parsed by Firefox. A long discussion of CSS is beyond the
scope of this book, but in short, CSS allows a user to define a set of rules to manipulate
HTML elements. (Those who are interested in pursuing the subject further are encouraged to
check out http://www.w3.org/Style/CSS/.)

11_596500 ch07.qxd 6/30/05 2:52 PM Page 123

124 Part II — Hacking Performance, Security, and Banner Ads

For more on CSS, see CSS Hacks and Filters: Making Cascading Stylesheets Work by Joseph
W. Lowery (Wiley, 2005).

As we continue scrolling through the userContent.css file ,there are a few additional CSS
examples, none of which is directly pertinent to image blocking. However, they do provide a
look at the structure of a CSS rule statement, which is made up of three components in the fol-
lowing format:

selector { property: value}

The selector is the HTML element that the rule will be applied to, while the property
refers to what specific component is being modified, and the value is what the property
will be set to.

For functionality equivalent to disabling Load Images (as shown in Figure 7-2), you can add
the following to the bottom of the userContent.css file:

IMG { display: none ! important}

For the selector, we are targeting the HTML tag IMG, the property that we are modifying is
display, and the value that it is being set to is none, meaning that no images will be dis-
played.! important specifies that this particular rule supersedes anything that is listed in the
CSS of the web page. Saving the file and restarting Firefox should implement loading no
images through the userContent.css file. However, this does not put us in any better position
than what we could achieve inside the Options dialog. Nonetheless, this is a great example of
how the default behavior of a web site can be changed, and it highlights the power of
userContent.css.

CSS allows for a more specific selector statement that includes more than one type of HTML
tag, and instead of strictly IMG tags, we can throw something in front such as the following:

A:link[HREF*=”.banner”]

Instead of filtering all images, this line will filter only those images that point to a URL with
the string .banner embedded somewhere. Other key substrings include ad., ads, and
?click. All these can be daisy-chained to the original CSS IMG rule to form something like
this:

A:link[HREF*=”.banner”] IMG,
A:link[HREF*=”ad.”] IMG,
A:link[HREF*=”ads.”] IMG,
A:link[HREF*=”?click”] IMG { display: none ! important }

Now instead of filtering all images, this code will filter only hyperlinked images with specific
substrings inside the URL. Because these strings are relatively common within links to adver-
tisements, these lines will filter out a lot of ads without affecting as many legitimate pictures.
Several commercial software programs try to filter out URL image links with the word ban-
ner in it, but with free (and easy) methods like this, there really is very little incentive to pur-
chase a product that is functionally equivalent.

A former Netscape employee and current Mozilla contributor, Joe Francis, has a great
userContent.css file that is reproduced here:

11_596500 ch07.qxd 6/30/05 2:52 PM Page 124

125Chapter 7 — Hacking Banner Ads, Content, Images, and Cookies

/* You can find the latest version of this ad blocking css at:
* http://www.floppymoose.com
* hides many ads by preventing display of images that are inside
* links when the link HREF contains certain substrings.
*/

A:link[HREF*=”addata”] IMG,
A:link[HREF*=”ad.”] IMG,
A:link[HREF*=”ads.”] IMG,
A:link[HREF*=”/ad”] IMG,
A:link[HREF*=”/A=”] IMG,
A:link[HREF*=”/click”] IMG,
A:link[HREF*=”?click”] IMG,
A:link[HREF*=”?banner”] IMG,
A:link[HREF*=”=click”] IMG,
A:link[HREF*=”clickurl=”] IMG,
A:link[HREF*=”.atwola.”] IMG,
A:link[HREF*=”spinbox.”] IMG,
A:link[HREF*=”transfer.go”] IMG,
A:link[HREF*=”adfarm”] IMG,
A:link[HREF*=”adserve”] IMG,
A:link[HREF*=”.banner”] IMG,
A:link[HREF*=”bluestreak”] IMG,
A:link[HREF*=”doubleclick”] IMG,
A:link[HREF*=”/rd.”] IMG,
A:link[HREF*=”/0AD”] IMG,
A:link[HREF*=”.falkag.”] IMG,
A:link[HREF*=”trackoffer.”] IMG,
A:link[HREF*=”tracksponsor.”] IMG { display: none ! important }

/* disable ad iframes */
IFRAME[SRC*=”addata”],
IFRAME[SRC*=”ad.”],
IFRAME[SRC*=”ads.”],
IFRAME[SRC*=”/ad”],
IFRAME[SRC*=”/A=”],
IFRAME[SRC*=”/click”],
IFRAME[SRC*=”?click”],
IFRAME[SRC*=”?banner”],
IFRAME[SRC*=”=click”],
IFRAME[SRC*=”clickurl=”],
IFRAME[SRC*=”.atwola.”],
IFRAME[SRC*=”spinbox.”],
IFRAME[SRC*=”transfer.go”],
IFRAME[SRC*=”adfarm”],
IFRAME[SRC*=”adserve”],
IFRAME[SRC*=”.banner”],
IFRAME[SRC*=”bluestreak”],
IFRAME[SRC*=”doubleclick”],
IFRAME[SRC*=”/rd.”],
IFRAME[SRC*=”/0AD”],

11_596500 ch07.qxd 6/30/05 2:52 PM Page 125

126 Part II — Hacking Performance, Security, and Banner Ads

IFRAME[SRC*=”.falkag.”],
IFRAME[SRC*=”trackoffer.”],
IFRAME[SRC*=”tracksponsor.”] { display: none ! important }

/* miscellaneous different blocking rules to block some stuff that gets through
*/

A:link[onmouseover*=”AdSolution”] IMG,
*[ID=inlinead],
*[ID=ad_creative],
IMG[SRC*=”.msads.”] { display: none ! important }

/* turning some false positives back off */

A:link[HREF*=”thread.”] IMG,
A:link[HREF*=”download.”] IMG,
A:link[HREF*=”netflix.com/AddToQueue”] IMG,
A:link[HREF*=”click.mp3”] IMG { display: inline ! important }

/*
* For more examples see http://www.mozilla.org/unix/customizing.html
*/

Joe’s userContent file aims to minimize the hassle of wrongly blocked content while maintain-
ing a very effective rate of ad blocking. Many other userContent.css files found on the Web
look like they are derived from this one. If you just want something that works without a huge
time investment, definitely check it out.

The latest version of the userContent file shown in the preceding code can be found at
http://www.floppymoose.com/userContent.css. On the main page, Joe discusses the
goals behind his implementation of his blocking rules, as well as some more great snippets for
blocking Flash ads.

As well as this method works, it requires users to pore through HTML or to have some knowl-
edge about which string combinations are frequently used by advertisers. This does require sig-
nificantly more technical knowledge on the user’s part than the simple image blocking method
described earlier. Another concern is that advertisers are aware that keyword filtering is catch-
ing on, and there are sites that are avoiding keywords such as banner so they will still slip
through CSS filters. Nonetheless, this method is much more effective than just simple image
blocking, and with more conservative substrings used in the CSS, this should avoid a lot of
false positives. Maintaining the userContent file is much less tedious than the white/black lists
that would have to be used with the default image blocker. A final thing to note is that CSS
controls the way that content is displayed, which means ad content is still being downloaded.

11_596500 ch07.qxd 6/30/05 2:52 PM Page 126

127Chapter 7 — Hacking Banner Ads, Content, Images, and Cookies

Blocking Rules with the Adblock Extension
We have now gone through two methods of blocking advertisements. The first is through the
built-in image blocker, and the second is through the userContent.css file. Both have their
advantages and drawbacks. The image blocker is initially very easy to use but becomes daunting
when many sites are taken into account. The userContent.css file is very effective when specific
HTML and text elements are filtered out. However, it requires more technical savvy and some
familiarity with CSS. It may also require the user to dig through the HTML of web pages to
find what specific elements are responsible for triggering advertisements.

We will now look at a tool that is not included with the standard Firefox installation to fight
advertising: the Adblock extension.

Grab the Adblock extension from http://adblock.mozdev.org/. Be sure to close down
all instances of Firefox and restart it to load the extension.

Adblock is described as a “content filtering plug-in” that is “more robust and more precise than
the built-in image blocker.” This is promising, as these are the exact criticisms of the image
blocker.

Blocking Nuisance Images
As with the other methods covered, Adblock does require user configuration to work effec-
tively. At first glance, Adblock seems as though it can be used just like the image blocker that
was covered earlier in this chapter. Fire up any web site with graphical elements. Right-click on
any image on the web page, and at the bottom of the context menu, there should be a new
menu item, Adblock Image, shown in Figure 7-4.

FIGURE 7-4: Adblock Image appears on the context menu.

11_596500 ch07.qxd 6/30/05 2:52 PM Page 127

128 Part II — Hacking Performance, Security, and Banner Ads

Click on Adblock Image, and a dialog similar to the one shown in Figure 7-5 should appear.
The differences between Adblock and the Block Images command should be readily apparent.

FIGURE 7-5: Adding a new Adblock filter through the right-click menu

Notice that Adblock is not blocking all images from the web site, as Block Images does;
instead, Adblock is targeting one specific image element, as shown in the text box. In fact, you
can target every element on a web page that may be an ad without having to go through a web
page’s source code, if you choose Tools ➪ List All Blockable Elements, which brings up a dia-
log like that shown in Figure 7-6, with a fairly large list of elements.

FIGURE 7-6: Listing page elements that are blockable through Adblock

This functionality is important because there are undesirable elements on a web page that you
cannot see without either going through the code or bringing up the Adblock-able Items
menu. One example is something called a web bug, which is a small embedded image used to
monitor who has visited a specific page.

The Electronic Frontier Foundation (www.eff.org) has a great FAQ entry on web bugs. It’s
available at http://www.eff.org/Privacy/Marketing/web_bug.html.

11_596500 ch07.qxd 6/30/05 2:52 PM Page 128

129Chapter 7 — Hacking Banner Ads, Content, Images, and Cookies

Although this functionality is great when you need it, let us return to our quest for a robust,
general, low-maintenance solution to blocking many ads, not just a single image.

Using Simple Blocking Rules
Wildcards are interesting and useful. Wildcards in a poker game represents any card and can be
substituted for any specific other card. In computer jargon, wildcards represent the same con-
cept. In coding, the asterisk (*) is widely understood to mean any string. Wildcards are tied
closely to the concept of substrings, which we brought up earlier when discussing the
userContent file.

A:link[HREF*=”?click”] IMG { display: none ! important }

In essence, what is being said here is “Find images that are hyperlinks where the hyperlink
itself has the substring ?click embedded, and do not display it.” This relates to wildcards
because this statement implies that you don’t care what text is before or after ?click as long
as ?click is somewhere in there. A wildcard has been used indirectly here; unlike the case-
specific block rules used previously, this particular rule is applicable to a wide range of images
that fits the blocking criteria.

Using the example in Figure 7-5, we might want to ignore all images that are inside the /ad/
subdirectory. This can be done by deleting sm_bl_logo.gif from the end of the statement.
There is another implied wildcard here: ignoring everything in the /ad/ directory without
having to specify the name of each image is another example of a wildcard statement. While
this certainly offers more control over blocking ads than Firefox’s image blocking function,
this will affect only one specific web site, and this is not an effective use of wildcards. You can,
however, apply some of the same principles that were used for some of the userContent files to
make Adblock more effective. Assuming that a lot of web sites use a subdirectory /ads/ to
deliver ads, you could start by filtering out everything that is in an ad directory with the
following:

/ad/

Through the use of wildcards, we are saying, “Filter out any image element on any web site that
has the substring /ad/ in it,” which shows the power of wildcards over the relatively inflexible
nature of the Block Images command. If you navigate to Adblock’s Tools menu and bring up
the submenu, you should see the following options:

� List All Blockable Elements

� Overlay Flash (for left-click)

� Preferences

Click on Preferences. A dialog like the one shown in Figure 7-7 comes up.

11_596500 ch07.qxd 6/30/05 2:52 PM Page 129

130 Part II — Hacking Performance, Security, and Banner Ads

FIGURE 7-7: The Adblock Preferences dialog

Under the main text area you should see the specific directory that was blocked with the
Adblock functionality and also the */ad/* for users who gave that a try. Each rule can be
removed by highlighting the specific rule, right-clicking, and then selecting Delete. There are
several other things of note here, starting with the New Filter text box. If you know some fil-
ters that should work pretty well, you can enter them directly here. A couple of simple blocking
rules can include */ads/* and *banners*. Blanket statements can also be applied here;
swf, for example, will filter out all Flash elements on all web pages.

There are two radio buttons at the bottom: Hide Ads and Remove Ads. Hide Ads is function-
ally similar to CSS rules, as the content is still downloaded but is not displayed, while Remove
Ads will not download the images. The latter will save bandwidth, but the former gives the
impression that the ad is still being downloaded, which may be important to some web sites.

Wildcards do give us much more flexibility in image blocking than we used to have. And com-
pared to creating CSS rules and throwing them into the userContent.css file, they are relatively
easy to use. There are more advantages to the Adblock extension than just wildcards: Enter
regular expressions, discussed in the following section.

An efficient Adblock filter list is of high importance. Each Adblock element needs to be compared
to a filter rule. If there are x number of Adblock rules and y number of Adblock elements on a
web page, there can be x*y comparisons, which in computer science terms is more or less the
worst-case scenario as far as algorithmic efficiency goes. When the number of rules is small, this
may not matter much; as the rule list gets large, however, the scaling efficiency progressively
gets worse, and a page takes longer to render.

11_596500 ch07.qxd 6/30/05 2:52 PM Page 130

131Chapter 7 — Hacking Banner Ads, Content, Images, and Cookies

Understanding Regex Pattern Matching
The power of regular expressions (regex) is pattern matching. As powerful as wildcards are, they
are not always enough, and this is where regular expressions come in. Regex is a way of denot-
ing a pattern within a string without the need to actually specify the pattern directly. You
briefly saw the power of wildcards used in conjunction with Adblock. Regex can be thought of
as advanced wildcards combined with some control elements. Being able to represent any string
with an asterisk (*) as a wildcard in the previous section is a powerful concept, but to be able to
represent the alphabet only or numbers only is more useful and more precise. While regex does
offer more flexibility than a simple wildcard statement, it comes at the cost of additional com-
plexity. We do not go here into an all-encompassing look at regex syntax—only the more rele-
vant elements for ad blocking are covered.

In regex, * no longer represents the universal wildcard.

Here is a quick rundown of regex syntax:

� . (a period): The universal wildcard in regex. denoting any single character

� \w: An alphanumeric wildcard that includes A–Z, 0–9, and underscore (_)

� \W: A nonalphanumeric wildcard including symbols (for example, \, ., and @)

� ?: Zero or one instance of the search pattern to the immediate left

� * : Zero or more instances of the search pattern to the immediate left

� +: One or more instances of the search pattern to the immediate left

� (): Denotes a specific substring within the regex expression

� []: Denotes any one specific letter or element within the set

� |: Denotes or (for example, (a|b), meaning a or b)

If the regex syntax and explanations don’t seem intuitive right now, be patient. Most of these
elements are applied in an upcoming example that should help clear things up. Again, this is
just a subset of the regex syntax. There are ways to express numerals only, negation statements,
and several other things, but a discussion of this at this point will likely lead to more confusion.
Readers who feel they can handle a bit more are encouraged to look at one of the many regex
sites on the Internet. A programming language that is renowned for its close integration with
regex is Perl, and many sites that offer tutorials on regex often refer to Perl. Nonetheless, many
of the lessons are applicable to what we hope to accomplish with Adblock, as regex expressions
are generally portable between languages.

A couple of my favorite regex sites are http://www.troubleshooters.com/codecorn/
littperl/perlreg.htm and http://www.regexlib.com/. Neither focuses specifically
on ad blocking, but both provide solid examples of how to use regex efficiently, which can be
then applied to Adblock.

11_596500 ch07.qxd 6/30/05 2:52 PM Page 131

132 Part II — Hacking Performance, Security, and Banner Ads

Starter Regex Samples Expression Rules
Previous examples in this chapter noted that filtering elements that can be very effective are the
words ad and ads. With regex, it is possible to express this as a single pattern instead of two.
We do need some sort of base for regex, and in this instance, using the string ad as a base to
work from is a good start. With Adblock, a regex expression has to be bound by /[regex]/,
where [regex] is the regular expression. The forward slash lets Adblock know that we are
indeed intending this to be a regular expression and not a simple pattern-matched rule.

/ad/

This short snippet is our base for a more selective regex expression. As it stands, it is essentially
the same filter as *ad*, which removes any advertising element with the substring ad in it.
This is an imperfect solution, though, because it filters out an image called jimsdad.jpg or any
other substring with ad in it. Ads do occur in subdirectories though—www.somesite.tld/
ad/ might be a subdirectory that should be filtered and shopping_ad.jpg is something else that
is undesirable, but www.somesite.tld/addons/ is something you want to avoid filtering.
For ad subdirectories, you don’t need to specify the first forward slash, you can simply catch the
tailing one. The preceding code snippet can be refined to be more selective.

First, assume that any letter in front of the string ad will make it something that you want to
keep. Therefore, any nonword alphanumeric character is suspect. Any nonalphanumeric char-
acters are denoted with \W—this can be thought of as a wildcard specific to symbols.

/\Wad/

This can be read as “a substring that contains ad, and immediately in front of it is something
that is not part of the alphabet and is not a number.” Note that the backslash escapes the W;
therefore, it is not a literal. \W is case sensitive, as the lowercase \w means that it is an alphanu-
meric, which is not what is desired here.

The preceding expression can be rewritten as /(\W)ad/ to improve readability. Readability is
an integral part in keeping regex manageable, and brackets should generally be used liberally to
help with this process.

Unfortunately, because of the quirks of regex rules, the underscore is grouped alongside
alphanumeric characters. We have to amend the regex rule to read “a substring that contains
ad, and immediately in front of it is something that is not part of the alphabet and is not a
number, OR it is an underscore.”

/(\W|_)ad/

This will now filter out elements such as shopping_ad.jpg. However, we can still do better, as
this does not account for anything to the right of ad. Elements such as www.regex.tld/
additionalexamples/ will be filtered out because they still fit the criteria we set, but we
also want to be able to spot something like ads.advertising.tld or www.advertiser.tld/
ads/, so a little more creativity is in order. The following example uses another nonalpha-
numeric wildcard so that any long phrases will not be filtered out:

/(\W|_)ad\W/

11_596500 ch07.qxd 6/30/05 2:52 PM Page 132

133Chapter 7 — Hacking Banner Ads, Content, Images, and Cookies

This means that while ads will still not be filtered out, we will not get a false positive with
something like additional examples. We can refine this some more to include the optional s, as
follows.

/(\W|_)ad(s)?\W/

The ? symbol means that the preceding character or string will appear once or will not appear
at all. Isolating the s within the brackets specifies that it is the character we are interested in;
without the bracket, it will be searching for the entire string ads, which is not what we are
looking for.

We now have a robust regular expression for filtering the ad substring, and because of all the
extras we have put into constructing the search pattern, we avoid a lot more false positives than
a generic *ad* filter that is dumped straight into Adblock.

A second example would be banner. As previously mentioned, some advertisers are catching
on that there are software solutions that automatically filter the word banner, assuming that it
is an advertisement of some sort. Suppose they try to be tricky, and instead of banner, the site
has a script that varies the number of occurrences of the letter n in banner to throw simple
filters off. Again, regex allows us to work around this.

/banner/

This is no different from a nonregex simple *banner* filter. Say the site we are looking to
work around only increases the number of occurrences of n and will not have baner as a vari-
ant. We can express any number of additional ns like this:

/bann(n)*er/

The (n)* means that there can be zero to any arbitrary number of the letter n following the
string bann and before the string er. This will filter banner, bannner, bannnnnnnnner,
and so on.

It is undeniable that regex is very powerful and allows for a lot of flexibility, far more than the
methods previously covered. It meets the criteria of being general and is fairly low maintenance
when applied across a variety of sites once the expression is written. Unfortunately, regex is also
the most complicated and likely to have the steepest learning curve of the techniques covered
here.

The Adblock Project forum (http://adblock.mozdev.org/forum.html/no_wrap) is a
great resource for more ad-specific examples of regex, but some care and scrutiny are required,
as not all regex statements are constructed carefully. In a worst-case scenario, a lot of legitimate
elements can be filtered out.

You can find a thread that may be particularly useful at http://aasted.org/adblock/
viewtopic.php?t=45.

A site with constantly updated Adblock filters, including some fairly complex regex expressions,
is located at http://www.geocities.com/pierceive/adblock/.

A great program to test your freshly constructed statements or to verify someone else’s work is
The Regex Coach, donationware located at http://www.weitz.de/regex-coach/. You
can enter the regex and a target string to see what is being matched. Do not start and end regex
expressions inside the Regex Coach with / /; this is a requirement of Adblock, not general regex.

11_596500 ch07.qxd 6/30/05 2:52 PM Page 133

134 Part II — Hacking Performance, Security, and Banner Ads

Blocking JavaScript and DHTML Tricks
The techniques that make web pages serve dynamic instead of static content are collectively
known as dynamic HTML (DHTML). Pictures (and therefore ads) can be served up without
extensions such as .jpg, .gif, or .png through a script. This can make it more difficult to block
ad elements if the site chooses to use keywords that are not covered with the ones that are
commonly identified. Again, the use of Adblock, and especially the List All Blockable
Elements command, helps the user find occurrences of such problems.

JavaScript is responsible for the popups, so it is desirable to block it. Most JavaScript elements
can be blocked with the all-encompassing wildcard filter, *js*. Again, this has the problem of
blocking what could be a legitimate nonadvertising use of JavaScript. We can be more specific
and practice some regex to block JavaScript elements with the .js extension along with some
keywords such as ad(s), pop, and popups. Scripts that reference a remote file that does not end
in .js cannot be blocked with a general expression either; they will also squeeze by js filters,
both through simple wildcard blocking of the ad string and even the fancy regex blockers.
Most of these scripts are recognized by Adblock and can be seen with the List All Blockable
Elements command, and this is another instance where a very specific filter should be used.
Unfortunately, with version 0.5 of Adblock, inline JavaScript (meaning the JavaScript code is
embedded directly in the HTML file) that does not link to a .js file cannot be blocked. Ideally,
paranoid users may want to just turn off JavaScript completely, but some good sites (for exam-
ple, maps.google.com) do rely on JavaScript and will not work without it.

Blocking Cookies Options and Tools
All efforts so far have been aimed at filtering visual elements, which are generally just an incon-
venience, but there is the unseen privacy risk that has not yet been addressed. The focus now is
on cookies.

Cookies are little pieces of information that are left on your computer by web sites. A developer
thought that little pieces of information left were a lot like leaving cookie crumbs on the
kitchen counter, so the name stuck. Maybe it is because the name is so innocent sounding that
it does not inspire the sense of alarm that is usually triggered by terms such as advertising and
spyware. Nonetheless, cookies can be more malicious and more valuable to advertisers in the
long run than a displayed ad.

Cookies do have legitimate uses. Message boards use them so that a forum member does not
have to log in every single time he visits. Merchant sites use cookies to keep track of what is
being added to shopping carts, because the HTTP protocol is stateless, meaning that web pages
do not remember what has transpired on a previous page without some help. Cookies can also
store a database session or some other piece of information that allows the web site to know
what has previously transpired. The downside of cookies concerns your privacy. An advertiser
can place a cookie on your computer that can then be read by someone else with a commercial
interest; that third party could generate a database of your particular surfing habits based on
cookies stored on your computer. Besides unwittingly giving up demographical information
about yourself to a third party who has zero accountability, you make yourself a target of adver-
tising that is tailored specifically toward you. Clearly, the privacy implications of cookies are
huge, and Internet users should be concerned.

11_596500 ch07.qxd 6/30/05 2:52 PM Page 134

135Chapter 7 — Hacking Banner Ads, Content, Images, and Cookies

Firefox allows the user to choose how cookies are dealt with under the Tools ➪ Options ➪
Privacy menu, shown in Figure 7-8.

FIGURE 7-8: Cookie handling in Firefox

Several things can be done to improve the default settings for allowing cookies. The “for the
originating web site only” feature should probably be turned on; this will block web bugs from
setting cookies and will allay many privacy concerns. Cookies have expiry dates that are deter-
mined by the site; after that particular date, cookies expire and are deleted. Firefox can flush
cookies every time the browser closes down, or users can set the date on which they want
the cookies to expire. Like JavaScript, cookies can be disabled entirely. However, many sites
require cookies to function properly, and this approach would be very limiting. Unlike images,
however, maintaining a whitelist for cookies is not nearly as daunting as for Block Images.
There will be sites that you will want to allow cookies for; these may include message boards
that you frequent regularly, a gaming site that lets you choose an alternative color scheme, or
your bank’s web site that needs cookies to let you do online banking. But cookies are probably
not relevant to many web sites that you visit. Maybe you visited a funny site mentioned by a
friend; you’re not coming back, and that site does not need to set a cookie. In fact, the majority
of sites that are visited probably do not need to set a cookie, as far as the user is concerned. In
all likelihood, it is on the message board, the gaming site, and the banking site where cookies
are important for the user. It is easy enough to set these few sites as exceptions so the shopping
cart at your favorite online store will work for you. This is fairly low-maintenance and less
intrusive than having to address each individual cookie specifically.

11_596500 ch07.qxd 6/30/05 2:52 PM Page 135

136 Part II — Hacking Performance, Security, and Banner Ads

Tools for Cleaning Unwanted Cookies
The built-in tool for cookie removal in Firefox is good and may be sufficient for most users.
The easiest way to perform this chore would be to clear all cookies and start from scratch. But
this can be a problem if you want to clear out some cookies and save some others. For example,
I allow cookies for the message board sites I regularly frequent. Unfortunately, I get too creative
with passwords on some of the web sites, and because I am automatically logged in, I tend to
forget passwords. As long as the cookies are working for the site, I can log in without remem-
bering my password. But when my cookies get wiped, I can’t get in without my password.
Fortunately, the Stored Cookies dialog, shown in Figure 7-9, allows me to select which cookies
I’d like to remove.

FIGURE 7-9: The Firefox Stored Cookies list

For those that are still allowing cookies to be set by default, the checkbox at the bottom of the
Store Cookies dialog, “Don’t allow sites that set removed cookies to set future cookies,” will be
of interest; highlight the cookies that are never allowed to make an appearance again, check the
box, and click on the Remove Cookie button—these cookies will be added to a domain black-
list for cookies.

An interesting extension is CookieCuller, which has a Protect Cookie options; the cookie for
yourfavoritemessageboard.tld can be protected so that it does not get deleted accidentally. A
second benefit is that an icon to access cookie options can be dragged onto the Firefox toolbar
so you no longer need to navigate through the Tools menu.

CookieCuller can be downloaded at http://cookieculler.mozdev.org.

11_596500 ch07.qxd 6/30/05 2:52 PM Page 136

137Chapter 7 — Hacking Banner Ads, Content, Images, and Cookies

Summary
This chapter covered many techniques to filter or block ads, including the domain
whitelist/blacklist image block included within Firefox, taking advantage of the userContent to
change the way that ad elements are displayed, and a more aggressive approach with the
Adblock extension that allows for powerful regular expressions to be used to be more selective
about what is being blocked. The issue of cookies and privacy was addressed, along with
Firefox’s ability to deal with cookies. Unlike images and ad blocking, maintaining a whitelist
for cookies is not nearly as complex, and we took a quick look at identifying what sites a user
would choose as candidates for a cookie whitelist. Those who want slightly greater control over
cookie management were also introduced to CookieCuller, a third-party extension that pro-
vides slightly more functionality.

While advertising is an important facet to keeping a subsidized Internet alive without having
to resort to subscriptions to every nonmerchant web site, aggressive marketing practices,
including in-your-face banner ads and intrusive popups, have caused a backlash against adver-
tisers in general. Again, it should be stressed that while the topics covered in this chapter are a
powerful arsenal against advertising, some discretion should be used in blocking ads, as they do
hurt independent web sites.

11_596500 ch07.qxd 6/30/05 2:52 PM Page 137

11_596500 ch07.qxd 6/30/05 2:52 PM Page 138

Hacking Menus,
Toolbars, and
the Status Bar

Chapter 8
Hacking Menus

Chapter 9
Hacking Toolbars and
the Status Bar

part

in this part

12_596500 pt03.qxd 6/30/05 2:53 PM Page 139

12_596500 pt03.qxd 6/30/05 2:53 PM Page 140

Hacking Menus

An application is analogous to a workspace — while there might be a
lot of similarities between two cubicles in the same office, it does
not necessarily mean that they are set up the same. Yes, there is a

chair in both cubicles, there is a desk, and there is a similar computer, but
the pens, books, or the general arrangement of each cubicle may be differ-
ent. An effective workspace is arranged in such a way that it helps its occu-
pant be more efficient and comfortable in performing tasks. If an application
is like a workspace, the ability to rearrange elements in an application is
arguably as important as being able to choose where to place a mouse in
relation to the hand. For right-handed people it makes sense to have the
mouse to the right of the keyboard, but this arrangement makes less sense
for someone who is left-handed. The concept behind customization is that
one size does not fit all.

An effective GUI allows the user to maximize the usefulness of an applica-
tion and its features. However, a GUI is targeted at a general populace and
not the individual user. Consider cookies, the management of which we
cover in Chapter 7. A person who is unconcerned about cookies and privacy
is unlikely to be concerned that there are several menu layers that have to be
navigated through in order to manage cookies; the power user, however,
may want to be able to get at this functionality with a single button.

This chapter covers the power to change Firefox’s interface to suit the needs
of a specific user. Despite assertions to the contrary, looks do matter if the
number of skins and themes for different applications is any indication. The
more superficial changes, such as customized menu icons, are discussed,
along with some more useful tips, such as changing the displayed menu
options and menu spacing. Several methods of changing the interface are
also discussed, from editing Firefox files directly to hacking with extensions.

Hacking Menus Manually
The most basic way to change the look of the menus requires nothing more
than the trusty text editor, which, by the time you get to this chapter, should
be getting a lot of use. The file that we are going to edit is not created by
default. Depending on the version of Firefox, you may or may not have a
US\chrome directory with a userChrome-example.css file in it. (Version
1.01, which I have done a clean install with, does not seem to have it.) The
.css file extension should be setting off light bulbs — the syntax used for the
userChrome file will be very similar to that of the userContent.css file,
which we cover in Chapter 7. For those who are interested in the
userChrome-example file that does not come with the current Firefox
installation, here are the contents:

˛ Hacking menus

˛ Hiding menu
options

˛ Hacking menu
spacing

˛ Hacking menu fonts
and style

˛ Menu extensions

˛ Hacking menu icons

˛ Theme-supported
icons

chapter

in this chapter

by Terren Tong

13_596500 ch08.qxd 6/30/05 2:55 PM Page 141

142 Part III — Hacking Menus, Toolbars, and Statusbar

/*
* This file can be used to customize the look of Mozilla’s user interface
* You should consider using !important on rules which you want to
* override default settings.
*/

/*
* Do not remove the @namespace line -- it’s required for correct functioning
*/
@namespace url(“http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul”);
/* set default namespace to XUL */

/*
* Some possible accessibility enhancements:
*/
/*
* Make all the default font sizes 20 pt:
*
* * {
* font-size: 20pt !important
* }
*/
/*
* Make menu items in particular 15 pt instead of the default size:
*
* menupopup > * {
* font-size: 15pt !important
* }
*/
/*
* Give the Location (URL) Bar a fixed-width font
*
* #urlbar {
* font-family: monospace !important;
* }
*/

/*
* Eliminate the throbber and its annoying movement:
*
* #throbber-box {
* display: none !important;
* }
*/

/*
* For more examples see http://www.mozilla.org/unix/customizing.html
*/

Note that the same structure (following) is used for the example rules shown here:

selector { property: value}

13_596500 ch08.qxd 6/30/05 2:55 PM Page 142

143Chapter 8 — Hacking Menus

Readers are encouraged to take a closer look at Chapter 7, where the topic of CSS is covered in
more detail.

Hiding Menu Options
Power users are always concerned about desktop real estate. Personally, I do a lot of ridiculous
things to squeeze in an extra row here or there, including using autohide with the task bar in
Windows. Generally, this is more difficult to do at the application level. Some applications do
allow the user to hide a status bar or title bar, or sometimes even all the menus, but generally
they allow very little customization. The userChrome.css file, however, does enable us to
remove specific menu items.

Toolbar items can be added and removed by right-clicking on the toolbar area and selecting the
Customize Toolbar option. A dialog with various icons should pop up, and these can be dragged
to the position of your choice on the toolbar, as shown in Figure 8-1. Conversely, toolbar items
that are of little value to you can be dragged onto the dialog, and they will be removed. One
example of wasted toolbar space is the long white strip at the top, which serves as a buffer.

FIGURE 8-1: Add to and remove items from the toolbar. Menu items, however, cannot be
simply dragged off.

As the stereotypical guy, the first thing that I will remove using the userChrome file is the
Help menu. This is probably a safe choice for you too, as readers of Hacking Firefox are the type
who should be resourceful enough to find help on the Internet. If the userChrome.css file does
not yet exist, it needs to be created in the profiles/chrome directory.

The code for removing the Help menu is straightforward:

menu[label=”Help”] {
display: none !important;

}

Save to the userChrome file and restart Firefox. The Help menu should be gone, as shown in
Figure 8-2.

13_596500 ch08.qxd 6/30/05 2:55 PM Page 143

144 Part III — Hacking Menus, Toolbars, and Statusbar

FIGURE 8-2: With the userChrome.css file, the
Help menu has been removed.

The code is case sensitive—label=”help” is not the same as label=”Help”. The former
will have no effect, while the latter will remove the menu.

The same procedure can be done for every other menu item simply by replacing Help with the
appropriate menu item. Removing multiple menu items at once can be done in one of two
ways. You can duplicate the Help removal code and change the menu item specified in label,
or you can expand upon the CSS statement a little bit more and keep the code a bit cleaner.
The following will remove both the Edit and the Help menu:

menu[label=”Edit”],menu[label=”Help”] {
display: none !important;

}

The keyword menu removes the entire tree specified, and sometimes this functionality may not
be desired. Submenu items can also be removed using the same technique, but with menuitem
as the keyword instead of menu. One of the menu items that I have little use for is Reload, as I
always use the keyboard shortcut, so I will remove it along with the Help and Edit menus. The
View menu should look like Figure 8-3 after this has been applied:

menuitem[label=”Reload”], menu[label=”Edit”],menu[label=”Help”] {
display: none !important;

}

FIGURE 8-3: Reload usually sits under Stop but has been removed as a menu item.

13_596500 ch08.qxd 6/30/05 2:55 PM Page 144

145Chapter 8 — Hacking Menus

Removing unwanted menus and menu items is a straightforward task when compared with
some of the tricks and work that were involved in ad blocking in Chapter 7. Customizing the
menus and items that are displayed should be quick work through the userChrome file.

Hack Menu Spacing
Beyond removing different menus from the toolbar, the spacing between the various elements
can also be changed. It may be the case that more free space is desired up there, or perhaps
there is too much free space and you want the menus to be spread out over the bar area.

In the userChrome file, add the following:

/* default: 4 6 4 6 – top right bottom left */
menu {

padding: 4px 6px 4px 6px !important;
}

The first line is commented out. It is good practice to comment code, as several months down
the road, when the userChrome file is being revisited, it may be hard to discern at a glance
what the code is doing. Restarting Firefox should net no difference because these are the
default values for menu spacing. As the code suggests, the first value is the spacing on the top;
the second value, the amount of space to the right of the menu; the third value, the space
below; and the fourth value is the amount of padding on the left. With an average resolution of
1024 × 768, a one- or two-pixel increment represents a relatively minor change. The horizontal
change may be more noticeable as each button is changed by the number of pixels specified.
The total change in spacing will be a multiple of the value entered for the left and right values,
as shown in Figure 8-4.

FIGURE 8-4: A change of only a couple pixels
on the horizontal span is fairly subtle.

To get a better idea of how each element affects the overall positioning, try exaggerated values,
such as 50, to see where the spacing is going for each value. Astute readers may notice that
menu is also the selector used for hiding menus, except that we were a little bit more specific
on what was being hidden. (We specified the particular menu to be removed.) Right now, the
spacing is being applied globally to all the menu items, but this does not need to be the case.
With the following code snippet, the File menu will look like that shown in Figure 8-5, wider
while every other menu remains the same:

menu[label=”File”] {
padding: 4px 20px 4px 20px !important;

}

13_596500 ch08.qxd 6/30/05 2:55 PM Page 145

146 Part III — Hacking Menus, Toolbars, and Statusbar

FIGURE 8-5: Increasing the width of only
one item

Specific menu spacing items override global ones. For example, if widths of 10 were specified
for the left and right padding for the menu as a global, but there is also the extra wide File
listed in the userChrome file, the File-specific instruction will override the global value.

While changing the horizontal component does not affect the other items in the menu, chang-
ing the vertical components does. The example of changing either one of the top or bottom
fields to something that is immediately obvious will show the menu to be offset vertically, but
the other menu fields will be centered as a sum of both vertical components. This is better
illustrated with the following code and Figure 8-6:

menu[label=”File”] {
padding: 4px 6px 25px 6px !important;

}

FIGURE 8-6: An offset File menu

Different values are used for the top and bottom fields, resulting in an offset File menu in com-
parison to other menus. Note that the vertical padding of the other menus is still affected,
although only a different set of spacings is specified for the File menu.

The same principles of adjusting individual or global settings apply with menuitem. For those
who like the large-button approach of Windows XP, try a larger value (around 15) to give menus
a buttonlike feel.

Hack Menu Fonts and Style
Now that the menus and menu items have been changed around a bit, it is time to
change menu fonts. Once again, for a global effect, the selectors involved will be menu and
menuitem — the first property that will be modified is the actual font and then the size,
resulting in the menu shown in Figure 8-7:

menu {
font-family: “Neuropolitical” !important;
font-size: 5mm !important;

}

13_596500 ch08.qxd 6/30/05 2:55 PM Page 146

147Chapter 8 — Hacking Menus

FIGURE 8-7: A changed menu font. Notice that embedded menus inside
the top-level menu are considered a menu and not a menu item.

The CSS code should be fairly straightforward. The following preceding changes the font for
the menus to Neuropolitical and increases the font size to 5 to increase the readability. If you
also wanted menu items to share a font, you could change the code slightly:

menuitems,menu {
font-family: “Neuropolitical” !important;
font-size: 5mm !important;

}

Some other interesting properties that can be changed include the following:

� font-weight: Values include bold or 100 to 900 in increments of 100 to denote the
level of boldness.

� font-style: Values include italic and oblique.

� color: Values include hex codes (e.g., #abcdef, 111222) and color names (blue,
green, red).

This is by no means an extensive list of CSS functionality, but merely the tip of the iceberg.
Besides the ability to customize the look of Firefox, there can be some interesting applications.
Bolding or otherwise changing specific menus and menu items so that they stick out could be
used for tutorial purposes to bring attention to certain features.

For a complete list of available font modifications with CSS, refer to http://www.w3.org/
TR/REC-CSS2/fonts.html.

Hacking Menus with Extensions
There are extensions that provide similar functionality to some of the topics just covered. The
first one is Compact Menu, which provides options to remove menus, as we did in “Hiding
Menu Options,” earlier in this chapter.

The Compact Menu extension can be downloaded from http://cdn.mozdev.org/
compact/.

13_596500 ch08.qxd 6/30/05 2:55 PM Page 147

148 Part III — Hacking Menus, Toolbars, and Statusbar

Go ahead and install the extension, then restart Firefox. If you right-click on the toolbar now
and choose the Customize option, there will be a couple of subtle changes that you can see in
Figure 8-8.

FIGURE 8-8: The Compact Menu extension adds two menu items, Compact
Menu and Menu, as well as the Compact Menu checkboxes.

Deselecting the checkboxes shown underneath the items removes those items from the toolbar.
One of the benefits of using Compact Menu to do this instead of altering the CSS file as we
did earlier is that Firefox does not need to be restarted for the Compact Menu changes to take
effect.

The userChrome.css file takes precedence over the Compact Menu extension—if a menu was
specified to be hidden with the userChrome file, having the checkbox checked on Compact
Menus will not override the userChrome setting.

The additional functionalities that are not possible with userChrome are the Compact Menu
and the Menu icons. (They are functionally equivalent.) If the Compact Menu icon is dragged
onto the toolbar, all the menu items are replaced by Compact Menu, and all the default menus
are listed under it instead. This has the dual benefit of freeing up toolbar space and keeping all
the functionality intact; the same thing cannot be said about the userChrome method of hiding
menu items. For an example of Compact Menu in action, see Figure 8-9.

13_596500 ch08.qxd 6/30/05 2:55 PM Page 148

149Chapter 8 — Hacking Menus

FIGURE 8-9: No functionality is lost with Compact Menus, as all
menus are still accessible. Note that userChrome rules are still
in effect; File alone is in bold, as specified with the CSS.

The next extension, Menu Editor, provides some functionality that has not been covered yet.
Instead of changing around elements of the toolbar menu, it allows the right-click context
menu on a web page to be changed around. The ordering of the menu items can be changed,
and some items can be removed.

The Menu Editor extension can be downloaded from http://menueditor.mozdev.org/.

Posted installation instructions for Menu Editor are a bit spotty. Menu Editor can be accessed
by entering the following URL into the location bar:

chrome://menuedit/content/menueditprefs.xul

The window shown in Figure 8-10 should come up.

For me, the Back, Forward, Reload, and Stop options are not very useful, because I tend to use
extra mouse buttons or keyboard shortcuts, so those have all been axed along with the separator
directly below them. Those still leery of playing with the regex discussed in Chapter 7 may be
interested in moving the Adblock items farther up on the context list.

13_596500 ch08.qxd 6/30/05 2:55 PM Page 149

150 Part III — Hacking Menus, Toolbars, and Statusbar

FIGURE 8-10: The Menu Edit page allows right-click context menu items to be reordered and
removed. In larger browser windows, some of the buttons will show up to the extreme right.

Hacking Menu Icons
So far, this chapter has dealt with textual elements, having modified the menus in various ways
both through CSS and through extensions. Several of the hacks covered were practical. Menus
that were not needed were suppressed. Emphasis could be put on certain menus or menu items
with bolding or other text tricks. What we have not yet modified is the graphical aspect of
Firefox, a project that definitely appeals more to vanity than to useful purpose. Yet skinning, the
term for applying a theme to an application, is immensely popular, as seen through the thou-
sands of skins available for something like WinAmp or, on an even more basic level, the myriad
wallpapers that populate each desktop. While themes and icons cannot compensate for a
poorly designed GUI, a nice-looking theme can enhance the appeal of an application.

Theme-Supported, Customized Menu Icons
Themes modify the GUI more extensively than just strictly icon replacement; they change the
look of the application in various ways. Tabs may look different; mouseovers may react differ-
ently. The extent of these changes is dependent on the theme.

Mostly Crystal Theme
The Mostly Crystal theme should look familiar to Linux desktop users, as the icons are based
on the Crystal theme (http://www.everaldo.com/crystal.html) of KDE fame. The
Mostly Crystal icon set is bright and cohesive — the art is consistent throughout, which is
something that not every theme or icon set can always claim. The theme is similar in style to
the default Internet Explorer theme in Windows XP. The icons have a shaded 3-D look and
tend to appear more user friendly than the default Firefox theme.

13_596500 ch08.qxd 6/30/05 2:55 PM Page 150

151Chapter 8 — Hacking Menus

The Mostly Crystal Theme is hosted by its author, CatThief, and it can be downloaded from
http://www.tom-cat.com/mozilla/firefox.html.

A sample of the menu icons is shown in Figure 8-11.

FIGURE 8-11: A view of the replaced icons, courtesy of CatThief’s Mostly Crystal
icon theme. Note that the appearance of the tabbed windows has also changed.

There are some more subtle changes, including the one shown in Figure 8-12 — instead of the
Bookmark item’s having a raised effect during a mouseover, the lettering now turns blue on
screen.

FIGURE 8-12: Mouseovers on bookmarks cause the text to turn blue
instead of having the raised effect of the default Firefox theme.

13_596500 ch08.qxd 6/30/05 2:55 PM Page 151

152 Part III — Hacking Menus, Toolbars, and Statusbar

The Mostly Crystal theme can be customized through the userChrome file. For those who do
not like the new bookmarked item icon, it can be changed back to the old style page. The same
rule applies to the new tab style. Other options from a very extensive list include the ability to
round address and search bars.

You can find a thorough listing of what changes can be made to the Mostly Crystal theme at
http://www.tom-cat.com/mozilla/firefox/userchrome.html.

Aaron Spuler’s Menu Icons
Unlike the Mostly Crystal theme, Aaron Spuler’s Menu Icons is not just a single theme, but a
collection of ten themes. Each of the themes has its own distinctive style and is far more than a
simple color change. Some that stand out particularly are the very artsy Apollo theme, the
bright yellow Mars theme, and the subtle Smoke theme. The majority of Spuler’s themes have
a rounded location bar.

Aaron Spuler’s themes can be found at http://www.spuler.us/index.html. (JavaScript
needs to be enabled, for those who may have turned it off.)

Figure 8-13 shows the Mars theme.

FIGURE 8-13: Aaron Spuler’s Mars theme: Round and yellow is the theme here. Notice the
rounded location bar, which looks more like a Mac application than a Windows-based one.

As with the Mostly Crystal theme, Aaron Spuler includes some lines that can be included in
the userChrome file to change icons and even the shading style of the Firefox browser frame.
With the following code in the userChrome file, the browser window and the look of the tabs
change dramatically, as shown in Figure 8-14:

@import url(“chrome://global/skin/subskin/brushed.css”);
@import url(“chrome://global/skin/subskin/safaritabs.css”);

13_596500 ch08.qxd 6/30/05 2:55 PM Page 152

153Chapter 8 — Hacking Menus

FIGURE 8-14: The browser window with the brushed.css subskin
and Safari-style tabs enabled through the userChrome.css file

Subskins are not global, as suggested by the preceding code. (For example, the code added to
the userChrome file will have no effect when you are using themes other than Aaron Spuler’s.)

A few extra settings and options are covered in the Theme Options link at the bottom of the
theme pages that users will likely find useful.

Finding More Icons
Although the themes previously introduced are of high quality, there will still be those who
crave more choices. Here is a listing of several other web sites that have a good collection of
themes to go through:

� https://addons.update.mozilla.org/themes/?os=Windows&
application=firefox: An aggregation of themes straight from Mozilla

� http://beverlyhills.web.infoseek.co.jp/themes.html: A collection of
high-quality themes like Aaron Spuler’s

� http://www.saegepilz.de/Themeseite/: Links and previews of themes

� http://lynchknot.com/ffthemes.html: A small collection of themes

Another site that is definitely worth checking out is www.deviantart.com. Though a lot of
things are mixed in along with the skins, there are some definite gems buried there. Users are
also encouraged to do a simple search on Google for “Firefox themes,” as the number of theme
sites is plentiful.

Hacking with the CuteMenus Extension
So far, the themes that have been explored change only the main toolbar and the associated
icons. Here, we look at how to add icons to the right-click context menu with a pair of
extensions.

13_596500 ch08.qxd 6/30/05 2:55 PM Page 153

154 Part III — Hacking Menus, Toolbars, and Statusbar

Using the CuteMenus Extension
The original CuteMenus extension adds the icon set from the original Firefox theme to the
popup context menus.

Grab the CuteMenus Extension from http://cute.mozdev.org/. (This example uses
v0.4 XPI.)

Figure 8-15 shows CuteMenus in action.

FIGURE 8-15: The CuteMenus icons liven up the right-click context
menu and add some flair where there is usually only text.

Unfortunately, this version of CuteMenus does not allow for the modification of the icon set
being used. Users employing the default Firefox skin will be content with CuteMenus, but oth-
ers who have adopted another theme might consider this limitation a fashion faux pas requir-
ing remedy.

Using Aaron Spuler’s Hacked CuteMenus Extension
Aaron Spuler has a version of the CuteMenus extension that is more versatile than the one
found at the CuteMenus URL, as it allows the icon theme for the right-click menu (aka con-
text menu) to be changed.

Two versions of the modified CuteMenus extension are available. The newer one (v 0.3.8) is on
Aaron Spuler’s site at http://www.spuler.us/extensions/cutemenus.htm. If you
have the original CuteMenus theme installed, remove it first, because there will be a conflict if
the hacked CuteMenus extension is installed directly on top; neither version will function. For
those who have accidentally done this, go to the Firefox profiles/chrome directory and remove
the CuteMenus Themes folder as well as cutemenus.jar. This should allow the new version of
CuteMenus to install properly.

13_596500 ch08.qxd 6/30/05 2:55 PM Page 154

155Chapter 8 — Hacking Menus

Bring up the configuration dialog for the new version of CuteMenus by right-clicking on a
web page area to bring up the context menu. While holding down the Shift key, move the
mouse around; an additional menu, CuteMenus Config, should pop up at the bottom of the
menu, as shown in Figure 8-16.

FIGURE 8-16: The CuteMenus variant allows the user to change CuteMenus
themes and to disable CuteMenus without uninstalling the extension.

The OfficeXP Skin that is checked overrides any subskin settings that may be in effect; in this
particular case, the context menu does not inherit the settings from brushed.css. CuteMenus
themes are not nearly as plentiful as themes for Firefox, although there are some out there.
Aaron Spuler has an associated CuteMenus theme for each one of his Firefox skins, so users
who found a theme to their liking on his web site can use his hacked CuteMenus.

Summary
This chapter explored ways to customize the menus in Firefox, from removing unwanted menu
items to changing spacing and fonts. Remember when using the userChrome.css file that set-
tings can be applied at a global level to an entire set of widgets or to individual, specific items.
The font for example, can be changed for all the menus, but you can choose to bold just the
File menu. A lot of the text and menu customization focused on how to increase the amount of
usable toolbar space.

The Compact Menus extension provides a second method of hiding menu items. Beyond hid-
ing menus, Compact Menus allows every menu to be listed under a single global menu — a
handy feature for those who value toolbar space.

13_596500 ch08.qxd 6/30/05 2:55 PM Page 155

156 Part III — Hacking Menus, Toolbars, and Statusbar

The Menu Editor function provides some useful functionality, including the ability to reorder
and hide items. Examples of items that are redundant in the right-click context menu are Back
and Reload, which a lot of users will trigger using keyboard shortcuts.

The chapter also looked at obtaining themes for Firefox. Outstanding themes discussed
included the Mostly Crystal menu icons theme and Aaron Spuler’s collection of themes. These
accomplish changes in icons as well as more subtle changes, including the way that tabs look
and the way that mouseovers are handled with bookmarks. With both sets of themes, addi-
tional customization is available through the userChrome file.

The final topic covered was changing the right-click context menu with two variants of the
CuteMenus extension. The simpler version of CuteMenus adds the default Firefox icons to the
right-click menu for those who are content with the original theme but would like a touch of
pizzazz. A further developed version of CuteMenus allows modification of context menu
themes, adding additional customization possibilities for the discerning user.

Although many useful customizations are possible with Firefox, it is safe to say that Firefox is
not all work and no play. Themes definitely make the diminutive browser anything but dull.

13_596500 ch08.qxd 6/30/05 2:55 PM Page 156

Hacking Toolbars
and the Status Bar

The next two areas of Firefox customization we tackle are the processes
of hacking the toolbar and status bar. As mentioned briefly in
Chapter 8, there is a lot of valuable application real estate that can be

reclaimed through the removal of toolbar items. Conversely, there are but-
tons that are worth adding, including a button for the Compact Menus
extension. Beyond the default toolbar items, one of the areas that has not
been touched yet is the status bar, which is generally underused; that, we
shall remedy.

Removing and Changing Toolbar
Buttons
In Chapter 8, we briefly went over how to add items to and remove items
from the toolbar. A context menu, like the one shown in Figure 9-1, can
be brought up by right-clicking on the toolbar area (anywhere above the
bookmarks).

FIGURE 9-1: Toolbar context menu

The navigation toolbar is the entire row beneath the menus, while the
bookmarks toolbar is the row just above the tabs. By default, both the navi-
gation toolbar and the bookmarks toolbar are on. However, navigation key-
board shortcuts will still work with the navigation toolbar off. For example,
pressing Ctrl+L on a Windows machine brings up an Open Location dia-
log; with the navigation bar on, the focus changes to the location bar. Users
should preferably start with the Customize option, as there is a finer level of
control available instead of having to remove an entire toolbar at once.

˛ Hacking toolbars
and status bar

˛ Removing and
changing toolbar
buttons

˛ Showing system
icons

˛ Adding customized
toolbar buttons

˛ Adding useful
toolbars

˛ Hacking the
status bar

chapter

in this chapter

by Terren Tong

14_596500 ch09.qxd 6/30/05 2:57 PM Page 157

158 Part III — Hacking Menus, Toolbars, and Statusbar

The customize option is interesting because it allows you to remove only certain elements of
the toolbar. Again, any item on the toolbar can be removed through the Customize option
except for the text menus; the process of removing these was covered in detail in Chapter 8.

There are several things of note in Figure 9-2, the most important being the Customize
Toolbar window and the navigation toolbar. Items in the navigation toolbar can be rearranged;
items that the user deems unnecessary can be dragged to the Customize Toolbar area, and they
will be removed. Conversely, icons in the Customize Toolbar menu can be dragged and added
to the navigation toolbar.

FIGURE 9-2: The Customize Toolbar menu. Items can be dragged from the
toolbar into this dialog, and vice versa.

If none of the toolbars has been turned off, there are three areas to which toolbar items can be
dragged: the main menu toolbar, the navigation toolbar, and the bookmarks toolbar. As previ-
ously mentioned, the only toolbar that cannot be turned off is the main toolbar on top. One of
the interesting items in the Customize Toolbar menu is Flexible Space, which expands to take
up all the gray space in a given row. It appears in the top row to the right of the text menus. If
the Flexible Space were to the left of the menu, the menu items would be forced to the right
side of the browser window.

One of the reasons we advise the user to keep the navigation and bookmarks toolbars on at least
temporarily is that the navigation and bookmark elements are not accessible in the Customize
dialog when they are hidden; this would mean, for example, that the location bar cannot be
moved.

14_596500 ch09.qxd 6/30/05 2:57 PM Page 158

159Chapter 9 — Hacking Toolbars and the Status Bar

Toolbar items can be moved in several ways. Items can be moved between different toolbars,
and they can be removed by dragging them into the Customize Toolbar dialog. As noted in
Chapter 8, a significant amount of space wasted with the flexible space that eats up all the extra
room in the main menu toolbar. Removing that allows the user to place other items there,
including larger ones like the location box. Remember that removing an item does not remove
that functionality from Firefox; if you choose to remove the Reload Page button from the navi-
gation toolbar, the Reload Page keyboard shortcut, the right-click context menu, and View ➪
Reload will still allow for a page refresh. This is especially important to keep in mind for a cus-
tomized kiosk browser or a locked-down version of Firefox that may be used in the workplace.

I tend to take the new tab keyboard shortcut for granted, so that is not particularly important
for me, but some newer users may find that useful. If you are ambivalent about keyboard short-
cuts and want to add a lot of icons to the toolbar menu, you might want to consider the Add
New Toolbar button This will add a new toolbar between the navigation toolbar and the book-
marks toolbar. All the items that are not used by default can be dragged onto this toolbar with-
out having to modify the existing ones. Note that if this toolbar has no items, it does get
deleted and will not show up on the main page.

There are a few restrictions with the Customize Toolbar functionality. One of these restrictions
is that no items can be dragged to the right of the bookmarks toolbar Items icon — only to the
left.

The other option available is the ability to modify the way that the toolbar items are displayed;
the checkbox controls sizing, and the drop-down box controls labels and icons. Both should be
self-explanatory, so exploration will be left up to the user.

Showing System Icons
We now move on to system icons, which are located on the status bar at the bottom of the
browser window. System icons include page security, live bookmarks, and the popup blocker.
Unlike the toolbar, which is mostly static except for the times that it is being modified, the sta-
tus bar is dynamic. The icons, as shown in Figure 9-3, are not in set positions.

FIGURE 9-3: The Security button and the Live Bookmarks icon appear only on
certain pages. The layout of the status bar is not static, like that of the toolbar.

You can, however, force the system icons to appear on every single page. Unfortunately, there is
no content menu here that you can access from inside Firefox, so once again, you must fire up
the trusty text editing utility and point it toward the userChrome.css file.

14_596500 ch09.qxd 6/30/05 2:57 PM Page 159

160 Part III — Hacking Menus, Toolbars, and Statusbar

The first step is to force on the Security button, which can be accomplished with the following:

#security-button {
list-style-image:
url(“jar:resource:/chrome/classic.jar!/skin/classic/browser/Security-
broken.png”);
min-width: 20px !important;
-moz-box-direction: reverse;
display: -moz-box !important;
}

While this forces the Security button on, it will always display with the broken security sign
(a slash across the lock) regardless of the security level. Because of this, you need to add more
specific cases to handle the different levels of web page security. In addition to the preceding
code, you need the following:

#security-button[level=”high”] {
list-style-image:
url(“jar:resource:/chrome/classic.jar!/skin/classic/browser/Secure.png”)
!important;
display: -moz-box !important;
}

#security-button[level=”low”] {
list-style-image:
url(“jar:resource:/chrome/classic.jar!/skin/classic/browser/Secure.png”)
!important;
display: -moz-box !important;
}

#security-button[level=”broken”] {
list-style-image:
url(“jar:resource:/chrome/classic.jar!/skin/classic/browser/Security-
broken.png”) !important;
display: -moz-box !important;
}

You now have CSS rules for three specific cases: high-level encryption, low-level encryption,
and no encryption. Pages that are digitally signed will have the lock icon at the bottom, and the
rest will have the lock with the slash. Notice that there is no separate icon for the low-grade
encryption pages, so it is still up to the user to check how secure a site is before submitting per-
sonal information. Whipping up a different icon for the low-level encryption would be a quick
and useful exercise in further customizations. Figure 9-4 shows the no-security icon that will
appear on most web pages.

FIGURE 9-4: Most web pages are not digitally signed, and the slashed-lock icon will be shown.
This should generally not be a concern unless the site in question is an e-commerce site.

14_596500 ch09.qxd 6/30/05 2:57 PM Page 160

161Chapter 9 — Hacking Toolbars and the Status Bar

The popup blocking functionality in Firefox is buried under Tools ➪ Options ➪ Web Features ➪
Allowed Sites, which is quite a bit of clicking. The popup blocker in the status bar shown in
Figure 9-5 can be enabled with this bit of code:

/* Always display the Popup Blocker Button in the status bar. */
#page-report-button {
list-style-image:
url(“jar:resource:/chrome/classic.jar!/skin/classic/browser/Info.png”)
!important;
min-width: 20px;
display: -moz-box !important;
}

FIGURE 9-5: Allowing popup options is a lot quicker
with an easily accessible button in the status bar.

The final system icon that will be added is the live bookmark. Live bookmarks are a neat bit of
functionality. On sites that provide RSS feeds, the live bookmark shows up as a folder with all
the current RSS items showing as a direct link. As with the different encryption levels for the
security icon, there is only a single icon that represents live feeds, and the only way to tell if a
page supports it is through a tooltips dialog. The code to enable live bookmarks on all pages
follows:

#livemark-button {
-moz-appearance: none !important;
list-style-image:
url(“jar:resource:/chrome/classic.jar!/skin/classic/browser/page-livemarks.png”)
!important;
min-width: 20px;
display: -moz-box !important;
}

An example of the tooltips and a set of live bookmarks are shown in Figure 9-6.

Figure 9-6 shows all three of the system icons. When all three are enabled, the positions are
static. Regardless of the order of the code in the userChrome file, the system icons will appear in
this order.

14_596500 ch09.qxd 6/30/05 2:57 PM Page 161

162 Part III — Hacking Menus, Toolbars, and Statusbar

FIGURE 9-6: A live bookmark of the BBC RSS service is shown at the top of the image.
Notice that the live bookmark acts as a folder, and news articles act as bookmarked links.
These change as the BBC page changes. The Live Bookmark icon does not differentiate
between pages with feeds and those without feeds; users will have to rely on tooltips.

Show Mozilla Update Icon
The one system icon that we will add to the toolbar is the Mozilla Updates button. This icon is
not available directly from the Customize Toolbar menu, but it requires that only a couple of
lines be added to the userChrome.css file:

/* Always display the Mozilla Updates in the toolbar. */
toolbarbutton[type=”updates”] {
visibility: visible !important;
}

Once the file has been saved and Firefox restarted, the button with the up arrow shown in
Figure 9-7 should appear in the toolbar. (The button will be green on your computer screen.)
A single button click checks the Mozilla web site for updates to Firefox, as even Firefox is not
immune to the occasional security update. Unfortunately, the update icon cannot be moved or
repositioned.

FIGURE 9-7: The Mozilla Updates button can be forced on through some
userChrome code, but unlike the other toolbar items, it cannot be moved.

Adding Customized Toolbar Buttons
Through the use of two extensions that will be introduced here, additional buttons can be
added to the toolbar, much like what you saw with Compact Menus in Chapter 8. You saw the
benefits of having the popup blocker reside in the status bar; it is immediately accessible
instead of requiring four levels of menu navigation.

Mozilla Updates button

14_596500 ch09.qxd 6/30/05 2:57 PM Page 162

163Chapter 9 — Hacking Toolbars and the Status Bar

The EMButtons Extension
With EMButtons, icons for the Extension Manager and the Theme Manager will be available
from the Customize Toolbar dialog.

The EMButtons extension is available at http://moonwolf.mozdev.org/#embfx.

Besides the ability to add the two manager icons to the toolbar, the EMButtons extension cre-
ates shortcut keys to access both menus, so the time spent cleaning up the tool will not sud-
denly be rendered moot. It is worthwhile to add at least one of the buttons to the toolbar at
least temporarily, because some additional functionality is available through EMButtons.
Right-clicking on either the Themes or Extensions icon brings up a context menu with a few
new items. The one that we are interested in is EMButtons Options, which brings up the dia-
log shown in Figure 9-8.

FIGURE 9-8: The Extension and Theme Managers can be forced
into a browser window instead of popping up as a dialog.

The keyboard shortcuts added by EMButtons are Ctrl+Shift+E/T/O for the Extension Manager,
the Theme Manager, and the Options dialog, respectively.

The first option is the ability to force the Extension and Theme Managers to either open up in
the current browser window or have them show up as a sidebar like the history window. With
dual monitors, dialogs appear in strange places at times, and having the manager windows open
up in the browser makes a lot more sense to me personally.

14_596500 ch09.qxd 6/30/05 2:57 PM Page 163

164 Part III — Hacking Menus, Toolbars, and Statusbar

The Alphabetical Sort is also a nice option to have, especially for those who have a lot of
themes or extensions installed. Items are otherwise in chronological order, not usually the most
efficient sorting method when you are looking through a larger list. The other two checkboxes
are Extension Manager–specific. Performance Mode removes some formatting that is supposed
to speed things up; I have a smallish list of extensions installed, so the benefits are not readily
apparent to me. Concise Mode removes the descriptions and icons for extensions so a larger list
can be displayed at once.

The Toolbar Enhancements Extension
The Toolbar Enhancements extension builds on the same idea of adding more useful buttons
to the main toolbar.

Grab the Toolbar Enhancements extension from http://clav.mozdev.org/#tbx.

Toolbar Enhancements makes available a different set of toolbar buttons than EMButtons.
Figure 9-9 shows the buttons that are enabled through this extension.

FIGURE 9-9: The toolbar icon set that the Toolbar Enhancements extension
enables. Note that no Themes or Extension Manager icon is included here;
that functionality remains with the EMButtons extension.

Here is a quick summary of the function of each item (listed in order from left to right, begin-
ning with the top row and then moving to the bottom row):

� Source: View page source

� JS Console: Brings up the JavaScript console

� Full Screen: Puts Firefox into Full Screen mode (different from maximize window, same
as F11)

� Clear Cache: Clears the disk cache

� Info: Brings up the Page Info dialog box

� Bookmarks . . .: Brings up the Bookmark Manager window

� JavaScript: Enables/disables JavaScript in the current tab

� Redirections: Enables/disables meta-redirections in the current tab

14_596500 ch09.qxd 6/30/05 2:57 PM Page 164

165Chapter 9 — Hacking Toolbars and the Status Bar

� Options: Brings up the Options dialog usually found under the Tools menu

� Images: Enables/disables images in the current tab

� Bookmark: Bookmarks the current page

� Plug-Ins: Enables/disables all plugins in the current tab

While some of the items described help reduce navigation issues, four items in particular are
very interesting, as they provide additional functionality; they are the JavaScript, Redirections,
Images, and Plug-Ins buttons. The ability to disable JavaScript, redirects, images, and plugins
in a specific tab or window is unique to the Toolbar Enhancement extension. Previously, these
options could be applied only globally to all windows and all tabs. This makes it possible to
allow a favorites-type site to run with all the bells and whistles; at the same time, another
browser window can act as a sandbox, with everything locked down when you are visiting sites
of dubious origin.

Besides adding buttons to the toolbar, Toolbar Enhancement adds some more customization
features. While the Customize Toolbar dialog is open, right-clicking on the toolbars brings up
the menu shown in Figure 9-10.

FIGURE 9-10: Toolbar-specific options are available
through the Toolbar Enhancement extension.

Again, options are available at the specific toolbar level and are not necessarily applied across
the entire toolbar. Because most users are likely to be familiar with the default toolbar icon set,
text descriptions for those may be removed, while the unfamiliar ones from the Toolbars
Extension can be labeled. Full-Screen mode hides some of the toolbars, and this dialog allows
the user to choose which additional ones will be shown. The final set of controls is for the
alignment of the toolbar and offers several other positions:

� Top: The default area

� Below Tabs: Moves a toolbar below the tab area

� Left and Right: Orients the toolbar elements vertically along either edge of the browser
window

� Bottom: Adds a toolbar above the status bar on the bottom of the screen

14_596500 ch09.qxd 6/30/05 2:57 PM Page 165

166 Part III — Hacking Menus, Toolbars, and Statusbar

Adding Useful Toolbars
After all the hard work of deciding which buttons to ax from the toolbar, we now focus on a
few extensions that place on the toolbar additional buttons that go beyond navigational
shortcuts.

Using the Googlebar Extension
My absolute favorite tool for Internet Explorer was, without a doubt, the Google toolbar.
Although long-term Firefox users may take popup blocking and an integrated Google search
box for granted, it was something novel on the Internet Explorer side when it was first
released. So the Googlebar Extension for Firefox seems a bit redundant, as two of the major
selling points of the IE version are already included in Firefox. Or are they?

Grab the Googlebar extension at http://googlebar.mozdev.org/.

The basic search box is shown in Figure 9-11. Despite some similarities with the built-in
Firefox search box, the Googlebar menu expands to include direct links to some of the specific
Google searches, including Google Images and Google Groups. The Googlebar extension
options can also be changed here.

FIGURE 9-11: The Googlebar search box is more robust than the built-in Firefox search dialog.
With no search parameters, the G button redirects the browser window to the main Google page.
With search parameters entered, a search is launched.

The Googlebar search dialog is integrated closely with the rest of the toolbar; we will refer to
this as we discuss the functions of some of the other buttons.

Figure 9-12 shows the next group of buttons as we traverse the Googlebar.

The first icon is Site Search: this does a search only on the site that is being browsed. For
example, you may want to find out what is being said about Firefox on Microsoft’s site only. If
you navigate to http://www.microsoft.com, type Firefox as the search term, and hit the
Site Search button, pages that refer to Firefox on the Microsoft site will be brought up.

Site search functionality is also available through the following syntax: site:www
.targetwebsite.tld searchterm.

14_596500 ch09.qxd 6/30/05 2:57 PM Page 166

167Chapter 9 — Hacking Toolbars and the Status Bar

FIGURE 9-12: The Googlebar includes Site Search,
I’m Feeling Lucky, Google Groups, and Google
Directories as part of the default set of buttons

I’m Feeling Lucky takes the user directly to a web page based on the search term and is func-
tionally equivalent to the button found on the main Google page. The groups and directory
search buttons do searches in Google Groups and Google Directories, respectively.

Figure 9-13 shows the next set of buttons, the Googlebar Options, and a set of additional spe-
cialized searches.

FIGURE 9-13: From left to right, Googlebar Options, specialized
Google searches (big drop-down menu), OS-specific searches
(BSD, Linux, MacOS, Windows), and university-specific searches.

We’re going to skip some of the navigation buttons. (They are useful, however; the up one
directory feature is arguably faster than deleting parts of the URL manually.) The last item, the
highlighter, is the most underrated item on both the Internet Explorer and the Firefox side.
Once again, the highlighter ties back into the Googlebar search dialog — words that are

Specialized
Google Searches

Googlebar Options

University-specific
Searches

OS-specific Searches

Google Directories

Google Groups

I´m Feeling Lucky

Site Search

14_596500 ch09.qxd 6/30/05 2:57 PM Page 167

168 Part III — Hacking Menus, Toolbars, and Statusbar

entered there can be highlighted on a web page. One of my coworkers remarked that Firefox
already has similar functionality through the Find in Page dialog, but that is not completely
true. The Googlebar highlighter allows for multiple, independently searchable, highlighted
terms, while Find in Page treats text entered as a single string. Figure 9-14 shows the high-
lighter in action.

FIGURE 9-14: There are four highlighted terms: Firefox, browser, web, and security.
Clicking on the word in the Googlebar finds the next instance of that particular word.
By contrast, the Firefox search can search for a single term only.

Performance can be an issue with the highlighter; when it is activated before a search term is
entered into the Googlebar search dialog, it processes each character as it is being entered, result-
ing in pauses as the Googlebar parses the page. For example, if you are searching for Firefox; it
will first attempt to highlight f, then fi, then fir, and so on. Every time a letter is entered, the search
string is treated as a new string, and the highlight process restarts. Users on slower computers are
advised to turn off highlighting before entering a new term in the search bar.

The only caveat with the Googlebar extension is its relative inflexibility. Googlebar buttons
cannot be added to other toolbars, and you cannot add other toolbar buttons to the Googlebar.
Nonetheless, it does offer many useful features, none of which have functional equivalents in a
default Firefox installation.

Using the Yahoo! Toolbar Extension
Unlike the Googlebar extension that was written by volunteer developers, Yahoo! has gone
ahead and created an in-house version of its toolbar for Firefox. The Yahoo! Toolbar is best
suited for those who make extensive use of the Yahoo! portal; the default layout at first glance is
merely a lot of navigation shortcuts, as shown in Figure 9-15.

The Yahoo! Toolbar for Firefox can be downloaded from http://toolbar.yahoo.com/
firefox.

14_596500 ch09.qxd 6/30/05 2:57 PM Page 168

169Chapter 9 — Hacking Toolbars and the Status Bar

FIGURE 9-15: The Yahoo! Toolbar is similar to the Googlebar. Most of the extra
items on the default toolbar point to specific locations in the Yahoo! portal.

The Yahoo! Toolbar, like most of the other toolbars out there, allows customization. Where it
differs is that Yahoo! remembers toolbar settings across different computers. There is no option
to customize a single computer only; all changes require a Yahoo! account, which may be a
deterrent for some users.

Once an account has been created and the user has logged in, the toolbar changes quite drasti-
cally, and elements on the toolbar become user configurable. One of the very useful options is
the ability to save bookmarks on the Yahoo! Toolbar. This means that something bookmarked
at home can be brought up at a remote location that has the Yahoo! Toolbar installed.

Under the pencil icon is an Add/Edit Buttons option, and most users will want to pick and
choose what elements they display on the Yahoo! bar. The toolbar buttons available are gener-
ally shortcuts to different parts of the Yahoo! site, but a lot of the items also act as drop-down
menus, so they are more useful than just a simple bookmark. News, in particular, is very nice, as
it is also an integrated RSS reader that grabs the Yahoo! news portal headlines.

The Yahoo! Toolbar allows two non–Yahoo!-related buttons to be defined by the user with the
Your Own Button function. Unlike bookmarks toolbar items, these are visible on all computers
with the Yahoo! Toolbar extension installed.

Changes made to the Yahoo! bar need to be flushed out with the Refresh Toolbar command
found under the pencil icon.

The Yahoo! Toolbar is interesting because of the online memory component that transports
settings and personal items such as bookmarks across multiple computers. For people who
make extensive use of the Yahoo! portal, this is a very good tool that makes navigating between
different parts of Yahoo! a breeze. Unlike the Googlebar, though, it does not offer tools like the
highlighter; the focus is clearly on users who use many computers and would like a consistent
interface that does not need to be synchronized manually.

Using the Web Developer Extension
Changing gears, we move away from search-based toolbars and look at a toolbar that is aimed
at web development but should also be of interest to anyone who is interested in how a site is
constructed: the Web Developer extension from Chris Pederick.

14_596500 ch09.qxd 6/30/05 2:57 PM Page 169

170 Part III — Hacking Menus, Toolbars, and Statusbar

The Web Developer extension can be downloaded from http://www.chrispederick
.com/work/firefox/webdeveloper/.

Some very powerful tools are available with Web Developer, but we will go through just a
handful. A screen shot of it in action is shown in Figure 9-16.

FIGURE 9-16: The Web Developer extension hides a lot of
functionality under each button.

The Disable menu allows various page elements to be turned off. Options are applied globally.
Some of the more interesting uses include disabling cookies and JavaScript to see if a page still
functions normally. Again, it is important to note that the functionality differs somewhat from
the Toolbar Enhancements extension, as that applies settings to specific tabs and not on a
global basis, like the Web Developer extension.

The Images menu has a lot of helpful functions that can summarize a lot of information about
the graphical aspect of a page very quickly. In particular, the Display functions are very neat —
they include a tooltips-like icon that pops up beside each graphical icon with the associated
statistics (image size, dimensions, or the path of the image).

Those who are curious about why certain pages are not loading correctly in Firefox can take
web masters to the task with the Tools menu, which can validate CSS and HTML according
to w3.org specifications.

Hacking the Status Bar
With a bit of code earlier on in the chapter, some persistent system icons have been added to
the status bar, but a lot of the real estate down there remains unused. Although we have looked
at several extensions that add functionality to the toolbar, we have not yet looked at any that
spice up the status bar. The sections that follow examine several extensions for the status bar to
complement the changes made to the toolbar.

Current Date/Time with Statusbar Clock Extension
One of the simplest and most useful extensions is the Statusbar Clock extension, which simply
adds the date and time to the bottom of the Firefox window.

14_596500 ch09.qxd 6/30/05 2:57 PM Page 170

171Chapter 9 — Hacking Toolbars and the Status Bar

The Statusbar Clock extension is written by Momokatte, whose site can be found at http://
www.cosmicat.com/. The version of the Statusbar Clock extension from his site, however,
will not install in Firefox 1.0. Extensions Mirror has a modified version that removes version
restrictions and is available to download at the following location: http://www.extensions
mirror.nl/index.php?showtopic=105&hl=.

Options are kept simple; the choice of the display elements such as the day, month, year, and
whether this should be presented numerically or spelled out completely is configurable by the
user. The position in the status bar is configurable and is based upon the relative location of
other elements. Figure 9-17 has a shot of the Statusbar Clock in action.

FIGURE 9-17: The Statusbar Clock. The formatting in this
example has been modified—the day has been removed,
and the date and time ordering has been reversed.

Display the Weather with ForecastFox
Living in the Pacific Northwest and being on two wheels during the warmer months means
that I tend to make several visits to the weather site each day so I know whether to make a bee-
line for home after a day in the office or whether it will remain pleasant enough to go for a
quick spin up the coastline. ForecastFox grabs its weather feeds from the Weather Channel, so
it also works for those of us not based in the United States. After the installation and restart of
Firefox, the installation dialog shown in Figure 9-18 will appear.

ForecastFox can be downloaded from http://forecastfox.mozdev.org/.

You must specify a Forecast Location in the Code field. That is easy for U.S. citizens, as that is
simply the zip code you would like weather information from. Everyone else must use the Find
Code function. The Unit of Measure radio buttons allow you to specify the units of measure
for temperature and wind speed. For American, this is Fahrenheit and MPH; for English, it is
Celsius and MPH; and for Metric, this is Celsius and KPH. Although ForecastFox sits in the
status bar by default, it can be moved to another position on the browser window. Its position
on the status bar can also be manipulated — with the default Always Last option it appears in
the far-right corner. Enabling the Specific Position option and setting lower values forces
ForecastFox to the left of the status bar; 0 forces it to the extreme left.

The flexibility with the display configuration is also very impressive. A mix of icons and text
can be independently set for Current Conditions, Today’s Forecast, and Extended Forecast.
Figure 9-19 shows some of the customizations possible.

14_596500 ch09.qxd 6/30/05 2:57 PM Page 171

172 Part III — Hacking Menus, Toolbars, and Statusbar

FIGURE 9-18: The ForecastFox setup dialog appears after the
first restart of Firefox after the installation of the extension.

FIGURE 9-19: ForecastFox allows the choice of icons,
label, or icons and labels for six distinct elements.

For the current conditions, I have chosen icons and labels. The labels that you want displayed
can also be specified; in this particular case, for the first element, I’ve chosen the current
weather condition and the temperature along with the current weather icon. The display ele-
ments in tooltips for the current conditions can also be specified, and I chose to include more
detail here, including wind condition and the location of the forecast. The next element over is
the overall forecast for the day. Again, both icons and labels are enabled, but this time, the
option chosen for the label is temperature and the chance of precipitation. The final item
shown is the extended forecast, set to display the icon only. The number of extended forecast
days can be between 0 and 9.

ForecastFox is a very well developed extension, and for anyone who is slightly concerned about
weather conditions, it’s an absolute must-have.

14_596500 ch09.qxd 6/30/05 2:57 PM Page 172

173Chapter 9 — Hacking Toolbars and the Status Bar

Playing Music with the FoxyTunes Extension
For those who are not using a multimedia keyboard, it can be distracting to switch from the
work application to the media player to play songs. On the lighter side of things, let’s take a
look at the FoxyTunes extension, which adds multimedia buttons to Firefox’s status bar.

The FoxyTunes extension can be downloaded from http://www.iosart.com/ foxytunes/
firefox/.

FoxyTunes hooks into a variety of media players and displays the song name along with naviga-
tion buttons, as shown in Figure 9-20.

FIGURE 9-20: FoxyTunes in action on the status bar. ID3 tag information
is displayed, along with a standard set of multimedia navigation buttons.

Some of the more interesting buttons include the ^ button, which brings the media player to the
forefront. This is a useful alternative to Alt-tabbing or searching the taskbar for the application.
The colored note icon (farthest to the left) brings up the main menu for FoxyTunes. Some of
the options include keyboard shortcut definitions for the multimedia application. A couple of
additional features that are very nice are the sleep timer and the alarm function; FoxyTunes can
stop the media player after a given amount of time or start playing music at a given time. This is
helpful, as some applications, such as Apple’s iTunes, do not have a plugin system like Winamp
to add such functionality, and this is a unique way to sidestep that limitation.

FoxyTunes has a good number of customization options; much of the interface can be hidden,
and it can even be skinned.

Skins for FoxyTunes can be downloaded from http://www.iosart.com/foxytunes/
firefox/skins/.

On-the-Fly Proxy Switching with the SwitchProxy Extension
The SwitchProxy extension allows users to switch between different proxy servers quickly. The
Connection Settings dialog in Firefox allows for only a single proxy to be specified, while
SwitchProxy can remember and manage several.

14_596500 ch09.qxd 6/30/05 2:57 PM Page 173

174 Part III — Hacking Menus, Toolbars, and Statusbar

The SwitchProxy extension can be downloaded from http://mozmonkey.com/
switchproxy/.

SwitchProxy is not strictly a status bar extension; the default install also throws up a toolbar.
The status bar portion of the extension is useful enough so that the toolbar portion does not
have to stay on. A context menu of the SwitchProxy status bar is shown in Figure 9-21.

FIGURE 9-21: The context menu from the SwitchProxy
status bar. Proxies can be quickly selected from this list.

The interface for adding a proxy through SwitchProxy is essentially the same as the one inside
Firefox, except that added proxies can be named and saved. SwitchProxy allows for two types
of proxy management: the traditional one, where a single proxy, aptly named Standard, is used;
and a more complex type, called Anonymous, where the user enters a list of proxies and a rota-
tional interval to switch between them. With cookies turned off, rotating proxies breaks any
sort of tracking attempts that a web site may try to use.

Jeremy Gillick’s MozMonkey site has a forum thread that maintains a list of active proxies for
those looking for something more than the single proxy supplied by an ISP. The list can be found
at http://forums.mozmonkey.com/viewtopic.php?t=19.

The StockTicker Extension
During my first programming job, my boss enjoyed monitoring his stocks on a little Yahoo!
stock ticker. I remember him saying, “Every time this beeps, it means I am losing money.”
Every time I think about real-time stock monitoring, that story gives me a good chuckle. For
the part-time day trader looking for a stock utility that is a little bit more subtle than my boss’s
ticker, there is the StockTicker extension, which sits right in the Firefox status bar, as shown in
Figure 9-22.

The StockTicker extension is available at http://mozmonkey.com/stockticker/.

14_596500 ch09.qxd 6/30/05 2:57 PM Page 174

175Chapter 9 — Hacking Toolbars and the Status Bar

FIGURE 9-22: The StockTicker extension in the status bar.

A list of stock symbols can be entered into the StockTicker list, and it will scroll through each
symbol. The user can specify the amount of time that the ticker spends on each symbol and
how often prices should be updated. A different color scheme can also be used — maybe drop-
ping stock prices are less stressful if they are colored in blue. Details about each symbol can also
be requested that will take the browser window to the stock listing page of choice. By default, it
is finance.yahoo.com.

For those who have a big list of stocks and just cannot wait for each list item to scroll past, the
View All Stocks function brings up the window shown in Figure 9-23.

FIGURE 9-23: A dialog with all entered stock symbols can be brought up.

Summary
While the subject of toolbar modification was touched upon before, this chapter provided a
more thorough look at how both the toolbar and status bar can be modified to improve and
extend the Firefox interface. Starting simply with adding and removing buttons through the
Customize Toolbar dialog, it quickly moved on to a discussion of forcing on system icons
through the userChrome file before exploring a wide variety of extensions that streamlined the
Firefox interface. One of the most useful system icons enabled is the popup blocker.

The first extension explained was the EMButtons extension, which added two new icons to the
Customize Toolbar dialog and single-click access to the Extension and Themes Managers
menus. More important, it added keyboard shortcuts so navigating through several layers of
menus was no longer necessary.

14_596500 ch09.qxd 6/30/05 2:57 PM Page 175

176 Part III — Hacking Menus, Toolbars, and Statusbar

The next set of extensions focused on extending toolbar functionality with a wider scope than
navigation shortcuts. The Googlebar extension emulates and extends upon Google’s hugely
popular Internet Explorer toolbar. The strength of the Yahoo! Toolbar bar is that it is a network
application; bookmarks and settings are saved online and on any browser with the Yahoo! bar
loaded. The final toolbar enhancement introduced is the Web Developer extension, which pro-
vides a rich set of tools that can be used to scrutinize or debug web sites.

The chapter then discussed the underused status bar. One of the simplest extensions is the
Statusbar clock, which adds a clock and date to the status bar. ForecastFox and FoxyTunes are
two extensions that are more complex. ForecastFox pulls in feeds from Accuweather.com for a
user-specified location and displays weather information in the toolbar. FoxyTunes is a hook
for a large number of media playback applications and adds a set of multimedia buttons to the
status bar, as well as the ID3 tag of the currently playing song. The SwitchProxy extension
should be appealing to privacy buffs; it streamlines and extends functionality already found in
Firefox by providing an easy method to switch between proxies, both manually and automati-
cally through proxy lists. The final extension looked at is the StockTicker extension, which
pulls your favorite stock symbols and displays their rise and fall every few minutes.

The topics covered in this chapter should give you a good idea of how you can maximize the
usability of the Firefox toolbar and status bar. A balance of GUI improvements and the intro-
duction of fantastic new functionality add another dimension to Firefox, far beyond its being
just another browser.

14_596500 ch09.qxd 6/30/05 2:57 PM Page 176

Hacking Navigation,
Downloads, and
Searching

Chapter 10
Hacking Navigation and
Tab Browsing

Chapter 11
Download and Plugin Hacks

Chapter 12
Search Hacks

part

in this part

15_596500 pt04.qxd 6/30/05 2:58 PM Page 177

15_596500 pt04.qxd 6/30/05 2:58 PM Page 178

Hacking Navigation
and Tab Browsing

The great thing about Firefox is the ability it provides to customize the
browser to suit your personal preferences. You can start the browser
with one, two, five, ten, or as many tabs as you like, each with a dif-

ferent web site. You can alter the look and behavior of those tabs in just
about any way you like. Did you just close a tab accidentally? No problem.
You’ll learn how to reopen it. Don’t like the tab bar at the top of the
browser? Move it wherever you like. Once you start using mouse gestures,
you’ll wonder how you ever browsed without them. This chapter is all about
getting around in Firefox and making it easier for you to find what you’re
looking for quickly and comfortably.

Setting Your Home Page
When you first install Firefox, the default home page is http://www
.google.com/firefox. You don’t have to change it if you like starting
from a clean, quick-loading page every time, but you probably have a
favorite web page that you like to read when your browser starts up. Firefox
makes it easy to set the home page to anything you like.

Specifying a Single Home Page
Browse to your favorite web site, select Tools ➪ Options, and the first item
you see on the General window is Home Page. Figure 10-1 shows the
options in the General window. Click the Use Current Page button to set
the home page to the site you’re currently viewing.

˛ Customize Firefox
startup to show
multiple homepages

˛ Use tabs to improve
your browsing

˛ Use your mouse to
browse efficiently

chapter

in this chapter

by Phil Catelinet

16_596500 ch10.qxd 6/30/05 2:59 PM Page 179

180 Part IV — Hacking Navigation, Downloads, and Searching

FIGURE 10-1: Set the home page to the current page.

Specifying Multiple Home Pages
So far, Firefox is no different from any other web browser when it comes to the home page.
However, what if you visit several different web sites every day, throughout the day? Normally,
you’d select these sites from your bookmarks or from the links on the Personal toolbar. After a
while, that can be a lot of clicking and browsing. Firefox makes it easy for you to open multiple
web pages at startup, each one in its own tab. This way, you can read one of your favorite sites
in one tab while another site waits in another tab, ready whenever you are.

As with nearly everything in Firefox, there are several ways to set up multiple home pages.

The Easy Way
Suppose you want to load three different web sites when Firefox starts. Open three new tabs
and in each tab browse to one of your three favorite sites. Figure 10-2 shows Firefox with three
tabs, each with a different site.

16_596500 ch10.qxd 6/30/05 2:59 PM Page 180

181Chapter 10 — Hacking Navigation and Tab Browsing

FIGURE 10-2: Firefox with three browser tabs in use.

Now, go back to Tools ➪ Options ➪ General. The Use Current Page button now has become
the Use Current Pages button. When you click the button, your previous single URL is
replaced with three URLs, each one separated by the pipe character. You can see how this new
configuration looks in Figure 10-3.

To add another web site to your set of home pages, click the Home button, then open another
tab and browse to a new site. Return to the Tools ➪ Options ➪ General window and click Use
Current Pages again. Firefox appends the new site to your existing set of home pages.

The Easier Way
Browse to each site you want to have in your set of home pages, and bookmark them in a new
folder. (Call it “Home Pages” so you won’t confuse it with your other folders.) When you’ve
assembled all of your home pages in the folder, go back to the Options window and click on
the Use Bookmark . . . button. A new window with all of your bookmarks pops up (as shown in
Figure 10-4), and you can select your Home Pages folder from the list. The set of home pages
fills in the Location(s) field, and the next time you start Firefox your set of home pages opens
in tabs. You can do this with any of your existing bookmark folders as well.

16_596500 ch10.qxd 6/30/05 2:59 PM Page 181

182 Part IV — Hacking Navigation, Downloads, and Searching

FIGURE 10-3: Firefox’s General options showing three home pages.

FIGURE 10-4: The Bookmarks window lets you select a
bookmark or folder to use for your home page(s).

16_596500 ch10.qxd 6/30/05 2:59 PM Page 182

183Chapter 10 — Hacking Navigation and Tab Browsing

The Hard Way
Now that you’ve seen how Firefox parses individual web sites as multiple home pages, you can
add additional web site tabs manually by typing them in the General Options Location(s) box.
Separate each URL with a pipe and no spaces. Your Location(s) box should look like this:

http://www.google.com/|http://us.imdb.com/|http://start.earthlink.net/

To add another tab with another web site, type another pipe after the last slash, then type the
full URL, including http://. When you restart the browser, the new tab appears to the right
of the other sites. The sites always open in the same order as the URLs in the Location(s) box.

Opening New Windows
Tabbed browsing is perhaps the greatest innovation in web browser technology since the inven-
tion of the browser itself. Prior to tabbed browsing, if you wanted to look at multiple web sites
at the same time you had to open a new browser window for each site. If you were looking at
only two or three sites, it wasn’t so bad, but any more than that tended to clutter up your screen
too much to get anything done. With tabbed browsing, you can open as many sites as you like
and browse them all in one application window. Tabbed browsing has become so ingrained for
me that I have trouble using other browsers and programs. I find myself using the key combi-
nations and mouse clicks that open new tabs, but instead produce unintended results in the
wrong applications.

Speaking of other applications, Firefox’s default behavior when you come to it from links in
other programs (such as your e-mail application) is to reuse the last browser window. The effect
is that the new link loads in place of the previous page opened in that window. Sometimes you
don’t mind, but often you kept that other browser page loaded for a reason, and now it’s gone.
The Back button might bring it back for you, unless it was a special window that did not have
any browser buttons, such as a media player or video presentation. Firefox provides several
options just for these situations:

� Open links from other applications in the most recent tab/window (the default setting).

� Open links in a new window.

� Open links in a new tab in the same window.

You can choose among these options on the Advanced window of the Options menu, under
Tabbed Browsing (see Figure 10-5). Select the “a new window” option to order Firefox to open
a new window for any links from other applications, and you won’t overwrite existing windows
with new pages.

On MacOS, this is Firefox ➪ Preferences . . ., then the Advanced tab on the Preferences sheet.

16_596500 ch10.qxd 6/30/05 2:59 PM Page 183

184 Part IV — Hacking Navigation, Downloads, and Searching

FIGURE 10-5: Native options for tabbed browsing.

You can also adjust some of the other default behaviors of tabs from this same menu. By
default, when you open a link in a new tab, Firefox loads that tab in the background. The
“Select new tabs opened from links” and “Select new tabs opened from bookmarks or history”
options open new tabs in the foreground. “Warn when closing multiple tabs” generates a popup
window warning you if you try to close more than one tab at a time by right-clicking on the
tab bar and selecting “Close Other Tabs,” or if you try to close a window with multiple tabs
open.

Because tabbed browsing is one of the most popular features of Firefox, it’s also popular with
extension writers and hackers. The next section explains how you can alter the behavior of tabs
well beyond the original scope of the feature.

Tab Browsing Hacking
By default, Firefox hides the tab bar when only one tab is open. You can change that setting
from the Tabbed Browsing window by unchecking “Hide the tab bar when only one web site is
open.” You can then double-click on the empty space next to a tab to open a new, blank tab.

16_596500 ch10.qxd 6/30/05 2:59 PM Page 184

185Chapter 10 — Hacking Navigation and Tab Browsing

You can see more of Firefox’s tabbed browsing attributes in about:config. Filter the list with the
string browser.tabs and the list of adjustable tab settings appears. For example, when you
open a folder of bookmarks in tabs, Firefox overwrites any open tabs with the new ones from
the folder. However, if you change the following to false and open a folder in new tabs
(right-click on the folder and select “Open in Tabs”), the new tabs are appended to the
existing tabs.

Browser.tabs.loadFolderAndReplace

Explanations of about:config settings can be found at http://preferential.mozdev
.org/preferences.html.

Using userChrome.css to Hack Tabs
You’ve already seen the power of modifying the userChrome.css file to alter the appearance of
other Firefox elements. Now the focus is on what you can do with the look and feel of tabs.

By adding code to the userChrome.css file, you can move the tab bar to the left, right, or bot-
tom of the browser window. For example, to put the tab bar at the bottom of your Firefox win-
dow, add this line to your userChrome.css file:

#content > tabbox { -moz-box-direction: reverse; }

Restart Firefox and your tab bar appears at the bottom of the screen, as shown in Figure 10-6.

Firefox provides a default busy icon for tabs that are loading pages, but you might want to give
yourself a clearer indication of what’s going on with your tabs. To change the colors of normal,
active, and loading tabs, add these lines of code to your userChrome.css file:

/* Change Tab Colors */
/* Change color of active tab */
tab[selected=”true”] {background-color: rgb(222,218,210) !important; color:
black !important;}
/* Change color of normal tabs */
tab {background-color: rgb(200,196,188) !important; color: gray !important;}
/* Tab while loading */
tab[busy] {color:gray !important;}

Remember that you can undo all of these changes by deleting the lines from userChrome.css
and restarting Firefox.

You can see other examples of tab bar appearance tricks at http://www.mozilla.org/
support/firefox/tips#app_tab.

16_596500 ch10.qxd 6/30/05 2:59 PM Page 185

186 Part IV — Hacking Navigation, Downloads, and Searching

FIGURE 10-6: Firefox with tab bar at the bottom of the screen.

Bring Back Those Lost Tabs
I don’t know what I’d do without tabbed browsing. I like to browse with many tabs open all the
time. I’m constantly opening links in new tabs and closing old ones. Occasionally, I’ll close the
wrong tab by accident. At times like that, I used to be stuck: what site was in that tab and how
did I get to it? Luckily, the SessionSaver extension restores closed tabs, bringing back those
sites that might still need your attention. After you install SessionSaver, you see a menu for it
under Tools. If you haven’t closed any tabs yet, you’ll just see the SessionSaver option by itself.
From here, you can capture your open tabs as a session and restore them at any time, as shown
in Figure 10-7. It’s similar to bookmarking a group of tabs in a folder and reopening that
folder’s bookmarks in individual tabs.

The real power of SessionSaver is its ability to restore your closed tabs. After you close a tab,
SessionSaver puts a new option on the Tools menu, Snapback Tab, along with a menu of
recently closed tabs. Figure 10-8 shows an example of the Snapback Tab menu. Select any of
these items and the closed tab fades in as a new tab to the left of any currently opened tabs. As
you restore closed tabs, SessionSaver removes them from the menu so you always have a list of
closed tabs.

16_596500 ch10.qxd 6/30/05 2:59 PM Page 186

187Chapter 10 — Hacking Navigation and Tab Browsing

FIGURE 10-7: SessionSaver’s Capture function lets you save open tabs.

FIGURE 10-8: SessionSaver’s Snapback Tabs menu brings back your closed tabs.

16_596500 ch10.qxd 6/30/05 2:59 PM Page 187

188 Part IV — Hacking Navigation, Downloads, and Searching

SessionSaver includes one other feature not specifically related to tabbed browsing. On
SessionSaver’s Preferences menu, you have the option to save your browser session each time
you close the browser. This feature can be both good and bad. If Firefox crashes or you close
the entire browser window by accident, SessionSaver remembers your opened tabs and sites
and brings them back exactly as they were. This setting overrides Firefox’s home page setting,
so you won’t see your favorite sites when the browser starts. If you were in the middle of some
hard-core browsing, you’ll be right back where you were. However, it restores the web sites as
they were when the browser closed, without reloading them from the Internet. So, if you were
looking at an up-to-date news site, you’ll see the news as it was then, not now. A click of the
Refresh button reloads the site, of course, but it can be a little disconcerting the first time you
see old news if you’re not expecting it. You can disable this feature and restore your usual home
page settings by unchecking the option on the SessionSaver Preferences menu.

SessionSaver is available at http://www.pikey.me.uk/mozilla/#ss.

Using Extensions to Hack Tab Browsing
When it comes to tabbed browsing, there are so many different ways of doing things that it
makes perfect sense to use extensions to hack them. Consider these two powerful extensions
for configuring tabs:

� Tabbrowser Preferences

� Tab Mix

These two extensions overlap in terms of the features they handle. They can be used together
or separately, as you prefer, though you might want to use only one of the two. If you install
both extensions and make changes using one of them, the other might override your changes
with its own settings.

Tabbrowser Preferences
Unlike other extensions, which create separate items available under the Tools menu,
Tabbrowser Preferences menus appear as the Tabbed Browsing item in the main Options win-
dow, as shown in Figure 10-9. The “Load external links in:” setting at the top replaces the
Tabbed Browsing settings that were under the Advanced button before you installed the exten-
sion. The selections you made regarding new window and tab behavior for external application
links carry over to the Tabbrowser Preferences extension.

Using Tabbrowser Preferences, you can accomplish some of the tasks you previously learned
how to do through the userChrome.css file. The extension provides the option to move the tab
bar to the bottom of the browser window. Under the Features expandable menu item, check the
“Place the tabbar on the bottom of the window (requires restart)” checkbox and restart Firefox.
To undo the change, uncheck the box. If you don’t like getting your hands dirty with CSS
code, the checkbox method gives you an easy way to move the tab bar.

16_596500 ch10.qxd 6/30/05 2:59 PM Page 188

189Chapter 10 — Hacking Navigation and Tab Browsing

FIGURE 10-9: The Tabbrowser Preferences window.

Tabbrowser Preferences also gives you different ways to adjust how Firefox handles new win-
dows and popups. Under Links at the top of the Tabbrowser Preferences window, you can use
the JavaScript popups option to change how Firefox handles new windows loaded by
JavaScript code. Instead of letting the web designer dictate how new windows operate, you can
decide to open those windows in tabs if you like.

The “Load the following in new tabs:” expandable menu gives you the ability to open searches
and typed URLs in new tabs, instead of opening them in the current tab or window. It even
lets you open them in the foreground or background, whichever you like.

The Tab Focus options change how new windows behave when used in combination with the
preceding settings regarding those windows. If you change the options at the top to force new
windows into new tabs instead, Tab Focus lets you tell Firefox to open those new tabs in the
background. And the “Select tabs when the mouse is moved over them” checkbox puts tab
switching into the palm of your hand (assuming you’re using that hand to control the mouse).

You can get the Tabbrowser Preferences extension from http://www.pryan. org/
mozilla/site/TheOneKEA/tabprefs/.

16_596500 ch10.qxd 6/30/05 2:59 PM Page 189

190 Part IV — Hacking Navigation, Downloads, and Searching

Tab Mix
While Tab Mix duplicates most of the features of Tabbrowser Preferences — in fact, it’s based
in part on an earlier version of Tabbrowser Preferences — it provides some additional options
that the other extension does not have. Tab Mix uses a separate tabbed window to show off its
abilities. You can see this window in Figure 10-10. Unfortunately, the only way to reach this
menu is by opening the Extensions window, selecting the Tab Mix extension, and clicking the
Options button.

The Link tab shows you the options for new window and links behavior that you’ve already
seen twice before.

The Tab tab lets you change the focus of newly opened tabs from links, bookmarks, and the
browser history. It also has an option to reopen closed tabs, similar to SessionSaver. The differ-
ence is that Tab Mix’s feature puts the Undo Close Tab item in the context menu of the tab
bar, rather than under the Tools menu of the browser itself (see Figure 10-11). Depending on
your browsing habits, this location might be more convenient for you when you need to bring
back that tab you just closed. To enable Tab Mix’s tab restore feature, check the box under Tab
Features, and then check the Undo Close Tab box on the Menu tab. If you want to see a list of
closed tabs, check the box next to Closed tab list, as well.

FIGURE 10-10: The Tab Mix menu window.

Tab Mix has another advantage over Tabbrowser Preferences: it lets you move the tab bar to
the bottom of the browser window without restarting the browser. Check out the Appearance
tab for this option. You can also add a progress bar to your tabs instead of the throbber icon, for
a better visual representation of pages loading.

16_596500 ch10.qxd 6/30/05 2:59 PM Page 190

191Chapter 10 — Hacking Navigation and Tab Browsing

FIGURE 10-11: Tab Mix can restore closed tabs too.

Finally, the Mouse tab lets you drag tabs to change their order and select tabs by moving the
mouse over them. You can adjust the delay when changing the focus from tab to tab as you
move the mouse, giving your eyes a chance to catch up with your hand.

Get Tab Mix from http://tab-mix.info.tm/.

Better Browsing through Better Mousing
Firefox doesn’t include much in the way of enhancements for your mouse. There are a few set-
tings you can configure yourself, but, aside from adjustments to scroll behavior, the mouse
behaves the same in Firefox as it does in any other application. Once again, extension writers
have stepped in to improve what Firefox includes and to port features from other browsers and
applications to make it easier for you to browse without leaving the page window.

This sections looks at several different features:

� Changing how your mouse scrolls.

� The different things your mouse scroll wheel can do.

� Mouse gestures that let you “draw” your way around the Internet.

16_596500 ch10.qxd 6/30/05 2:59 PM Page 191

192 Part IV — Hacking Navigation, Downloads, and Searching

Let’s start with hacking your mouse scroll feature.

Firefox includes a feature called smooth scrolling that lets you see just how much of the page
goes by when you use the Page Up or Page Down keys or your mouse scroll wheel. Without
smooth scrolling, Firefox jumps up or down a page when you scroll, but, with this feature
turned on, the browser glides up and down the page. With the mouse wheel and smooth
scrolling, the amount of scroll depends on how fast you flick the wheel, but the visual effect is
the same. You can turn off smooth scrolling in the Options window under Advanced.

Firefox’s default scroll effect with the wheel alone is three lines on the web page. You can alter
the scroll wheel behavior by holding down certain keys while using the wheel:

� Alt+scroll wheel cuts the amount of scroll per wheel notch to one line.

� Ctrl+scroll wheel increases or decreases the size of the type on the web page.

� Shift+scroll wheel moves forward or backward in the browser history for the current tab
or window.

These settings can be changed via about:config. Type mousewheel in the Filter field to narrow
the focus to just the default mouse settings. Figure 10-12 shows the mousewheel settings in the
about:config window. You can alter any of the settings by double-clicking on them.

FIGURE 10-12: The mousewheel options in about:config.

16_596500 ch10.qxd 6/30/05 2:59 PM Page 192

193Chapter 10 — Hacking Navigation and Tab Browsing

You’ll need to keep these action variables in mind:

� 0 is scroll by lines of text in the browser window.

� 1 is scroll by pages of text in the browser window.

� 2 is move forward or backward in browser history.

� 3 is make the page text larger or smaller.

For example, if you want to change the Shift+scroll wheel behavior to scroll a page at a time,
double-click on the line

mousewheel.withshiftkey.action

and change the number in the popup window to 1. The change takes effect immediately.

To increase the number of lines that the scroll wheel scrolls to 10, double-click on the follow-
ing and change the number in the popup window to 10:

mousewheel.withnokey.numlines

You’ll also need to double-click on

mousewheel.withnokey.sysnumlines

to change the setting from true to false. Otherwise, Firefox ignores your other change and
sticks to the browser’s default of 3 lines of scroll. Again, these changes take effect right away, so
you can switch to another window or tab and see if you like the effect. To change the settings
back to their defaults, right-click on the ones in boldface and select Reset from the menu.

Using Configuration Mania to Adjust Your Mouse Scrolling
If you don’t like editing your preferences through about:config and having to remember vari-
ables, extension writers provide easy windowed methods of adjusting these settings. The
Configuration Mania extension lets you tinker with many different Firefox features, among
them mouse behavior. After you install the extension, you can access it through an entry on the
Tools menu. Open the Configuration Mania window and select Mouse wheel from the list of
items on the left (see Figure 10-13).

Any changes you made to the scroll settings through the about:config menu carry over to
Configuration Mania. Here, instead of keeping track of obscure variables, you can select the
mouse wheel and key combination and change their functions as you like. To change the way
mouse scrolling behaves when the Shift key is pressed, select Shift from the modifier drop-
down list, then adjust the settings appropriately. To change the number of lines that a particular
scroll setting scrolls on the page, uncheck the “Use system default” box if it is checked and
change the number in the field. As with changes made with about:config, Configuration
Mania’s changes take immediate effect.

You can get Configuration Mania from http://members.lycos.co.uk/
toolbarpalette/confmania/index_en.html.

16_596500 ch10.qxd 6/30/05 2:59 PM Page 193

194 Part IV — Hacking Navigation, Downloads, and Searching

FIGURE 10-13: Configuration Mania’s Mouse wheel options.

Show Your Artistic Side with Mouse Gestures
Navigating web sites usually means a lot of clicking on various browser buttons and menus as
you look for the information you want. Mouse gestures make it easier for you to keep your
mouse where it belongs — in the web browser window itself — by turning the functions of the
browser’s menus into figures you trace with your mouse. You hold down a mouse button and
drag the mouse in a two-to-five line design, and the browser performs the action associated
with the gesture. To go back in the browser’s history, you would hold down the right mouse
button and move the mouse from right to left across the web page. To close the browser win-
dow, hold the right button and move the mouse down and to the right. You can assign mouse
gestures to nearly any browser feature.

There are several mouse gesture extensions out there, but the easiest one to configure and use is
probably All-in-One Gestures. It provides detailed windows for its features and a well-
designed interface listing the predefined mouse gestures and methods for creating your own.
Figure 10-14 shows All-in-One Gestures’ list of predefined gestures.

16_596500 ch10.qxd 6/30/05 2:59 PM Page 194

195Chapter 10 — Hacking Navigation and Tab Browsing

FIGURE 10-14: The list of mouse gestures provided by All-in-One Gestures.

The artistic aspect of mouse gestures is in how they can be displayed on screen. All-in-One
Gestures shows you a thin red line that follows your cursor as you perform a gesture (see
Figure 10-15). The line lets you see exactly which way you moved the mouse, and you see the
letters corresponding to the gesture in Firefox’s status bar.

Mouse gestures take a little adjustment, but once you get used to them you’ll find you want to
use them in all of your applications. If you’re new to the concept, I suggest learning the follow-
ing simple gestures first:

� History Forward

� History Back

� Next Tab

� Previous Tab

� Reload page

� Close Tab/Window

Once you’re adept at these gestures, try some of the more complex ones or make your own.
Soon, they will be like tabs: you will wonder how you ever used a browser without them.

16_596500 ch10.qxd 6/30/05 2:59 PM Page 195

196 Part IV — Hacking Navigation, Downloads, and Searching

FIGURE 10-15: Mouse gestures in action.

Summary
There are many ways to customize Firefox to suit your personal browsing habits and tastes. You
can open any number of web sites as your home page, using a tab for each site. Tabs can be
styled however you like, with icons and progress bars to tell you which ones are active. And
mouse gestures and scroll enhancements let you keep the control of your browsing in the palm
of your hand.

16_596500 ch10.qxd 6/30/05 2:59 PM Page 196

Download and
Plugin Hacks

Aside from browsing, downloading is probably the most important
feature to most users, and hacking that experience is what this
chapter is all about (that and, of course, plugins). One of the best

enhancements that Firefox introduced over its predecessors was a unified
and configurable Download Manager window. As you can see from Fig-
ure 11-1, the Download Manager window consolidates what used to be
individual download status dialogs for each download and displays them in
one list. All of the options available in the original download status dialogs,
such as Pause, Resume, Open, and so on, are also available in the new uni-
fied window. Additionally, the ability to open the default downloads loca-
tion by clicking the location label next to “All files downloaded to” and
cleaning up the download history by clicking on the Clean Up button are
available here.

FIGURE 11-1: Default Download Manager window

To change the default download location, hop over to the Downloads sec-
tion from the Tools ➪ Options menu, as shown in Figure 11-2, which also
shows the other options available.

˛ Hacking download
behavior

˛ Hacking downloads
with extensions

˛ Hacking MIME
types

˛ Hacking external
download managers

˛ Hacking plugins

chapter

in this chapter

by Mel Reyes

17_596500 ch11.qxd 6/30/05 3:01 PM Page 197

198 Part IV — Hacking Navigation, Downloads, and Searching

In Mac OS X, the command is Firefox ➪ Preferences.

FIGURE 11-2: Download preferences available from the Tools ➪ Options screen

While the Download Manager is a great tool, some may want additional features when it
comes to downloading, such as displaying downloads in the status bar, sorting downloads into
directories, and other tweaks. The following hacks and extensions allow you to customize your
download experience to your liking.

Hacking Download Behavior
The default download experience using Firefox is pretty good. This section shows you how to
hack the basic internal options to your liking, such as clearing your download history, configur-
ing download alerts, and other useful hacks.

Clearing Download History
With the advent of security and privacy issues, many users want to make sure that downloads
are not tracked well after they have closed Firefox. Figure 11-3 shows that Firefox 1.0 has a
configurable interface to manage the Download Manager History from the Tools ➪ Options
menu in the Privacy section.

17_596500 ch11.qxd 6/30/05 3:01 PM Page 198

199Chapter 11 — Download and Plugin Hacks

FIGURE 11-3: Download Manager History settings in Firefox 1.0

Figure 11-4 shows the Firefox 1.1 redesign of the Options screen.

FIGURE 11-4: Download History Privacy settings in Firefox 1.1

17_596500 ch11.qxd 6/30/05 3:01 PM Page 199

200 Part IV — Hacking Navigation, Downloads, and Searching

Despite the provision of this interface, my preference is to manually add settings to the user.js
file to guarantee the setting is merged back into my preferences upon restart. To do this, enter
one of the following settings into your user.js file, depending on which history method you
prefer.

� To remove downloads from the history when they complete successfully, use the follow-
ing entry. Keep in mind that cancelled downloads are not removed.

user_pref(“browser.download.manager.retention”, 0)

� To remove all downloads when you close your instance of Firefox, use this setting. Keep
in mind that downloads will persist in the Download Manager for the whole session that
you have Firefox open and are not cleaned out until you exit.

user_pref(“browser.download.manager.retention”, 1)

� To keep a history of all downloads and to allow yourself to manually prune the list, just
add the following to your user.js file.

user_pref(“browser.download.manager.retention”, 2)

Figure 11-5 shows the Download Manager options via the about:config utility.

FIGURE 11-5: The about:config tool with Download Manager retention setting highlighted

17_596500 ch11.qxd 6/30/05 3:01 PM Page 200

201Chapter 11 — Download and Plugin Hacks

To get more documentation on preferences that you can change, with their associated values
and descriptions, visit this great MozillaZine Knowledge Base article: http://
kb.mozillazine.org/Firefox_:_FAQs_:_About:config_Entries.

In Figure 11-6, you see that Firefox 1.1 introduces a Sanitize option to the Tools menu. This
feature can be configured from the Privacy section of the Options screen and allows you to
manually choose which settings to clear when shutting down Firefox.

FIGURE 11-6: Sanitize options introduced with Firefox 1.1

While the final version of Firefox 1.1 was not officially released during the development of this
book, intermittent test builds were. These builds provided insight into interface and feature
enhancements, as well as into changes that were being coded and planned for the final release.
These test builds, which are known as trunk builds, are usually compiled and made available on
a daily basis and on some servers on an hourly basis. They usually provide fresh, bleeding-edge
copies of code changes introduced throughout the previous day’s efforts of coding and fixes.
For information or to download trunk builds or to see the progress of outstanding bugs and
fixes that have been checked, visit the Firefox Builds forum on MozillaZine.org at http://
forums.mozillazine.org/viewforum.php?f=23.

Other Useful Hacks
You can add the hacks in Table 11-1 to your user.js or prefs.js file to allow further customiza-
tion of the Download Manager settings without having to install an extension.

Each preference listed in the following table should be formatted as follows and saved to either
the prefs.js or user.js file:

user_pref(“name”, value)

17_596500 ch11.qxd 6/30/05 3:01 PM Page 201

202 Part IV — Hacking Navigation, Downloads, and Searching

Optionally, you can modify them using the about:config functionality built into Firefox.

Table 11-1 Customizing the Download Manager Settings

Preference Name Description Value

browser. download. manager. Use this to close the Download Manager window true/false
closeWhenDone when it finishes downloading.

browser. download. manager. Use this to focus the Download Manager window true/false
focusWhenStarting when a download starts.

browser. download. manager. This is the number of milliseconds that Firefox integer
openDelay waits before displaying the Download Manager.

Setting this to 2000 will have it wait 2 seconds
before opening the manager window. This is useful
if you are downloading a bunch of small files and
do not want the Download Manager to keep
popping up.

browser. download. manager. Use this to enable/disable the download complete true/false
showAlertOnComplete alert window that pops up on the bottom-right side

of the browser.

To change a preference back to the default, just remove the entry from the user.js file, if it exists;
then open about:config, select the preference, right-click, and select the Reset option from the
context menu. This will set the value back to the default value.

Hacking Downloads with Extensions
Hacking the download experience with extensions is the most useful way to personalize down-
loading, whether it is showing the download status in the status bar, tab, or in the sidebar.
Additionally, eliminating annoying situations such as blank new windows on file downloads
and sorting downloads into different directories based on their file extension can really come in
handy. This section covers them all and what options work best with each.

Showing Downloads in the Status Bar Using the
Download Statusbar Extension
One of the most useful extensions that I have found to minimize the impact of downloading
files, while maintaining a keen eye on progress and download throughput, is the Download
Statusbar extension. While the title might imply that the default status bar is modified, in real-
ity, what it does is build a custom download status bar that it places temporarily above the offi-
cial status bar area extension, as shown in Figure 11-7.

17_596500 ch11.qxd 6/30/05 3:01 PM Page 202

203Chapter 11 — Download and Plugin Hacks

To maximize Download Statusbar’s effectiveness, disable Firefox’s built-in Download Manager
window from popping up. Do this in the Downloads section of the Tools ➪ Options menu.

FIGURE 11-7: Download Statusbar extension, with Firefox download complete and Thunderbird
download paused

When Download Statusbar is in action, you will see a new bar open up above the status bar
with the progress and information about each of the current downloads. To pause a download,
left-click it and then click it again to resume. A red band appears around paused downloads.
Additionally, right-clicking a download shows a context menu with different options based on
active, paused, or completed downloads. Figure 11-8 displays the different configuration
options available with this extension.

For more information about the Download Statusbar extension, visit http://
downloadstatusbar.mozdev.org/.

17_596500 ch11.qxd 6/30/05 3:01 PM Page 203

204 Part IV — Hacking Navigation, Downloads, and Searching

FIGURE 11-8: Download Statusbar extension options window

Showing Download Manager in the Sidebar or Tab
with Download Manager Tweak Extension
On the surface, this extension appears to be a cute overlay to the internal Downloads Manger,
as shown in Figure 11-9, but when you dig into the options, you’ll find that there are a few
other interesting tweaks and possible hacks that you can apply. Nice hidden features include
the following:

� Specify Download Manger window open delay.

� Specify buttons to show in the Download Manager window.

� Move the toolbar in the window and other minor tweaks.

Another nice customization is placement of the Download Manager — whether you want it in
a new window, in the sidebar, or in a tab. The basic features fit the extension’s name aptly but
don’t do it justice with respect to what it really provides.

There are three ways to get to the Download Manager Tweak options and settings. You can:

� open the Extension Manger and double-click on the extension’s entry on the list.

� click the Options button on the Download Manger’s toolbar.

� access it via the Tools ➪ Options menu in the Downloads section by clicking the
Download Manager Tweak Options button there.

17_596500 ch11.qxd 6/30/05 3:01 PM Page 204

205Chapter 11 — Download and Plugin Hacks

Figure 11-10 displays the options available for this extension.

FIGURE 11-9: Download Manager Tweak customized version
of the Download Manager

FIGURE 11-10: Download Manager Tweak options and settings

For more information on the Download Manger Tweak extension, visit http://
dmextension.mozdev.org/.

17_596500 ch11.qxd 6/30/05 3:01 PM Page 205

206 Part IV — Hacking Navigation, Downloads, and Searching

Disabling Blank Download Windows with the
Disable Targets for Downloads Extension
One of the most annoying things about downloading files off the Internet is the insistence of
web masters, HTML coders, and automated download sites on adding a target field to a file’s
download link. You have probably seen this — for example, you click to download myhack.zip,
and when you do, a new blank window opens and then download begins, leaving behind the
blank window after the file has completed. As mentioned on this extension’s web site, this issue
has been officially filed as Bug #241972, which can be found here: https://bugzilla
.mozilla.org/show_bug.cgi?id=241972. Most users would like a resolution sooner
rather than later, and that is where the Disable Targets for Downloads extension comes in.

This extension removes targets only from active hyperlinks, not those wrapped in JavaScript
code, and so on.

A normal link may look like this (shameless plug):

Download
Here

But a link with a target will look similar to the following:

<a href=”http://www.mrtech.com/mrsetup3_lite.exe”
target=”_blank”>Download Here

This extension disables the link’s additional target property so the browser handles the link
normally and opens it in the current window.

By default, this extension disables new windows for links with targets for the following file-
name extensions: .zip, .rar, .exe, tar, .jar, .xpi, .gzip, .gz, .ace, and .bin.

While this extension covers the majority of common filename extensions, I tend to add a few
more potential culprits, including .7z, .cab, .msi, and .pdf.

Figure 11-11 shows the Disable Targets for Downloads Options window.

For more information or updates for the Disable Targets for Downloads extension, visit
http://www.cusser.net/extensions/disabletarget/.

17_596500 ch11.qxd 6/30/05 3:01 PM Page 206

207Chapter 11 — Download and Plugin Hacks

FIGURE 11-11: Disable Targets for Downloads Options window

Follow these steps to add additional filename extensions to the list for target disabling:

1. Install the Disable Targets for Downloads extension.

2. Restart your browser to finish the installation process.

3. Select the Extensions option from the main browser’s Tools menu.

4. Locate and double-click the Disable Targets for Downloads entry on the list.

5. For each filename extension desired, type the filename’s extension and click the
Add button.

6. Click OK when you’re done, and your settings are ready for use.

While most extensions are three letters, this is not a steadfast rule for all operating systems and
applications, as you see with the .7z, .gz, and .gzip filename extensions.

Another real bonus of this extension is its ability to use regular expression pattern matching to
remove the blank target windows for links matching the regular expression. Because the exten-
sion relies on regular expression pattern matching, this means that you are not restricted to just
filename extensions. One example on this extension’s site is to add the following entry, which
removes the blank window opened by downloading a file in Gmail:

/gmail\?view=att/

17_596500 ch11.qxd 6/30/05 3:01 PM Page 207

208 Part IV — Hacking Navigation, Downloads, and Searching

Additionally, some sites open up just one too many tabs or windows when you are navigating
from section to section, and although they are not necessarily blank, they are annoying. Some
sites that I hack with this extension are http://www.klitetools.com/ and http://
www.versiontracker.com/. While these sites have great content and are updated fre-
quently, they are annoying when they open two, three, or more windows. To alleviate this on
the KLite Tools site, I have pinpointed the most common URL snippet to match on to remove
these target windows, which is as follows:

klitetools.com/comments.php

Or enter just the root domain to eliminate all targeted links for the Version Tracker site:

versiontracker.com

Using these will successfully remove the target window for the specified page or the entire site.

Sorting Downloads to Directories with the Download Sort
Extension
Once you have the Download Sort extension installed, you can begin a life of organized down-
loading. This extension allows you to add filename extensions or keywords to monitor and save
files that match to the desired directory. As shown in Figure 11-12, the settings window for
this extension allows full customization of each file extension, as well as the use of keywords in
filenames.

FIGURE 11-12: Main configuration settings for Download Sort

17_596500 ch11.qxd 6/30/05 3:01 PM Page 208

209Chapter 11 — Download and Plugin Hacks

To open the settings window, open the Extensions Manager and double-click on the
Download Sort entry listed. After entering or modifying an entry, make sure to click the
Apply/Update button, and your settings will be saved.

For more information on the Download Sort extension, visit http://downloadstatusbar
.mozdev.org/downsort/.

Hacking MIME Types
One of the key pieces of information that is communicated between a web server and a
browser is a file’s content type or MIME type. Multipurpose Internet Mail Extensions
(MIME) were originally implemented for use with e-mails and aides in defining a header of
information for nontext e-mail attachments. This standard was extended to the Web to define
the format of incoming objects that are requested. This section covers how to sniff out the
MIME type being sent by a server, as well as how to modify Firefox’s behavior for these
MIME types.

Understanding File MIME Types
The easiest way to explain MIME type is by using an example such as downloading an exe-
cutable from a site. Most web servers will associate a Windows executable or .exe extension
with a default MIME type of “application/octet-stream” or “application/exe.” When the web
server initiates the transfer back to the browser, it includes this information in the initial com-
munication header and lets the browser handle the information as it sees fit. A typical prompt
that Firefox would display after receiving this information is shown in Figure 11-13.

FIGURE 11-13: Default download confirmation window

17_596500 ch11.qxd 6/30/05 3:01 PM Page 209

210 Part IV — Hacking Navigation, Downloads, and Searching

As Figure 11-13 also shows, some prompts do not always have all available options enabled.
Furthermore, some web servers spoof the MIME type to force downloading of files. Solutions
and alternatives to each of these situations are covered in the following sections.

Using the Mimetype Editor and LiveHTTPHeaders Extensions
After the headaches caused by trying to figure out what the best MIME type handling setting
are, I resorted to recommending a two-extension approach to dissecting the response headers
and hacking MIME types from a web server.

The approach that has worked for me is to install both the LiveHTTPHeaders and Mimetype
Editor extensions and to use the first to sniff out the MIME type or Content-Type and then
add it using the editor. The best part of these extensions is that they are tucked away in the
Tools menu until you are ready to use them; they do not add any visually obnoxious elements.

Using the LiveHTTPHeaders extension to detect the custom MIME type is a snap. The
whole process of detecting the Content-Type may seem a bit overwhelming, but after your first
run, you should have the hang of things. My approach is to do the following:

1. Navigate directly to the page that contains the offending MIME type download issue.

2. Launch the Live HTTP Headers tool from the Tools menu.

3. Switch back to the download page.

4. Click on the download link in question and then save or cancel the download.

5. Switch back to the Live HTTP Header window.

At this point, the window contains the header communication that was exchanged between the
server and the browser. The entry to look for is the Content-Type, which is highlighted in
Figure 11-14.

You can right-click and copy any of the individual lines presented. To copy multiple lines, you can
click on the first entry, hold down the Shift key, and click the last entry desired; then release the
Shift key, right-click the highlighted block, and choose Copy from the context menu.

For more information on the LiveHTTPHeaders extension, visit http://livehttpheaders
.mozdev.org/.

Once you have the Content-Type text, you can open the Mimetype Editor tool from Tool ➪
Mimetypes, shown in Figure 11-15, to add the type and the default action that you would like
to associate with this type.

17_596500 ch11.qxd 6/30/05 3:02 PM Page 210

211Chapter 11 — Download and Plugin Hacks

FIGURE 11-14: LiveHTTPHeaders extension capture window

FIGURE 11-15: Mimetype Editor options window

17_596500 ch11.qxd 6/30/05 3:02 PM Page 211

212 Part IV — Hacking Navigation, Downloads, and Searching

From our LiveHTTPHeaders Firefox download example, you can see that the MIME type or
Content-Type in the header information is as follows:

Content-Type: application/x-msdos-program

Now you take this value and add it to the internal list of MIME types with the following steps:

1. Open Tools ➪ Mimetype.

2. Click on the New Type button (shown in Figure 11-15), which opens the Edit Type
window, shown in Figure 11-16.

3. Populate the MIME Type field with the Content-Type value of application/
x-msdos-program.

4. Type a general description, such as Program Files or Application.

5. Enter exe in the Extension field, which corresponds to the filename extension.

6. Choose a default action for this type and then enable or disable the “Always ask me
before handling files of this type” setting according to your preference.

FIGURE 11-16: Mimetype Editor’s Edit Type screen

This MIME type update is applied immediately and can be tested by redownloading the file in
question. If the Opening dialog (shown in Figure 11-13) still pops up, make sure you have
supplied the correct MIME Type without leading or trailing spaces and that you are using the
correct filename extension.

17_596500 ch11.qxd 6/30/05 3:02 PM Page 212

213Chapter 11 — Download and Plugin Hacks

Installing via the Install link on the Mimetype Editor web page may not work; just choose the
Download link, and it will prompt you to install.

Another key observation is that managing and using MIME types is internal to Firefox and
not a function of the extension. This extension merely helps you manage the internal list that
Firefox uses, which means that once you are content with changes to the different MIME
types you need, you can disable or uninstall it without sacrificing the customizations that you
have made to the MIME type list.

Custom MIME type definitions are stored with each profile in the mimeTypes.rdf file, which
is formatted in standard RDF/XML syntax. While you can manually edit this file, I find it eas-
ier to use these extensions to modify MIME behavior. Another nice feature of this file is that it
makes it easy to duplicate the customizations to another computer or profile by just copying it
to the main profile directory of the profile that needs updating.

For more information on the Mimetype Editor extension, visit http://gratisdei.com/FF
.htm#mtypes.

Hacking External Download Managers
Most new Firefox converts have an existing arsenal of tools and utilities installed that help with
anything from printing to downloading. Some tools that are used for managing downloads are
GetRight, Mass Downloader, Download Express, and so on. While newer versions of these
tools are smarter in detecting the presence of the Firefox installation, some have yet to update.
This section covers two approaches to hooking Firefox to your external Download Manager by
using either the Launchy or FlashGot extensions or by hunting down the needed files for full
integration.

What Is MIME Type Spoofing?

MIME type spoofing is commonly used by different software update sites to force a download,
open, or save prompt. The technique they use is to create a custom header with the addition of
a custom MIME type. Because the browser does not recognize the MIME type, it will bring up
the Opening prompt and ask you how to handle the download. One possible spoof could look
like this:

application/download-this

You would have to add this custom type and associate the default actions that you prefer. Using
LiveHTTPHeaders, you are able to easily detect any MIME type spoofing practices by capturing
the header information while the file is downloading.

17_596500 ch11.qxd 6/30/05 3:02 PM Page 213

214 Part IV — Hacking Navigation, Downloads, and Searching

Using Launchy to Handle External Programs
One of the beautiful things about Launchy is its ability to detect and show installed applications
via the right-click menu. This, coupled with the ease of integrating them with Firefox, makes it
the easiest approach to merging installed program handling with Firefox. Launchy supports over
60 external applications and currently supports the following external download managers:

� GetRight

� LeechGet

� Mass Downloader

� Star Downloader

� Internet Download Manager

� ReGet Deluxe

� BitTorrent

� FlashGot

� WackGet

� Offline Explorer Pro

Additionally, Launchy supports many common external browsers, media players, FTP clients,
and editors.

Figure 11-17 illustrates the automatic detection of the currently installed programs that it sup-
ports and the two download managers currently available on my system. Advanced configura-
tion options are available, but right out of the box, this extension does a lot. To activate or use
its features, just right-click on a link and select the desired external program from the Launchy
submenu. To disable showing a detected application from the list, just uncheck it in the
Launchy Options window.

FIGURE 11-17: Launchy Options window

17_596500 ch11.qxd 6/30/05 3:02 PM Page 214

215Chapter 11 — Download and Plugin Hacks

For more information or to download Launchy, visit http://gemal.dk/mozilla/
launchy.html.

Using FlashGot to Handle External Programs
Another wildly popular extension used to handle external download programs is FlashGot.
Much like the Launchy extension, FlashGot provides support and automatic detection of
external download managers, but also merges in the functionality of extensions such as Linky
and DownThemAll by allowing you to download all links from the page being viewed via the
right-click menu. Another great feature that FlashGot provides, as shown in Figure 11-18, is
that it adds an option to the standard Opening Firefox Setup dialog, which helps with MIME
types that Firefox does not know how to handle. Using FlashGot, you can avoid the lengthy
setup and detailed drudgeries involved with manually having to find and set up the default
method to handle unknown MIME types.

FIGURE 11-18: The Opening Firefox Setup dialog with FlashGot feature

For more information or to download FlashGot, visit http://www.flashgot.net/.

Seamless Download Integration
So what if you want seamless download integration with Firefox — integration that does not
require intervention on your part? Then you have to dig a little deeper or check for a few set-
tings. Newer versions of popular programs such as Download Express, Mass Downloader, and
GetRight have added Firefox detection or provide a mechanism for seamless integration.
MetaProducts has gone one step further and has created an official extension for Mass
Downloader and Download Express to allow Firefox integration.

17_596500 ch11.qxd 6/30/05 3:02 PM Page 215

216 Part IV — Hacking Navigation, Downloads, and Searching

So what exactly are these programs doing to integrate themselves in the world of Firefox?
Quite simply, just copying a plugin file to the Firefox Plugins directory. While I will cover plug-
ins more in the next section, this introduction is a nice segue to help with downloads first.

Most download programs have code that comes bundled to help Firefox and other browsers
with settings and options. This code, called a plugin, operates quite differently from extensions,
and for the most part, these plugins are operating system–dependent. Again, while most
updated version of these programs have this feature integrated into their options or settings,
you can manually find the needed plugin DLL file(s) by doing a little digging. Once you have
identified the program you want to dig into, all you have to do is find its default installation
directory and hunt around for the corresponding DLL file. One key thing to note is that in the
file’s properties, the description provided may assist you in finding the correct plugin DLL. If
you are not sure, hold on the side of caution and do not copy any of the files to the plugins
directory.

To manually install a plugin file, close Firefox, copy the DLL file to the plugins subdirectory of
your Firefox installation, and restart Firefox.

Plugins are also the technology implemented by Flash and Macromedia to extend Firefox’s
capabilities.

Table 11-2 lists the directory and plugin files for GetRight and Mass Downloader.

Table 11-2 GetRight and Mass Downloader

GetRight Mass Downloader

Default directory C:\Program Files/GetRight C:\Program Files\Mass Downloader

Plugin filename NPGetRt.dll npmassdn.dll

You can find more information on external Download Manager integration for Windows by vis-
iting http://plugindoc.mozdev.org/windows4.html.

Hacking Plugins
Plugins are compiled pieces of code that implement a standard connection or interface using
the plugin architecture, which was originally used as far back as early Netscape versions. Using
this interface, third-party developers have the capability of extending and enhancing the fea-
tures of the browser to handle audio, video, custom filetypes, or processing of requests.

17_596500 ch11.qxd 6/30/05 3:02 PM Page 216

217Chapter 11 — Download and Plugin Hacks

While the previous section briefly covered how to find the plugins file for a couple of the com-
mon download programs, this section helps you test your plugins configuration, find additional
plugins that you may already have installed, and disable the default behavior from some of the
currently installed plugins. Figure 11-19 is a sample plugins directory that contains support for
Apple QuickTime, RealPlayer, and Macromedia Flash.

FIGURE 11-19: Sample plugins directory

The ultimate plugins reference for users is located at http://plugindoc.mozdev.org/.

Checking Installed Plugins with about:plugins
Firefox and its predecessors include a simple page that helps you see which plugins are cur-
rently installed and recognized. To access this page, just type about:plugins in the location bar
and press Enter.

Figure 11-20 shows a sample page populated with all of the plugins that Firefox was able to
automatically detect, based on operating system and configuration, in addition to the specific
plugins located in the plugins subdirectory of your Firefox installation.

Because the Opera browser uses the same plugins programming interface, most, if not all, of
the Opera plugins are compatible with Firefox.

17_596500 ch11.qxd 6/30/05 3:02 PM Page 217

218 Part IV — Hacking Navigation, Downloads, and Searching

FIGURE 11-20: about:plugins displayed information

For testing purposes, you can also display the full installation path for each of the programs
listed in the about:Plugins page by modifying the following preference and setting it to true:

user_pref(“plugin.expose_full_path”, true)

Please keep in mind that showing the plugin’s full path may open you to potential security
risks, because most of these values are exposed to public web pages to help them detect if you
have proper support for key features such as Flash and others. Use this option only for testing
purposes, and make sure to reset this value to false once you are done.

Using Available Plugins without Reinstalling
Because several programs already have support for Mozilla or Firefox’s plugins technology,
reinstalling these programs would seem a tad redundant. This section shows you how to manu-
ally dig around Adobe Reader, Apple QuickTime, and RealPlayer plugins. When copying
plugins to the Firefox\Plugins directory, it is generally safe to assume that you can replace
existing files.

When manually copying files, make sure Firefox is closed.

17_596500 ch11.qxd 6/30/05 3:02 PM Page 218

219Chapter 11 — Download and Plugin Hacks

Finding the Adobe Reader Plugin
To see if your Adobe Reader installation supports the browser plugin, check the following
directory, substituting for the question mark the version you have installed:

C:\Program Files\Adobe\Acrobat ?.0\Reader\Browser

Then copy the Plugin file listed to your Firefox\Plugins directory:

nppdf32.dll

Finding the Apple QuickTime Plugin
The required plugin files for QuickTime are located in the plugins directory (C:\Program
Files\Apple\QuickTime\Plugins) of your QuickTime installation. Just copy all the files in that
directory, which are gathered in the following list, to the plugins subdirectory:

� npqtplugin.dll

� npqtplugin2.dll

� npqtplugin3.dll (file may not exist)

� npqtplugin4.dll (file may not exist)

� npqtplugin5.dll (file may not exist)

� QuickTimePlugin.class

Then copy the following component files in the QuickTime plugins directory to the compo-
nents subdirectory of your Firefox installation:

nsIQTScriptablePlugin.xpt

Finding the RealPlayer Plugin
RealPlayer may have two different directories that you need to tap into:

� C:\Program Files\Real\RealPlayer\Netscape6 can be the default location for both plug-
ins and components.

� It can have a Plugins directory of C:\Program Files\Real\RealPlayer\Browser\Plugins
and a Components directory of C:\Program
Files\Real\RealPlayer\Browser\Components.

In either case, copy the following files to the corresponding Plugins subdirectory in Firefox:

� nppl3260.dll

� nprjplug.dll

17_596500 ch11.qxd 6/30/05 3:02 PM Page 219

220 Part IV — Hacking Navigation, Downloads, and Searching

Then copy the following components files to the components subdirectory of your Firefox
installation:

� nppl3260.xpt

� nsJSRealPlayerPlugin.xpt

Because of security concerns and potential issues, Windows Media Player embedding with
ActiveX should not be tampered with unless you have fully read the implications. For more
information, visit the “Embedded Windows Media in Firefox” posting available at http://
forums.mozillazine.org/viewtopic.php?t=206213.

A good reference for installing or configuring plugin support in Firefox for some common pro-
grams is available at http://www.mozilla.org/support/firefox/faq#plugins.

Disabling Plugin Support for Specific File Extensions
Because Firefox is designed to detect some common plugins, you may want to disable internal
plugin handling of common file extensions Firefox has a configuration screen in the
Downloads section of the Tools ➪ Options window. In Figure 11-21, you can see that just by
unchecking the Enabled column of the file extension, you can customize internal extension
handling. When you are done, click OK, and you are all set.

FIGURE 11-21: The Plug-Ins support options window

17_596500 ch11.qxd 6/30/05 3:02 PM Page 220

221Chapter 11 — Download and Plugin Hacks

Summary
While this chapter covers a lot of the basic customizations that you can apply to Firefox to
handle downloading, MIME types, and plugins, even more options are available. At this point,
you should be able to change the visual and the internal functionality of each of these func-
tions, in addition to knowing where Firefox stores the related keys files.

Extensions such as Download Statusbar, Disable Targets for Download, Mimetype Editor, and
Live HTTP Headers have become daily staples for me; you may find other extensions, such as
Download Sort and Download Manager Tweak, suit your needs better. Any combination of
these extensions that are actively updated and supported should yield a great download and
plugin experience when using Firefox.

17_596500 ch11.qxd 6/30/05 3:02 PM Page 221

17_596500 ch11.qxd 6/30/05 3:02 PM Page 222

Search Hacks

Aweb browser is an information-gathering tool. Sometimes you know
where you need to go, so you use bookmarks and familiar links, but
eventually you’ll need to search the Web to look up new sites and

sources of information. Firefox includes some excellent search tools and
makes it easy for you to modify the browser to suit your search habits. And
some nifty tricks can speed up your searches and help you find what you
need right away.

Adjusting the Default Google Search
A fresh install of Firefox uses Google for all searches, whether from the
location bar or the search box in the upper-right corner. If you enter your
search terms in the location bar, Firefox checks with Google and then takes
you to the top search result site. In other words, it’s the same as if you
searched from http://www.google.com and clicked the I’m Feeling
Lucky button.

The search box in the upper-right corner behaves a little differently. When
you enter your search terms there, Firefox treats it like a normal Google
search and shows you a web page with all of the results. If you prefer to see
all of your search results but like performing your searches from the location
bar, you can adjust Firefox’s default Google search through about:config.

From the about:config list, type keyword to filter out all but the two items
related to keyword searches. You should see these two items:

keyword.URL
keyword.enabled

Leave the second one alone and focus on the URL setting. By default, it
should look like this:

Keyword.URL default string
http://www.google.com/search?btnI=I%27m+Feeling+
Lucky&ie=UTF-8&oe=UTF-8&q=

Notice the words I’m Feeling Lucky in the URL? That setting tells
Firefox to submit the search to Google and return the same result as if you’d
clicked that button on their site. To adjust it so that a location bar search
shows you all the results from Google, double-click on the item and change
the URL to look like this instead:

http://www.google.com/search?&ie=UTF-8&q=

˛ Customize searches
with Google

˛ Add search tools to
context menus

˛ Search within pages
using Find-As-You-
Type

˛ Add toolbars to
your browser to
increase your
searching power

chapter

in this chapter

by Phil Catelinet

18_596500 ch12.qxd 6/30/05 3:03 PM Page 223

224 Part IV — Hacking Navigation, Downloads, and Searching

Normally, changes you make to about:config take effect right away. However, because of a bug
in Firefox (as of version 1.0.3), you’ll need to restart Firefox for this particular change to take
effect. After you restart Firefox, try a search from the location bar again. It should show you all
of the search results this time.

Using Quick Searches
Firefox also lets you search different sites from the location bar by putting a letter or keyword
in front of the search terms. These searches are in the default bookmarks under the Quick
Searches folder. For example, to search for the definition of politics at Dictionary.com, type
dict politics in the location bar and press Enter. Firefox takes you to Dictionary.com, display-
ing the results of your search.

You can add your own location bar searches to Firefox using any site with a search function.
Here’s how to add a Microsoft.com option to your browser.

1. Go to http://www.microsoft.com.

2. Locate the search box in the web page.

3. Right-click in the search box on the web page and select “Add a Keyword for this
Search. . .”

4. An Add Bookmark popup window appears (see Figure 12-1). Fill in a name for your
search and type a keyword (such as ms) in the Keyword field.

You might want to prepend the keyword to the name of your bookmark so when you look in
the Quick Searches bookmarks folder you don’t need to check the properties of each bookmark
to remember the keyword.

5. Select a folder for the bookmark. Click OK.

You can put a Quick Search bookmark anywhere, but I suggest keeping them in the Quick
Searches folder so you can find them later.

FIGURE 12-1: Adding a Quick Search to your bookmarks.

18_596500 ch12.qxd 6/30/05 3:03 PM Page 224

225Chapter 12 — Search Hacks

Now go back to your location bar. Type ms windows bsod and press Enter. Firefox searches
Microsoft’s web site using the terms “windows bsod” and shows you the results just as if you’d
browsed to microsoft.com and used their search box.

Hacking the Search Box
The real power of searching with Firefox is in the built-in search box in the browser’s upper-
right corner. While Google is the default search engine, Firefox comes with several other
search plugins in a fresh install: Yahoo!, Amazon.com, eBay, and others. To choose a different
search plugin for a particular search, click on the icon in the window and select an engine from
the drop-down list, as shown in Figure 12-2.

FIGURE 12-2: Firefox’s built-in search engine options.

You can add new search engines to the list by clicking on the Add Engines link. You’ll see a
few popular search sites linked there; click on any of them and you’ll be prompted to confirm
the plugin installation. The new engine appears as a drop-down option immediately.

18_596500 ch12.qxd 6/30/05 3:03 PM Page 225

226 Part IV — Hacking Navigation, Downloads, and Searching

One of the best sites to find a wide variety of search engine plugins is Mycroft at http://
mycroft.mozdev.org. Mycroft lists plugins by category and provides a search box for you
to look up those hard-to-find sites that defy categorization. When you find the search plugin
you want, just click on it and it will be added to your Firefox search box drop-down list. Firefox
remembers the last search engine you used, so if you use the Yahoo! plugin then close and
reopen the browser, Yahoo! will still be the selected search engine.

To remove a search plugin, browse to the searchplugins folder and delete the SRC and GIF
files for the plugin, then restart Firefox.

Search plugins consist of two files:

� An SRC file that contains the code telling Firefox how to use search terms for that site.

� A GIF file that provides the icon for the search box.

These files are kept in the searchplugins subfolder of your Firefox installation directory (not
your Firefox user profile directory). If you uninstall and reinstall Firefox, you will lose any plug-
ins you downloaded from Mycroft or other sites.

The typical plugin SRC file has two or three sections, as shown in the following code example
from Firefox’s built-in Amazon.com search plugin:

Search Plug-in for Amazon.com (http://www.amazon.com)
by Paul Millar <dazzle@edazzle.net> created: 18 January 2003
updated by Rafael Ebron <rebron@meer.net>

<SEARCH
version = “7.1”
name=”Amazon.com”
description=”Amazon.com Search”
method=”GET”
action=”http://www.amazon.com/exec/obidos/external-search/”

>

<input name=”field-keywords” user>
<input name=”mode” value=”blended”>
<input name=”tag” value=”mozilla-20”>
<input name=”sourceid” value=”Mozilla-search”>

</search>

<BROWSER

update=”http://www.mozilla.org/products/firefox/plugins/amazondotcom.src”

updateIcon=”http://www.mozilla.org/products/firefox/plugins/amazondotcom.png”
updateCheckDays=”3”

>

18_596500 ch12.qxd 6/30/05 3:03 PM Page 226

227Chapter 12 — Search Hacks

The SEARCH section defines the plugin and tells Firefox what site will be used for the search.
The version number is the highest version of Netscape (not Firefox) with which the plugin has
been tested. It’s irrelevant for our purposes. The input tag with the word user tells the browser
the actual user-entered search request.

The BROWSER section gives Firefox a way to automatically update the plugin if the site’s search
system changes and if the plugin author uploads a new version to the Mozilla site.

Some plugins also include an INTERPRET section between SEARCH and BROWSER that tells
Firefox how to display the results it receives from the site.

Mycroft includes a detailed tutorial on plugin design; you can find it at http://mycroft
.mozdev.org/deepdocs/quickstart.html.

Searching from the Web Page Itself
Admit it: sometimes you’re lazy. When surfing you’ll come across a word or phrase that you’d
search the Web for if only that search box wasn’t at the top of the screen. Now you don’t have
to type your search queries anymore. There are several search extensions available that let you
right-click on terms in your web page and search the Web for those terms — no typing
required.

Web Searches Using the Context Menu
Using the Context Search extension, you can add a search option to the right-click menu in a
web page. After you install the extension, highlight a word or phrase, then right-click and
select “Search Web for [your word or phrase will appear here].” Not only can you search the
Web for the term, but you can also search using any of your installed search plugins. You can
see Context Search in action in Figure 12-3. If your web page has a reference to George
Washington and you want to see what books Amazon.com sells about him, just highlight
George Washington, right-click on the selection, and choose Amazon.com from the search
engine list. The results will appear in a new tab or window, depending on how you’ve config-
ured those options.

You can get Context Search from http://www.cusser.net/extensions/
contextsearch/.

Define Words in Web Pages
I love using Dictionary.com to find definitions and synonyms, but sometimes it’s a chore to go
to the site and search, or even to use the Quick Search option with “dict [my word here]” in the
location bar. You can get several extensions that add dictionary searches to your context menu,
and two of them are covered here: DictionarySearch and DICT Search. Despite the similar
names, they look up words in different ways.

18_596500 ch12.qxd 6/30/05 3:03 PM Page 227

228 Part IV — Hacking Navigation, Downloads, and Searching

FIGURE 12-3: Context Search brings your search plugins right to the web page.

DictionarySearch adds a simple context menu option when you right-click on a highlighted
word. Selecting “Dictionary search for [highlighted word]” brings up a new tab or window with
the results from Dictionary.com. You can add other online dictionaries to the context menu
from the extension’s options window, shown in Figure 12-4.

FIGURE 12-4: User options for the DictionarySearch extension.

18_596500 ch12.qxd 6/30/05 3:03 PM Page 228

229Chapter 12 — Search Hacks

You can find the DictionarySearch extension at http://dictionarysearch.mozdev
.org/.

DICT Search looks up words in online dictionaries using the DICT network protocol. Instead
of searching for words in online versions of commercial dictionaries such as Merriam-Webster,
DICT Search looks in user-maintained public dictionaries and online databases. Because it
uses sites such as the Jargon File (jargon.org) and the Virtual Entity of Relevant Acronyms,
DICT Search is particularly well suited for technical and computer terms. The method is the
same as with DictionarySearch: highlight the word you want to define, then right-click and
select Define [word]. The extension displays its results in a special popup window, which you
can see in Figure 12-5.

FIGURE 12-5: DICT Search results appear in a new window.

Get DICT Search at http://dict.mozdev.org.

18_596500 ch12.qxd 6/30/05 3:03 PM Page 229

230 Part IV — Hacking Navigation, Downloads, and Searching

Add Translation Tools to Your Menus
While web page translation systems are still in their infancy, sometimes reading a page trans-
lated by a computer from a foreign language to your own is better than not being able to read
the page at all. Firefox doesn’t come with any built-in translation offerings, but you can add
your own easily via the Translate extension. It adds a Translate function to Firefox’s Options
menu and the web page context menu. The former translates an entire web page to English,
while the latter will translate highlighted text and present the results in a new tab or window.
Translate uses Altavista’s Babelfish translation engine. If you’d prefer to translate pages from
English to another language, Translate’s Options window lets you change your preferred lan-
guage to any of 12 others, including French, Italian, Russian, Korean, Japanese, Chinese, and
more (see Figure 12-6).

FIGURE 12-6: Translate’s list of available languages.

The Translate extension is available at https://addons.update.mozilla.org/
extensions/moreinfo.php?id=181.

Put Your Search Results in a Sidebar
The sidebar is a feature of the Mozilla suite that lets you keep your bookmarks, history, search
tools, and other functions on the side of your browser window. Firefox’s sidebar functions are
initially limited to just bookmarks, downloads, and history, but you can add new tools to the
sidebar via extensions. One such tool is SearchStation, which gives you search and translator
options.

18_596500 ch12.qxd 6/30/05 3:03 PM Page 230

231Chapter 12 — Search Hacks

SearchStation’s web search sidebar performs web searches but keeps the results in the sidebar.
That way you can refer back to them without having to switch away from your current web
page. Figure 12-7 shows a Google search using SearchStation. When you click on a result, the
page loads in the active tab in the same browser window. SearchStation uses your search plug-
ins, so you can search Yahoo!, eBay, Amazon.com, and any other sites using plugins you’ve
installed.

FIGURE 12-7: Searching Google with the SearchStation extension.

The Translator sidebar is like a miniature version of the Babelfish or Google translator sites.
It translates text you type or cut and paste into the space provided, but not entire web pages.
(You’ll need the Translate extension I discussed earlier to do that.) You can choose among 15
languages (including English) to translate text in either direction, and you have three to five
different translation engines at your disposal (depending on the languages you’ve selected —
not all translation sites handle all 15 languages). You can see an example of the Translator fea-
ture in Figure 12-8.

You can get SearchStation from http://members.lycos.co.uk/toolbarpalette/
searchstation/index_en.html.

18_596500 ch12.qxd 6/30/05 3:03 PM Page 231

232 Part IV — Hacking Navigation, Downloads, and Searching

FIGURE 12-8: Translate text while browsing with the Translator sidebar.

Open Your Search Results Quickly with Linky
Search engines give you pages and pages of links as results for your queries. That’s great, but
you have to click on each link that you want to visit to open the site in a new tab. If you’re
interested in only one or two links, you’re okay, but what if you want to see four or five links?
Or all of the links on a page? That’s where the Linky extension comes in. Linky adds the
option to open some or all links in a page in new tabs or windows. Just right-click anywhere in
the page and pick from the Linky menu, shown in Figure 12-9. If you first highlight a part of
the page containing links, you will have the option to open either the selected links or all the
links on the page.

Figure 12-10 shows the popup window that allows you to confirm which links you want to
open. Linky can also show all images from a web page in a new tab or window, or open images
from a list of image links.

18_596500 ch12.qxd 6/30/05 3:03 PM Page 232

233Chapter 12 — Search Hacks

FIGURE 12-9: The Linky extension’s context menu.

FIGURE 12-10: Linky’s open links confirmation window.

18_596500 ch12.qxd 6/30/05 3:03 PM Page 233

234 Part IV — Hacking Navigation, Downloads, and Searching

Linky can get you through your search results in a hurry.

You can find the Linky extension at http://gemal.dk/mozilla/linky.html.

Turning Nonlinked Links into Linkable Links
Sometimes, in the course of your browsing, you’ll wind up on a page with a URL that isn’t a
hyperlink. You’d like to go to that site, but you’d have to cut and paste the URL into the loca-
tion bar or take your hand off the mouse and type it. When you find yourself in that situation,
fear not, for you have the Linkification extension.

Linkification activates these text links and makes them clickable so you don’t have to do any
pesky typing or highlighting. Just right-click on the page, look for the Linkification context
menu, and select Linkify Text. Any text links in the page will become clickable, ready for your
browsing needs. There’s also a feature-rich options menu for Linkification available from the
Extensions list.

Figure 12-11 shows part of a Google results page with some links that are not clickable.

FIGURE 12-11: Text links that cannot be clicked.

18_596500 ch12.qxd 6/30/05 3:03 PM Page 234

235Chapter 12 — Search Hacks

After using Linkification, some of those same links are now underlined and can be clicked, as
shown in Figure 12-12.

FIGURE 12-12: The same links after applying Linkification.

Linkification may not work on all text links, but it should work on those with the standard
http://www.foo.com format.

Get Linkification from http://www.beggarchooser.com/firefox/.

Searching within the Web Page
You’ve been searching the web for information and you’ve finally found the page that contains
what you need. The trouble is that the page is filled with text and you’re not sure where your
information is located. What you need now is a search tool that works inside the web page. You
can access the Find command from the browser’s Edit menu to bring up the search toolbar and
look for your term. You can also press Ctrl+F to activate the search toolbar. Or you can just
type the term using Firefox’s Find-As-You-Type feature.

18_596500 ch12.qxd 6/30/05 3:03 PM Page 235

236 Part IV — Hacking Navigation, Downloads, and Searching

To use Find-As-You-Type, click in the web page, type a forward slash (/), then the text of your
search. Firefox jumps to the first instance of the characters you type and highlight the text it
finds. The search toolbar appears at the bottom of the browser window with your text in it,
along with Find Next and Find Previous buttons (see Figure 12-13). To find text located in
links on the page, type an apostrophe (’) followed by the text.

If you really like the function, you can activate it all the time:

1. On the Options menu, under Advanced, look for the Accessibility items at the top of the
list.

2. Check the box next to “Begin finding when you begin typing” and click OK.

Now you don’t need to use the leading forward slash or apostrophe to start your search; just
start typing in the web page and Firefox locates your terms.

FIGURE 12-13: Firefox’s Find-As-You-Type feature in action.

Once you stop typing your search terms, the toolbar disappears from the screen after a set time.
You can change the amount of time the toolbar is displayed by adjusting the setting in
about:config, as follows:

18_596500 ch12.qxd 6/30/05 3:03 PM Page 236

237Chapter 12 — Search Hacks

accessibility.typeaheadfind.timeout

The default is 5000 milliseconds (equal to five seconds), so if you want to show the toolbar for
ten seconds instead, change the setting to 10000. You’ll have to restart Firefox for this change
to take effect.

Recommended Search Extensions
So far, we’ve discussed extensions that are behind the scenes, hiding until you need them. Now
let’s shift the focus to a few extensions that add visible search toolbars to Firefox and that go far
beyond the search capabilities built into the browser.

The most popular Internet search portals — Google, Yahoo!, MSN, to name a few — have
created toolbars for Microsoft Internet Explorer (IE) that give users enhanced search benefits
and also provide shortcuts to the portals’ special features. Firefox users were initially left out so
extension authors stepped in to create versions of these toolbars for Firefox. While these unof-
ficial versions don’t provide 100 percent of the functionality of their IE counterparts, they do
give Firefox users most of the same abilities as the IE versions.

Googlebar
One of the first add-on toolbars to appear was the Googlebar. It provides most of the same
functions for Firefox as the official Google toolbar for IE does for that browser. Figure 12-14
shows the Googlebar in Firefox. You can search for information on any of Google’s primary
sites: Web, Images, News, and USENET newsgroups. There are drop-down menus to search
Google for specific computer-related information or scour university web sites. There are even
links to Google’s nonsearch features such as Gmail and Blogger. Googlebar also provides con-
text menu options within web pages and is highly configurable. For example, if you want to add
a button to search Apple’s web site for search terms, take the following steps:

1. Right-click on the Googlebar.

2. Select Computer Searches.

3. Select Mac Search.

An iMac icon appears on the toolbar. When you type your query into the search box and click
the Mac button, Googlebar searches Apple’s web site for your information. To choose a default
university web site to search, click on the arrow next to the graduate cap icon and choose your
preferred school from the alphabetical drop-down menu.

18_596500 ch12.qxd 6/30/05 3:03 PM Page 237

238 Part IV — Hacking Navigation, Downloads, and Searching

FIGURE 12-14: Googlebar expands your Google search options in Firefox.

More Googlebar configuration options can be found on the extension’s Options window. If you
prefer to search one of Google’s international sites instead of the default U.S. engine, you can
set the Googlebar to use a different site on the Google Site Options tab. This option is avail-
able for Google News, as well.

Googlebar is available at http://googlebar.mozdev.org.

Ultrabar
The makers of Ultrabar looked at Googlebar and said, “That’s great, but what if I prefer a dif-
ferent search engine?” Ultrabar is designed not only to allow you to choose different search
engines within the toolbar, but also to give you easy access to tools to maintain your blog. In
addition to a standard search-only toolbar, you can download Ultrabars for Blogger,
LiveJournal, TypePad, and Bloglines blogs.

18_596500 ch12.qxd 6/30/05 3:03 PM Page 238

239Chapter 12 — Search Hacks

Once installed, Ultrabar looks and feels similar to Googlebar but with more search sites and
fewer buttons. Figure 12-15 shows Ultrabar’s typical layout and list of search engines.

FIGURE 12-15: Ultrabar gives you more search options from the toolbar.

You can find Ultrabar at http://www.firefoxtoolbar.com/download.

Yahoo! Toolbar
Like Google, Yahoo! created its own toolbar for Internet Explorer that gave its users conve-
nient access to searches, web mail, news, stock quotes, and many other features of their portal.
Yahoo! has also developed a version of the Yahoo! Toolbar for Firefox. With the toolbar
installed, you can sign into your Yahoo! account and configure the toolbar to show you the but-
tons for portal services that you use most often. For example, I play fantasy football through
Yahoo!, so I configured my toolbar to put a Fantasy Sports icon next to the search box (see
Figure 12-16).

18_596500 ch12.qxd 6/30/05 3:03 PM Page 239

240 Part IV — Hacking Navigation, Downloads, and Searching

FIGURE 12-16: Yahoo! Toolbar puts the portal’s features within easy reach.

Yahoo! Toolbar is found at http://toolbar.yahoo.com/firefox.

Summary
This chapter explained different ways that Firefox can be modified to suit your searching
habits. It looked at a plethora of tools and extensions that let you search the Web from any-
where in the browser, including search boxes, toolbars, and even within web pages. It also
explained how to define words and translate pages with a few mouse clicks. You are now a web
search master.

18_596500 ch12.qxd 6/30/05 3:03 PM Page 240

Installation,
Automation, Tools,
and Tricks

Chapter 13
Hacking Installation and
Deployment

Chapter 14
Backing Up and Managing
Your Profile/Settings

Chapter 15
Hacking Tools for Web
Programmers

part

in this part

19_596500 pt05.qxd 6/30/05 3:04 PM Page 241

19_596500 pt05.qxd 6/30/05 3:04 PM Page 242

Hacking Installation
and Deployment

This chapter offers several options for customizing and deploying
Firefox to more than one computer. Topics covered here include using
command-line options, hacking the default setup options, creating

custom installers, and hacking existing installers. For anyone who truly
wants to replace their default browser with Firefox across multiple comput-
ers, this chapter should help in customizing the installation, as well as pro-
viding a mechanism for future updates.

Two factors that help with deploying Firefox are that there are minimal
operating system dependencies and installation is highly customizable.
When reviewing this chapter, keep your ultimate goal in mind and see if
any of the techniques covered here will fit that goal. This chapter is not a
complete deployment guide, but it will help in integrating to current sys-
tems. Each section includes examples and site references to great resources
for customizing and deploying.

Built-in Installer Options
Running the Firefox installation in Standard mode selects most defaults
and has minimal prompts, while the Custom installation type offers a few
additional options. The Setup Type dialog is available after the Welcome
and License Agreement windows, and choosing Custom allows you to
modify the installation path, components to install, and which shortcut
icons to create. While these options are good for single-user installations,
the available command-line options can help in automating this process for
multiple computer installations. Additionally, the foundations for extracting
and hacking the installer are covered here.

Before beginning, download the latest installer from http://
www.getfirefox.com.

˛ Built-in installer
options

˛ Installation and
profile customiza-
tion options

˛ Creating a custom
installer

chapter

in this chapter

by Mel Reyes

20_596500 ch13.qxd 6/30/05 3:05 PM Page 243

244 Part V — Installation, Automation, Tools, and Tricks

Using Command-Line Options
The Firefox installer includes command-line options that can be used from a batch file, a
script, Active Directory, Novell ZENworks, WinBatch, or any other custom installation pro-
cess. Figure 13-1 highlights the available parameters that can be used while in command-line
mode or in your script. To display this prompt, just run the Firefox installer with the -h
parameter from the command prompt:

FirefoxSetup.exe -h

FIGURE 13-1: Custom setup installation options

The easiest parameters to use for purposes of automating the installation process are the -ms
and -dd parameters. The -ms parameter specifies that the installer run in silent mode,
installing with the default options enabled, thus silently installing or upgrading Firefox on each
system without changing existing settings. The -dd parameter allows you to specify a custom
installation or destination directory for the Firefox files.

To use the installer in silent mode, just type the following entry either in your script or at the
command prompt:

FirefoxSetup.exe -ms

20_596500 ch13.qxd 6/30/05 3:05 PM Page 244

245Chapter 13 — Hacking Installation and Deployment

The combination of the silent mode and destination directory parameter are nice for customiz-
ing the basic installation process. To use these parameters together, just type the following:

FirefoxSetup.exe -ms -dd d:\Mozilla\Firefox\

You can substitute d:\Mozilla\Firefox\ for the directory you wish to use. If the destina-
tion path includes spaces, try putting quotes around the path, as follows:

FirefoxSetup.exe -ms -dd “d:\Local Apps\Firefox\”

There is a space between the -dd parameter and the installation path name.

When using the -ms parameter to run in silent mode, the only dialog that is displayed is the
setup-file extraction progress. This makes it difficult to alert the user that the installation is in
progress. Status dialogs should be created and can be customized depending on the installation
or scripting system used to automate the installation process. Additionally, running the installer
in silent mode creates all the standard icons, desktop, Start menu, and Quick Launch toolbar; a
postinstallation process will be needed to remove these if desired.

Extracting the Installer
Like many installers, the Firefox installer executable is really just a wrapper to the actual
installer setup files. The main installer file contains the actual setup.exe and supporting installer
files. To begin hacking through the installer, you must first extract the single installer file to
gain access to the individual files contained within. For Windows-based systems, you can use
compression extraction tools such as 7-Zip (http://www.7-zip.org/) or WinRar
(http://www.rarlab.com/) to quickly view or extract these files.

On Linux-based systems, uncompressing the GZipped installer file gives you access to the
installation files.

To extract the Firefox compressed tarball using Linux or UNIX-based systems, just issue the
following commands in a console window, pressing Enter after each line:

tar -xzvf firefox-1.0.4.installer.tar.gz
cd firefox-installer
./firefox-installer

Figure 13-2 shows the contents of the installer using 7-Zip, but similar results are achieved
using WinRar on the file.

20_596500 ch13.qxd 6/30/05 3:06 PM Page 245

246 Part V — Installation, Automation, Tools, and Tricks

FIGURE 13-2: Firefox installer listing using 7-Zip

To extract the installer listing with 7-Zip or WinRar, follow these steps:

1. Open Windows Explorer to the path to which you have downloaded the installer.

2. Select the Extract files, Extract Here, or Extract To option from the right-click context
menu.

3. Based on the option selected, follow the appropriate dialog to select the path to
extract to.

To open or just view the installer’s contents with 7-Zip choose the Open archive option from
the right-click context menu; for WinRar select Open with WinRar from the menu.

Command-Line Installer Extraction
To extract the installer file in command-line mode using 7-Zip you can use the following:

7z e -o”setup” “Firefox Setup.exe”

Just substitute the name Firefox Setup.exe for the name of the Firefox installer saved
locally, and substitute setup for the subdirectory or full path where you want the files
extracted to. In our example, a subdirectory will be created called setup in the current path.

20_596500 ch13.qxd 6/30/05 3:06 PM Page 246

247Chapter 13 — Hacking Installation and Deployment

There is no space between the -o and the directory path for extraction.

To have Windows find the 7z executable, the installation path for 7-Zip needs to be added to
the Path environment variable. You can also accomplish this on the fly by issuing the follow-
ing command in Windows just before running the 7-Zip extraction command:

set Path=%PATH%;C:\Program Files\7-Zip\;

The path of C:\Program Files\7-Zip\ should reflect the local installation path for 7-Zip.

The next section covers the options available in the config.ini file to create a customized install
process.

Hacking the Configuration INI File
As illustrated in Figure 13-2, one file that is included with the Firefox installer is the configu-
ration INI file config.ini. This file contains different sections for the installation process and
default values associated with each section; this is where customizing the installation process
can truly be achieved. With the multitude of options available, I want to focus on some of the
critical options and detail those; they include the following:

� Disabling specific dialogs

� Running silently

� Changing the installation path

INI files have a standard structure that includes a header, or section, and then associated name-
value pairs. INI files can be edited with any standard text editor. Additionally, you can include
comments, which in the config.ini are prefixed with a semicolon, as shown in the following:

[General]
; Run Mode values:
; Normal - Shows all dialogs. Requires user input.
; Auto - Shows some dialogs, but none requiring user input.
It will
; automatically install the product using default
values.
; Silent - Show no dialogs at all. It will install product
using default
; values.
Run Mode=Normal

In this example, the header, or section, is [General], and the variable name is Run Mode
with a value of Normal. This format allows for human-readable parameters that can be modi-
fied easily to create a custom installation.

20_596500 ch13.qxd 6/30/05 3:06 PM Page 247

248 Part V — Installation, Automation, Tools, and Tricks

Disable Specific Dialog Windows
To begin customizing, I can review the headers associated with each dialog that can be enabled
or disabled by setting the Show Dialog parameter to either TRUE or FALSE, as shown:

Show Dialog=TRUE

The headers are all prefixed with Dialog, are encapsulated with brackets, and include the
following:

� Dialog Welcome

� Dialog License

� Dialog Setup Type

� Dialog Select Components

� Dialog Select Install Path

� Dialog Install Successful

To disable the Welcome screen dialog just change the Show Dialog value to FALSE,
as follows:

[Dialog Welcome]
Show Dialog=FALSE

Because the file is over 1,100 lines, the easiest way I have found to edit it is to do a search for
the header or value that you are looking for and then modify it accordingly. Later in this chap-
ter, I show you how to bypass this task by using the Nullsoft installer to automate the update of
the INI values.

Running in Silent Mode
Disabling each of the installer dialogs is nice but does not have to be done if you want to run
the installer in silent mode. To have the installer run in true silent mode, with absolutely no
dialogs, just change the value of the Run Mode in the [General] header to Silent, as
shown:

[General]
Run Mode=Silent

After you make this change, the setup.exe will run with no dialogs and will use the default set-
tings. Choosing a Run Mode of Auto does show the installation process, but the installation
will not end properly, and the last dialog window will not close. Additionally, the command-
line option -ma yields the same result as Run Mode=Auto.

For more information on –ma support, visit the following Bugzilla posting: https://
bugzilla.mozilla.org/show_bug.cgi?id=229706.

20_596500 ch13.qxd 6/30/05 3:06 PM Page 248

249Chapter 13 — Hacking Installation and Deployment

Modify the Installation Path
To modify the installation path just update the Path value in the [General] section. The
default value is shown here:

Path=[PROGRAMFILESDIR]\Mozilla Firefox

[PROGRAMFILESDIR] is automatically parsed to reflect your program file’s installation path.
The INI file also highlights other system-related destination paths that it will recognize when
placed in the Path value. These include WINDISK, WINDIR, and WINSYSDIR.

The Path value can easily also reflect a direct path, as shown:

Path= D:\Mozilla Firefox

The combination of running the installer in true silent mode and customizing the installation
path is a great starting point to automating the installation process.

Installation and Profile Customization Options
My initial efforts in creating a customized image included using the zipped file distribution
that was available up until the 1.0.2 release. With the zipped version no longer available, this
section focuses on automating some of the supporting elements for using Firefox. These tech-
niques include creating a profile, installation extensions, and themes globally; deploying plugins
and profile templates; and using other tools.

Automated Profile Creation
This code allows you to create a profile, and if no directory is specified, a directory with a ran-
dom salt prefix is created. This random salt string is used as an attempt to reduce profile
name spoofing and tampering, and so on. All active profiles are listed in the profiles.ini file,
usually located at %UserPath%\Mozilla\Firefox.

To automatically create a user profile you can use the -CreateProfile command-line
option that is available. For ease of use, follow these steps:

1. Open a command console window.

2. Change into your current Firefox installation path.

3. Type firefox.exe -CreateProfile MyProfile.

In the preceding example, MyProfile is the name you want to call the profile; this name can-
not contain spaces. The CreateProfile option can also accept a directory path, so the com-
mand would end up looking something like this:

For Windows:

firefox.exe -CreateProfile “MyProfile c:\Profiles\MyProfile”

20_596500 ch13.qxd 6/30/05 3:06 PM Page 249

250 Part V — Installation, Automation, Tools, and Tricks

On Windows systems, the default location for profiles is as follows: C:\Documents and
Settings\User Name\Application Data\Mozilla\Firefox\Profiles.

For Linux:

firefox.exe -CreateProfile “MyProfile ~/.mozilla/firefox/”

It is important to note that the two parameters, the profile name and the directory paths, need
to be quoted together, as together they are the single value that is used by the -
CreateProfile instruction when you specify a custom path for the MyProfile directory.

For more information on other Mozilla Suite command-line options that may work with Firefox,
visit http://www.mozilla.org/docs/command-line-args.html.

Adding Global Extensions and Themes
One interesting but somewhat limited set of features that is available is global installations
of extensions and themes. These options are available as command-line options after Firefox
has been installed, so they are Firefox options and not install file options. The -install-
global-extension and -install-global-theme command-line options allow exten-
sions and themes to be installed to the main directory in which Firefox is installed, much like
the similar option in the Mozilla Suite. On the surface, these look to be ideal for deploying
extension and themes, but in my experience a global extension installation might not be worth
the hassle.

Before I dive into how to best use these, I will just cover the issues I have come across in trying
to implement them. What I have found on Windows-based systems is that the extension
parameter does not play nice when it comes to the location of the actual extension XPI file.
After some testing, the only way to get extensions to install was to have the XPI file reside in
the same directory as the Firefox.exe or the Firefox installation path. This makes deploying a
tad annoying because the files have to be copied over the computer, the installation for each
executed, and then cleaned up afterward. This, coupled with the fact that the Options dialog
for globally installed extension is disabled, makes it difficult for users to customize extensions.
All preference changes for globally installed extensions will have to be entered into the user.js
or prefs.js file in the profile.

Installing themes globally, though, was a tad smoother, and I was able to get all my themes to
install properly.

Installing extensions globally works best on brand-new Firefox installations with a new and
clean profile. Profiles that already contain the same extension that will be installed globally may
encounter issues. If the extension is installed in the profile, uninstall it and restart Firefox.
Additionally, the directory associated to the GUID in the profile’s extension directory needs
to be deleted, as well as any references in the chrome.rdf file located in the profile’s chrome
directory.

20_596500 ch13.qxd 6/30/05 3:06 PM Page 250

251Chapter 13 — Hacking Installation and Deployment

To install an extension globally, you should make sure of the following:

� You have the extension XPI install file saved locally into the Firefox installation path.

� The user must have read and write access to the Firefox installation path.

� All instances of Firefox must be closed.

Once these have been satisfied, open a command prompt to the Firefox installation path and
issue the following command:

firefox -install-global-extension “local_install.xpi”

If the installation fails, try removing the quotes.

Though all of this seems straightforward, I have had several issues with getting extensions to
register themselves properly, and I would recommend using the extension installation enhance-
ments that are slated for the Firefox 1.1 release.

With less of a configuration headache, you can install themes by issuing the following
command:

firefox -install-global-theme “D:\Firefox\apollo_fx.jar”

As you can see, having the themes in a different directory works and makes installing themes
globally a more viable option.

For each extension and theme, Firefox will run and then exit, so on slower computers it will
take longer to deploy using this method.

Deploying Plugins
We covered finding and fixing plugins in Chapter 11; here I show you how to automate the
plugin installation and disclose where some of the required files are located.

Adding Macromedia Flash and Shockwave Support
To deploy Flash and Shockwave updates that support Firefox, simply run the latest
Macromedia installers, and they will automatically add Firefox plugin support. Automating
this is a little trickier, especially for the Shockwave installer.

To download the Flash installer, just visit the following Macromedia site using Firefox and
download the installer: http://www.macromedia.com/go/getflashplayer.

The reason I specify “using Firefox” is if you go to download the installer using Internet
Explorer, the site delivers and installs the ActiveX version of the plugin. When you download
the Flash installer with Firefox, the Macromedia site provides support for Firefox, Opera, and
Internet Explorer.

20_596500 ch13.qxd 6/30/05 3:06 PM Page 251

252 Part V — Installation, Automation, Tools, and Tricks

To download Shockwave just visit and download the installer using Firefox: http://sdc
.shockwave.com/shockwave/download/download.cgi?.

Both installers have the ability to run in silent mode by specifying a command-line parameter
of /silent, as shown for the Flash Installer:

flashplayer7installer.exe /silent

The only major problem is that the new Shockwave installer now also includes the Yahoo!
Toolbar installation, and this will be automatically installed if you run the Shockwave installer
with the command-line /silent parameter. Unless you have or want to use the Yahoo!
Toolbar, the silent option will not work. An alternative approach to silent installation is to sign
up for the Macromedia Distribution Program. The distribution program, found at http://
www.macromedia.com/support/shockwave/info/licensing/, gives you one
installer for both Flash and Shockwave that can also be executed with the /silent parameter.
Installation is a breeze; during the installation, an installer tray icon and the Shockwave extrac-
tion screen are visible, but the whole process is automated and works well to add Flash and
Shockwave support to Firefox.

After you fill out the registration form for the distribution program, a download link is sent
via e-mail. Once the installer has been downloaded, it can be run in silent mode with the
following:

mm_fl_sw_installer.exe /silent

Adding Apple QuickTime and RealPlayer Support
Both QuickTime and RealPlayer come with components and plugin files that allow Firefox to
offer embedded playback of these media file types. The newer QuickTime and RealPlayer
installers automatically detect and copy the corresponding components and plugins if Firefox is
already installed. Unfortunately, if Firefox is installed after these media tools, it will not have,
nor will it be able to find, the plugins and components needed to allow them to work properly.

So you can either reinstall both media tools after installing Firefox or just copy the contents of
the components and plugins directories associated with QuickTime and RealPlayer to the cor-
responding directories in the main Firefox application directory. The default Firefox path
would be something like this:

� C:\Program Files\Mozilla Firefox\plugins

� C:\Program Files\Mozilla Firefox\components

The default path for RealPlayer browser plugin and component files is C:\Program Files\
Real\RealPlayer\Netscape6.

The default path for Apple QuickTime is C:\Program Files\Apple\QuickTime\Plugins.

Creating a script to automatically copy these over will always ensure that the plugins and com-
ponents match the installed versions of QuickTime or RealPlayer.

20_596500 ch13.qxd 6/30/05 3:06 PM Page 252

253Chapter 13 — Hacking Installation and Deployment

Create a Custom Windows Desktop Icon
In a great posting on his site, Henrik Gemal has created Microsoft Windows Scripts to auto-
mate the creation of Windows desktop icons for Firefox, Thunderbird, and Sunbird. The dif-
ference between a desktop icon and a standard shortcut icon is that it implements Microsoft’s
namespace functionality to give the desktop icon enhanced right-click functionality, much like
Microsoft Outlook and Internet Explorer. Figure 13-3 shows the key right-click context menu
options available: Open, Open (Safe Mode), Options, and Profile Manager.

For more information on the status of integrating this feature into the official Firefox installer,
visit the following Bugzilla posting: https://bugzilla.mozilla.org/show_bug
.cgi?id=264889.

FIGURE 13-3: Right-click menu
for Firefox desktop icon

To use this, just download and execute the Microsoft script file from http://gemal.dk/
misc/desktop-firefox.vbs, and a desktop icon will be created. Just remove the old
Mozilla Firefox shortcut before running the script.

You may have to refresh your desktop by switching focus to the desktop and pressing F5 or by
logging off and then back on.

For more information on the desktop links from Henrik’s site, visit http://gemal.dk/
blog/2004/11/05/firefox_thunderbird_and_sunbird_desktop_shortcuts/.

This script is also a good reference point to use if you want to extract the necessary registry
information to create your own script to accomplish the same thing.

Hacking the Desktop Icon with Nullsoft Installer Script
Tapping into Henrik’s script, I have converted it to a Nullsoft Installer script that you can com-
pile with the Nullsoft Scriptable Install System (NSIS) installer engine. To download the NSIS
visit its site at http://nsis.sourceforge.net/.

20_596500 ch13.qxd 6/30/05 3:06 PM Page 253

254 Part V — Installation, Automation, Tools, and Tricks

The script is designed to do the following:

� Remove previous registry entries.

� Add the appropriate registry entries for the desktop icon.

� Remove the standard Mozilla Firefox shortcut link from the desktop.

� Refresh the desktop to force the display of the newly created icon.

The script will automatically run in silent mode with no dialog windows and is available for
download at http://www.hackingfirefox.com/desktop-icon.nsi.

For easier editing and compiling, I like to use HM NIS Editor, an open-source editing tool for
NSIS scripts. This editor includes a great Help file and syntax highlighting for all the NSIS
keywords, functions, and commands. Figure 13-4 displays the desktop-icon.nsi script using the
HM NIS Editor.

FIGURE 13-4: HM NIS Editor with desktop-icon.nsi script loaded

Following is a full listing of the desktop-icon.nsi source code:

###
Hacking Firefox: Desktop Icon - version 1.0
###

20_596500 ch13.qxd 6/30/05 3:06 PM Page 254

255Chapter 13 — Hacking Installation and Deployment

Define Variables
!define PROD_NAME “Mozilla Firefox”
!define PROD_PREF “chrome://browser/content/pref/pref.xul”
!define TOOL_TIP “${PROD_NAME} - Rediscover the web”

!define PROD_GUID “{EC8030F7-C20A-464F-9B0E-13A3A9E97384}”
!define PROD_CLSID “CLSID\${PROD_GUID}”

var PROD_EXE

SetCompressor LZMA
SilentInstall Silent

OutFile “desktop-icon.exe”

Section “Create Icons” section01

Remove old icon settings
DeleteRegKey HKCR “${PROD_CLSID}”

Get Current Path and Executable
ReadRegStr $0 HKLM “SOFTWARE\Mozilla\${PROD_NAME}”

“CurrentVersion”
ReadRegStr $PROD_EXE HKLM

“SOFTWARE\Mozilla\${PROD_NAME}\$0\Main” “PathToExe”

Setup NameSpace Icon
WriteRegStr HKCR “${PROD_CLSID}” “” “${PROD_NAME}”
WriteRegExpandStr HKCR “${PROD_CLSID}” “InfoTip” “${TOOL_TIP}”

WriteRegStr HKCR “${PROD_CLSID}\DefaultIcon” “” “$PROD_EXE,0”

WriteRegStr HKCR “${PROD_CLSID}\Shell\Open” “” “&Open”
WriteRegStr HKCR “${PROD_CLSID}\Shell\Open\command” “”

“$PROD_EXE”

WriteRegStr HKCR “${PROD_CLSID}\Shell\Open (safe-mode)” “” “Open
(&Safe Mode)”
WriteRegStr HKCR “${PROD_CLSID}\Shell\Open (safe-mode)\Command”

“” “$PROD_EXE -safe-mode”

WriteRegStr HKCR “${PROD_CLSID}\Shell\Options” “” “Op&tions”
WriteRegStr HKCR “${PROD_CLSID}\Shell\Options\Command” “”

“$PROD_EXE -chrome ${PROD_PREF}”

WriteRegStr HKCR “${PROD_CLSID}\Shell\Profilemanager” “”
“&Profile Manager”
WriteRegStr HKCR “${PROD_CLSID}\Shell\Profilemanager\Command” “”

“$PROD_EXE -ProfileManager”

20_596500 ch13.qxd 6/30/05 3:06 PM Page 255

256 Part V — Installation, Automation, Tools, and Tricks

WriteRegBin HKCR “${PROD_CLSID}\ShellFolder” “Attributes”
32000000
WriteRegStr HKCR “${PROD_CLSID}\ShellFolder”

“HideOnDesktopPerUser” “”

Show Icons
WriteRegDWORD HKCU

“SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\HideDesktopIco
ns\NewStartPanel” “${PROD_GUID}” “0”
WriteRegDWORD HKCU

“SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\HideDesktopIco
ns\ClassicStartMenu” “${PROD_GUID}” “0”

Create NameSpace Icon
WriteRegStr HKLM

“SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\Desktop\NameSp
ace\${PROD_GUID}” “” “${PROD_NAME}”

Remove Old Shortcut
Delete “$DESKTOP\Mozilla Firefox.lnk”

SetShellVarContext all
Delete “$DESKTOP\Mozilla Firefox.lnk”

Refresh Desktop to show newly created desktop icon
System::Call ‘user32.dll::RedrawWindow(i 0, i 0, i 0, i 0x0085)

i .r1’

SectionEnd

Other Notable Deploy Tools
Currently, there is only one initiative to create a deployable and customized Firefox installation
for Windows, and that is FFDeploy. The tool itself is just a combination of Windows Scripts
and other small executables, but the effort to automate this is not trivial, and kudos go out to
Bob Templeton for his hard work.

To get more information on FFDeploy, just visit http://home.comcast.net/~ifrit/
FFDeploy.html.

Creating a Custom Installer
One issue I want to discuss without going too deeply into its logistics and semantics is the
options available with different tools to create a custom Windows installer. The system used for
deployment will determine what approach to take. Active Directory, ZENworks, and other sys-
tems have built-in mechanisms for detecting which versions and packages are installed and
come with different options. While an entire book could be written on how to deploy Firefox
with all these systems, the following sections focus on highlighting tools that you could use
with these systems, including some short sample scripts to help with the automation process.

20_596500 ch13.qxd 6/30/05 3:06 PM Page 256

257Chapter 13 — Hacking Installation and Deployment

Custom Nullsoft Scriptable Install System Installer
The Nullsoft Scriptable Install System is a great scripting tool that I like to use to create full
installers, as well as customized scripting executables that run silently. It supports all the key
areas with file management, and registry and other great functions. Another great feature of
this tool is that it supports LZMA, ZLIB, and BZIP2 compression of files that are included
with the installers that it will create; and the NSIS installer itself adds minimal overhead to the
size of the installer created. To download the core NSIS installer tool, visit http://nsis
.sourceforge.net/.

After installing the main NSIS engine tool, files with .nsi extensions get two right-click con-
text menu options, Complete NSIS Script and Complete NSIS Script (Choose Compressor).
Either can be used to quickly create an installer from an existing NSIS script file. All NSIS
scripts are text-based and can be edited with any standard text editor. To gain better control
over editing and to get color syntax highlighting of NSIS keywords and functions (as shown in
Figure 13-4), I like to use the HM NIS Edit tool, which can be downloaded from http://
hmne.sourceforge.net/. This free editor is a great companion to the NSIS engine and
provides a nice interface to editing and compiling your source NSIS scripts.

Knowing that I could modify the config.ini from the extracted installer, I wanted to write a
script that would automate specific config.ini settings that I wanted to create; this script would
make future upgrades easier to deploy. The script that follows focuses on providing methods for
modifying the run mode; updating the installation path; disabling specific dialogs (if running in
normal versus silent mode); and providing a mechanism to create a full installer, versus a stub
installer, that would run the setup from the extracted directory. To download this NSIS script
example, visit http://www.hackingfirefox.com/custom-installer.nsi.

This script relies on the fact that the Firefox installer is extracted to a directory, as highlighted
earlier in this chapter. To specify the path that the Firefox installer is extracted to, start by look-
ing for the following line of code:

!define SOURCE_PATH “setup”

This current line looks for the config.ini and Firefox setup files in a subdirectory of setup.
The setup path is a relative directory to the current location where the NSIS script is running
from. To specify a different directory, just change this value, as in the following example:

!define SOURCE_PATH “d:\Firefox Extracted Files”

The value for SOURCE_PATH has to be a directory and does not have to have a trailing slash.
All files in this directory will be included with the full installer.

Trying to make the script as generic as possible, I have included sections of code that are com-
mented out with semicolons, which can be used to further customize the script. To run the
installer in normal mode and disable specific dialogs, change the Run Mode value of Silent
to Normal, as follows:

20_596500 ch13.qxd 6/30/05 3:06 PM Page 257

258 Part V — Installation, Automation, Tools, and Tricks

WriteINIStr “${SOURCE_PATH}\config.ini” “General” “Run Mode”
“Normal”

Then add the dialog window registry edits that you want to disable. For example, to disable the
welcome dialog, uncomment this line:

WriteINIStr “${SOURCE_PATH}\config.ini” “Dialog Welcome” “Show
Dialog” “FALSE”

Other installer dialogs include the following:

� Dialog Welcome

� Dialog License

� Dialog Setup Type

� Dialog Select Components

� Dialog Select Install Path

� Dialog Install Successful

Another option I wanted to add was the ability to create a full installer and a stub installer. The
full installer would repackage the customized config.ini with all the original Firefox installation
files, and the stub installer would just have the config.ini changes and would execute the
installer from the directory it was extracted to.

The base script is designed to create a full installer. To modify it to create a stub installer, just
switch the semicolon comments as follows:

1) Use this section to make single installer containing
the complete installer
;File “${SOURCE_PATH}*.*”
;ExecWait ‘“$INSTDIR\setup.exe”’

2) Use this for a stub installer with setup extracted
to the SOURCE_PATH
ExecWait ‘“${SOURCE_PATH}\setup.exe”’

Following is the listing of the custom-installer.nsi source code:

###
Hacking Firefox: Custom Installer - version 1.0
Source: http://www.hackingfirefox.com/custom-installer.nsi
###
!define PRODUCT_NAME “Hacking Firefox Custom Installer”
!define SOURCE_PATH “setup”
!define CONFIG_INI “${SOURCE_PATH}\config.ini”

Use ZLIB compression to create installer faster
Use LZMA compression to create a smaller installer
SetCompressor ZLIB

20_596500 ch13.qxd 6/30/05 3:06 PM Page 258

259Chapter 13 — Hacking Installation and Deployment

Name “${PRODUCT_NAME}”
SilentInstall Silent

OutFile “hacking_firefox.exe”

Create a random install path in Temp directory for single
installer using the NSIS $PLUGINSDIR variable
InstallDir “$PLUGINSDIR”

Section “Options” SEC01

Run installer in Silent Mode - Default Value = Normal
WriteINIStr “${CONFIG_INI}” “General” “Run Mode” “Silent”

Choose a custom installation path
ex: “d:\My Custom Apps\Mozilla Firefox”
Other Destination Path values include:
PROGRAMFILESDIR, WINDISK, WINDIR, WINSYSDIR
;WriteINIStr “${CONFIG_INI}” “General” “Path”

“[PROGRAMFILESDIR]\Mozilla Firefox”

Disable the Welcome Dialog: Uncomment if changing
“Run Mode” to Normal
;WriteINIStr “${CONFIG_INI}” “Dialog Welcome” “Show Dialog”

“FALSE”

Diable the License Dialog: Uncomment if changing
“Run Mode” to Normal
;WriteINIStr “${CONFIG_INI}” “Dialog License” “Show Dialog”

“FALSE”

1) Use this section to make single installer containing
the complete installer
File “${SOURCE_PATH}*.*”
ExecWait ‘“$INSTDIR\setup.exe”’

2) Use this for a stub installer with setup extracted
to the SOURCE_PATH
;ExecWait ‘“${SOURCE_PATH}\setup.exe”’

SectionEnd

Function .onInit
Initialize the random Plugins Directory for installation
InitPluginsDir

FunctionEnd

20_596500 ch13.qxd 6/30/05 3:06 PM Page 259

260 Part V — Installation, Automation, Tools, and Tricks

Other Notable NSIS Code
Another good source of NSIS code that I have tapped into in the past was created by Sébastien
Delahaye. This code was written for the original Phoenix and Firebird builds, which were pre-
release builds of Firefox. The code itself is dated but can be easily modified or updated to fit
the current release builds. Some of the functionality that makes this script hold up is that it is
localized into different languages, and it can download from the Mozilla servers. For more
information or to download this script, visit http://seb.mozdev.org/firebird/.

Hacking Microsoft Windows Installers
Using a Microsoft Windows Installer (MSI) is one of the hottest topics when talking about
deploying Firefox. The ease of integrating an MSI into corporate environments using
Windows Active Directory makes using an MSI version of Firefox very desirable. An MSI file
is a specific format chiseled out by Microsoft to create a standard installation package based on
a simple database of parameters and options and bundled with the corresponding installation
files. The benefits of using any MSI are to capitalize on the ability of Windows to allow repair-
ing and managing the installation of needed files, as well as provide easy integration with
deploy procedures such as Active Directory deployment.

Currently slated for the Firefox 1.1 release is an MSI installer version, shown in Figure 13-5, to
accompany the existing Windows executable and other platform-specific installers. On the sur-
face, this seems to be the solution to everything, but for corporate environments that want to
deploy a version prior to 1.1, there are other options. These options include FrontMotion’s
MSI installer, shown in Figure 13-6, as well as the ability to create your own using MSI
installer tools such as MaSaI or Microsoft’s Installer Software Development Kit.

FIGURE 13-5: Official Firefox MSI installer

20_596500 ch13.qxd 6/30/05 3:06 PM Page 260

261Chapter 13 — Hacking Installation and Deployment

To track the progress of the official Firefox MSI installer, visit the following Bugzilla posting:
https://bugzilla.mozilla.org/show_bug.cgi?id=231062.

FIGURE 13-6: FrontMotion’s MSI installer

For more information on FrontMotion’s MSI installer, visit http://www.frontmotion
.com/Firefox/.

Upon inspecting the official Firefox MSI installer, I found that the contents of the file were
merely the extracted setup files, so in reality, the MSI installer from Mozilla is just a wrapper to
the official installer. However, the installer available from FrontMotion uses all of the MSI
capabilities in installing Firefox, and both MSI installers use the free MAKEMSI tool to build
their installer.

Another nice feature of the FrontMotion installer is the inclusion of the integrated desktop
icon (as mentioned earlier in this chapter) with right-click context menu options. This, coupled
with the ability to use the MSI’s repair functionality, makes it an ideal option for deployment in
corporate environments.

For the latest technical support and help with FrontMotion’s Firefox MSI installer visit this
MozillaZine posting: http://forums.mozillazine.org/viewtopic.php?t=138033.

20_596500 ch13.qxd 6/30/05 3:06 PM Page 261

262 Part V — Installation, Automation, Tools, and Tricks

Hacking with MaSaI
One great tool that you can use to create or update MSIs is MaSaI Solutions’ MaSaI Installer.
While Microsoft has the Orca MSI editor as part of its Installer SDK, MaSaI offers some
interesting options and an enhanced interface, as shown in Figure 13-7. While the full version
of this tool is not free, if you want to get serious about creating, extracting, or updating MSIs,
this is a viable option. The MaSaI tools offer the ability to extract MSI contents to a source
path for easy updating and rebuilding without having to do this on the system that originally
created the MSI. Additional features include MCE and ICE validation and verification, as well
as a host of other advanced tools.

FIGURE 13-7: MaSaI Editor viewing the official Firefox MSI

You can download the MaSaI Installer from http://www.masaieditor.com/.

Hacking with Microsoft’s Orca
To download and install Microsoft’s Orca tool from the Windows Software Development Kit
SDK, just hop over to http://www.microsoft.com/downloads/details.aspx?
FamilyId=A55B6B43-E24F-4EA3-A93E-40C0EC4F68E5 or to the older link http://
www.microsoft.com/msdownload/platformsdk/sdkupdate/, which redirects easily.

20_596500 ch13.qxd 6/30/05 3:06 PM Page 262

263Chapter 13 — Hacking Installation and Deployment

Special attention should be placed on the fact that this site is heavily Internet Explorer-specific
and will prompt you to install an ActiveX control to manage the downloading and updates of
the Installer SDK.

Once you have installed the full Installer SDK, you can dig through the directories to find the
Orca.msi installer. The default directory that the installer uses is C:\Program Files\Microsoft
SDK\Bin. This is where you can find the Orca.msi file.

The Orca installer creates an Orca shortcut in your Start ➪ Programs menu and launches a
simple interface, as shown in Figure 13-8.

FIGURE 13-8: Microsoft’s Orca MSI editor viewing the official Firefox MSI

Other Notable MSI Tools
Two additional tools that you can use for creating and updating are MAKEMSI and Advanced
Installer. Each tool offers different features; MAKEMSI is an XML scripted tool, and
Advanced Installer is a fully visual Windows application, as shown in Figure 13-9.

20_596500 ch13.qxd 6/30/05 3:06 PM Page 263

264 Part V — Installation, Automation, Tools, and Tricks

FIGURE 13-9: Advanced Installer’s main window

Getting MAKEMSI
One nice feature of MAKEMSI is its ability to create an installer by just pointing it to a
directory or registry file. To download the MAKEMSI installer tool, visit http://www
.labyrinth.net.au/~dbareis/MAKEMSI.htm.

To make life easier when using MAKEMSI you can also download the MSIDIFF tool
(http://www.labyrinth.net.au/~dbareis/msidiff.htm), which adds right-click
context menu options for MSIs to extract MSIs to scripts, as well as to compare different
scripts.

Getting Advanced Installer
While Advanced Installer lacks the import functionality needed to update an existing MSI, it
does have a rather simple interface for creating a new installer. Once you have created this new
installer you can save the setting as an Advanced Installer Project for future updating and
redeploying.

To get your free copy of Advanced Installer, visit http://www.advancedinstaller.com/.

20_596500 ch13.qxd 6/30/05 3:06 PM Page 264

265Chapter 13 — Hacking Installation and Deployment

Summary
This chapter should help you deploy and manage a core Firefox installation across multiple
computers. The chapter started by discussing hacking the installer and extracting the contents,
moved on to configuration options, and finished with options and methods for building a
deployable Firefox installer.

While this chapter is not meant to cover every possible installation or deployment option for
Firefox, it does cover many of the more popular options available today.

20_596500 ch13.qxd 6/30/05 3:06 PM Page 265

20_596500 ch13.qxd 6/30/05 3:06 PM Page 266

Backing Up and
Managing Your
Profile/Settings

Firefox uses profiles to keep track of your browser preferences, exten-
sions, themes, and cached data. They’re stored apart from the browser’s
application files and can be managed separately from the program

itself. This chapter looks at different ways you can manipulate your profiles
for backup and portability. You’ll find out how to preserve your profiles,
move them to other computers, and restore them when the time comes.

Before You Begin, Back Up
Because you’re a seasoned Firefox user, you’ve personalized the browser to
give yourself a familiar environment in which to work. We’re going to hack
your existing profiles in this chapter, and there’s a chance that you could
accidentally damage or destroy your settings. To prevent that, back up your
current profiles now so that if you do mess them up, you can easily restore
them and get your old Firefox settings back.

In Windows, profiles are stored in the following directory:

C:\Documents and Settings\[your username]\Application Data\
Mozilla\Firefox\Profiles

In Linux, the profile for each user is stored in the user’s home directory, in
the following path:

~/.mozilla/firefox/[Profile name]/

In Mac OS X, profiles are located in either of these directories:

~/Library/Mozilla/Firefox/Profiles/[Profile name]/

or

~/Library/Application Support/Mozilla/Firefox/Profiles/
[Profile name]/

˛ Use the hidden
Profile Manager

˛ Create new profiles
for different
purposes

˛ Back up and restore
your profiles

chapter

in this chapter

by Phil Catelinet

21_596500 ch14.qxd 6/30/05 3:07 PM Page 267

268 Part V — Installation, Automation, Tools, and Tricks

Copy the entire Firefox folder to another location on your hard drive. Because the default disk
cache location is in the profile, you can save time and space by launching Firefox and clearing
the browser cache before copying the folder. If, at any time, you want to restore your profiles,
close Firefox and copy the backup folder back to this directory.

Finding and Using the Hidden Profile Manager
If you used the Mozilla suite or an older browser like Netscape, you might remember the
Profile Manager that would launch the first time you ran the browser. The Profile Manager lets
you use different settings for different browser users without having to log out of the operating
system and back on as another user. Firefox still contains the Profile Manager, but it’s been
hidden from view. When you start Firefox for the first time, it builds a profile for you based on
its defaults, but you can start Firefox with the Profile Manager to create new profiles or delete
existing ones.

To launch the Profile Manager in Windows, first make sure that Firefox is closed. Then click
on Start ➪ Run and type %ProgramFiles%\Mozilla Firefox\firefox.exe -ProfileManager.
(You might need to enclose everything but the -ProfileManager switch in quotes.)

In Mac OS X and Linux, open a new Terminal session and type the path and switch at the
command prompt. For Mac OS X, the command should be as follows:

/Applications/Mozilla.app/Contents/MacOS/mozilla -ProfileManager

For Linux, the path depends on where you installed Firefox, but the command line switch is
the same:

~\[path to Firefox]\firefox -ProfileManager

You can also edit the shortcut for Firefox and add the -ProfileManager switch after the
executable command. Note that the Profile Manager now launches every time you use the
shortcut, so you might want to copy the original shortcut first, and then add the switch to the
copy (and rename the shortcut appropriately). That way, you can launch Firefox with the
Profile Manager when you need it, but start Firefox without it the rest of the time.

Creating and Deleting Profiles
The Profile Manager lets you create, rename, and delete profiles, as shown in Figure 14-1.

When you click on the Create Profile . . . button, the Profile Manager starts a new profile wiz-
ard that lets you configure two options: the profile name and its location (see Figure 14-2). The
name of a new profile will always be “Default User” at first, and the location will be the Profiles
folder we located earlier. You can choose a different name for your new profile and Firefox
adjusts the profile path accordingly. If you prefer, you can create the new profile in a completely
different location from your existing profiles by using the Choose Folder . . . button.

21_596500 ch14.qxd 6/30/05 3:07 PM Page 268

269Chapter 14 — Backing Up and Managing Your Profile/Settings

FIGURE 14-1: Firefox’s Profile Manager.

FIGURE 14-2: The Create Profile wizard.

From the Profile Manager screen, you can also rename an existing profile or delete it entirely. If
you delete a profile, Firefox asks if you want to delete the files associated with the profile along
with the name. Figure 14-3 shows the choices when deleting a profile. You have the opportu-
nity to save any of the data stored in the profile — the bookmarks, cookies, saved passwords,
and more — before deleting the profile for good. If you delete the files through the Profile
Manager, they are gone forever, so know what you want before you click.

21_596500 ch14.qxd 6/30/05 3:07 PM Page 269

270 Part V — Installation, Automation, Tools, and Tricks

FIGURE 14-3: The Profile Manager gives you the chance to save the data before
you delete a profile.

One more thing to remember: Firefox always starts with the last profile used, unless you use
the Profile Manager or a command line switch to select a different profile.

What’s in a Profile?
Let’s take a closer look at the files in a typical profile. We’ll explore a new profile, then compare
it with your working profile.

Launch Firefox with the Profile Manager and create a new profile. Start Firefox with this pro-
file. Using your computer’s file system, browse to the new profile’s folder. Because this is a new
profile, any files in the folder were automatically created by Firefox. You should find these files,
among others, in the profile:

� bookmarks.html: Contains the default Firefox bookmarks.

� compatibility.ini: Checks for extension compatibility with currently installed version of
Firefox.

� components.ini: Contains components listing for extensions.

� compreg.dat: Contains Firefox component Registry listing.

� cookies.txt: Contains cookies set while browsing.

� defaults.ini: Lists locations for some extensions in your profile.

� history.dat: Contains Firefox’s browser history.

� localstore.rdf: Defines default window settings and toolbar sizes and positions.

� mimetypes.rdf: Lists default file MIME types for helper applications.

� prefs.js: This is Firefox’s preferences file.

� search.rdf: Contains information on Firefox’s search plugins.

� xpti.dat: This is a catalog for Component Object Model type library.

� XUL.mfl: This is a cache file of the Firefox user interface for quick load of browser.

21_596500 ch14.qxd 6/30/05 3:07 PM Page 270

271Chapter 14 — Backing Up and Managing Your Profile/Settings

A brand new profile will also have three directories:

� cache: Stores the Firefox browser disk cache.

� chrome: Contains userChrome-example.css and userContent-example.css files, which
contain sample text for userChrome.css and userContent.css. If you create customized
versions of userChrome.css and userContent.css, they will be kept in this folder.

� extensions: Where your extensions are kept. Some extensions may store their data out-
side of the extensions folder.

Your active profile may have many other files in it, but the additional files you should be most
concerned with are as follows:

� downloads.rdf: Keeps track of your Download Manager data.

� formhistory.dat: Stores your autocomplete data for web forms.

� signons.txt: Holds any web page usernames and passwords you’ve saved while browsing.
The usernames and passwords are encrypted for added security.

� key3.db: Works with the signons.txt file to save usernames and passwords.

� parent.lock: This file only appears when Firefox is using this profile. It indicates that the
profile is in use.

� user.js: Contains user-added preferences (if you created this file yourself).

There are two other files located above the Profiles folder:

� pluginreg.dat: Registers installed plugins, and is created each time Firefox launches.

� profiles.ini: Tells Firefox where to find your profiles.

We’ll take a closer look at profiles.ini in the next section.

You can learn more about the files in a typical profile at http://gemal.dk/mozilla/
files.html.

Move Your Profiles Around
The default location for profiles works for most people, but you’re not most people. Maybe you
have a network file share that you’d like to use for your profile, so that the profile gets backed
up automatically each night by the file server. Or perhaps you want to take your profile with
you and use it on another computer. Knowing how to move your profile can come in handy.

21_596500 ch14.qxd 6/30/05 3:07 PM Page 271

272 Part V — Installation, Automation, Tools, and Tricks

Launch Firefox with the Profile Manager, select your regular profile, and start Firefox. Then
close the browser. Now open your profiles.ini file for editing. It should look like this:

[General]
StartWithLastProfile=1

[Profile0]
Name=default
IsRelative=1
Path=Profiles/u31g6nph.default
Default=1

[Profile1]
Name=firefox2
IsRelative=0
Path=C:\Documents and Settings\username\My Documents\firefoxprofiles\firefox2

Your current profile will have the variable Default=1 listed under it. Make a note of the path
to that profile. The random-looking code in the path will vary according to which version of
Firefox the profile was created with, but, as long as you know the path, the name of the folder
doesn’t matter. You’ll need to know it when you move the profile.

Moving a Firefox profile is not difficult, but it takes a bit of care.

1. Create a new folder on your hard drive named MovedProfile and place it somewhere
other than your current Profiles folder.

2. Start Firefox with the Profile Manager.

3. Create a new profile with the name MovedUser. Change the path of the profile to your
MovedProfile folder. Click Finish.

4. The main Profile Manager window appears, with the MovedUser profile selected. Click
the Start Firefox button to launch Firefox with the MovedUser profile. Firefox opens
with the default home page and bookmarks — a new, blank profile. Close Firefox.

5. Browse to your old Firefox Profiles folder and look for the exact folder you noted earlier.
Copy everything in that folder to your MovedProfile folder. If your operating system
prompts you to overwrite existing files, do so.

6. In the MovedProfile/Chrome folder, edit the file chrome.rdf with a text editor. Look
through the file for the path to your old profile location. It will be listed in codes for each
installed extension. Manually, or using your text editor’s find and replace feature, change
each occurrence of the old path to the path to your MovedProfile folder.

If your old profile was in

C:\Documents and Settings\username\Mozilla\Firefox\Profiles\xxxxxxx.default

(where xxxxxxx is the random text in the profile folder name), search for

C:/Documents%20and%20Settings/username/Mozilla/Firefox/Profiles/xxxxxxx.default

21_596500 ch14.qxd 6/30/05 3:07 PM Page 272

273Chapter 14 — Backing Up and Managing Your Profile/Settings

(because chrome.rdf is an XML file and can’t contain spaces or backslashes in URLs)
and replace it with

C:/MovedProfile

assuming that the MovedProfile folder was on drive C:.

7. Start Firefox again, this time without the Profile Manager. If all has gone well, Firefox
should launch with your normal bookmarks, extensions, and themes intact. To make sure
you are using your new profile location, look in the MovedProfile folder for the
parent.lock file. Its presence indicates that the profile is active.

You will need to keep your old Firefox Profiles folder around, because Firefox looks at
profiles.ini located there to find your profiles. However, if you’re pressed for space, you can
browse to the subfolder where your original profile was located and delete it. Before you empty
your trash, launch Firefox again to make sure that it isn’t still using that old profile for any-
thing. If you have any problems, look in your chrome.rdf file again to see if you missed a path.

For more information on formatting URLs with special characters, go to http://academ
.hvcc.edu/~kantopet/xhtml/index.php?page=writing+the+url&parent=
xhtml+hyperlinks.

Creating a Portable Profile
If you’re using Firefox on two or more computers, you might want to maintain the same book-
marks and preferences on both machines. A portable profile lets you take your most important
settings with you but keeps things small and simple, so it will work on any Firefox installation.
Bear in mind that a portable profile should be easy to move around, so don’t plan to use exten-
sions or themes in this configuration.

1. Start Firefox with the Profile Manager. Create a new profile named Portable. Change
the directory name to PortableProfile.

2. Firefox will start with the new, blank profile. Close Firefox.

3. Copy these files from your regular profile to the PortableProfile folder, overwriting the
existing copies. (You’ll see why these files are important in the next section.)

■ bookmarks.html

■ prefs.js

■ cookies.txt

■ chrome/userChrome.css (if present in your profile)

■ chrome/userContent.css (if present in your profile)

4. Start Firefox again and the Portable profile should be in use. Your bookmarks and exist-
ing preferences will be in place, but you won’t have any of your extensions.

21_596500 ch14.qxd 6/30/05 3:07 PM Page 273

274 Part V — Installation, Automation, Tools, and Tricks

5. Under Tools ➪ Options ➪ Privacy, change the size of the disk cache from 50,000 to a
much smaller number, such as 5000. Because you’ll be moving this profile around, the
disk cache should not be allowed to grow to 50 MB. Close Firefox.

6. Copy this PortableProfile folder to a USB key, a floppy disk, or other removable
medium.

7. On another machine with Firefox installed, plug in your USB key or copy the profile to
the hard drive. Access the profile by starting Firefox with the -profile switch, like so:

“c:\Program Files\Mozilla Firefox\firefox.exe” -profile F:\PortableProfile

F: is the drive letter where the profile directory is located. You can make sure that Firefox
is using the portable profile by checking the directory for the parent.lock file.

Manually Backing Up Critical Data
You’ve already seen how you can move or copy your entire profile and use it from a different
location. However, that’s not really a backup, it’s just a copy. To think of it as a backup, you’d
have to move it off your computer or at least off your primary hard disk and leave it alone.
Then you’d copy it again after each time you use the browser, because the files in your profile
change every time you access something with Firefox. But copying the entire profile by brows-
ing to the profile’s location and selecting the right directory can be time-consuming and
overkill, depending on your needs. Maybe you’re interested only in keeping your Firefox book-
marks safe in case of catastrophic data loss. Or it could be that you need to have your prefer-
ences available when you reinstall Firefox.

That’s the first question to consider when it comes to backing up your data: what information
is most important to you? If your computer were to crash and lose your files, which ones would
you need most desperately to get up and running again? Those files are the ones you should
back up and keep handy in case you have a problem with the originals. Data backup at the con-
sumer level doesn’t get much attention because it’s not interesting or fun. It’s like insurance:
you only need it when something bad happens, and who wants to worry about things going
wrong? Yet when you lose data, either through a software or hardware problem, that’s when
you’ll be glad you keep current and accurate backups of your crucial information. If your per-
sonal Firefox settings are important to you, you should include elements of your profile in your
ongoing backup strategy, whatever that may be.

Earlier in this chapter, we went through a list of the files in your profile. Now we’ll look at
some of those files from a backup point of view, in order of importance.

� bookmarks.html: For most users, this file is the most important one in the profile. If you
have built a set of bookmarks over the years, you’d probably be lost if this file were to dis-
appear. I keep several copies of my bookmarks on different computers and on different
storage media, just in case.

� prefs.js: If you’ve changed your preferences with about:config or by manually editing this
file, you might want to keep an extra copy around.

21_596500 ch14.qxd 6/30/05 3:07 PM Page 274

275Chapter 14 — Backing Up and Managing Your Profile/Settings

� chrome/userChrome.css and userContent.css: If you’ve created or edited either of
these files, you should probably keep backups of both.

� cookies.txt: You might want to keep this file if you regularly use web sites that store
information in cookies, such as newspaper web sites that set cookies with your registra-
tion data. Without cookies.txt, if you use a new profile and browse to these sites, you’ll
have to log in or register again.

� signons.txt and key3.db: Copy these files to save your stored username/password combi-
nations for any sites that require you to log in.

� formhistory.dat: If you don’t want to lose any data that you’ve entered in web forms,
make a copy of this file.

� downloads.rdf: Back up this file if you don’t want to lose your downloaded files history.

There are many other files in a typical profile, but these will get you working again should your
profile become damaged or unusable. Copy these files to another location, on your computer or
on removable media, as often as you want and you’re insured against the loss of your Firefox
data and preferences.

Automatic Backups of Critical Files
If you already make frequent backups, you probably have special software just for the task. You
don’t need any extra software or hardware for backups, but they both help make the task easier.
Using your existing backup software, just add the files listed in the previous section (or your
entire profile, if you really want the whole thing) to your normal automatic backup process and
keep the backups in a safe place.

If you want to start making regular backups, your operating system should include a decent
backup program that will get the job done. For example, Microsoft’s Backup utility will let you
select individual files for backup and schedule the backups using the Windows Scheduled
Tasks function. There are also many commercial backup options available that include more
features and use different types of backup media. If you’re interested in cheaper solutions that
can get the job done, search Google for “freeware shareware backup software” and take your
pick, but remember that you get what you pay for.

The other important thing to keep in mind regarding backups is that they need to be tested
occasionally. If you can’t restore any data from your backups, they won’t be of much help to you
when you need them. So, once in a while, restore some information from your backups and
make sure you can use it.

Unofficial Mozilla Backup Tool
For Windows users, there’s a free backup utility designed specifically to back up and restore
Mozilla, Firefox, and Thunderbird profiles. Mozbackup backs up and restores bookmarks,
saved passwords, web forms data, and cookies with ease. It gives you a quick way to save the
major elements of your profile to a compressed file that can be moved or copied to other media
for safekeeping. However, Mozbackup doesn’t back up the chrome folder or work well with
extensions.

21_596500 ch14.qxd 6/30/05 3:07 PM Page 275

276 Part V — Installation, Automation, Tools, and Tricks

Mozbackup uses a wizard for every backup and restore operation. It lets you back up different
profiles, password-protect your backup file, and select which items from your profile to include
in the backup (see Figure 14-4). Unfortunately, the program has only this wizard interface, so
it’s not great for scheduled backups using the Windows Scheduled Tasks function, unless you
don’t mind setting a time for the wizard to run each day and ask you to respond. However, for
the occasional profile backup, emergency restore, or quick move of profile data from one PC to
another, Mozbackup is an effective tool.

FIGURE 14-4: Mozbackup stores all of this information in
one file for easy backup.

Mozbackup is available at http://mozbackup.jasnapaka.com/.

Backing Up Plugins and Other Components
Browser files and search plugins aren’t part of the user profile, so they aren’t touched by any of
the backup tools or methods discussed so far. Plugins live in Firefox’s application directory and
are available for all Firefox users, whereas extensions and themes, which are stored in the pro-
file, are only available for users who have installed them.

To back up the file plugins, make a copy of the Plugins folder in the Firefox application direc-
tory or mark that folder as part of your normal automated backup process. If you need to unin-
stall and reinstall Firefox, you can restore the file plugins by copying the contents of this folder
into the new, empty plugins folder. Firefox registers available plugins when the browser
launches, so you don’t need to adjust any other settings to activate the restored plugins. To
make sure Firefox sees the plugins as available, you can check the browser’s registered plugins
by typing about:plugins in the location bar.

21_596500 ch14.qxd 6/30/05 3:07 PM Page 276

277Chapter 14 — Backing Up and Managing Your Profile/Settings

Search plugins can be backed up by copying or marking the searchplugins folder in the Firefox
application directory. After reinstalling Firefox,copy the contents of the backup searchplugins
folder to the new searchplugins folder in the Firefox application directory. While some of the
plugins come with Firefox, any plugins you have installed yourself will be restored to the
browser.

Recommended Extensions for Backups
Because Firefox doesn’t come with any built-in backup tools, extension authors have created
some useful applications that provide limited backup and restore functions. None of these tools
offers as much capability as a straightforward backup of your profile folder, but they will do the
jobs for which they are intended.

Bookmark Backup
This extension saves a backup of your bookmarks and several other files to a folder every time
Firefox closes. By default, the backup folder is located in the current profile, but there is an
option to change that. You can also select a number of other files to be backed up along with
the bookmarks, as shown in Figure 14-5. Bookmark Backup keeps its backups separated by
subfolders named for the days of the week, so you can go back up to seven days to retrieve an
older version of a file.

FIGURE 14-5: Bookmark Backup copies your bookmarks and more.

The advantage of Bookmark Backup is that it runs automatically every time you close Firefox.
So it’s great if you don’t want to bother with scheduling backups through another utility.
However, because it only backs up certain files, you should plan to use Bookmark Backup as a
quick-restore for critical files, and continue to make regular backups of your entire profile.

21_596500 ch14.qxd 6/30/05 3:07 PM Page 277

278 Part V — Installation, Automation, Tools, and Tricks

Bookmark Backup can be found at http://www.pikey.me.uk/mozilla/.

Bookmarks Synchronizer
If you run Firefox on more than one computer (for example, an office computer and a home
PC), you have probably wanted your office bookmarks at home at one time, and vice versa.
Because a bookmarks file is usually less than a megabyte, you could just e-mail it to yourself,
but you’d have to do it every day to keep up with any changes. That’s where Bookmarks
Synchronizer comes in.

This extension can be configured to upload a set of bookmarks to an Internet-accessible FTP
or web server, or download bookmarks from these servers. So, you can set up one computer at
work to upload your bookmarks every time the browser closes. At home, you configure your
other computer to download the bookmarks from the server when Firefox launches.
Bookmarks Synchronizer can overwrite existing bookmarks with the changes from the server
or merge two different sets of bookmarks into one set. It doesn’t account for duplicate book-
marks, so you might get doubles if you select the merge option. You can even select a subfolder
within your bookmarks if you need to synchronize only part of the overall bookmarks collec-
tion. Figure 14-6 shows the configuration options for Bookmarks Synchronizer. All you need
to get started is access to a web or FTP server on the Internet. Your ISP usually provides a cer-
tain amount of web space for a personal home page, so you should be able to store your book-
marks there.

FIGURE 14-6: Bookmarks Synchronizer helps you
manage bookmarks on different computers.

21_596500 ch14.qxd 6/30/05 3:07 PM Page 278

279Chapter 14 — Backing Up and Managing Your Profile/Settings

The bookmarks are stored in an XML file on the server, which can be read by any modern web
browser. Therefore, uploading your bookmarks to an HTTP or HTTPS web site may make
them visible to anyone who explores the site. If you’re a stickler for security or just want to keep
your bookmarks private, you may want to keep your backup file on an FTP site or a web site
that is password-protected or closed to the public Internet.

You can get Bookmarks Synchronizer from http://cgi29.plala.or.jp/mozzarel/.

fireFTP
fireFTP isn’t a backup extension per se, but a full-fledged FTP client right in your Firefox
browser window. With fireFTP, you don’t need to install a separate FTP client or open a com-
mand prompt window to access FTP sites. Upon installation, fireFTP becomes a menu option
under Tools and, when accessed, will open in a new tab, by default, though you can change it to
use a new window if you prefer. It does all of the following:

� Provides a two-pane interface.

� Supports active and passive FTP connections.

� Automatically detects binary versus ASCII files.

� Will resume broken downloads if the site supports resuming.

� Works across all three Firefox-supported operating systems.

You can see fireFTP in action in Figure 14-7.

The implication for profile backup and restoration is that you can use fireFTP to upload your
MozBackup files or zipped profiles to an FTP site for safekeeping.

21_596500 ch14.qxd 6/30/05 3:07 PM Page 279

280 Part V — Installation, Automation, Tools, and Tricks

FIGURE 14-7: fireFTP puts FTP access right in your browser window.

Summary
The ability to customize Firefox is one of the key features that sets it apart from other web
browsers. The profile is the method by which the browser stores and tracks preferences. Profile
management is a vital aspect of deploying and using Firefox across different systems. Using the
skills from this chapter, you can back up, move, and restore your profiles. You know how to cre-
ate portable profiles that let you take your settings with you. The tools listed here let you man-
age your profiles the way you want, with the flexibility you’ve come to expect from Firefox.

21_596500 ch14.qxd 6/30/05 3:07 PM Page 280

Hacking Tools for
Web Programmers

One of the main reasons why I love to use Firefox is for the bounti-
ful number of extensions that are available for all facets of web
programming. With a base installation, sans extensions, Firefox

delivers pure HTML rendering, CSS support, some JavaScript validation
functions, tab browsing, and easy search functionality. Add to this a great
collection of extensions, and web programming or debugging is raised to a
whole new level.

This chapter focuses on the most popular and best-maintained extensions
that I and many other folks have used for web programming. The topics
covered in this chapter include the following:

� HTML

� Link

� JavaScript

� XUL

� Page validation tools

I cover what I have found to be the most useful features of some of the most
popular extensions and how I tap into them.

Configuration Hacking
Two key extensions that I want to cover that don’t fit in any of the main
topics are configuration and managing research references. One thing that I
have always done is to configure my settings to make debugging or coding
as easy as possible. Historically, I have used different sets of extensions to
accomplish this or have made the changes manually. Lately, I have been
tapping into the excellent work done with the Configuration Mania exten-
sion, shown in Figure 15-1. This extension adds a self-titled menu option to
the Tools menu and contains many useful setting for all users.

˛ Configuration
hacking

˛ Organizing Web
research

˛ The godfather of
Web programming
extensions

˛ Hacking tools of the
trade

chapter

in this chapter

by Mel Reyes

22_596500 ch15.qxd 6/30/05 3:08 PM Page 281

282 Part V — Installation, Automation, Tools, and Tricks

The Configuration Mania window options are divided into categories on the left panel and
option groupings on the right. The most useful tweaks are in the Browser, HTTP Network,
and Debug categories. While the extension does have other great features, these are the ones
that I find the most beneficial when setting my coding environment.

FIGURE 15-1: Configuration Mania tweaking window

Browser
In the Browser category, I like to focus on three of the groupings:

� UserAgent: The UserAgent section allows me to manipulate the strings that are auto-
matically sent to web servers when browsing. This value is used by web pages to deter-
mine what the browser’s capabilities are and can be modified to spoof or trick a web page
to allow you access to specific content or areas. While many sites have been updating to
support real standards, this feature is still rather handy.

� High Speed Browsing: While I normally adjusted these manually, this interface gives
me the ability to make changes with ease when doing high-speed testing.

� Others: The Others section allows me to disable modal error messages, change the
throbber’s link, and enable the tab browsing Single Window Mode in the base Firefox
Options menu.

HTTP Network
The HTTP Network category allows us to add some additional tuning of the number of con-
nections, as well as set the HTTP connection type. Making changes to these settings breaks
away from known standards but can yield some incredible web page downloading performance.

22_596500 ch15.qxd 6/30/05 3:08 PM Page 282

283Chapter 15 — Hacking Tools for Web Programmers

For more information on these settings and values, see Chapter 5.

Debug
The Debug category is the section that I use when I want to use Firefox’s built-in feature to
help me debug existing JavaScript code. Enabling JavaScript strict warnings assures tight align-
ments with JavaScript standards and usually highlights some of the most obviously overlooked
bugs that pop up. Additionally, when coding or creating Firefox extensions, enabling “Enable
JavaScript dump() output” and “Show Chrome JavaScript errors & warnings” will help to pin-
point extension-specific syntax issues.

For more information or to install Configuration Mania, visit http://members.lycos
.co.uk/toolbarpalette/confmania/index_en.html.

The following preference settings can be set to enable the same debug features using the
about:config screen:

—Enable Strict JavaScript warnings: javascript.options.strict = true

—Enable dump() output: browser.dom.window.dump.enabled = true

—Show Chrome Errors and warnings: javascript.options.showInConsole =true

Organizing Web Research
One of the most troubling issues that I have to deal with is organizing web research that I am
doing for a specific project. Whether it is a link to reference materials, code snippets, or forum
posting, organizing and having them readily available is a monumental task, and that’s when
ScrapBook comes to the rescue. ScrapBook has to be one of the best organizational tools I have
used for collecting page snippets or whole pages.

This extension adds an entry to the Tools menu, a shortcut-key combination of Alt+K, and
right-click context functionality to capture selected text or whole page. As you can see from
Figure 15-2, ScrapBook has the capability to create folders and subfolders, and edit saved con-
tent. All contents captured with ScrapBook are saved locally, along with such web page support
elements as images, HTML, and CSS files.

22_596500 ch15.qxd 6/30/05 3:08 PM Page 283

284 Part V — Installation, Automation, Tools, and Tricks

FIGURE 15-2: ScrapBook extension with content loaded

An entry’s property also contains the original URL or link back to the source of the captured
content. Another interesting feature highlighted in Figure 15-2 is ScrapBook’s ability to edit
the locally saved content, as shown by the Edit toolbar below the main window.

To download and install ScrapBook, visit http://amb.vis.ne.jp/mozilla/scrapbook/.

The Godfather of Web Programming Extensions
Finding Internet or web programming tools can be a real hassle; however, with Chris Pederick’s
Web Developer extension, web programming just got a lot easier. The Web Developer exten-
sion has so many features that this entire chapter could have been dedicated to using it. In a
nutshell, this extension allows you to edit, disable, enable, show, or hide key page features such
as cookies, images, JavaScript, style sheets, and form values. It can also help you validate your
documents for standards, show page element information, reset sessions or cookies, and a
whole lot more. As shown in Figure 15-3, Web Developer installs itself in three ways:

22_596500 ch15.qxd 6/30/05 3:08 PM Page 284

285Chapter 15 — Hacking Tools for Web Programmers

� A toolbar of options with dropdown menus

� A right-click context menu

� A matching Tools menu option

Any of these can be disabled by using the extension’s option panel. The extension also adds a
toolbar button that you can use to toggle the Web Developer toolbar itself and can find by
choosing Customize from the View ➪ Toolbars menu.

FIGURE 15-3: Web Developer extension toolbar and Tools menu

Key Web Developer Features
One of the key abilities that I like to tap into includes live Cascading Style Sheet editing,
which can be accessed by choosing Edit CSS from Web Developer’s CSS menu or by pressing
Ctrl+Shift+E. This feature alone warrants installing this extension, as it will allow you to mod-
ify style sheet properties and view the changes on the fly.

22_596500 ch15.qxd 6/30/05 3:08 PM Page 285

286 Part V — Installation, Automation, Tools, and Tricks

The next feature I want to highlight allows you to validate your HTML or other pages against
the World Wide Web Consortium standards on the W3C web site. To access this feature, just
navigate to the page you want to validate and choose Validate HTML from Web Developer’s
Tools menu. The current web page address is submitted to W3C’s validation scripts, and the
results are displayed accordingly. Running this every now and then helps with reducing page-
rendering inconsistencies across systems or browsers and will keep your code in line.

A third Web Developer extension feature that I cannot live without is the window resize fea-
ture, which is available from the Web Developer’s Resize menu. By default, it comes with
800 × 600 as an option for resolution testing, but you can add any custom entries from the
Options menu. This feature allows for quick testing of different resolutions without having to
manually switch your display’s properties for testing.

These are just a few of the many features wrapped up in the Web Developer extension. The
more you use it, the more you’ll love it.

To download and install Web Developer, visit http://chrispederick.com/work/
firefox/webdeveloper/.

Hacking Tools of the Trade
When putting this list together, I wanted to make sure that I included just the right extensions,
even if I did not use them. I pulled together a list of my most recommended tools, scoured the
forums and download sites for comments, and then added a few more. While this list is not a
comprehensive list of every possible extension, it is a list of great extensions that you can use for
hacking HTML, links, JavaScript, and XUL and for validating web pages. You can search the
ever-evolving and -updated Mozilla Update site, https://addons.update.mozilla.
org/, for more extensions and goodies.

To help with installing extensions listed in this chapter, use my MR Tech’s Local Install exten-
sion, which allows installing extensions (or themes) from the local disk. For more information
or to install MR Tech’s Local Install, visit http://www.mrtech.com/extensions/.

Additionally, you can make your Extension Manager listing much more manageable by
installing the Slim Extension List extension, which will sort and trim the amount of space each
extension uses on the list. For more information or to install Slim Extension List, visit
http://v2studio.com/k/moz/.

HTML Hacking Tools
The section is full of goodies to help with the everyday tasks a web programmer may come
across. This chapter contains extensions and information on sniffing out MIME types, validat-
ing stored cookies, selecting colors, and changing the User Agent string to use a different
editor to view a page’s source. It’s a nice arsenal of HTML tools to get you started loving
Firefox more and more.

22_596500 ch15.qxd 6/30/05 3:08 PM Page 286

287Chapter 15 — Hacking Tools for Web Programmers

Hacking with LiveHTTPHeaders
Hacking with the LiveHTTPHeaders extension is great when you need to sniff out the com-
munication between the browser and the web server to extract details. The information col-
lected, as shown in Figure 15-4, includes all the details for requests and responses that are
made from the browser and web server. When dealing with different servers, configurations,
and third-party tools, this extension really comes in handy. It also helps with projects that
require download prompting and triggering specific file MIME type actions, and is a must-
have if you are diving into projects like these.

FIGURE 15-4: LiveHTTPHeaders with style sheets enabled

This extension can be opened from the LiveHTTPHeaders option in the Tools menu and will
collect information only while the window is open and the Capture option is selected, so hav-
ing this extension installed should have no impact on the performance of download content
when it is not in use.

For more information or to install LiveHTTPHeaders, visit http://livehttpheaders
.mozdev.org/.

22_596500 ch15.qxd 6/30/05 3:08 PM Page 287

288 Part V — Installation, Automation, Tools, and Tricks

Hacking with View Cookies
This extension makes it easy to view, temporarily remove, or permanently remove cookies that
you might be working with. This extension is good for all users and adds a new information tab
panel to the page details. To access the panel, shown in Figure 15-5, just choose the Page Info
option from the Tools menu or right-click on the page and choose View Page Info. All the
default page information tabs will be populated with the addition of a new tab that contains
cookie information.

FIGURE 15-5: View Cookies information tab

Caution should be taken when using the Remove Cookie forever feature, as it will add that
domain to the Cookies block list, and no further cookies for that domain will be added. To
undo this change, follow these steps:

1. Open the Firefox Options window from the Tools menu and select the Privacy section
on the option’s icon bar.

2. Expand the Cookies section and select the Exceptions option.

3. Find the domain you just blocked from this list and remove it.

After you do this, setting cookies will be reenabled for that domain.

22_596500 ch15.qxd 6/30/05 3:08 PM Page 288

289Chapter 15 — Hacking Tools for Web Programmers

For more information or to install View Cookies, visit http://www.bitstorm.org/
extensions/.

Hacking with ColorZilla
The ColorZilla extension is great and has the following features listed on the site, among other
colorful goodies:

� Advanced Eyedropper

� ColorPicker

� Page Zoomer

After installation, a new eyedropper icon is placed to the far left of the status bar. Left-clicking
will activate the eyedropper crosshairs to find colors, and right-clicking will give you the
options available. The eyedropper tools extracts the color codes from whatever you move the
crosshairs over and can also be activated by pressing Shift+Esc. The status bar is updated with
color information corresponding to the location of the eyedropper crosshair; then, clicking on
the final location will lock those values, which are accessible by right-clicking the status bar
icon. The Page Zoomer feature can be used in combination with the eyedropper to pinpoint a
specific color. Unlike Firefox’s built-in text zoom function, this Page Zoomer feature also
increases the size of images, making it easier to find specific pixels that you may want to use
the eyedropper on, and so on. For web color matching work, this extension is in a league of
its own.

For more information or to install ColorZilla, visit http://www.iosart.com/firefox/
colorzilla/.

Using User Agent Switcher Extensions
From the maker of the fantastic Web Developer extension comes another interesting tool, User
Agent Switcher. This tiny extension allows you to spoof or trick web sites into thinking that
you are running different browsers. Based on my experience, this tool helps in two ways:

� It enables Firefox to bypass annoying or outdated Internet Explorer-only sites that really
do not have Internet Explorer-only content but are just too lazy to add support for real
standards.

� It enables me to quickly test browser-specific features that I may have created.

The user agent string or value is a standard browser feature that is discussed in RFCs 1945 and
2068, which basically involves having your browser send the web server a string to help with
detecting the type of browser you are currently using. This is helpful when having to code for
specific projects or feature sets and is universally used and accepted. The values that are submit-
ted to the web server, though, do not have to meet any hard rules, and this extension lets you
dynamically change this string. The three default strings that User Agent comes with are listed
in Table 15-1.

22_596500 ch15.qxd 6/30/05 3:08 PM Page 289

290 Part V — Installation, Automation, Tools, and Tricks

Table 15-1 Default User Agent Values

Option User Agent String Value

Default Firefox’s current User Agent String value (This varies based on operating
system and version of Firefox running.)

Internet Explorer Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)

Netscape 4.8 Mozilla/4.8 [en] (Windows NT 5.1; U)

Opera 7.54 Opera/7.54 (Windows NT 5.1; U) [en]

Additional values can be added and customized to your liking by using the extension’s Options
panel window.

To download and install User Agent Switcher, visit http://chrispederick.com/work/
firefox/useragentswitcher/.

Hacking with ViewSourceWith
ViewSourceWith is a simple, well-thought-out extension that allows you to add a list of differ-
ent editors via its Options window, shown in Figure 15-6, which will then be made available
via the Source View option in Firefox’s View menu, as “View source with” in the right-click
context menu, or as an optional toolbar button. The uses for this extension quickly materialize
when working with simple local HTML pages that require quick editing. Additionally, pulling
page source code into my favorite editors is a nice added bonus when reviewing or skimming
through code.

FIGURE 15-6: ViewSourceWith configuration screen

22_596500 ch15.qxd 6/30/05 3:08 PM Page 290

291Chapter 15 — Hacking Tools for Web Programmers

To download and install ViewSourceWith, visit http://dafizilla.sourceforge.net/
viewsourcewith/.

Navigation and Link Hacking Tools
Three tools that are used for handling or working with links and their HTML code are Mouse
Gestures, ieview, and BBCode. All have different tasks and are extremely useful when navigat-
ing from page to page or when posting link information on web forums and sites.

Hacking with Mouse Gestures
While this tool is not necessarily web programming–specific, once you review all the available
options and features you will see how it can save you tons of time when navigating through the
Internet — for example, to look up reference code or code snippets. By default, you can right-
click and drag your mouse in several directions to execute a specific navigation command. (For
example, right-clicking and dragging from right to left anywhere on the page jumps you back
to the previous page; doing the reverse from left to right jumps you forward one page in your
browsing history.) This extension is highly configurable but comes with some very easy-to-
learn basic gestures, which, coupled with the Gesture Exchange link on their site, will have
you customizing things to your liking or just leaving things as they are and enjoying quick
navigation.

To visually enhance the benefits of this little puppy, activate the mouse trails in the extension’s
options window, and you will see your mouse gestures as you do them.

For more information or to install Mouse Gestures, visit http://optimoz.mozdev.org/
gestures/.

Hacking with ieview
As much as I hate to admit it, there are still sites, including both public and corporate
intranets, that rely heavily on Internet Explorer technology. So, whether for testing or pure
outright need, this extension allows a quick way to load a link from Firefox into Internet
Explorer. For most users this need revolves around Windows Updates, Office Updates,
Microsoft Java VM, or other Microsoft media-rich sites — basically, sites that are Microsoft
ActiveX–dependent and have been absorbed into the Microsoft collective. If you want to help
with the migration pain of using Firefox until sites wake up and smell the Mozilla coffee brew-
ing, you can use this extension as a one-time option from the right-click context menu or to
permanently add sites that will launch in Internet Explorer.

The two options that are added to the right-click context menu include “Open Link Target in
IE” and “Always Open Linked Site in IE.” The first is for one-time use or testing, and the sec-
ond will add the link to a list that will automatically launch in Internet Explorer after selecting
this. To make changes to the “Always Open” list, open the Extension Manager and choose the
Options for ieview to make configuration changes.

22_596500 ch15.qxd 6/30/05 3:08 PM Page 291

292 Part V — Installation, Automation, Tools, and Tricks

For more information or to install ieview, visit http://ieview.mozdev.org/.

Hacking with BBCode and BBCodeXtra
Without getting into extreme detail on how to use either one of these extensions, I can tell you
that they can definitely help in filling out responses in forums or forms and with creating links
and image tags for HTML, BBCode, and XHMTL. BBCode is the universally accepted
markup language for just about all major online user forums. BBCode markup language has a
much smaller subset of available formatting tags than HTML, and tags are usually delimited
with brackets instead of the normal HTML tags, which are delimited with less than (<) and
greater than (>) signs. Options that make either of these extensions great are their ability to
create links from selected text or clipboards into an input form and to add text-formatting syn-
tax, as needed. Either one of these extensions is a must-have if you intend on posting forum
requests with links or have your own online forum that you use to support your applications,
and so on.

For more information or to install BBCode, visit http://jedbrown.net/1.0/mozilla/.

For more information or to install BBCodeXtra, visit http://www.extenzilla.it/
bbcodextra/index.php?lang=eng.

JavaScript and XUL Hacking Tools
JavaScript and XUL programming can be used in tandem to create great Firefox extensions
and applications. This section focuses on tools that will help with inspecting the Firefox inter-
face, help debug JavaScript, and provide JavaScript tools and XUL packaging features. These
tools vary in level of difficulty and may have a steep learning curve, but all should be worth the
effort required.

Hacking with the DOM Inspector
The DOM Inspector is easily the best tool to use when working with Firefox and trying to cre-
ate extension overlays by picking apart a window’s or dialog’s XUL elements. Using the combi-
nation of File ➪ Inspect a Window and Search ➪ Select Element by Click, you can easily
extract a window’s or an element’s id to use within your code. This is how I originally extracted
the “throbber-box” and “search-container” ids that I later used and modified in my local
userChrome.css file, as described in Chapter 2. Using this technique of selecting a window
or dialog to inspect and then walking through the document tree also gives you a better
understanding of the different elements that are used or are available with XUL interface
programming.

Installing the DOM Inspector is covered in Chapter 1 in greater detail, but suffice it to say, you
will need to redownload the Firefox installer to get this little gem. After that, you can just fol-
low the Custom installation options to enable Developer Tools when prompted.

22_596500 ch15.qxd 6/30/05 3:08 PM Page 292

293Chapter 15 — Hacking Tools for Web Programmers

Hacking with JavaScript Console and Debugger
The JavaScript Console and JavaScript Debugger are two different tools that are miles apart
with respect to features and ease of use. The Console is a default install with Firefox and can be
configured to show JavaScript errors and warnings from web pages, as well as errors from
extensions or XUL applications. The entries that get added here are errors, warnings, and
messages.

While this native feature of Firefox is good, some crave more control over JavaScript coding,
and that is where Venkman or JavaScript Debugger comes in handy. Venkman is the project
code name for the JavaScript Debugger extension, which includes an extremely rich and robust
editing and debugging environment specifically geared toward JavaScript debugging, as shown
in Figure 15-7.

FIGURE 15-7: JavaScript Debugger window

This extension may be overwhelming for the faint of heart at first, but once you have gotten
over the initial shock, the utilitarian features become very evident.

For more information or to install Venkman, visit http://www.hacksrus.com/~ginda/
venkman/.

22_596500 ch15.qxd 6/30/05 3:08 PM Page 293

294 Part V — Installation, Automation, Tools, and Tricks

Hacking with Extension Developer’s Extension
This extension is a nice compilation of quick tools that can make creating extensions a smooth
ride. The extension comes with the following features:

� Extension Builder

� install.rdf Editor

� JavaScript Shell

� JavaScript Environment

� Live XUL Editor

� Live HTML Editor

� Toggle Debugging Preferences

� Reload All Chrome

An Extension Developer menu is added to Firefox’s Tools menu, and all of these features are
accessible there.

Some of these features are mini–XUL applications that you can also use directly from Firefox
without having to install them separately. While some of the features are really diamonds in the
rough, the overall usefulness of this extension can quickly be reaped by novice or serious exten-
sion developers.

For more information or to install Extension Developer’s Extension, visit http://ted
.mielczarek.org/code/mozilla/extensiondev/.

Page Validation Hacking Tools
While the Web Developer extension includes a couple of online validation service features, I
want to also recommend two other extensions that may be of use: HTML Validator and
Checky. These extensions offer different sets of features, but both can be tapped into to clean
up any nonstandard coding that may be lingering in the HTML closet.

Hacking with HTML Validator
When I first used this extension on some of my pages, I was truly shocked and ashamed that it
found so many errors and warnings. The core is based on Tidy, which was originally created by
the W3C and has been updated and extended as an open-source project. Tidy’s core function-
ality focuses on analyzing specific strict standards and formatting for HTML code.

The latest version of HTML Validator, which taps into Tidy’s core features, adds a color-coded
icon to display the status of the current page that is loaded to the status bar. The real function-
ality comes with the information that it displays when you view a page’s source code from

22_596500 ch15.qxd 6/30/05 3:08 PM Page 294

295Chapter 15 — Hacking Tools for Web Programmers

View ➪ Page Source. This is where HTML Validator adds a split panel, shown in Figure 15-8,
to the bottom of the view source screen. The bottom-left panel provides a list of errors and
warnings, and the bottom-right panel contains generic details and possible resolutions for the
selected error or warning. A nice feature of this extension is that when in view source mode,
clicking on an entry in the bottom-left panel jumps you to the offending code within the
source code in the main code window above it, making it easier to track bugs within the code.

Another feature that I have not really tapped into, but definitely will, is the Cleanup feature,
which is available as a button on the bottom of the Page Source window or from the right-click
context menu from the extension’s icon on the status bar. This feature steps you through pro-
posed fixes for the offending page with source and browser views for the original as well as the
newly cleaned HTML.

FIGURE 15-8: HTML Validator list of errors and warnings in view source window

For more information or to install HTML Validator, visit http://users.skynet.be/
mgueury/mozilla/.

22_596500 ch15.qxd 6/30/05 3:08 PM Page 295

296 Part V — Installation, Automation, Tools, and Tricks

Hacking with Checky
Another notable extension for page validation is Checky, which is more centered on using
online web validation services but comes with tons of options. This extension also has the abil-
ity to create an agent, which automates several validation checks and caches the results locally.

For more information or to install Checky, visit http://checky.sourceforge.net/
extension.html.

Summary
This chapter highlights how to quickly make local configuration changes, discusses using
ScrapBook to organize notes and web pages, and finally recommends the mother of all web
developer extensions to get the boat rockin’. After that, the chapter dives into a few extensions
that help with hacking HTML, links, JavaScript, XUL, and validating web pages. The chap-
ter’s main goal is to provide well-rooted and actively supported extensions that can really make
an impact on the day-to-day web programming drudgeries that usually pop up.

22_596500 ch15.qxd 6/30/05 3:08 PM Page 296

Creating Extensions
and Themes

Chapter 16
Understanding Mozilla
Programming

Chapter 17
Creating Extensions

Chapter 18
Creating Themes

part

in this part

23_596500 pt06.qxd 6/30/05 3:09 PM Page 297

23_596500 pt06.qxd 6/30/05 3:09 PM Page 298

Understanding
Mozilla
Programming

This chapter introduces you to the wonderful world of Mozilla pro-
gramming. You get to know the main Mozilla technologies and see
how these technologies work together. After getting acquainted with

the various concepts and terms, we take our first look at the exciting possi-
bilities found in creating new browser extensions.

What makes Mozilla programming and especially Mozilla extension pro-
gramming so great? You can quickly achieve quite a lot with a simple text
editor and some imagination. Moreover, Mozilla is truly cross-platform. For
example, the vast majority of Firefox extensions can run on many different
operating systems with no modifications whatsoever. Finally, Mozilla is
open source. This means that you can see exactly what is happening behind
the curtains in each and every component you want to enhance or modify. It
also means that there are more people in the community who know the
inner workings of the various Mozilla parts and can help you on your devel-
opment quest.

Understanding Mozilla Technologies
This section provides an overview of the various Mozilla technologies,
beginning with XML User Interface Language (XUL), the language
Mozilla uses to describe user interfaces (UI). Then we’ll discuss JavaScript,
a programming language used to implement the logic behind the user inter-
face. You’ll also see how to use Cascading Style Sheets (CSS) to define the
appearance of your HTML and XUL documents and how to programmati-
cally access these documents using the Document Object Model (DOM)
interfaces. The section concludes with a short overview of the Cross
Platform Component Object Model (XPCOM).

˛ Understanding
Mozilla
technologies

˛ Introducing Firefox
extension
programming

chapter

in this chapter

by Alex Sirota

24_596500 ch16.qxd 6/30/05 3:11 PM Page 299

300 Part VI — Creating Extensions and Themes

XUL: XML User Interface Language
XML User Interface Language (XUL) is the language used in Mozilla to describe user inter-
faces. Being an XML language, it has all the advantages of XML: it is simple, text based, cross-
platform, and very flexible. You can create an advanced user interface with XUL in minutes
using a simple text editor. You don’t need to compile anything or to learn any platform-specific
concepts or tools. This makes creating user interfaces with Mozilla as straightforward as creat-
ing regular web pages, and similarly to a web page, your XUL user interface works on any plat-
form supported by Mozilla.

XUL is pronounced “zool” (rhymes with “cool”).

XUL can be used to create both simple and complex user interfaces, starting with simple
dialogs all the way to full-featured applications. In fact, the Mozilla applications — Firefox,
Thunderbird, and the Mozilla Suite — are all built using XUL. There are several other XUL-
based applications, including the Internet Relay Chat (IRC) client named ChatZilla.

User interfaces created with XUL can be easily skinned, extended, and localized. For example,
you can change the visual theme of your UI or translate it to another language by simply
changing a few text files. Another nice feature is that you can open XUL documents inside
your browser’s content area — exactly as you would open an HTML document. You can even
run your XUL-based application directly from the Internet. This makes creating web applica-
tions as easy as creating web pages.

A XUL user interface definition is an XML file that contains the UI elements and their hierar-
chal structure. For instance, your interface may consist of a window that contains two boxes.
Each box can in turn have any number of child widgets (entry boxes, buttons, labels, and so on).

In the following sections, we create and lay out some simple widgets, and finally create a com-
plete XUL document.

If you want to test the XUL code in the following examples, you can create a file with a .xul
extension and the following contents:

<?xml version=”1.0” encoding=”UTF-8”?>

<window align=”start”

xmlns=”http://www.mozilla.org/keymaster/gatekeeper/there
.is.only.xul”>

.

.

.
[Your XUL widgets go here]
.
.
.

</window>

24_596500 ch16.qxd 6/30/05 3:11 PM Page 300

301Chapter 16 — Understanding Mozilla Programming

Once you create the file and insert some XUL elements, you can open it in Firefox using File ➪

Open File. The align=”start” part makes sure your XUL widgets are shown correctly when
opened inside the browser window.

XUL Widgets
The basic element of a XUL document is a widget. Buttons, text boxes, menu items, and so on
are all widgets. A widget is created by inserting an appropriate element into your XUL docu-
ment. The attributes of this element determine the various properties of your widget. For
example, the following defines a simple button:

<button label=”Go”/>

The label attribute determines the text that appears on the button.

A button by itself isn’t much of a user interface, so let’s add a text box:

<textbox value=”Enter you text here”/>

The optional value attribute defines the default text that initially appears inside the text box.

You shouldn’t put text labels directly in a XUL file. If you do, you won’t be able to use Mozilla’s
localization mechanisms to translate this text into other languages. If you use XML entities
instead of literal text strings, the translation will become virtually effortless. You learn about
Mozilla localization in the next chapter.

XUL elements can have many optional attributes. For example, some of the attributes that a
text box can have follow:

� maxlength: The maximal number of characters that can be entered into the text box.

� readonly: Setting this attribute to true makes the entry box read-only.

� type: You can create special-purpose entry boxes with this attribute. For example, set-
ting the value of this attribute to password creates a password entry box, one that
doesn’t display what is being typed.

XUL Layout
We have seen how individual widgets can be specified using XUL. Now it is time to see how
XUL handles layout.

XUL uses a scheme called the box model to specify how the elements are oriented, aligned, and
positioned. The user interface is divided into boxes. A box can contain UI elements or other
boxes. Each box specifies whether its child elements are horizontally or vertically aligned. By
grouping your elements into boxes, adding spacers, and specifying the flexibility of your ele-
ments, you can achieve the wanted layout for you user interface.

For example, the following specifies that we want three buttons to be arranged in a row:

<hbox>
<button label=”Red”/>
<button label=”Green”/>
<button label=”Blue”/>

</hbox>

24_596500 ch16.qxd 6/30/05 3:11 PM Page 301

302 Part VI — Creating Extensions and Themes

Figure 16-1 shows the horizontally arranged buttons.

FIGURE 16-1: Horizontally arranged buttons

As you can see, to create a horizontal layout, we placed the three buttons inside an hbox ele-
ment. Similarly, to create a vertical layout, you place the elements inside a vbox:

<vbox>
<button label=”Red”/>
<button label=”Green”/>
<button label=”Blue”/>

</vbox>

Figure 16-2 shows the vertically arranged buttons.

FIGURE 16-2: Vertically arranged buttons

An example of a complete XUL document follows:

<?xml version=”1.0”?>

<window orient=”horizontal”
xmlns=”http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul”>

<textbox value=”Enter you text here”/>
<button label=”Go”/>

</window>

The xmlns=”http://www.mozilla.org/keymaster/gatekeeper/there.is.only
.xul” line specifies that the window children are XUL elements.

RDF in XUL Applications
Resource Description Framework (RDF) is a technology for describing Internet resources. It is
typically implemented as an XML file having a special syntax. RDF is a complex topic outside
the scope of this book. In the following sections, you can see some Mozilla configuration files
written using this format, but understanding RDF is not required — all the examples include
the necessary explanations and clarifications.

24_596500 ch16.qxd 6/30/05 3:11 PM Page 302

303Chapter 16 — Understanding Mozilla Programming

The RDF specification is maintained by the World Wide Web Consortium (W3C). For more
information about this technology in Mozilla visit the Mozilla RDF page: http://www
.mozilla.org/rdf/doc/.

Additional XUL Resources
Following are two additional XUL resources that might come in handy:

� Mozilla XUL project page: This page contains the XUL specification and links to addi-
tional XUL resources: http://www.mozilla.org/projects/xul/.

� XUL Planet: This site is dedicated to XUL programming. It has several very helpful
tutorials and a lot of reference material: http://www.xulplanet.com/.

We now know what XUL is and how we can use it to create user interfaces. But XUL by itself
isn’t very useful; we have merely created a bunch of elements and placed them together. We
need a way to add some functionality to our user interface. This is usually done with JavaScript,
which leads us to the following section.

JavaScript
JavaScript is a powerful scripting language most widely used for creating dynamic web pages.
Mozilla also uses JavaScript to implement the logic behind XUL user interfaces. Like many
other technologies used in Mozilla, JavaScript is very easy to master; you don’t have to be an
experienced programmer to start writing JavaScript programs.

JavaScript and Java are two completely different languages. They both have syntax somewhat
similar to C, but other than that, they don’t really have much in common. JavaScript is a
lightweight scripting language created by Netscape, while Java is a more complex, compiled lan-
guage developed by Sun Microsystems.

JavaScript is an interpreted language. This means that the program is executed directly from
the source code; there is no need to first compile it into binary form. This also means that pro-
grams written in JavaScript are usually open source by definition — they are just plain-text
pieces of code, located either in separate files or embedded in HTML or XUL documents.

The JavaScript language is standardized by the ECMA-262 standard under the name
ECMAScript.

Syntax
When it comes to syntax, JavaScript is similar to C, Perl, PHP, and many other programming
languages.

24_596500 ch16.qxd 6/30/05 3:11 PM Page 303

304 Part VI — Creating Extensions and Themes

If you want to test the JavaScript examples that follow, you can create an HTML document with
the following contents:

<html>
<body>
<script type=”text/javascript”>
<!--

.

.

.
[Your JavaScript code goes here]
.
.
.

//-->
</script>

</body>
</html>

Insert your JavaScript code into the <script> element and open the HTML page inside the
browser to see what it does.

Conditional Statements
Similar to most programming languages, JavaScript has an if. . .else statement:

if (i == 1) {
alert(“i is 1”);

} else {
alert(“i is not 1”);

}

As with many other programming languages, the else part of the if statement is optional.

You can use the alert function to display a dialog with a custom message.

JavaScript also has a switch statement that allows executing different blocks of code, depend-
ing on the expression value:

switch (i) {
case 1:

alert(“i is 1”);
break;

case 2:
alert(“i is 2”);
break;

default:
alert(“i is neither 1 nor 2”);

}

24_596500 ch16.qxd 6/30/05 3:11 PM Page 304

305Chapter 16 — Understanding Mozilla Programming

Loops
JavaScript has several different looping statements. For example, the following loop will be exe-
cuted four times:

for (i = 0; i < 4; i++) {
alert(i);

}

In the preceding statement we want i to be initialized with 0 and to be incremented by 1 on
each loop iteration. The loop will be executed as long as the value of i is less than 4.

Variables
Variables in JavaScript are created by either assigning a value to a new variable or by declaring
it using the var keyword:

var i;

Variables declared inside a function have a local scope, meaning that they can be used only
inside that function. Variables that were defined outside any function are global and can be
used anywhere in the script.

Functions
You can define new functions using the function keyword:

function add(a, b) {
return a + b;

}

The preceding function receives two arguments, a and b, and returns their sum.

Scripting the User Interface
As previously mentioned, we will be using JavaScript in Mozilla to implement the logic behind
the user interface. Each user interface element can trigger several events. For example, a button
can trigger an event when it is pressed. If we attach a JavaScript function to such an event, it
will be executed each time the event is triggered. A function attached to an event is called an
event handler.

If you are familiar with HTML, you may find the XUL events and their handlers very familiar. In
fact, Mozilla handles XUL and HTML events in an almost identical fashion.

Let’s create a simple XUL user interface — two entry boxes and a button (see Figure 16-3):

<hbox>
<textbox id=”first-box”/>
<textbox id=”second-box”/>
<button label=”Add” oncommand=”calculateSum()”/>

</hbox>

24_596500 ch16.qxd 6/30/05 3:11 PM Page 305

306 Part VI — Creating Extensions and Themes

FIGURE 16-3: A primitive calculator

Each time the button is pressed, our calculateSum function is executed. Let’s look at how
this function might be implemented:

function calculateSum() {
var firstBox = document.getElementById(“first-box”);
var secondBox = document.getElementById(“second-box”);
var a = parseInt(firstBox.value);
var b = parseInt(secondBox.value);
alert(a + b);

}

Step by step, the preceding function does the following:

1. Find the two entry boxes elements using getElementsById. This function is a part of
the DOM interface. (See the DOM section later in this chapter for details.)

2. After finding our entry boxes, we get their value by examining their value property.

3. Convert the value to integer using the parseInt function.

4. After we have a numerical representation of the contents of our textboxes, we can calcu-
late the sum and present it to the user in a popup box.

To see the previous example in action, you can create the following XUL document and open it
in Firefox:

<?xml version=”1.0” encoding=”UTF-8”?>

<window align=”start”
xmlns=”http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul”>

<script type=”application/x-javascript”>
<![CDATA[

function calculateSum() {
var firstBox = document.getElementById(“first-box”);
var secondBox = document.getElementById(“second-box”);
var a = parseInt(firstBox.value);
var b = parseInt(secondBox.value);
alert(a + b);

}
]]>
</script>

24_596500 ch16.qxd 6/30/05 3:11 PM Page 306

307Chapter 16 — Understanding Mozilla Programming

<hbox>
<textbox id=”first-box”/>
<textbox id=”second-box”/>
<button label=”Add” oncommand=”calculateSum()”/>

</hbox>
</window>

In the previous example, we embedded some JavaScript code directly in the XUL document. In
such cases, the JavaScript code should be placed inside a CDATA section, so the XML parser
doesn’t try to parse it. Otherwise, characters that have a special meaning in XML (such as >) can
confuse the XML parser.

After reading this section, you should have a basic idea about what JavaScript is and how you
can use it to add some logic to your user interface. Chapter 17 continues exploring the possibil-
ities while examining several additional examples.

Additional JavaScript Resources
Following are some additional JavaScript resources that might be useful:

� The WebReference JavaScript Section has many articles and tutorials on JavaScript
programming: http://www.webreference.com/js/.

� The JavaScript Guide, while a bit outdated, is still a good reference: http://wp
.netscape.com/eng/mozilla/3.0/handbook/javascript/.

� The official JavaScript (ECMAScript) specification can be found on the Ecma web
site: http://www.ecma-international.org/publications/standards/
Ecma-262.htm.

� Here is a good JavaScript tutorial: http://www.tizag.com/javascriptT/.

� Here is a nice article about the history of JavaScript: http://www.howtocreate
.co.uk/jshistory.html.

Cascading Style Sheets
Cascading Style Sheets (CSS) is a mechanism for specifying the appearance of HTML, XUL,
and other documents. With CSS, you can specify colors, fonts, sizes, and other style elements.
CSS is a World Wide Web Consortium (W3C) specification.

CSS allows you to separate your document content from its presentation. For example, your
XUL document can specify that your user interface contains an entry box and two buttons. A
style sheet can then be used to specify the size of the entry field, the color of the buttons, and
the font of their labels. There are many advantages to separating the document style from its
content. The first and possibly the most important benefit is flexibility. If you define all the
presentation-related information in a separate style sheet, you will be able to easily modify the
style of your user interface without needing to adjust the document content. Your HTML or
XUL files will become much more readable and clean.

24_596500 ch16.qxd 6/30/05 3:11 PM Page 307

308 Part VI — Creating Extensions and Themes

Suppose that you have created a large project with dozens of XUL documents. Then, after
working with your program for a while, you notice that changing the font of all the labels will
greatly improve their readability. In a world without style sheets, you would have to search all
your XUL documents for label elements and add an appropriate attribute to each and every
one of them. What would happen if you decided to experiment with several different fonts to
see which one looked the best? With style sheets, this task becomes trivial. If all your docu-
ments use the same style sheet (and if they are part of the same project, they probably should),
you can just add a line to this style sheet specifying the new font of your label elements.

A typical CSS definition is a list of rules. A rule has a selector that specifies the elements the
rule applies to and a list of style declarations. For example, a rule for changing the appearance
of all the label elements might look like this:

label {
font-family: arial;
font-weight: bold;
color: blue;

}

In this rule, label is a selector; it specifies that the rule applies to all the label elements.
After the selector comes a block enclosed in curly braces that specifies the styles that should be
applied to the selected elements. The block is a semicolon-separated list of property:
value pairs. In this example, the color property will receive the value blue, meaning that
the text of all our labels will be blue.

There are many places in which both the author of the document and its reader can specify
their preferred style rules. For example, styles can be defined in external style sheets, embedded
in the document, or specified inline by setting an element’s style attribute. Users can further
change these styles by changing the browser settings or adding their own custom style sheets.
This means that several, often-conflicting style definitions can be applicable to the same ele-
ment. The “cascading” in CSS allows these conflicts to be resolved by specifying the order in
which the rules are evaluated. For example, the author-specified rules have higher priority than
the reader-specified ones, and the more specific rules will override ones that are more general.

Each element in our HTML or XUL document can have a class attribute that can be used
to specify that several elements are related to one another in some way. Elements can also have
an id attribute. Unlike the class attribute, the element’s id should be unique throughout the
document — it will be used to identify the specific element. Let’s look at a fragment of a XUL
document to clarify things a bit:

<button id=”play-button” class=”control” label=”play”/>
<button id=”stop-button” class=”control” label=”stop”/>

In the preceding example, both buttons belong to the control class. This will be useful if you
want to apply some style to all the elements belonging to this class. For example, you might
want to make all your control buttons bigger than the others. You can see that both buttons are
uniquely identified by their respective id attributes. You can use this to apply a specific style
only to one element (the play button, for example) without affecting all the other elements.
The id attribute will also become handy if you want to find a specific element using
JavaScript.

24_596500 ch16.qxd 6/30/05 3:11 PM Page 308

309Chapter 16 — Understanding Mozilla Programming

Let’s see a few examples of the various style declarations we can apply to our documents and
specifically to the two buttons from the previous example.

To specify a style for all the button elements in your document, you can use the following rule:

button { border: 1px solid red; }

This rule will draw a 1-pixel-wide red border around all the buttons in your document.

You can style all the elements having a specific class:

button.control { color: blue; }

This rule selects the buttons having a control class and makes their label text blue. If you
want the rule to apply to all the elements that belong to the control class and not only but-
tons, you can omit the button part of the selector, as follows:

.control { color: blue; }

Now let’s change the label font of the stop button to bold by selecting it using its id,
stop-button:

#stop-button { font-weight: bold; }

The preceding examples, while simple, demonstrate the power of CSS. There is, of course,
much more to style sheets; there are additional selector types, inheritance, and many useful
style properties. The important principle you should have gotten from this section is that you
should always separate your document content from its presentation by using style sheets.

Additional CSS Resources
Following are some additional CSS resources that might be helpful:

� The CSS specification can be found on the W3C site: http://www.w3.org/TR/
REC-CSS1 (Level 1), http://www.w3.org/TR/REC-CSS2 (Level 2).

� The Web Design Group (WDG) site has a nice guide to CSS: http://www
.htmlhelp.com/reference/css/.

The Document Object Model
The DOM is a collection of interfaces for working with HTML and XML documents. The
document is represented as a tree of elements. The DOM defines methods for navigating and
searching this tree, retrieving information about the various elements, modifying the tree struc-
ture by removing and inserting elements, manipulating individual elements, and so on.

The DOM isn’t a language or a software library. It is a World Wide Web Consortium (W3C)
specification for an interface. So how does it actually work? Software vendors, in our case
Mozilla, implement the DOM standard interfaces and allow them to be used from various pro-
gramming languages. When developing Mozilla extensions, we will typically be using JavaScript
to call the DOM methods.

24_596500 ch16.qxd 6/30/05 3:11 PM Page 309

310 Part VI — Creating Extensions and Themes

The following sections provide some examples of what you can do with the DOM interfaces.
This isn’t intended as a complete DOM reference but is rather meant to give you a taste of the
possibilities.

Assume that you have an HTML document that contains the following table:

<table id=”my-table” border=”1”>
<tr>

<th>First Name</th>
<th>Last Name</th>

</tr>
<tr>

<td>John</td>
<td>Doe</td>

</tr>
</table>

This table will typically be rendered by the browser, as shown in Figure 16-4.

FIGURE 16-4: The sample table rendered by the browser

The DOM representation of this table is shown in Figure 16-5.

FIGURE 16-5: The DOM representation of the sample table

You can use the DOM Inspector extension to see the exact tree structure. You can inspect and
modify the elements, their attributes, styles, and much more. See Chapter 15 for more details on
the DOM Inspector.

abl

tr

tr

td

td

th

th

John

Doe

First Name

Last Name

24_596500 ch16.qxd 6/30/05 3:11 PM Page 310

311Chapter 16 — Understanding Mozilla Programming

Navigating and Searching the Document Tree
The following JavaScript code searches the document tree for our table using the table’s id
attribute my-table:

var myTable = document.getElementById(“my-table”);

The document object represents the root element of our document tree. It can be used to
access all the other elements.

In all of the following examples, assume that we have already found our table using the
getElementById method and assigned it to the myTable variable.

After successfully locating the table, you can find all the table header (th) elements of that
table:

var headers = myTable.getElementsByTagName(“th”);
for (var i = 0; i < headers.length; i++) {

alert(headers[i].innerHTML);
}

The preceding code displays two popup dialogs, the first saying “First Name” and the second
saying “Last Name.”

To see this example in action, create an HTML document with the following contents, open it
in the browser, and click the Test button. You can later modify the body of the test function
inserting the code of the following examples.

<html>
<head>
<script type=”text/javascript”>
<!--

function test() {
var myTable = document.getElementById(“my-table”);
var headers = myTable.getElementsByTagName(“th”);
for (var i = 0; i < headers.length; i++) {

alert(headers[i].innerHTML);
}

}

//-->
</script>

</head>
<body>
<table id=”my-table” border=”1”>

<tr>
<th>First Name</th>
<th>Last Name</th>

</tr>
<tr>

24_596500 ch16.qxd 6/30/05 3:11 PM Page 311

312 Part VI — Creating Extensions and Themes

<td>John</td>
<td>Doe</td>

</tr>
</table>

<button type=”button” onclick=”test()”>Test</button>

</body>
</html>

Given a tree element, you can easily get its child elements:

var firstChild = myTable.firstChild;
var lastChild = myTable.lastChild;
var allChildren = myTable.childNodes;

After retrieving the wanted element, you can in turn get its children and so on. This allows you
to navigate your way through the tree structure.

Modifying the Document Tree Structure
Let’s use the DOM methods to dynamically insert an additional row of data in our table. First,
we need to create the new row:

var newRow = document.createElement(“tr”);

Now create two new table cells (td elements):

var firstName = document.createElement(“td”);
var lastName = document.createElement(“td”);

We can now fill the new table cells with data:

firstName.innerHTML = “Jane”;
lastName.innerHTML = “Smith”;

Let’s add the new cells to the new row:

newRow.appendChild(firstName);
newRow.appendChild(lastName);

Finally, add the new row to our table:

myTable.appendChild(newRow);

Figure 16-6 shows the updated table.

FIGURE 16-6: The table with the dynamically inserted row

24_596500 ch16.qxd 6/30/05 3:11 PM Page 312

313Chapter 16 — Understanding Mozilla Programming

The updated document tree is shown in Figure 16-7.

FIGURE 16-7: The document tree after a new row is dynamically inserted

The table example was intentionally simplified to keep things clear. The actual DOM structure
might include a few elements that are added by the browser. You can examine the complete
DOM structure and see if the preceding examples need any adjustments; I’ll leave that exercise
to you.

If your HTML or XUL document is displayed on-screen, you do not have to instruct the browser
to update its view after you modify the document tree. The browser determines automatically
whether the update is needed and performs all the necessary redraws.

Changing Element’s Attributes
For a final DOM example, let’s change the border attribute of our table, making it four times
wider:

myTable.setAttribute(“border”, “4”);

We have demonstrated the use of the DOM methods on an HTML document. As previously
mentioned, the same techniques can be used to access and modify an XML document. For
example, the browser UI is implemented using XUL, meaning that you can use the DOM inter-
faces to dynamically access and modify the Mozilla user interface.

abl

tr

tr

td

td

th

th

John

Doe

First Name

Last Name

tr

td

td

Jane

Smith

24_596500 ch16.qxd 6/30/05 3:11 PM Page 313

314 Part VI — Creating Extensions and Themes

Additional DOM Resources
Following are some additional helpful resources for the DOM:

� The Mozilla DOM Reference is a great DOM resource: http://www.mozilla.
org/docs/dom/domref/.

� The Mozilla DOM Documentation page has a lot of information on the DOM and its
implementation in Mozilla: http://www.mozilla.org/docs/dom/.

XPCOM: Cross Platform Component Object Model
Components are software modules with well-defined functionality. They are the application
building blocks that can be combined in a program at runtime.

There are many benefits to developing software that employs components. Two of these
benefits are listed here:

� Using components allows us to ignore their implementation; in fact, we need know
nothing about implementation. All we need to know is the component interface — its
set of methods and properties. The component author can change the way the compo-
nent performs some action, or fix a bug, and provide a new version of the component. As
long as the interface remains the same, our program doesn’t have to change to accommo-
date the new implementation.

� The same component can be seamlessly used from many different software environ-
ments. The component interface doesn’t assume anything about the operating system,
programming language, or a program that will use the component. For example, Cross
Platform Component Object Model (XPCOM) components in Mozilla can be used
from C++, JavaScript, and other environments. Typically, these components can be
reused in all Mozilla products without your needing to rewrite them for any specific tar-
get application.

Mozilla’s Component Object Model, XPCOM, allows building cross-platform components
and later using them in Mozilla-based applications. This book focuses on using XPCOM com-
ponents rather than creating them.

Mozilla XPCOM technology is somewhat similar to Microsoft COM. Both technologies share the
principles of component-based design, but while XPCOM is an open-source and cross-platform
framework, Microsoft COM can be used on Windows only. The two technologies are not com-
patible; COM components cannot be used as XPCOM components and vice versa.

When you are writing a program in Mozilla you have access to a wide range of components
and interfaces. In fact, almost any functionality you might need will be available to you as an
XPCOM component. Some of the component categories are as follows:

24_596500 ch16.qxd 6/30/05 3:11 PM Page 314

315Chapter 16 — Understanding Mozilla Programming

� Browser: These interfaces allow you to access the browser history, autocomplete, down-
load, and other functionalities.

� Clipboard: Interfaces that allow you to programmatically cut and paste content to the
clipboard.

� File: A set of components and interfaces that can be used to access, list, and modify files
and directories.

� DOM: These interfaces mostly correspond to the W3C DOM interface definitions.

� Network: Interfaces that allow you to open network connections, transfer information,
and more.

� Preferences: These interfaces can be used to retrieve and modify the user preferences.

Mozilla is a dynamic platform; things are updated and improved with every new release.
Unfortunately, this sometimes means that some interfaces change from time to time, and your
program will need to be modified accordingly. Many Mozilla interfaces are defined as “frozen,”
meaning that they are not going to change in future versions of Mozilla. If your program relies
only on such interfaces, you can be sure that it will work with future versions of Mozilla.

Following is an example for using XPCOM from JavaScript. We will use the preferences inter-
face to determine the user’s default text color. First, we need to obtain the XPCOM preferences
service object:

var prefs = Components.classes[“@mozilla.org/preferences-service;1”];
prefs = prefs.getService(Components.interfaces.nsIPrefBranch);

First, we use the classes array that is a part of the Components object to find the specific
XPCOM component. The elements of this array are indexed by a contract id, a string that
uniquely identifies each component. In our case, @mozilla.org/preferences-service;1
identifies the preferences service, the component used for accessing the user preferences. After
finding the wanted component, we can get the specific component object by using the
getService method and specifying the wanted interface, in our case nsIPrefBranch.

Some components are defined as services (or singletons), meaning that only one instance of the
component exists in the application. These components are obtained using the getService
method. Nonservice components can have many different instances. To create a new component
instance, use the createInstance method. The component documentation should state
whether the component is a service.

After obtaining the wanted interface, we can call one of its functions. For example, we can use
the getCharPref method of the nsIPrefBranch interface to obtain the value of a user
preference:

var color = prefs.getCharPref(“browser.display.foreground_color”);

24_596500 ch16.qxd 6/30/05 3:11 PM Page 315

316 Part VI — Creating Extensions and Themes

This code retrieves the default text color specified by the user in the browser Options dialog.

This section demonstrated the principles and the advantages of component-based design.
Mozilla XPCOM technology uses these principles and provides a framework for developing,
registering, and using components in your Mozilla-based programs. You saw some examples of
the available XPCOM components and how you can use these components in your JavaScript
code.

Additional XPCOM Resources
Some helpful XPCOM resources follow:

� The Mozilla XPCOM page has links to many additional resources: http://www
.mozilla.org/projects/xpcom/.

� A great reference of the available XUL components and interfaces can be found on
the XUL Planet XPCOM Reference page: http://www.xulplanet.com/
references/xpcomref/.

Introduction to Firefox Extension Programming
The previous sections provided some basic explanations of the main Mozilla technologies.
Armed with that understanding, you can consider writing your first Mozilla-based product, a
Firefox extension. This section introduces you to the main concepts of extension programming.

What Are Firefox Extensions?
Firefox extensions are Mozilla-based programs that can be integrated into the browser and that
enhance it in many ways. As you have seen in the previous sections, the Mozilla platform is
very flexible and extensible by nature. This means that almost anything in your browser can be
modified, tweaked, or extended using the extension mechanisms. Some extensions go one step
further by introducing new and innovative features while seamlessly integrating them with the
browser.

The term plugin is sometimes mistakenly used for Mozilla extensions. In Mozilla, there is a dis-
tinction between extensions and plugins. A browser plugin is a small program designed to han-
dle a specific types of content (MIME types) that can be embedded in the browser. For example,
the Adobe Acrobat Reader plugin handles PDF files, the Macromedia Flash plugin enables seeing
Flash content in HTML pages, and the Apple QuickTime plugin allows playing embedded
QuickTime video and audio files.

Extensions play an important role in Firefox philosophy. The browser itself is very lean and free
of clutter, which makes it exceptionally compact and user friendly. Extensions are the optional
building blocks that allow users to construct their personal dream browser, the one that has all

24_596500 ch16.qxd 6/30/05 3:11 PM Page 316

317Chapter 16 — Understanding Mozilla Programming

the needed features and none of the unwanted ones. This philosophy is somewhat similar to hi-
fi component systems — you can get the best amplifier and CD player that money can buy. If
at some later point you decide you want to give your old vinyl records a spin, you can get a nice
turntable and hook that in. The idea is that you are in control of your system; you can add and
remove any component at any time, always making sure that each component is of the highest
quality. This also allows the maker of each component, or in our case, extension, to focus on
that specific component and provide the best set of features possible.

What Extensions Can Do
Following is a list of some examples of what extensions can do:

� Extend the existing functionality: There are many extensions that enhance the book-
marking, downloading, tabbed browsing, and other components of the browser. For
example, extensions can allow you to download several files at once or to reorder the tabs
using drag-and-drop.

� Assist web developers: Extensions can assist you with inspecting, creating, modifying,
and validating HTML documents, style sheets, JavaScript programs, and so on. The
browser is the perfect platform for performing these tasks, and the Mozilla framework
provides the necessary tools for creating such extensions.

� Make editing web forms more convenient: There are extensions that can spell-check
your posts, insert formatting tags for various forum systems, and even automatically fill
out some forms to save you time.

� Navigation and accessibility: Extensions make browsing more convenient by adding
new and alternative ways of doing routine things. There are mouse gesture extensions that
allow you to perform many tasks by simply moving your mouse in a special way. Some
extensions add useful context menu items and toolbar buttons for easy navigation
between search results, opening new windows and tabs, and so on.

� Page display modification: Extensions can be used to change the way the browser dis-
plays web pages. There are extensions that block ads and other unwanted content, add
screenshots and similar useful information to search results, enlarge some elements of the
page, and much more.

� Search and web site integration: Extensions allow your browser to be tightly integrated
with web sites and search engines. For example, some extensions allow you to easily post
to your blog, search for some term using your favorite search engine, or translate the cur-
rent page with your preferred web translation site.

� Applications: Extensions are not limited to creating small browser tweaks and enhance-
ments. Complete applications have been implemented as Mozilla extensions. I already
mentioned the ChatZilla IRC client. There are also an FTP client, a Calendar, several
RSS readers, and many other XUL applications that can be installed into the browser.
There is an ongoing project called XULRunner that allows such applications to be used
in a standalone mode without needing a browser.

24_596500 ch16.qxd 6/30/05 3:11 PM Page 317

318 Part VI — Creating Extensions and Themes

� Various user experience enhancements: Extensions can be used to do many useful
things not directly related to the Web or browsing. For example, there are extensions that
can conveniently display the current time, weather forecasts, or even control the music
playing on your computer from the browser window.

As you can see, extensions can do almost anything and can greatly enhance your browsing
experience. Hundreds of extensions have already been developed. But there is always room for
creativity and innovation — with some imagination, the sky is the limit.

Extension Ingredients
So what are the basic ingredients of an extension? Extensions are created using Mozilla tech-
nologies introduced in previous sections of this chapter. This means that you can create a full-
featured extension using only your text editor.

Most extensions will need to interact with the user on some level, meaning that they will need
a user interface. The user interface is defined in one or more XUL documents. Mozilla has a
mechanism called dynamic overlays that allows a XUL document to be overlaid with another
XUL document to either extend or modify it. Typically, an extension will use this mechanism
to extend the browser XUL.

The extension uses JavaScript to implement its functionality. More advanced extensions con-
tain custom XPCOM components written either in JavaScript or C++.

The extension can have a skin. A skin is a set of style sheets (CSS files) and graphics that
determine how the user interface of the extension looks.

An extension can have any number of locales. As mentioned earlier, all text strings that a XUL
interface presents to the user should be defined in a separate file, and the XUL document
should contain references to these strings only. This allows the user interface to be easily trans-
lated to other languages. Extensions can use this mechanism; they can contain several sets of
translated strings, and the browser will determine which language is the most appropriate for
the user.

So basically, an extension is a set of XUL-user interface definitions, JavaScript files that define
the extension functionality, CSS and image files that define the extension presentation, and
some string tables that allow the extension to be translated into other languages.

The Extension Manager
The Extensions dialog allows you to install, update, configure, disable, and uninstall extensions.
In Firefox, you can open the Extensions dialog by selecting Extensions in the browser Tools
menu. Figure 16-8 shows the Extensions dialog.

Note that while the dialog is named simply Extensions, it is frequently referred to as Extension
Manager on Firefox wiki, forums, and elsewhere in this book.

24_596500 ch16.qxd 6/30/05 3:11 PM Page 318

319Chapter 16 — Understanding Mozilla Programming

FIGURE 16-8: The Extensions dialog

An extension is a regular ZIP archive file with an XPI extension. The archive contains all the
extension files: XUL documents, style sheets, and so on. It also contains files with some exten-
sion metadata, including its name and version number, its skins, locales, components, and so
on. You don’t have to write any installation code for your extension; you specify only the con-
tents of your extension package, and the Extensions Manager takes care of the actual installa-
tion for you. You learn about the structure of the extension package and its metadata in the
next chapter.

An extension can be installed either directly from the Internet by clicking an appropriate install
link or by first downloading it to your computer and then opening it with your browser. When
installing an extension, the Extensions Manager first checks whether the extension is compati-
ble with the user’s Firefox version. The extension must specify the Firefox version number
range it is compatible with, and by examining this information, the Extensions Manager can
determine whether the extension is compatible.

After verifying that the extension is compatible, the Extensions Manager copies it to its final
destination folder (typically the user profile folder), extracts the needed files, and registers the
extension with the browser.

Currently, Firefox must be restarted to complete the extension installation process. Future
Firefox versions may support installing and registering extensions on the fly.

24_596500 ch16.qxd 6/30/05 3:11 PM Page 319

320 Part VI — Creating Extensions and Themes

After the extension is installed, it is visible in the Extensions dialog. You can use this dialog to
get some information about the installed extensions, their version number, author, home page,
and so on. Some extensions implement an Options dialog that can be used to configure the
extensions. This dialog is also accessible from the Extensions dialog.

Firefox has an update mechanism that allows new extension versions to be automatically
downloaded and installed when they are available. An extension can specify a URL of a config-
uration file with information about the latest available version of the extension. Firefox periodi-
cally queries this file and sees whether a new extension version is available. If it finds a new
version, it displays a dialog that informs the user about the new version. If the user decides to
update the extension, Firefox automatically downloads and installs the new version.

If an extension doesn’t specify a custom update file URL, Firefox tries to query the Mozilla
Update site for a new version of the extension.

You can manually check whether a new extension version is available by opening the extension
context menu in the Extensions dialog and choosing Update.

When you no longer need an extension, you can either disable it or completely uninstall it from
your browser. Both operations can be performed in the Extensions dialog. When an extension
is uninstalled, it is first unregistered from the various browser configuration files, and then its
files are removed.

The next chapter provides further details about the Extensions dialog, the structure of an
extension package, and other extension-related Mozilla mechanisms.

Summary
This chapter provided an overview of the main Mozilla technologies and explored the possibil-
ities of Firefox extension programming. Get ready to dive deeper into the process of creating
Firefox extensions in the next chapter.

24_596500 ch16.qxd 6/30/05 3:11 PM Page 320

Creating
Extensions

This chapter explains how to create a fully functional Firefox extension
from the ground up. The extension performs a simple but useful
task — it monitors a specific web page and notifies you when the

page content changes.

We start by creating the extension user interface and implementing its basic
functionality. When the coding is finished, you learn how to package the
extension, test it, and release it to the public. The last section introduces
additional extension programming concepts and techniques you might find
useful when developing your own extensions.

Tools for Creating
Extensions and Themes
Before you can start working on your first extension, you will need to get a
few programs and utilities: a text editor, a ZIP compression tool, and a
graphics editor. You probably already have these tools installed on your
computer, but if you don’t, there are many excellent freeware programs
available.

Text Editor
As you saw in Chapter 16, most of the Mozilla technologies are text-based.
XUL user interfaces, JavaScript programs, and CSS style sheets are plain-
text files that are created using a text editor. While any program that is
capable of creating plain-text files will do, there are several features to look
for in a good programming-oriented text editor:

� Syntax highlighting: The editor highlights different elements of
your document with different colors. For example, in XUL docu-
ments, the tags, attributes, and the actual content are easily distin-
guishable because they are highlighted with three distinct colors.
This feature greatly improves the readability of your documents.

˛ Tools for creating
extensions and
themes

˛ Building your first
extension

˛ Extension program-
ming techniques

chapter

in this chapter

by Alex Sirota

25_596500 ch17.qxd 6/30/05 3:13 PM Page 321

322 Part VI — Creating Extensions and Themes

Most text editors won’t recognize XUL files as XML by default. You should look for an editor
that can highlight XML and in which you can specify that XUL files are actually XML files.

� Automatic indentation: If you want to create readable XML documents, JavaScript pro-
grams, or any other structured text files, you should use indentation to emphasize the
hierarchical structure of the document elements. For example, in XML files, the child
elements should have greater indentation than their parent element:

<box>
<button label=”one”/>
<button label=”two”/>

</box>

Editors with an autoindentation feature automatically indent the elements of your docu-
ment according to its type.

� Parentheses matching: A good text editor warns you if you forget to close a previously
opened parenthesis. This can save you a lot of debugging time further along the way.
Some editors also allow you to see the correspondence between the opening and the
closing parentheses, which can be a great troubleshooting tool.

� Line numbering: If there are problems or errors in your document, the browser (or a
validation program) typically reports them along with the line number on which the
error was encountered. A good text editor will display the current cursor position within
the document and allows jumping directly to any given line number.

There are many excellent freeware text editors available:

� JEdit: A multiplatform programmer’s text editor

� VIM: A flexible text editor that works on many operating systems

� Crimson Editor: Source editor for Windows

� Nedit: A multipurpose text editor for the X Window System

Dozens of additional text editors are available on the Web.

ZIP Format Compression Tool
Extensions are packaged using the ZIP compression format. There are a lot of great ZIP com-
pression tools, many of which are free. If you are on Windows, you might want to look at one
of the following programs:

� 7-Zip

� WinZip

� WinRar

25_596500 ch17.qxd 6/30/05 3:13 PM Page 322

323Chapter 17 — Creating Extensions

If you want to automate the packaging process, you should get a ZIP tool with a command-line
interface. For example, the free 7-Zip file archiver has a command-line utility called 7z.exe. You
will see an example of how it can be used to automatically package your extension later in the
chapter.

Graphics Editor
If you want your user interface to have icons, images, or any other graphic elements, you need
to create them using a graphics editor. Similar to the other software tools mentioned, a great
variety of graphics editors is available, starting with simple and lightweight utilities and going
all the way to full-featured applications.

You will want your graphics editor to have several features. First, it should be able to handle
GIF, PNG, and JPG image formats. The program should also be able to save transparent GIF
and PNG files and give you some control over the saved format parameters, such as the num-
ber of colors in the GIF image palette. For creating more elaborate graphics, you might want
an application that supports special effects such as drop shadow, emboss, and so on.

Some of the most popular graphics editor applications are as follows:

� GIMP: An advanced, free, multiplatform image editor

� Adobe Photoshop: A professional image editing application

� Adobe Photoshop Elements: A simplified (and much more affordable) version of
Photoshop with most of the needed functionality

� Corel Paint Shop Pro: An advanced image editing application for Windows

Building Your First Extension
This section is a tutorial for creating, packaging, and deploying Firefox extensions. You will
learn how to create a fully functional extension, how to test and troubleshoot it, and finally,
how to deploy it by publishing it on your web page and on other extension-related sites.

The extension we will create in this section is called SiteLeds. The idea is to have an icon, or a
status led, on your Firefox status bar that displays the state of a given web page — whether it is
available or not and, if so, whether it was recently changed. Such an extension has several uses:
You can monitor your own website and make sure the server is up and running, or alternatively,
you can watch some web page for changes and get a notification whenever the page is updated.

Introduction to Chrome
As you should know by now, the process of building applications with Mozilla is very similar to
building dynamic web pages. Typically, a web page is an HTML document that defines the
page contents, a JavaScript program that adds some functionality to the page, and a CSS style
sheet that determines its appearance. Building applications with Mozilla is very similar. The
XUL document defines the user interface, the JavaScript makes it dynamic, and a style sheet
specifies its presentation. Figure 17-1 demonstrates this concept.

25_596500 ch17.qxd 6/30/05 3:13 PM Page 323

324 Part VI — Creating Extensions and Themes

FIGURE 17-1: A comparison between a web page and a XUL application

To specify the address of any specific web resource, an HTML page, a CSS file, and so on, you
use a Uniform Resource Locator (URL). For example, if you want to specify the official Firefox
page, you can use its URL, http://www.mozilla.org/products/firefox/index.
html. The http part means that the page should be fetched from the Web using the HTTP
protocol. Similarly, when specifying application resources (XUL documents, CSS style sheets,
and many other components of our application), you will use a chrome URL. The Web is the
place where all the web pages are found. Similarly, the chrome contains all the elements of our
application user interface. Figure 17-2 further clarifies this concept. One example of a chrome
resource is the Firefox Options dialog, which can be found at the following address:
chrome://browser/content/pref/pref.xul.

FIGURE 17-2: Web versus chrome resources

As mentioned in the previous chapter, XUL applications can be run directly from the Web. We
will be using the regular HTTP URLs to reference such applications. Chrome addresses are used
to reference the components of the locally installed application, such as the browser itself or any
of its extensions. Because XUL applications that are run directly from the Web can be potentially
malicious, they have some security restrictions imposed on them by the browser. Installed com-
ponents accessed through the chrome URL do not have such restrictions.

Chrome

Browser

Web

HTTP URLChrome URL

HTML

JavaScript CSS

XUL

Dynamic Web Page XUL Application

JavaScript CSS

25_596500 ch17.qxd 6/30/05 3:13 PM Page 324

325Chapter 17 — Creating Extensions

Let’s use our web address analogy to introduce some additional concepts. For the browser to be
able to find a web page using its URL, the page domain (mozilla.org in our previous exam-
ple) must be first registered in a domain registry. Similarly, for Mozilla to locate the files that
define a XUL application, the packages that contain these files must be first registered in the
chrome registry. When a browser receives a chrome URL, it looks into the chrome registry,
obtains the installation locations of the needed files, and then loads the documents from these
locations. Using this method for accessing our application resources allows us to be indepen-
dent of the physical location of the files, as long as the chrome registry contains the correct
information.

A typical chrome URL looks like this:

chrome://<package name>/<type>/<filename>

Take a closer look at the different parts of the chrome URL:

� chrome:: This means that we want a chrome resource.

� package name: The package of the wanted file. Typically, every Mozilla application is
split into several packages. For example, Firefox consists of browser, mozapps, help, and
so on. An extension is usually a separate package with its own package name.

� type: There are three chrome resource types:

■ content: XUL and JavaScript documents are located in the content part of the
package. This part contains the definition of the user interface and its behavior.

■ skin: This part contains the files that determine the appearance of the user inter-
face, typically CSS style sheets and images. Separating this part from the content
allows having several skins in the same package. The browser can determine which
skin to display based on the user’s current browser theme.

■ locale: All user interface strings and messages should be located in this part of the
chrome package. Separating them from the content part allows the package to con-
tain several sets of strings, each translated into a different language. The browser
determines which translation to use based on its current user interface language.
The string resources are usually specified in XML Document Type Definition
(DTD) and JavaScript property files (more on this later in this chapter).

Figure 17-3 demonstrates the structure of a typical chrome package.

You don’t have to keep the content, locale, and skin parts packaged in the same physical file.
While this is often the case, a logical package specified in the chrome URL can actually be com-
posed of several physical chrome package files. For example, you can add a translation to an
existing logical package by installing and registering a separate locale package file.

Some examples of chrome URLs follow:

� chrome://browser/content/browser.xul: The browser.xul file defines the user
interface of the main browser window. As you can see, it is a part of the browser package
and located in the content part of this package, as expected.

25_596500 ch17.qxd 6/30/05 3:13 PM Page 325

326 Part VI — Creating Extensions and Themes

� chrome://inspector/content/inspector.xul: The main window of the
DOM inspector extension is defined in the inspector.xul file. This file is a part of the
inspector package.

� chrome://browser/skin/browser.css: This is the main browser style sheet.
If there are several sets of skins in the browser package, each containing a different
browser.css file, the correct one will be used, according to the current browser theme.

� chrome://browser/locale/browser.dtd: This is the address of the main
browser string table. Note that nothing specifies the specific language or locale in the
URL. If the locale part of the browser package contains several browser.dtd files (each in
a different language), the URL is resolved to the string table file that contains the strings
in the user’s language.

FIGURE 17-3: The structure of a typical chrome package

Creating the SiteLeds Extension
In this section, we create the first fully functioning version of our extension. We create the vari-
ous components of the extension: its XUL user interface definition, its functionality written in
JavaScript, and its CSS style sheet. Then you see how to package these components and create
the final installable extension file.

Building the User Interface
The user interface of our first extension is extremely simple. Because we want to add an icon to
the status bar, our user interface consists of a single statusbarpanel element:

<statusbarpanel class=”statusbarpanel-iconic”
id=”siteleds-statusbar-panel”/>
tooltiptext=”SiteLeds Status Icon”
sitestate=”unknown”/>

- XUL
- JavaScript - CSS

- Images

classic

modern

English

Spanish

- DTD
- Properties

content skin

Chrome Package

locale

25_596500 ch17.qxd 6/30/05 3:13 PM Page 326

327Chapter 17 — Creating Extensions

We are using the statusbarpanel-iconic class to specify that the status panel will display
an icon. Also, we gave our status bar panel a unique id so we can find it later, using the DOM
methods from JavaScript, and apply different styles to it, using CSS.

The tooltiptext attribute specifies the text that will appear on the panel tooltip.

We have added a new private attribute called sitestate to our panel. This attribute specifies
the current site status and is useful in applying different styles to our panel widget.

Integrating the New Element into Firefox
Now that we have created our user interface element, how do we let the browser know that we
want this new element to appear on the status bar? Mozilla has a mechanism called dynamic
overlays that allows the user interface to be modified dynamically without changing the actual
document that defines it. In our example, we add an element to the Firefox status bar without
modifying the browser XUL definition file.

The procedure for creating a dynamic overlay is straightforward:

1. Create a separate XUL document that specifies all the needed additions and modifica-
tions to the original user interface.

2. The root element of the new XUL document is overlay. This specifies that the chil-
dren of this element are inserted into a target document (or are overlaid on top of it).

Define any number of child elements under the overlay. The id attribute of these ele-
ments will be matched against the ids of the elements in the document being overlaid,
and if there is a match, the two elements will be merged.

3. You need to perform one additional step to let Mozilla know which XUL documents are
overlays and what their target documents are. The following sections explore how this is
done.

Let’s modify our XUL definition to specify that we want our status bar panel to appear on the
main browser status bar:

<overlay id=”siteleds-overlay”
xmlns=”http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul”>

<statusbar id=”status-bar”>
<statusbarpanel class=”statusbarpanel-iconic”

id=”siteleds-statusbar-panel”
tooltiptext=”SiteLeds Status Icon”
sitestate=”unknown”
insertbefore=”statusbar-display”/>

</statusbar>
</overlay>

Let’s see exactly what we have done:

� We have defined an overlay element. Its id attribute uniquely identifies it, and the
value of the xmlns attribute specifies that the default name space of our XML docu-
ment is XUL, meaning that all its children are XUL elements.

25_596500 ch17.qxd 6/30/05 3:13 PM Page 327

328 Part VI — Creating Extensions and Themes

� We have created a child statusbar element in the overlay node. Its id is status-
bar, which is identical to the id of the main Firefox statusbar element. This means
that our status bar is overlaid on top of the Firefox status bar.

� Because our status bar element is merged into the Firefox status bar, all the child ele-
ments of our status bar — in this case, a single statusbarpanel element — are added
to the child elements of the Firefox status bar. We can use the insertbefore attribute
to specify the exact position at which the new status bar panel is inserted. In this case, we
want it to be inserted just before the element with the statusbar-display id, which
is the element that displays the current browser status. Figure 17-4 shows the position of
the new status bar panel.

FIGURE 17-4: The position of the new status bar panel

Dynamic overlays can be used not only to add new elements to existing ones but also to modify
the attributes of the existing elements and to add new top-level elements to the target window.

Defining the Appearance
We want our status bar panel to display different icons, depending on the current state of the
monitored site. Table 17-1 specifies the various icons that are displayed according to the
sitestate attribute of our statusbarpanel element.

The SiteLeds status panel

25_596500 ch17.qxd 6/30/05 3:13 PM Page 328

329Chapter 17 — Creating Extensions

Table 17-1 Displayed Icons

State Icon Icon Filename Meaning

unknown state-unknown.png The site state is unknown.

ok state-ok.png The page is reachable and hasn’t been
modified.

error state-error.png There was an error connecting to the site.

modified state-modified.png The monitored page has been modified.

Our style sheet document, siteledsOverlay.css, will therefore look like this:

#siteleds-statusbar-panel[sitestate=”unknown”] {
list-style-image: url(“chrome://siteleds/skin/state-unknown.png”);

}

#siteleds-statusbar-panel[sitestate=”ok”] {
list-style-image: url(“chrome://siteleds/skin/state-ok.png”);

}

#siteleds-statusbar-panel[sitestate=”error”] {
list-style-image: url(“chrome://siteleds/skin/state-error.png”);

}

#siteleds-statusbar-panel[sitestate=”modified”] {
list-style-image: url(“chrome://siteleds/skin/state-modified.png”);

}

As you can see, we are selecting our status bar panel by its id attribute (siteleds-statusbar-
panel), and specifying which icon to display by defining different rules for different values of
the sitestate attribute. The icon we want to appear on the status bar is specified using the
CSS list-style-image attribute.

Adding the Functionality
We want our extension to try to load a given web page. If this load operation succeeds, the
extension checks whether the page was modified by comparing its content with the one saved
during the previous request. Our JavaScript code then sets the value of the sitestate
attribute of our status panel according to the result of this operation.

We will create the JavaScript implementation file named siteledsOverlay.js.

First, let’s define some global variables:

var gSiteLedsLastRequest = null;
var gSiteLedsLastContent = null;

25_596500 ch17.qxd 6/30/05 3:13 PM Page 329

330 Part VI — Creating Extensions and Themes

These variables contain the last HTTP request object and the contents of the last loaded page.

The main function that initiates the page load request is called siteLedsCheckPage:

function siteLedsCheckPage() {
var pageURL = ‘http://www.iosart.com/firefox/siteleds/index.html’;
gSiteLedsLastRequest = new XMLHttpRequest();
gSiteLedsLastRequest.onload = siteLedsPageLoaded;
gSiteLedsLastRequest.onerror = siteLedsPageError;
gSiteLedsLastRequest.open(‘GET’, pageURL);
gSiteLedsLastRequest.send(null);

}

This function does the following:

1. Creates a new XMLHttpRequest object. This object is used to perform HTTP
requests.

2. Adds two event handlers. The siteLedsPageLoaded function is called when the
server responds to our query, and the siteLedsPageError function is executed in
case an error occurs during the HTTP request.

3. Initializes and sends an HTTP Get request for the specified web page.

Our error handling function looks like this:

function siteLedsPageError() {
var ledElement = document.getElementById(‘siteleds-statusbar-panel’);
ledElement.setAttribute(‘sitestate’, ‘error’);
setTimeout(siteLedsCheckPage, 900000);

}

This function is called if there is an error during the attempt to load the monitored web page
(for example, if the network connection is down). We first find our status panel element using
the DOM getElementById method. Then we set the value of the sitestate attribute to
error. This, along with our style sheet definitions, will make the error icon appear on the sta-
tus bar. Finally, we call the setTimeout function to try to perform the same test again after
900,000 milliseconds (15 minutes).

If the server responds to our HTTP request, the siteLedsPageLoaded function is called:

function siteLedsPageLoaded() {
var ledElement = document.getElementById(‘siteleds-statusbar-panel’);

if (gSiteLedsLastRequest.status == 200) {
var prevContent = gSiteLedsLastContent;
gSiteLedsLastContent = gSiteLedsLastRequest.responseText;
if ((prevContent != null) && (prevContent != gSiteLedsLastContent)) {

ledElement.setAttribute(‘sitestate’, ‘modified’);
} else {

ledElement.setAttribute(‘sitestate’, ‘ok’);
setTimeout(siteLedsCheckPage, 900000);

}

25_596500 ch17.qxd 6/30/05 3:13 PM Page 330

331Chapter 17 — Creating Extensions

} else {
ledElement.setAttribute(‘sitestate’, ‘error’);
setTimeout(siteLedsCheckPage, 900000);

}
}

First, we check whether the server returned HTTP status code 200 (OK). If so, the page was
loaded correctly, and we can check whether it has changed since the last time we successfully
loaded it. We compare the contents of the current and the previously loaded pages and,
depending on the outcome of this comparison, set the current state to either ok or modified.
If the server returned a status code other than 200, we set the state of our panel to error.
Also, if the page wasn’t modified, we schedule a new test to 15 minutes from now by calling the
setTimeout function.

After defining all the needed functions, we must tell Firefox to start the site checking cycle
when it loads by adding the following line at the top level of our JavaScript file:

window.addEventListener(“load”, siteLedsCheckPage, false);

This adds an event handler for the window load event, meaning that our
siteLedsCheckPage function will be called after the main Firefox window is first opened
and initialized.

The JavaScript functions and global variables we have defined are evaluated in the global names-
pace along with the other Firefox JavaScript code. This means that if one of our functions or vari-
ables has the same name as an existing identifier, we will have a name collision. To avoid this
situation, you should always create a unique string (“siteLeds” in our case) and use it as a
prefix for all your global identifiers. The following sections describe another technique for avoid-
ing such conflicts.

The final siteledsOverlay.js file is as follows:

var gSiteLedsLastRequest = null;
var gSiteLedsLastContent = null;

function siteLedsCheckPage() {
var pageURL = ‘http://www.iosart.com/firefox/siteleds/index.html’;
gSiteLedsLastRequest = new XMLHttpRequest();
gSiteLedsLastRequest.onload = siteLedsPageLoaded;
gSiteLedsLastRequest.onerror = siteLedsPageError;
gSiteLedsLastRequest.open(‘GET’, pageURL);
gSiteLedsLastRequest.send(null);

}

function siteLedsPageError() {
var ledElement = document.getElementById(‘siteleds-statusbar-panel’);
ledElement.setAttribute(‘sitestate’, ‘error’);
setTimeout(siteLedsCheckPage, 900000);

}

25_596500 ch17.qxd 6/30/05 3:13 PM Page 331

332 Part VI — Creating Extensions and Themes

function siteLedsPageLoaded() {
var ledElement = document.getElementById(‘siteleds-statusbar-panel’);

if (gSiteLedsLastRequest.status == 200) {
var prevContent = gSiteLedsLastContent;
gSiteLedsLastContent = gSiteLedsLastRequest.responseText;
if ((prevContent != null) && (prevContent != gSiteLedsLastContent)) {

ledElement.setAttribute(‘sitestate’, ‘modified’);
} else {

ledElement.setAttribute(‘sitestate’, ‘ok’);
setTimeout(siteLedsCheckPage, 900000);

}
} else {

ledElement.setAttribute(‘sitestate’, ‘error’);
setTimeout(siteLedsCheckPage, 900000);

}
}

window.addEventListener(“load”, siteLedsCheckPage, false);

Making the Extension Localizable
As mentioned in the previous chapter, XUL documents shouldn’t contain any literal strings
that are presented to the user. Instead, you should define all such strings in a separate file and
make your XUL document reference them. This allows the extension to be easily translated to
a different language. All you need to do is to provide an additional file with the translated
strings.

Currently, our XUL element looks like this:

<statusbarpanel class=”statusbarpanel-iconic”
id=”siteleds-statusbar-panel”/>
tooltiptext=”SiteLeds Status Icon”
sitestate=”unknown”
insertbefore=”statusbar-display”/>

As you can see, the “SiteLeds Status Icon” string is in English. If we want to translate
our extension into a different language, we will need to modify the XUL file and provide two
different versions of our extension. What if the extension is translated into a dozen languages?

Luckily, there is a better way. First, we define all the strings in a separate DTD file. DTD files
are usually used to define the structure of XML elements, but they can also contain entities,
which are XML variables that define common strings and allow them to be reused. Let’s define
our string as an XML entity in the siteledsOverlay.dtd file:

<!ENTITY siteLeds.tooltip “SiteLeds Status Icon”>

We need to modify our XUL element accordingly:

<statusbarpanel class=”statusbarpanel-iconic”
id=”siteleds-statusbar-panel”/>
tooltiptext=”&siteLeds.tooltip;”
sitestate=”unknown”
insertbefore=”statusbar-display”/>

25_596500 ch17.qxd 6/30/05 3:13 PM Page 332

333Chapter 17 — Creating Extensions

We have replaced the literal string “SiteLeds Status Icon” with an XML entity reference
“&siteLeds.tooltip;”.

The Final XUL File
We have created the CSS style sheet, the needed JavaScript functions, and a string table DTD
file. How can we specify that our XUL document should use all these files? Look at the final
version of our siteledsOverlay.xul document:

<?xml version=”1.0”?>
<?xml-stylesheet href=”chrome://siteleds/skin/siteledsOverlay.css”

type=”text/css”?>

<!DOCTYPE overlay SYSTEM “chrome://siteleds/locale/siteledsOverlay.dtd”>

<overlay id=”siteleds-overlay”
xmlns=”http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul”>

<script type=”application/x-javascript”
src=”chrome://siteleds/content/siteledsOverlay.js”/>

<statusbar id=”status-bar”>
<statusbarpanel class=”statusbarpanel-iconic”

id=”siteleds-statusbar-panel”
tooltiptext=”&siteLeds.tooltip;”
sitestate=”unknown”
insertbefore=”statusbar-display”/>

</statusbar>
</overlay>

An explanation of what’s been added follows:

1. The xml-stylesheet XML instruction associates the siteledsOverlay.css style sheet
with our XUL document. Please note that we are using chrome URLs, meaning that the
extension package needs to be properly installed and registered before we can test our
extension. You will see how this is done in the following sections.

2. The DOCTYPE declaration associates an external DTD file named siteledsOverlay.dtd
with our XUL document.

3. The script element specifies that the document should import and use the
siteledsOverlay.js JavaScript file.

Packaging the Extension
This section explains where the files we have created in the previous sections should be located
and how they should be packaged to create an installable extension file.

In addition to the extension files already created, we need to create an install manifest and sev-
eral configuration files for correctly registering our extension package in the chrome registry.

25_596500 ch17.qxd 6/30/05 3:13 PM Page 333

334 Part VI — Creating Extensions and Themes

Extension Directory Structure
In the “Introduction to Chrome” section, you saw that the chrome package has three logical
parts: content, skin, and locale. During the development process, the physical directory struc-
ture of our extension will follow this logical partition. The top-level directory in the extension
directory tree will contain the install manifest file named install.rdf (more on this shortly) and a
directory named chrome. The chrome directory contains three subdirectories:

� content: Contains XUL documents and JavaScript files.

� skin: Contains one or more skin sets, each in a separate subdirectory. A skin is any num-
ber of CSS style sheet files and images. Our extension contains only one skin located in
the subdirectory named classic.

� locale: Contains one or more locale sets, each containing a different translation of the
user interface and located in a separate subdirectory. The string tables are located in
DTD files (for strings used in XML documents) and Property files (for strings used in
JavaScript programs). Our extension initially contains only English strings located in a
subdirectory named en-US.

Figure 17-5 shows this directory structure.

FIGURE 17-5: The extension directory structure

The directory structure described in this section is only a suggestion. Arranging your files in
this directory hierarchy during development is convenient and allows easy packaging of your
extension at the later stages, but as you see in the following sections, the extension mechanism
doesn’t assume anything about the locations of your chrome directories. You can change the
locations of these directories and their names, as long as your manifest files are adjusted to
reflect these changes.

Creating Old-Style Chrome Manifest Files
If we merely package together all the files we have created, Firefox has no way of knowing how
to register them in the chrome registry. We need to provide additional files called chrome mani-
fests that describe the package contents. There are two styles of chrome manifest. The old-style

siteleds

chrome

content

locale

skin

en-US

classic

25_596500 ch17.qxd 6/30/05 3:13 PM Page 334

335Chapter 17 — Creating Extensions

files, used in Firefox versions prior to 1.1, are RDF files called contents.rdf. The new-style
manifest mechanism introduced in Firefox 1.1 greatly simplifies matters by requiring a single
plain-text chrome manifest file. This section covers the old-style manifests, and the new mani-
fest is described in the following sections.

Each directory that contains a chrome package part, in our case content, skin/classic,
and locale/en-US, must contain a file named contents.rdf. Each contents.rdf file describes
the contents of the package directory and is used during the extension installation for register-
ing the package in the chrome registry, so the files can be accessed using chrome URLs.

The following examples use the name siteleds to denote our package. When creating a new
extension, give it a unique name and replace all the occurrences of siteleds with the name of
your extension.

The contents.rdf file is an XML document with a special syntax. Look at the contents.rdf
located in our content directory:

<?xml version=”1.0”?>

<RDF:RDF xmlns:RDF=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:chrome=”http://www.mozilla.org/rdf/chrome#”>

<RDF:Seq about=”urn:mozilla:package:root”>
<RDF:li resource=”urn:mozilla:package:siteleds”/>

</RDF:Seq>

<RDF:Description about=”urn:mozilla:package:siteleds”
chrome:displayName=”SiteLeds”
chrome:author=”Alex Sirota”
chrome:name=”siteleds”
chrome:extension=”true”/>

<RDF:Seq about=”urn:mozilla:overlays”>
<RDF:li resource=”chrome://browser/content/browser.xul”/>

</RDF:Seq>

<RDF:Seq about=”chrome://browser/content/browser.xul”>
<RDF:li>chrome://siteleds/content/siteledsOverlay.xul</RDF:li>

</RDF:Seq>

</RDF:RDF>

Now look more closely at the different parts of this file:

� The following lines introduce a new package named siteleds that should be merged into
the chrome registry:

<RDF:Seq about=”urn:mozilla:package:root”>
<RDF:li resource=”urn:mozilla:package:siteleds”/>

</RDF:Seq>

25_596500 ch17.qxd 6/30/05 3:14 PM Page 335

336 Part VI — Creating Extensions and Themes

� Next, we describe the new package and its attributes:

<RDF:Description about=”urn:mozilla:package:siteleds”
chrome:displayName=”SiteLeds”
chrome:author=”Alex Sirota”
chrome:name=”siteleds”
chrome:extension=”true”/>

� Now we specify that we are interested in overlaying the main browser user interface doc-
ument browser.xul:

<RDF:Seq about=”urn:mozilla:overlays”>
<RDF:li resource=”chrome://browser/content/browser.xul”/>

</RDF:Seq>

� Finally, we specify which document will overlay the browser UI, in our case,
siteledsOverlay.xul:

<RDF:Seq about=”chrome://browser/content/browser.xul”>
<RDF:li>chrome://siteleds/content/siteledsOverlay.xul</RDF:li>

</RDF:Seq>

The manifest file located in the skin directory, skin/classic/contents.rdf, is simpler
because it doesn’t contain any overlay information:

<?xml version=”1.0”?>

<RDF:RDF xmlns:chrome=”http://www.mozilla.org/rdf/chrome#”
xmlns:RDF=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”>

<RDF:Seq about=”urn:mozilla:skin:root”>
<RDF:li resource=”urn:mozilla:skin:classic/1.0” />

</RDF:Seq>

<RDF:Description about=”urn:mozilla:skin:classic/1.0”>
<chrome:packages>

<RDF:Seq about=”urn:mozilla:skin:classic/1.0:packages”>
<RDF:li resource=”urn:mozilla:skin:classic/1.0:siteleds”/>

</RDF:Seq>
</chrome:packages>

</RDF:Description>
</RDF:RDF>

Here, we are specifying that our siteleds package includes a skin part that should be regis-
tered in the chrome registry.

Finally, here is the locale contents.rdf file, located in the locale/en-US directory:

<?xml version=”1.0”?>

<RDF:RDF xmlns:chrome=”http://www.mozilla.org/rdf/chrome#”
xmlns:RDF=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”>

25_596500 ch17.qxd 6/30/05 3:14 PM Page 336

337Chapter 17 — Creating Extensions

<RDF:Seq about=”urn:mozilla:locale:root”>
<RDF:li resource=”urn:mozilla:locale:en-US”/>

</RDF:Seq>

<RDF:Description about=”urn:mozilla:locale:en-US”
chrome:author=”Alex Sirota”
chrome:displayName=”English(US)”
chrome:name=”en-US”>

<chrome:packages>
<RDF:Seq about=”urn:mozilla:locale:en-US:packages”>

<RDF:li resource=”urn:mozilla:locale:en-US:siteleds”/>
</RDF:Seq>

</chrome:packages>
</RDF:Description>

</RDF:RDF>

This contents.rdf file specifies that our siteleds package contains an English (en-US)
locale information.

Packaging the Chrome Files
When all your chrome files — XUL documents, JavaScript scripts, CSS style sheets, and so
on — are ready, and you have created all the needed chrome manifest files, you should package
the contents of the chrome directory, which typically contains three subdirectories (content,
skin and locale), into a single ZIP archive. You should give this ZIP archive the same name as
your extension package (in our case, siteleds) and a .jar extension. Figure 17-6 shows the con-
tents of our siteleds.jar archive.

FIGURE 17-6: The contents of the siteleds.jar file

 content
 contents.rdf
 siteledsOverlay.js
 siteledsOverlay.xul

 locale

 skin

 en-US
 contents.rdf
 siteledsOverlay.dtd

 classic
 contents.rdf
 siteledsOverlay.css
 state-error.png
 state-modified.png
 state-ok.png
 state-unknown.png

25_596500 ch17.qxd 6/30/05 3:14 PM Page 337

338 Part VI — Creating Extensions and Themes

Creating the Install Manifest
The install manifest is a file that contains various information about the extension — its name,
author, version number, what versions of Firefox it is compatible with, and so on. This file is
called install.rdf, and it is located in the root directory of the extension directory tree.

The following code listing shows the SiteLeds install.rdf file:

<?xml version=”1.0”?>

<RDF xmlns=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:em=”http://www.mozilla.org/2004/em-rdf#”>

<Description about=”urn:mozilla:install-manifest”>
<em:id>{E1B2492D-E6AC-4221-A433-C143E3A1C71E}</em:id>
<em:version>0.1</em:version>
<em:name>SiteLeds</em:name>

<em:description>Site Status Monitor</em:description>
<em:creator>Alex Sirota</em:creator>
<em:homepageURL>http://www.iosart.com/firefox/siteleds</em:homepageURL>

<em:targetApplication>
<Description>

<em:id>{ec8030f7-c20a-464f-9b0e-13a3a9e97384}</em:id>
<em:minVersion>0.9</em:minVersion>
<em:maxVersion>1.1</em:maxVersion>

</Description>
</em:targetApplication>

<em:file>
<Description about=”urn:mozilla:extension:file:siteleds.jar”>

<em:package>content/</em:package>
<em:skin>skin/classic/</em:skin>
<em:locale>locale/en-US/</em:locale>

</Description>
</em:file>

</Description>
</RDF>

Take a closer look at the various parts of this file:

� The em:id property specifies the extension Globally Unique Identifier (GUID). GUID
is a 128-bit number that uniquely identifies the extension. You should generate this
unique number for every new extension you create. There are several utilities that can
generate a GUID for you. On Windows, there is a guidgen utility that is available for
download from the Microsoft site. On UNIX, there is a similar utility called uuidgen.
There are also a number of websites that can be used to generate a GUID. If you have an
IRC client installed, you can generate a GUID by visiting the #botbot channel on the
irc.mozilla.org server and typing botbot uuid:

<em:id>{E1B2492D-E6AC-4221-A433-C143E3A1C71E}</em:id>

25_596500 ch17.qxd 6/30/05 3:14 PM Page 338

339Chapter 17 — Creating Extensions

� The em:version property specifies the version of your extension. The version should
be in Firefox Version Format (FVF): major.minor.release.build[+]. Only the major part
of the version number is mandatory, so 2, 1.1, 3.4.5, and 7.0.1.20050313 are all valid ver-
sion numbers:

<em:version>0.1</em:version>

� The em:name specifies the name of the extension for being displayed in the user
interface:

<em:name>SiteLeds</em:name>

� The em:description, em:creator, and em:homepageURL properties are optional
and specify the extension description, its author, and home page. This information will
be displayed in the Extension Manager dialog after the extension is installed:

<em:description>Site Status Monitor</em:description>
<em:creator>Alex Sirota</em:creator>
<em:homepageURL>http://www.iosart.com/firefox/siteleds</em:homepageURL>

� The em:targetApplication property specifies the application the extension is
intended for and the range of versions of this application it is compatible with. The tar-
get application is specified using its GUID. For example, SiteLeds is compatible with
Firefox versions 0.9 to 1.1:

<em:targetApplication>
<Description>

<em:id>{ec8030f7-c20a-464f-9b0e-13a3a9e97384}</em:id>
<em:minVersion>0.9</em:minVersion>
<em:maxVersion>1.1</em:maxVersion>

</Description>
</em:targetApplication>

� The em:file property specifies the jar file that contains the extension chrome files
and the various parts of the chrome package (content/skin/locale). For example, the
SiteLeds chrome files are packaged into a siteleds.jar file, which contains content,
skin/classic, and locale/en-US subdirectories:

<em:file>
<Description about=”urn:mozilla:extension:file:siteleds.jar”>

<em:package>content/</em:package>
<em:skin>skin/classic/</em:skin>
<em:locale>locale/en-US/</em:locale>

</Description>
</em:file>

The em:file property isn’t needed when using the new-style plain-text chrome.
manifest chrome manifest.

Creating a New-Style Chrome Manifest File
In Firefox 1.1, there is a much simpler chrome manifest mechanism. All the information
needed to describe the chrome contained in an extension package is specified in a single plain-
text file named chrome.manifest and located in the root directory of the extension tree. When
using the new manifest, you no longer need to create the contents.rdf files or specify the
em:file property in the install.rdf install manifest.

25_596500 ch17.qxd 6/30/05 3:14 PM Page 339

340 Part VI — Creating Extensions and Themes

The SiteLeds chrome.manifest file contains only four lines:

content siteleds jar:chrome/siteleds.jar!/content/
locale siteleds en-US jar:chrome/siteleds.jar!/locale/en-US/
skin siteleds classic/1.0 jar:chrome/siteleds.jar!/skin/classic/
overlay chrome://browser/content/browser.xul @ta
chrome://siteleds/content/siteledsOverlay.xul

The file structure is very simple and straightforward:

� Content package:

content <package name> <path to files>

� Locale package:

locale <package name> <locale name> <path to files>

� Skin package:

skin <package name> <skin name> <path to files>

� XUL overlay:

overlay <chrome://file to overlay> <chrome://overlay file>

Creating the Extension Installation Package
After creating the chrome JAR archive and the install.rdf install manifest, you can finally create
the extension package that can be installed into Firefox. This package file will have an XPI
extension, but just like the chrome JAR file, it is actually a regular ZIP archive.

Create a ZIP archive that contains the install.rdf file and the chrome directory at its root, and
give it an XPI extension. The chrome subdirectory contains the chrome JAR file. If you are
using the new-style chrome manifests, there should also be a chrome.manifest file at the top-
most level of the XPI archive.

Preferably, give your XPI file a meaningful name, one that includes the extension name and its
version. Figure 17-7 shows the contents of the SiteLeds_0.1.xpi archive.

FIGURE 17-7: The contents of the SiteLeds XPI package

SiteLeds_0.1xpi

 install.rdf
 chrome.manifest (*)

(*) Present only when using
new style chrome manifests
(Firefox 1.1 and later)

25_596500 ch17.qxd 6/30/05 3:14 PM Page 340

341Chapter 17 — Creating Extensions

Later in this chapter, you will see how to automate the packaging process. If you want to pack-
age the extension manually, you can do the following:

1. Create a directory named build somewhere on your hard disk.

2. Copy the install.rdf file into this directory.

3. If using new-style chrome manifests, copy the chrome.manifest file into this directory.

4. Create a subdirectory named chrome under the build directory.

5. Copy the siteleds.jar file you created earlier into the newly created chrome directory.

6. Go to the build directory and zip up the install.rdf, chrome.manifest, and the chrome
directory into the SiteLeds_0.1.xpi file.

Once your extension XPI package is ready, you can install it into Firefox and give it a try.

There are several ways to install a local XPI file into Firefox. You can open it using File ➪

Open File . . . , or just drag your XPI file and drop it into the Firefox window.

Testing and Debugging Your Extension
As with any other program, there is a good chance that you will initially run into some prob-
lems with your extension. Things might work differently from what you were expecting or not
work at all. There are several mechanisms you can use to troubleshoot your extension and help
you find and fix those annoying bugs.

Some bugs in your extension, its packaging, or its chrome registration may break your browser
and make it either partially or completely unusable. You can usually solve these problems by
starting Firefox in safe mode (by using the -safe-mode command-line switch, for example)
and uninstalling the extension, or by creating a new user profile.

If you see an error dialog saying “Chrome Registration Failed” when trying to install your exten-
sion, verify that the content of your manifest files is correct and that you have packaged all the
needed files using the correct directory structure. Also, pressing the View Details button in this
dialog can provide useful clues about the problem. For example, you can see whether the prob-
lem was in the content, skin, or locale part of your extension’s chrome.

Preferences Settings
Several preferences settings in Firefox can assist you with the debugging process:

� javascript.options.showInConsole: Setting this preference to true instructs
Firefox to show errors that originate in chrome files in the JavaScript Console. For
example, a JavaScript function might be silently failing inside your extension, and, with-
out seeing the error message, it may be very hard to pinpoint the problem.

25_596500 ch17.qxd 6/30/05 3:14 PM Page 341

342 Part VI — Creating Extensions and Themes

� javascript.options.strict: When this preference is set to true, Firefox dis-
plays JavaScript warnings in the JavaScript Console. A warning usually means that you
are doing something illegal or nonstandard in your code, and that might cause unex-
pected behavior or other problems. It is always recommended to solve all such problems
before releasing your extension. Enabling this preference causes all the warnings, not
only those originating in your extension, to be reported to the JavaScript Console. Many
extensions have warnings in their code, and having several such extensions installed
while trying to debug your own code might make finding only the relevant warnings
difficult.

� browser.dom.window.dump.enabled: You should set this preference to true if
you want to use the dump() function to print messages to the standard console. More
information on this appears later in this chapter.

As with other preference settings, you can type about:config in your Firefox address bar and use
the Preferences window to create new preferences and modify the existing ones. Other methods
for setting preferences, such as modifying the prefs.js file, will also work.

Logging
Logging is a simple but very efficient method for debugging your code. Printing the values of
your variables, the received messages, return codes, and so on can help you figure out where the
problem is and how it can be solved. Logging can also be used to report major events and
errors in your application, and looking at these messages can help you make sure that the appli-
cation is actually doing what you expect it to do.

There are several logging mechanisms in Mozilla:

� Standard Console: You can use the dump() function to print messages to the standard
console. Similar to the alert() function, dump() expects a single string argument. By
default, the standard console is disabled in Firefox. To enable it, set the value of the
browser.dom.window.dump.enabled preference to true and start Firefox with
the -console command-line flag.

� JavaScript Console: This console can be opened using Tools ➪ JavaScript Console. To
print a line to this console, you first obtain the nsIConsoleService interface and
then call its logStringMessage method:

var consoleService = Components.classes[‘@mozilla.org/consoleservice;1’]
.getService(Components.interfaces.nsIConsoleService);

consoleService.logStringMessage(“Testing 1 2 3”);

Remove the debug messages before releasing your extension to the public. Having a lot of such
messages printed can slow your code down and create an unnecessary clutter in the console
window. You can create your own wrapper function that will determine whether the debug
message should be printed:

function myPrintDebugMessage(message) {
if (gMyDebugging) {

dump(message);
}

}

25_596500 ch17.qxd 6/30/05 3:14 PM Page 342

343Chapter 17 — Creating Extensions

If you use the preceding function to print all your debug messages, toggling the value of the
global gMyDebugging flag turns all the messages on and off.

You can often use the alert() function for basic debugging without needing any of the pre-
ceding logging mechanisms. Temporarily inserting a call to this function in the problematic piece
of code can sometimes help you quickly figure out what the problem is.

Developer Extensions
Several extensions can be used to troubleshoot your extension. Some of these are listed here:

� The DOM Inspector can be used to examine the DOM structure of your documents,
their styles, and much more.

� Venkman is an advanced Mozilla-based JavaScript debugger.

� Extension developer’s extension can be used to quickly run JavaScript code snippets,
edit XUL, HTML, and much more.

� ColorZilla can be used to quickly get various pieces of information about XUL ele-
ments, including their colors, ids, class names, and so on. You can also use ColorZilla to
quickly launch the DOM Inspector on the selected element.

There are probably many other extensions you might find useful during the extension develop-
ment process, and many new ones are being released all the time.

Deploying Your Extension
You have created your extension, packaged it, and fixed all the bugs found. Your creation is now
ready for release to the public.

Most authors create a home page for their extension. The page typically contains some infor-
mation about the extension, its author, and the latest version of the extension available for
download. In addition, you will probably want your extension to be listed on one or more sites
that host Mozilla extensions.

The Mozdev.org site allows you to host your Mozilla extension project on their servers and pro-
vides many useful tools for managing the development process and collaborating with other
developers. Your extension must be released under an Open Source license to qualify for being
hosted at Mozdev.

Configuring Your Server
Firefox allows extensions to be installed directly from the Web without their having to be
downloaded to the local disk first. Giving your file an XPI extension and putting it on a web
server isn’t enough for it to be installable directly from your site. Your web server should send
this file using the correct MIME type, application/x-xpinstall. With Apache, this
can be achieved by creating an .htaccess file that has the following line:

AddType application/x-xpinstall xpi

25_596500 ch17.qxd 6/30/05 3:14 PM Page 343

344 Part VI — Creating Extensions and Themes

Inserting the preceding directive into an .htaccess file and placing this file in a directory on your
server allows you to change the MIME settings for this directory only, including all its subdirecto-
ries. Adding a similar line to the main httpd.conf file can make the setting global. Also, many
web hosting providers won’t give you access to the main http.conf file of your web server but
will allow you to place local .htaccess files in your directories.

Creating JavaScript Installer Links
You can create a direct link to your XPI file on your web page, and if the file is sent using the
application/x-xpinstall MIME type, clicking this link triggers the Firefox install
mechanism:

<a href=”http://www.iosart.com/firefox/siteleds/SiteLeds_0.1.xpi”
title=”Install SiteLeds (right-click to download)”>Install SiteLeds 0.1

There is an alternative way of triggering the extension installation process. A global object
called InstallTrigger is available to scripts running in web pages. You can use this object’s
methods to trigger the installation process and to verify that the extension was indeed success-
fully installed. Using this method also allows you to specify a custom icon that will appear in
the installation dialog.

An example of using InstallTrigger follows:

<script type=”text/javascript” language=”JavaScript”>

function installCallback(name, result) {
alert(‘The installation of ‘ + name +

‘ finished with a result code of ‘ + result);
}

function installExtension(aEvent) {
var params = {
“SiteLeds”: { URL: aEvent.target.href,

IconURL: ‘http://www.iosart.com/firefox/siteleds/logo.png’,
toString: function () { return this.URL; }

}
};

// trigger the installation process:
var res = InstallTrigger.install(params, installCallback);
if (!res) {

alert(‘Error calling install’);
}

return false;
}

</script>

<a href=”http://www.iosart.com/firefox/siteleds/SiteLeds_0.1.xpi”
title=”Install SiteLeds (right-click to download)”
onclick=”return installExtension(event);”>Install SiteLeds 0.1

25_596500 ch17.qxd 6/30/05 3:14 PM Page 344

345Chapter 17 — Creating Extensions

Take a closer look at what we have done:

1. Adding an onclick=”return installExtension(event) to the anchor HTML
element causes the intallExtension function to be called when the link is clicked.
The onclick handler returns false, preventing the default anchor click action from
being performed.

2. Inside the installExtension function, we define the parameter object for the
install method. This object contains the URLs of the extension XPI package and its
icon.

3. We then call the InstallTrigger.install function. The second parameter is the
name of the function that will be called when the installation completes (or in case the
user cancels the installation).

4. If InstallTrigger.install returns a zero result, there was a problem starting the
installation process. For example, your site may not be on the user’s white list for sites
that are allowed to install extensions. In this case, the user should see a Firefox notifica-
tion, but you can further explain the situation by displaying an appropriate popup mes-
sage or redirecting the user to an explanation page, for example.

5. When the installation process finishes or is cancelled by the user, the
installCallback function is called. This function receives two parameters: the URL
of the extension package and the installation result code. A zero result code means suc-
cessful installation.

Getting Your Extension Listed
There are several sites that list Mozilla extensions. Users often visit these sites to check out the
new extensions or when they are looking for an extension with a specific functionality. If you
want people to notice your new extension, you should have it listed on one or more of the fol-
lowing sites:

� Mozilla Update (addons.mozilla.org): This is the official Mozilla extensions site.
The Extension Manager dialog links to it, and this makes it the first place that the users
look for new extensions. The site contains a FAQ with information about getting your
extension listed.

� The Extension Mirror (www.extensionsmirror.nl): A very active site with the
largest index of the existing extensions. The site administrators actively look for new
extensions on the Web and on the MozillaZine forums and publish them on the site, so
theoretically you don’t have to do anything to get your extension listed. The Extension
Mirror has an Announcements forum where you can announce your extension to make
sure it is noticed by the administrators.

� The Extension Room (extensionroom.mozdev.org): A popular index of Mozilla
extensions. The site has instructions for getting your extension listed.

� The MozillaZine Extensions Forum (forums.mozillazine.org): Many extension
authors announce their extensions on this forum, which is read by many members of the
Mozilla community. You can start a new topic, letting people know about your new
extension and its purpose. People can comment on this post, providing valuable feed-
back, comments, and bug reports.

25_596500 ch17.qxd 6/30/05 3:14 PM Page 345

346 Part VI — Creating Extensions and Themes

Extension Programming Techniques
The previous sections have shown how you can create a simple extension. This section intro-
duces additional techniques that can be useful for creating extensions that are more elaborate.

Understanding the Browser Chrome
You saw that to extend a XUL user interface you need to know its structure: the elements you
want to overlay, their hierarchy, ids, and so on. If you want to extend the browser, it is impor-
tant to have a basic understanding of the browser chrome: its XUL windows and dialogs, style
sheets, and JavaScript code. There are several ways to learn about these components:

� The DOM Inspector can help you navigate through the document hierarchy and exam-
ine the user interface elements, their properties, and styles.

� You can learn a lot by looking at the browser code; just like your extension, the browser’s
chrome is composed of XUL, CSS, and JavaScript files you can examine.

� The Web offers a lot of useful information, including documentation, references, tutori-
als, and so on. See the “Online Resources” section, later in this chapter, for some useful
links,

� Finally, you can use the Discussion Forums and the IRC to ask for help from your fellow
community members. The “Online Resources” section lists some popular forums and
IRC channels.

Using the DOM Inspector
The DOM Inspector is launched by choosing Tools ➪ DOM Inspector in your browser. The
main window is divided into two panes, as shown in Figure 17-8. The left pane displays the
DOM tree, a hierarchical structured view of the document elements. The right pane displays
detailed information about the selected element (its DOM attributes, style sheets, properties,
and much more).

The DOM Inspector is included in the Firefox installer, but you may need to choose the Custom
installation option and select Developer Tools to have it installed.

To start examining a XUL window, make sure it is open and then select it from the File ➪
Inspect a Window list in the DOM Inspector. Once the desired window is selected, its URL
appears on the DOM Inspector address bar, and the left pane is updated to reflect its DOM
structure. You can now explore the document tree in the left panel by expanding and collapsing
the tree elements. When you select a visible UI element in the tree, it is highlighted by a blink-
ing red border in the target window.

You can search for specific elements by their tag name, id, or attribute by choosing Search ➪
Find Nodes . . ., as shown in Figure 17-9.

25_596500 ch17.qxd 6/30/05 3:14 PM Page 346

347Chapter 17 — Creating Extensions

FIGURE 17-8: The DOM Inspector window

FIGURE 17-9: The DOM Inspector Find Nodes dialog

You can also find a visible user interface element by choosing Search ➪ Select Element By
Click and then clicking on the desired element in the window you are examining. If the DOM
Inspector successfully finds the element you clicked on, the element is highlighted by a blink-
ing red border for a few seconds and then selected in the DOM Inspector tree view.

If you want to examine a specific visible element when the DOM Inspector isn’t open, you have
to open the DOM Inspector, select the desired window, choose Select Element By Click, return to
the window, click on the wanted element, and then return to the DOM Inspector dialog. With
the ColorZilla extension, there is a faster way of achieving the same thing. Click on the ColorZilla
status bar icon, click on the desired element, and then choose DOM Inspector . . . from the
ColorZilla context menu. The DOM Inspector will be launched with the desired element selected
in the left pane.

25_596500 ch17.qxd 6/30/05 3:14 PM Page 347

348 Part VI — Creating Extensions and Themes

Once you have selected the element you want to inspect in the left pane, the right pane can be
used to examine it more closely. You can use the drop-down list above the right panel to select
the type of information you are interested in, as shown in Figure 17-10.

FIGURE 17-10: The various types of information
provided by the DOM Inspector

Here’s a brief overview of the available information types:

� DOM Node: This displays some basic information about the selected DOM node,
including its tag name, attributes with their values, and so on.

� Box Model: Displays the element’s layout information, including its position, dimen-
sions, margins, and so on.

� XBL Bindings: XUL elements can be extended using Extensible Binding Language
(XBL). This view displays information about the XBL definitions that were applied to
the selected element.

� CSS Style Rules: Displays all the CSS rules that are applicable to the selected element
and information about the style sheets and the selectors that contributed these rules.

� Computed Style: After the various CSS rules applicable to the selected element are
merged and all the conflicts are resolved according to the cascading order, an element
receives its final set of styles. This set of styles, called the computed style, is displayed in
this view.

� JavaScript Object: Every element is an object with a set of properties and functions that
can be accessed using JavaScript. This view displays these properties and their values.

Besides allowing you to examine the selected elements, the DOM Inspector allows you to
modify them dynamically. For example, you can modify and delete the existing element’s
attributes or even add new ones by using the context menu in the DOM Node view, as shown
in Figure 17-11. By using the context menu in the left pane, you can manipulate the selected
element (delete it, duplicate it, set its pseudo-classes to hover, active, or focus, and so on).

The DOM Inspector is a very powerful tool that can be used both for learning and for trou-
bleshooting purposes. If you learn to use it, you will surely find it indispensable.

25_596500 ch17.qxd 6/30/05 3:14 PM Page 348

349Chapter 17 — Creating Extensions

FIGURE 17-11: Dynamically changing the node’s attributes

Examining the Source Code
One of the great things about the Mozilla platform is that it is open source. If you are not sure
about how something works, you can always take a look at the code and see exactly what is
happening behind the scenes.

Typically, you will want to understand how some part of the browser works by looking at its
XUL and JavaScript files. You can use the DOM Inspector to find out what XUL file defines a
specific part of the UI. Just open the wanted window with the DOM Inspector and look at its
address bar. For example, when examining the Options dialog you will see the following:
chrome://browser/content/pref/pref.xul. This means that this dialog is defined in
the pref.xul file inside the browser chrome package.

There are several ways to find the needed source files and examine them, including the
following:

� If you have Firefox installed, you already have all the browser chrome XUL, CSS,
JavaScript, and other files on your machine. They are located in the chrome subdirectory
under the main Firefox application folder. In this directory, you will find several JAR files
(browser.jar, toolkit.jar, and so on). These files are very similar to the chrome JAR file we
created for our extension in the previous sections; they contain the chrome that the
browser itself is built of. For example, if you want to look at the browser.xul file found at
chrome://browser/content/browser.xul, you should look inside the browser.
jar file that contains the browser package. Looking inside the installed-chrome.txt file in
the chrome directory can give you an idea about the installed browser chrome packages
and the JAR files that contain them.

We already mentioned that JAR files are regular ZIP archives. You can extract all the
files from a JAR archive and examine them, perform a search for specific keywords, and
so on. Also, many ZIP programs allow you to take a quick look at a file inside an archive
without needing to extract it first.

25_596500 ch17.qxd 6/30/05 3:14 PM Page 349

350 Part VI — Creating Extensions and Themes

� The Mozilla Cross-Reference site, located at http://lxr.mozilla.org, contains
all the latest Mozilla source code. You can browse and search this code until you find the
needed information. For example, the browser.xul file can be found here:

http://lxr.mozilla.org/mozilla/source/browser/base/content/browser.xul

The site is very useful if you want to see the file history, including when the file changed,
who changed it, and what bugs were fixed in the process. Another useful feature is that
you can easily create a link to a specific line in any file — the line numbers in the code
listing pages are actually links — and use this link elsewhere, for example, to create a
bookmark, report a problem, or ask questions about the code.

� You can download the complete Firefox source code and extract it to a local directory.
For example, Firefox 1.0 source code is a 31MB archive that can be downloaded from
here:

http://ftp.mozilla.org/pub/mozilla.org/firefox/releases/1.0/source/firefox-1.0-
source.tar.bz2

You can browse the Mozilla FTP site (http://ftp.mozilla.org/pub/
mozilla.org/) and find the source code package that is most appropriate for
your needs.

Once the code is extracted, you will get a directory tree very similar to the one found at
the Mozilla Cross-Reference site.

The Mozilla source code package is compressed using the BZIP2 format. Many compression
programs (7-Zip is one) support this format and can be used to open such archives.

Online Resources
If examining the document structure and looking at the code didn’t get you closer to under-
standing how things work, you can try finding more information on the Web or asking your
fellow Firefox hackers for help. This section lists the most useful online resources for extension
developers.

� XULPlanet (http://www.xulplanet.com/): An excellent resource packed with
Mozilla-related guides, tutorials, and examples. The site has several reference sections
covering everything from XUL to XPCOM components.

� Mozilla.org (http://www.mozilla.org): Has a lot of useful information for devel-
opers. Most of it is linked from the documentation page at http://www.mozilla
.org/docs/, but there are many additional resources scattered around the site. You can
do a site search to try to find the needed information.

� MozillaZine.org knowledge base (http://kb.mozillazine.org): A user-
contributed wiki with many useful articles, guides, and links to additional resources.
The Development section has a lot of information on extension programming.

25_596500 ch17.qxd 6/30/05 3:14 PM Page 350

351Chapter 17 — Creating Extensions

� MozillaZine forums (http://forums.mozillazine.org/): Post your questions
and comments here. The site has a Mozilla development section with a forum dedicated
to extensions.

� netscape.public.mozilla newsgroups (http://www.mozilla.org/community/
developer-forums.html): You can search the newsgroups for the wanted informa-
tion or post your Mozilla development-related questions. The Mozilla.org site has a list
of the available newsgroups and their topics.

� Internet Relay Chat (IRC) (irc://irc.mozilla.org/): There are several IRC
channels you can visit to chat with your fellow Mozilla developers in real time. Several
developer channels, including #developers, #mozilla, and others, can be found on
the Mozilla.org IRC server.

More XUL
This section introduces several additional XUL-related techniques you might find useful in the
process of extension development.

More XUL Elements
After reading the XUL section in Chapter 16 and going over the various examples in this
chapter, you should have a pretty good understanding of how XUL elements can be used to
create a user interface. This section provides some additional examples of the basic XUL wid-
gets and is intended to give you a taste of the most common UI elements and their XUL repre-
sentations.

If you want to test the XUL code in the following examples, you can create a file with an .xul
extension and the following contents:

<?xml version=”1.0” encoding=”UTF-8”?>

<window align=”start”

xmlns=”http://www.mozilla.org/keymaster/gatekeeper/there
.is.only.xul”>

.

.

.
[Your XUL widgets go here]
.
.
.

</window>

Once you create the file and insert some XUL elements, you can open it in Firefox using File ➪

Open File. The align=”start” part makes sure your XUL widgets are shown correctly when
opened inside the browser window.

25_596500 ch17.qxd 6/30/05 3:14 PM Page 351

352 Part VI — Creating Extensions and Themes

Buttons
A button element creates a button that can be pushed to trigger some action (see
Figure 17-12):

<button label=”Test” oncommand=”alert(‘Testing 1 2 3’);”/>

FIGURE 17-12: A simple button

A toolbarbutton is a special button that is usually a part of a toolbar and typically has an
image (see Figure 17-13):

<toolbarbutton id=”home-button”
class=”toolbarbutton-1”
label=”Home”
onclick=”BrowserHomeClick(event);”/>

FIGURE 17-13: A toolbarbutton XUL element

The toolbar button image is usually specified in a CSS style sheet, rather than directly in the XUL
document.

Text Labels
A label element can be used to display a short string, often used as a label for another ele-
ment (see Figure 17-14):

<label value=”Your first name:”/> <textbox id=”first-name”/>

FIGURE 17-14: A label element next to a text box

25_596500 ch17.qxd 6/30/05 3:14 PM Page 352

353Chapter 17 — Creating Extensions

Larger pieces of text that can optionally wrap to multiple lines should be placed inside a
description element (see Figure 17-15):

<description>
She Sells Sea Shells by the Sea Shore.
</description>

FIGURE 17-15: A description element

The text of the description element wraps to multiple lines only when necessary—for exam-
ple, when the parent element isn’t wide enough. You can resize the window and make it narrow
to see the wrapping, as in Figure 17-15.

Text Entry Boxes
A textbox element can be used to create a text entry box like the one shown in Figure 17-14.

If you want to allow entering multiple lines of text, set the multiline attribute to true (see
Figure 17-16):

<textbox multiline=”true” rows=”4” cols=”10”/>

FIGURE 17-16: A multiline text entry box

Checkboxes and Radio Buttons
A checkbox is a UI element that can have either an on or an off state (see Figure 17-17):

<checkbox label=”Add sugar” checked=”false”/>
<checkbox label=”Add cream” checked=”true”/>

25_596500 ch17.qxd 6/30/05 3:14 PM Page 353

354 Part VI — Creating Extensions and Themes

FIGURE 17-17: A couple of checkboxes

Radio buttons can also have two states, but unlike checkboxes, they usually make more sense
when grouped. When the user turns on a radio button that is a part of a group, all the other
radio buttons in that group are automatically turned off.

You can use a radio element to create a radio button and a radiogroup element to group
several radio buttons (see Figure 17-18):

<radiogroup>
<radio label=”Jazz”/>
<radio label=”Rock” selected=”true”/>
<radio label=”Blues”/>

</radiogroup>

FIGURE 17-18: A group of radio buttons

List Boxes
A listbox element is used to create a list of items (listitem elements) that can be selected
by the user (see Figure 17-19):

<listbox rows=”3”>
<listitem label=”Red”/>
<listitem label=”Green”/>
<listitem label=”Blue”/>
<listitem label=”White”/>

</listbox>

FIGURE 17-19: A simple list box

25_596500 ch17.qxd 6/30/05 3:14 PM Page 354

355Chapter 17 — Creating Extensions

You can use a menulist element to create a drop-down list (see Figure 17-20):

<menulist label=”Tuesday”>
<menupopup>
<menuitem label=”Sunday”/>
<menuitem label=”Monday”/>
<menuitem label=”Tuesday” selected=”true”/>
<menuitem label=”Wednesday”/>
<menuitem label=”Thursday”/>
<menuitem label=”Friday”/>
<menuitem label=”Saturday”/>

</menupopup>
</menulist>

FIGURE 17-20: A drop-down list

Menus
A menu is usually created by defining a menu element that displays the menu title and a
menupopup element that defines the contents of the menu popup window. This window can
have any number of menuitem elements, menuseparator separators, and other menus.

<menu label=”Tools” accesskey=”T”>
<menupopup>

<menuitem label=”JavaScript Console”/>
<menuitem label=”DOM Inspector”/>
<menuseparator/>
<menu label=”ColorZilla”>

<menupopup>
<menuitem label=”Eyedropper”/>
<menuitem label=”Color Picker”/>

</menupopup>
</menu>

</menupopup>
</menu>

Figure 17-21 shows a multilevel menu.

25_596500 ch17.qxd 6/30/05 3:14 PM Page 355

356 Part VI — Creating Extensions and Themes

FIGURE 17-21: A multilevel menu

This section merely scratched the surface of what can be done with XUL. The XULPlanet site
has a complete reference of all the available elements, their attributes, and many more examples
of their usage.

Introduction to Events
The event mechanism allows your JavaScript functions to be called in response to events that
occur in the browser. For example, you can attach a script to handle a mouse click or a key-
board button press, or to have it called every time Firefox loads a web page. Events are essential
for creating dynamic user interfaces because they are the primary mechanism for adding behav-
ior to otherwise static elements. For example, it is hard to imagine a user interface having a
button that does nothing when clicked.

XUL and HTML events in Mozilla are very similar because they both use the same World
Wide Web Consortium (W3C) DOM events specification (http://www.w3.org/
TR/DOM-Level-2-Events/). If you have worked with dynamic HTML in the past, you
will find the concepts introduced in this section very familiar.

The simplest way to attach your script to an element is by adding an appropriate attribute to its
XUL definition:

<label value=”I’m a clickable label” onclick=”alert(‘Label clicked’);”/>

Each time the user clicks on the preceding label, the script defined by the onclick attribute is
executed. The name of the attribute is the event name (click in our example) prefixed by on.

The JavaScript functions referenced in the event attribute should be defined when the script is
executed. For example, you can define your functions in an external JavaScript file and include
this file in the XUL document using the script tag. An explanation of how this is done is pro-
vided in previous sections.

The most common events and their attributes are listed here:

� Mouse events

■ click: Occurs when a mouse button is clicked on an element. This is even trig-
gered when the mouse button is pressed and then released over the same screen
location. In that case, three events occur: mousedown, mouseup, and click.
When handling a button press or selection of a menu item, you should use the
command event instead, because the user may also use the keyboard to trigger
these actions.

25_596500 ch17.qxd 6/30/05 3:14 PM Page 356

357Chapter 17 — Creating Extensions

■ mousedown: Occurs when the mouse button is pressed on an element.

■ mouseup: Occurs when the mouse button is released over an element.

■ mouseover: Occurs when the mouse pointer is moved onto an element
(enters it).

■ mousemove: Occurs when the mouse is moved while it is over an element.

■ mouseout: Occurs when the mouse pointer is moved away from the element
(leaves it).

� Keyboard events

■ keypress: Occurs when a keyboard key is pressed and then released.

■ keydown: Occurs when a keyboard key is pressed (before being released).

■ keyup: Occurs when a keyboard key is released.

� Focus events

■ focus: Occurs when an element receives focus either because the user clicked on
it with a mouse or navigated to it using the keyboard.

■ blur: Occurs when an element loses focus.

� Document events

■ load: Occurs when all content in a document (HTML page, XUL window, and
so on) is finished loading and initializing.

■ unload: Occurs when the document is unloaded or a XUL window is being
closed.

■ resize: Occurs when a document view is being resized.

■ scroll: Occurs when a document view is being scrolled.

� General event

■ command: Occurs when an element is being activated in some way. For example,
this event is triggered whenever a button is pressed or a menu item is selected. As
previously mentioned, you should handle this event in these cases rather than the
mouse click events, because there are several alternative ways a user can activate a
button or use a menu.

When an event handling function is called, its first parameter is the event object that contains
additional information about the event that occurred. For example, the target property of
this object contains the element that triggered the event:

<label value=”I’m a clickable label” onclick=”handleLabelClick(event);”/>

Our handleLabelClick function is defined as follows:

function handleLabelClick(event) {
alert(event.target.value);

}

25_596500 ch17.qxd 6/30/05 3:14 PM Page 357

358 Part VI — Creating Extensions and Themes

When we click on the label, our handleLabelClick function is called. We can obtain the
label element that triggered the event from the target property of the event parameter.
When the user clicks on the label, the alert box (similar to the one shown in Figure 17-22) is
opened.

FIGURE 17-22: An alert box displaying the value of the label element

To allow additional flexibility, several elements can receive notifications when a certain event
occurs. This notification process is called event propagation and is divided into two phases.
First, the event is sent to every ancestor element on the document hierarchy path, starting with
the top-level document and moving all the way down to the element that triggered the event
(the target). If any element above the target node has a registered capturing handler for the
event (see the Note that follows), the handler will be executed during this capturing phase. Any
event handler can prevent further event propagation by calling the stopPropagation
method of its event parameter.

Event handlers defined using the element event attributes (such as onclick) are noncaptur-
ing. Further, as you will see in this section, you can use the addEventListener method to
dynamically define a capturing event handler.

The second part of the event propagation process is called the bubbling phase, and it is the
reverse of the capturing phase. During event bubbling, the event is sent to every ancestor of the
target element, starting with the parent of the target node and moving all the way up the ele-
ment hierarchy, ending with the top-level document node. Any event handler can prevent fur-
ther bubbling by calling the stopPropagation method of its event parameter.

An example of the bubbling phase follows:

<box id=”top-box” onclick=”handleClick(event);”>
<box id=”inner-box” onclick=”handleClick(event);”>

<button id=”button-element”
label=”Test”
onclick=”handleClick(event);”/>

</box>
</box>

25_596500 ch17.qxd 6/30/05 3:14 PM Page 358

359Chapter 17 — Creating Extensions

We defined the following element hierarchy:

top-box ➪ inner-box ➪ button-element

We attached the same event handler to all three elements. Let’s define our handleClick
function:

function handleClick(event) {
dump(event.currentTarget.id + ‘\n’);

}

When the user clicks on the button, three lines will be printed on the console:

button-element
inner-box
top-box

We are witnessing the bubbling phase. First, the button’s event handler is called; then the one
attached to the inner box; and finally, the event handler defined on the top-level box.

To see the previous example in action, you can create the following XUL document and open it
in Firefox:

<?xml version=”1.0” encoding=”UTF-8”?>

<window align=”start”
xmlns=”http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul”>

<script type=”application/x-javascript”>
<![CDATA[

function handleClick(event) {
dump(event.currentTarget.id + ‘\n’);

}
]]>
</script>

<box id=”top-box” onclick=”handleClick(event);”>
<box id=”inner-box” onclick=”handleClick(event);”>
<button id=”button-element”

label=”Test”
onclick=”handleClick(event);”/>

</box>
</box>

</window>

The currentTarget property contains the element that defined the executing event handler,
and the target property contains the element that triggered the event (the button, in our
example). If we used the target property in our last example, we would see the “button-
element” line printed three times.

25_596500 ch17.qxd 6/30/05 3:14 PM Page 359

360 Part VI — Creating Extensions and Themes

There is an additional way of registering event handlers. You can use the DOM
addEventListener method to attach an event handler to an element. This method is
more flexible because it allows you to attach event handlers dynamically, define more than one
handler for a given element, and define capturing events. Let’s continue our previous example
by attaching a capturing event handler to our top-box element:

var topBoxElement = document.getElementById(‘top-box’);
topBoxElement.addEventListener(“click”, handleClick, true);

The third parameter of the addEventListener method specifies whether the attached event
handler will capture events during the capturing phase. We can attach an event handler by
using the addEventListener function at any time — during the UI initialization, as a result
of some user action, and so on. After we attached the capturing event handler, pressing the
button produces the following output:

top-box
button-element
inner-box
top-box

As you can see, the first line is printed during the capturing phase, before the button itself
receives the event; all the other lines that are printed during the bubbling phase remained the
same, as in the previous example.

Figure 17-23 demonstrates the two phases of the event propagation process.

FIGURE 17-23: The event propagation process

Some events have default actions associated with them. These actions, which are imple-
mented internally by the browser, can be cancelled from any event handler by calling the
preventDefault method of the event object passed to it as a parameter.

top-box

1 Capturing phase

capturing?

inner-box

button-element

2 Bubbling phase

Event target

capturing?

capturing?

25_596500 ch17.qxd 6/30/05 3:14 PM Page 360

361Chapter 17 — Creating Extensions

Dialogs
In the previous sections, we saw a XUL document that defines an overlay, a portion of the user
interface that will be merged with another document. An overlay document has an overlay
element at its root. Documents having a window element as their root define stand-alone, top-
level application windows, such as the Bookmarks Manager or the JavaScript Console.

Dialogs and windows have several things in common, but there are several conceptual differ-
ences between them:

� Dialogs usually perform a temporary function, such as asking for a password, letting the
user change some aspect of the program, or displaying a message.

� A dialog often has buttons that allow the user to close it. Many dialogs have an OK but-
ton that closes the dialog while accepting the user input and a Cancel button that closes
the dialog without performing any action.

� Dialogs are typically smaller than the top-level application windows.

� A dialog can be modal, meaning that the user cannot resume using the application until
the dialog is closed.

In XUL, a dialog is defined by creating a document having the dialog element at its root.

An example of a simple dialog follows:

<?xml version=”1.0” encoding=”UTF-8”?>
<?xml-stylesheet href=”chrome://global/skin” type=”text/css”?>

<dialog xmlns=”http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul”
id=”test-dialog”
title=”Test Dialog”
buttons=”accept,cancel”
ondialogaccept=”return dialogOK();”
ondialogcancel=”return dialogCancel();”>

<script type=”application/x-javascript”><![CDATA[
function dialogOK() {

alert(“OK pressed”);
return true;

}

function dialogCancel() {
alert(“Cancel pressed”);
return true;

}
]]></script>

<label value=”Testing 1 2 3”/>
</dialog>

25_596500 ch17.qxd 6/30/05 3:14 PM Page 361

362 Part VI — Creating Extensions and Themes

Figure 17-24 shows the dialog we have created.

FIGURE 17-24: A simple dialog

Let’s look at our dialog code more closely:

� The dialog element specifies that our XUL document is in fact a dialog.

■ The title attribute specifies the dialog title.

■ The buttons attribute specifies the comma-separated list of buttons that will
appear in the dialog. In our case, we want two buttons: OK and Cancel. Notice
that we specified only the wanted buttons and didn’t have to create the button ele-
ments. The buttons are created automatically, and their position and appearance
are determined by the user’s operating system conventions.

■ The ondialogaccept and ondialogcancel attributes define functions that
will be called when the user presses OK and Cancel, respectively.

� The script element defines our JavaScript code. Notice that while all our examples
until now demonstrated the use of external JavaScript files, you can have your scripts
embedded directly in the XUL document.

� A single label element is used to display a line of text. Obviously, real dialogs often
have more complex user interfaces.

Once our dialog implementation is ready, we can add it to our chrome package. Let’s name our
dialog file testDialog.xul and add it to the siteleds package. We can now open it using the
window.openDialog method like so:

window.openDialog(“chrome://siteleds/content/testDialog.xul”,
“_blank”,
“chrome”);

The first parameter specifies the URL of the dialog XUL file; the second, the name of the
dialog. The third parameter specifies some optional flags — the chrome flag means that the
document is a chrome window and doesn’t need to be wrapped by a browser component, like
an HTML document, for example. You can specify the modal flag to make the opened dialog
modal.

Preferences and Persistent Information
The preferences mechanism allows the browser to store user modifiable application settings.
For example, when a user changes the browser’s home page in the Options dialog, the new
value is saved as a user preference.

25_596500 ch17.qxd 6/30/05 3:14 PM Page 362

363Chapter 17 — Creating Extensions

The preference name is typically a dot-delimited list of words. For example, the home page
user preference is browser.startup.homepage. You can see each word in the preference
name as a branch. For example, all browsing-related preferences are located under the browser
main branch, all the preferences that are related to the browser startup are located under the
startup subbranch of the browser branch, and so on. This way, all the user preferences can be
viewed as a tree (see Figure 17-25). When a new component or an extension creates its own
preferences, it should give them a unique main branch name to avoid conflicts. For example,
our sample extension might save and use a preference named siteleds.monitor.url.

There is a convenient user interface for examining, modifying, and creating preferences. You
can open it by typing about:config in your browser address bar.

There are three main preference data types: string, integer, and Boolean. Also, each preference
can have two optional values: default and current. When the user modifies the default preference
value or creates a new preference, the new value is saved as a current value and is highlighted in
bold in about:config. When the system tries to retrieve a preference value, it does the following:

1. Checks whether the preference has a current value and, if so, returns it.

2. If there is no current value, it checks whether there is a default value and, if there is, returns it.

3. If neither current nor default value can be found, an exception is thrown.

If you are trying to retrieve a preference of a specific type, and a preference having a different
type is found, an exception is thrown. For example, if you are trying to retrieve the string value
of the user home page preference (browser.startup.homepage) and a Boolean value is
found instead, the call will throw an exception.

There are several XPCOM components and interfaces for working with preferences. You can
specify the preference names using these interfaces in two ways. You can obtain an interface
to the root branch and specify the full preference names (such as browser.startup.
homepage). Alternatively, you can get an interface to a specific subbranch, which will allow
you to omit that branch prefix from the preference names. For example, if you are working with
the browser branch, you can use the startup.homepage string to access the browser
.startup.homepage preference.

Here’s how to get an interface to the root branch:

var prefs = Components.classes[“@mozilla.org/preferences-service;1”].
getService(Components.interfaces.nsIPrefBranch);

After we have the root branch, we can access a preference by specifying its full name:

var homePage = prefs.getCharPref(“browser.startup.homepage”);

If we want to work with a specific subbranch, we can use the getBranch method of the
nsIPrefService interface:

var prefs = Components.classes[“@mozilla.org/preferences-service;1”].
getService(Components.interfaces.nsIPrefService);

var prefsBranch = prefs.getBranch(“browser.”);

25_596500 ch17.qxd 6/30/05 3:14 PM Page 363

FI
G

U
R

E
17

-2
5:

So
m

e
of

 t
he

 p
re

fe
re

nc
es

 v
ie

w
ed

 a
s

a
tr

ee

fo
re

gr
ou

nd
-c

ol
or

ba
ck

gr
ou

nd
-c

ol
or

pa
ge

ho
m

ep
ag

e
pe

rio
d

ur
l

ro
ot

br
ow

se
r

si
te

le
ds

m
on

ito
r

st
ar

tu
p

di
sp

la
y

25_596500 ch17.qxd 6/30/05 3:14 PM Page 364

365Chapter 17 — Creating Extensions

Now we can omit the browser prefix from all the preference names:

var homePage = prefsBranch.getCharPref(“startup.homepage”);

To modify a preference or create a new one, you can use one of the setCharPref,
setBoolPref, or setIntPref methods (for string, Boolean, and integer preferences,
respectively). For example, the following changes the user’s home page preference
(prefsBranch should contain a reference to the browser branch):

prefsBranch.setCharPref(“startup.homepage”, “http://www.iosart.com/firefox/”);

To retrieve a preference value, you can use one of the getCharPref, getBoolPref, or
getIntPref methods.

As mentioned earlier, the methods that retrieve preference values can throw exceptions if the
preference is not found or has the wrong type. You can use the prefHasUserValue and
getPrefType methods of the nsIPrefBranch interface to make sure that the preference
exists and has the expected type or you can wrap your preference retrieval calls in try/catch
JavaScript blocks.

A related Mozilla mechanism allows saving the state of XUL elements across browser sessions.
For example, a dialog can remember its size, so if the user resizes it, the correct size will be
retained even after the browser is restarted. One way to accomplish this is to manually save the
current state of the various elements as user preferences. Mozilla has a persistence mechanism
that greatly simplifies this task. The following will make the size of a dialog persistent:

<dialog xmlns=”http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul”
id=”test-dialog”
title=”Test Dialog”
buttons=”accept,cancel”
ondialogaccept=”return dialogOK();”
ondialogcancel=”return dialogCancel();”
width=”400”
height=”200”
persist=”width height”>

We have added a new persist attribute to our dialog element and specified a space-
delimited list of element attributes that we want to be saved. Now, each time these attributes
change (the dialog is resized), their new values are saved by the browser. Next time the dialog
is displayed, the width and height attributes will receive the saved values, rather than the
initial ones.

You can use the data persistence mechanism on any XUL element that has an id attribute.
The mechanism is typically used to save element visibility, position, size, and so on, but you can
make any attribute persistent, and any number of element attributes can be saved using this
technique.

Localized Strings in JavaScript
As mentioned in the previous sections, all the strings that are displayed to the user should be
defined in a separate string table file, which will allow easy translation of the user interface. You
saw how this can be accomplished in XUL files using XML entities and DTD files.

25_596500 ch17.qxd 6/30/05 3:14 PM Page 365

366 Part VI — Creating Extensions and Themes

Often, element labels and other displayed strings aren’t static; they can change during the pro-
gram execution. For example, a status bar can display many different messages, and the text of
these messages is typically set by a JavaScript code. A mechanism similar to XML entities is
needed so the messages and strings that originate in JavaScript can be easily localized.

JavaScript isn’t an XML language. Unlike XUL, it cannot use XML entities to specify string
variables. Mozilla has an additional mechanism called property files that allows having variable
localizable strings in JavaScript. Let’s extend our SiteLeds example to include this mechanism.
First, we define a property file that is located in the same directory as our siteledsOverlay.dtd
file and contains all the UI strings that need to be accessed from JavaScript. The contents of
the siteledsOverlay.properties file are as follows:

pageModified=The monitored page was modified.
pageError=There was an error retrieving the monitored page.

Now we include the property file we have created in our XUL document
(siteledsOverlay.xul) using a stringbundle element:

.

.

.
<!DOCTYPE overlay SYSTEM “chrome://siteleds/locale/siteledsOverlay.dtd”>

<overlay id=”siteleds-overlay”
xmlns=”http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul”>

<script type=”application/x-javascript”
src=”chrome://siteleds/content/siteledsOverlay.js”/>

<stringbundle id=”siteleds-strings”
src=”chrome://siteleds/locale/siteledsOverlay.properties”/>

.

.

.

Finally, we can get a specific string from our JavaScript code by finding the stringbundle
element and calling its getString method:

var stringBundle = document.getElementById(“siteleds-strings”);
var pageErrorString = stringBundle.getString(“pageError”);
alert(pageErrorString);

To translate the user interface, you will need to translate all the DTD and property files.

Firefox Customization Options
This section shows some additional examples of how Firefox can be customized and enhanced
using the extensions mechanism.

Adding Main Menu and Context Menu Entries
An extension can add menu entries to the main Firefox menu and to the context menu of the
browser content area (the place where the web pages are displayed).

25_596500 ch17.qxd 6/30/05 3:14 PM Page 366

367Chapter 17 — Creating Extensions

First, let’s add a new menu entry to the browser Tools menu using a dynamic overlay. With
the help of the DOM Inspector, we can find out that the id of the Firefox Tools menupopup
element is menu_ToolsPopup. We can add the following to our overlay:

<menupopup id=”menu_ToolsPopup”>
<menuitem id=”my-menu-item”

label=”My Menu Item”
accesskey=”y”
insertbefore=”menu_preferences”
oncommand=”alert(‘Testing 1 2 3’);”/>

</menupopup>

The new menu item is shown in Figure 17-26.

FIGURE 17-26: The new menu item

You can control the exact position of the new menu item in the overlaid menu by specifying
insertafter, insertbefore, or the position attributes of the new element.

You can add menu items to the context area menu by overlaying the
contentAreaContextMenu element:

<menupopup id=”contentAreaContextMenu”>
<menuitem id=”my-context-menu-item”

label=”My Context Menu Item”
accesskey=”y”
oncommand=”alert(‘Context Testing 1 2 3’);”/>

</menupopup>

25_596500 ch17.qxd 6/30/05 3:14 PM Page 367

368 Part VI — Creating Extensions and Themes

You can dynamically determine whether to make your new menu item visible:

1. Add an initialization function that will be called when the Firefox window is loaded
along with your overlay:

window.addEventListener(“load”, initMyOverlay, false);

2. In the initialization function, attach a popupshowing event handler to the
contentAreaContextMenu menu:

function initMyOverlay() {
var contextMenu = document.getElementById(“contentAreaContextMenu”);
contextMenu.addEventListener(“popupshowing”, myContextPopupshowing, false);

}

This handler will be called every time the context menu is about to become visible.

3. In the myContextPopupshowing handler, test some condition and set the visibility of
your menu item accordingly:

function myContextPopupshowing() {
var contextMenuItem = document.getElementById(“my-context-menu-item”);
if (contextMenuItem) {

contextMenuItem.hidden = !gContextMenu.isTextSelected;
}

}

The preceding code shows our new menu item in the context menu only if some text is
selected on the web page. As you can see, we first find our menu item using the DOM
getElementById method. We then determine whether some text is selected by exam-
ining the isTextSelected property of the global gContextMenu object and hide
our menu item if no text is selected. The gContextMenu object has several useful
methods and properties that can help you determine whether your menu item is appro-
priate for a given context. Some examples follow:

■ target: The element on which the user clicked to open the context menu.

■ isTextSelected: Determines whether there is some text selected on the web
page.

■ onLink, onTextInput, onImage, onTextInput: Allow you to determine the
type of element that the context menu was opened on.

■ linkText(), linkURL(): If onLink is true, provides additional information
about the link element that the context menu was opened on.

Adding Keyboard Shortcuts
In XUL, shortcut keys are defined using the key element. Several key elements are typically
grouped in a keyset element. The Firefox keyboard shortcuts are defined in a keyset ele-
ment that has an id of mainKeyset. You can overlay this element to create additional key-
board shortcuts. For example, you can add the following to your dynamic overlay:

25_596500 ch17.qxd 6/30/05 3:14 PM Page 368

369Chapter 17 — Creating Extensions

<keyset id=”mainKeyset”>
<key id=”my-key-test”

key=”T”
modifiers=”accel,shift”
oncommand=”alert(‘Testing 1 2 3’);”/>

</keyset>

When the user presses Ctrl+Shift+T (Cmd+Shift+T on Macintosh), the oncommand script is
executed. See the key element documentation for further details on specifying shortcuts in
Mozilla.

When adding new global shortcut keys, you should verify that your keys aren’t conflicting with
the existing shortcuts, defined either in Firefox itself or in other popular extensions. It is always a
good idea to implement some functionality in your extension that will let the user reconfigure
the default extension shortcut keys.

In addition, similar to text strings, it is recommended to define shortcut keys as XML entities
rather than directly in the XUL file. Shortcut keys often correspond to the name of the action (for
example, Ctrl+S for Save). If the extension is translated into another language, the default short-
cuts may no longer make sense. If the shortcuts are specified inside a DTD file along with the
other strings, they can be easily modified to correspond to the translated name of the action.

Adding Toolbars and Toolbar Buttons
A toolbar is created using the toolbar XUL element. All Firefox toolbars are located inside a
single toolbox element. The id of this element is navigator-toolbox, and by overlaying
it, we can add a custom browser toolbar, as demonstrated in the following example:

<toolbox id=”navigator-toolbox”>
<toolbar id=”my-test-toolbar”

class=”chromeclass-toolbar”
toolbarname=”My Test Toolbar”
accesskey=”T”
context=”toolbar-context-menu”
hidden=”false”
persist=”hidden”>

<toolbarbutton id=”my-toolbar-button-1”
tooltiptext=”First Button”
label=”Button 1”
oncommand=”alert(‘Testing Button 1’);”/>

<toolbarbutton id=”my-toolbar-button-2”
tooltiptext=”Second Button”
label=”Button 2”
oncommand=”alert(‘Testing Button 2’);”/>

</toolbar>
</toolbox>

Let’s take a closer look at what we have done:

� We created a toolbox element with navigator-toolbox id in our overlay. The
specified id attribute ensures that this toolbox will overlay the main Firefox toolbox and
our toolbar will be added to the browser.

25_596500 ch17.qxd 6/30/05 3:14 PM Page 369

370 Part VI — Creating Extensions and Themes

� The toolbar element defines our new toolbar. Let’s examine its attributes:

■ class: The chromeclass-toolbar class specifies that the XUL element
should be styled as a standard Firefox toolbar.

■ toolbarname: The name of the toolbar as it appears in the View ➪ Toolbars
menu.

■ accesskey: The keyboard key that can be used to trigger the toolbar visibility in
the Toolbars menu. The specified letter will be underlined, similar to other menu
keyboard shortcuts.

■ context: The id of the context menu that appears when the user right-clicks
over the toolbar. You can create your own custom menu or specify toolbar-
context-menu, which is the id of the default Firefox context menu that allows
toggling the visibility of the various toolbars.

■ hidden: The value of false specifies that the toolbar is initially visible.

■ persist: By setting this attribute to hidden, we are instructing the browser to
remember the visibility state of our toolbar across sessions.

� Inside the toolbar element, we have defined a couple of toolbar buttons. As we men-
tioned earlier, the toolbarbutton element is similar to a regular button but typically
has a different style. In addition to toolbar buttons, we can place any elements on our
toolbar (checkboxes, text boxes, drop-down lists, and so on).

Figure 17-27 shows our new toolbar.

FIGURE 17-27: A simple toolbar

If you want to add a single toolbar button rather than a complete toolbar, you must use a
slightly different technique. In Firefox, the user can customize a toolbar by choosing View ➪
Toolbars ➪ Customize and dragging the wanted toolbar buttons and other elements from the
toolbar palette to the target location. By adding our toolbar button to the customization
palette, we can allow the user to later add this button to one of the toolbars.

It is possible to add a toolbar button directly to one of the browser toolbars, rather than to the
customization palette, but this requires a somewhat more complex technique.

25_596500 ch17.qxd 6/30/05 3:14 PM Page 370

371Chapter 17 — Creating Extensions

To add our toolbarbutton to the customization palette, we need to overlay the Firefox
main toolbarpalette element, which has an id of BrowserToolbarPalette:

<toolbarpalette id=”BrowserToolbarPalette”>
<toolbarbutton id=”my-toolbar-button-3”

class=”toolbarbutton-1”
tooltiptext=”Third Button”
label=”Button 3”
oncommand=”alert(‘Testing Button 3’);”/>

</toolbarpalette>

We have set the class of our toolbarbutton element to toolbarbutton-1. This
ensures that the button will be displayed correctly in both Icons and Text toolbar modes.

We now want to specify an icon for our toolbarbutton. Because toolbars can have two
sizes, big and small, we will have to define two icons for our toolbar button. The big icon is
24 × 24 pixels, and the small one is 16 × 16 pixels.

Let’s look at the style sheet that defines the toolbar button icon:

#my-toolbar-button-3 {
list-style-image: url(“chrome://my-extension/skin/button_3_large.png”);

}

toolbar[iconsize=”small”] #my-toolbar-button-3 {
list-style-image: url(“chrome://my-extension/skin/button_3_small.png”);

}

As you can see, the iconsize attribute of the parent toolbar element determines whether the
small or the large icons are displayed.

Changing the Appearance of Web Pages
An extension can modify the appearance of web pages that are loaded into the browser content
area. You can define an event handler function that will be called each time a new web page is
loaded. In this function, you can examine and modify the DOM structure of the loaded page.

This is accomplished with the following steps:

1. Add an initialization function that will be called when the Firefox window is loaded
along with your overlay:

window.addEventListener(“load”, initMyOverlay, false);

2. In the initialization function, find the browser content element using its id
(appconten) and attach a load event handler to it:

function initMyOverlay() {
var appContent = document.getElementById(“appcontent”);
appContent.addEventListener(“load”, myNewWebPageLoaded, true);

}

25_596500 ch17.qxd 6/30/05 3:14 PM Page 371

372 Part VI — Creating Extensions and Themes

This event handler (myNewWebPageLoaded) will be called each time a new page is
loaded inside the browser.

3. The myNewWebPageLoaded function can examine and modify the loaded page using
the DOM interfaces. For example, we can create a function that will add a tooltip with
the link target URL to every link found on the web page:

function myNewWebPageLoaded(event) {
var webPage = event.originalTarget;
var allLinks = webPage.getElementsByTagName(“A”);
for(var i=0; i < allLinks.length; i++) {

var link = allLinks[i];
link.setAttribute(“title”, link.href);

}
}

As you can see, we obtain the root element of the loaded web page from the
originalTarget property of the event parameter. Then we get a list of all the links
using the getElementsByTagName DOM method. Finally, we go over all the link
(anchor) elements and set their title attribute to the value of their target URL. Now,
when you hover over a link on the web page, you will see a nice tooltip displaying the
link target URL (see Figure 17-28).

FIGURE 17-28: A link with the newly added tooltip

25_596500 ch17.qxd 6/30/05 3:14 PM Page 372

373Chapter 17 — Creating Extensions

Something similar can often be achieved by creating a bookmarklet, a small JavaScript snippet
that is saved as a bookmark and that when clicked can examine and modify the current page.
The mechanism we introduced in this section is much more powerful and flexible.

Advanced Packaging
This section explores additional packaging-related options and techniques.

Optional Install Manifest Items
You should already know how to create the install manifest file (install.rdf). Several optional
items can be added to this file. Let’s extend the install.rdf file of our SiteLeds extension:

<?xml version=”1.0”?>

<RDF xmlns=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:em=”http://www.mozilla.org/2004/em-rdf#”>

<Description about=”urn:mozilla:install-manifest”>
<em:id>{E1B2492D-E6AC-4221-A433-C143E3A1C71E}</em:id>
<em:version>0.1</em:version>
<em:name>SiteLeds</em:name>

<em:description>Site Status Monitor</em:description>
<em:creator>Alex Sirota</em:creator>
<em:homepageURL>http://www.iosart.com/firefox/siteleds</em:homepageURL>

<em:contributor>First Contributor</em:contributor>
<em:contributor>Another Contributor</em:contributor>
<em:optionsURL>chrome://siteleds/content/settings.xul</em:optionsURL>
<em:aboutURL>chrome://siteleds/content/about.xul</em:aboutURL>
<em:iconURL>chrome://siteleds/skin/logo.png</em:iconURL>
<em:updateURL>http://iosart.com/firefox/siteledsUpdate.rdf</em:updateURL>

<em:targetApplication>
<Description>

<em:id>{ec8030f7-c20a-464f-9b0e-13a3a9e97384}</em:id>
<em:minVersion>0.9</em:minVersion>
<em:maxVersion>1.1</em:maxVersion>

</Description>
</em:targetApplication>

<em:file>
<Description about=”urn:mozilla:extension:file:siteleds.jar”>

<em:package>content/</em:package>
<em:skin>skin/classic/</em:skin>
<em:locale>locale/en-US/</em:locale>

</Description>
</em:file>
</Description>

</RDF>

25_596500 ch17.qxd 6/30/05 3:14 PM Page 373

374 Part VI — Creating Extensions and Themes

Let’s examine the items we have added:

� You can specify one or more em:contributor properties for every person that con-
tributed to the extension.

� The em:optionsURL property specifies the chrome URL of the extension Options
dialog (sometimes called Settings). The document found at this URL is a XUL dialog
that typically lets the user change the various extension settings and saves these settings
as user preferences. If this property is specified, the Options dialog can be opened from
the Extensions Manager window.

� The em:aboutURL property allows you to create a custom About dialog for your exten-
sion. By default, this dialog is created automatically and displays the extension name,
version, author, home page, and so on. You can create a custom About dialog and specify
its chrome URL in the install manifest.

� You can create a custom icon for your extension and specify its chrome URL using the
em:iconURL property. This icon should be 32 × 32 pixels, and when defined, it is dis-
played in the Extension Manager window instead of the default icon.

� Firefox can automatically check if a new version of your extension is available and, if
found, show a notification message and let the user update the extension. By default,
Firefox contacts the Mozilla site (addons.mozilla.org) to see if an update is avail-
able. By using the em:updateURL property, you can specify a custom URL that will be
queried instead. More information on this file appears in the following section.

Custom Update File
As previously mentioned, by specifying the em:updateURL property in your install manifest
file you can have Firefox query a custom URL to see whether updates are available for your
extension. At this URL, the browser expects to find an RDF file that specifies the available
extension versions.

The server must send the RDF file as text/rdf for the update mechanism to work. With the
Apache web server, this can be achieved by creating an .htaccess file and adding the following
line to it: AddType text/xml rdf.

Take a look at a sample update.rdf file:

<?xml version=”1.0”?>

<RDF:RDF xmlns:RDF=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:em=”http://www.mozilla.org/2004/em-rdf#”>

<RDF:Description Æ
about=”urn:mozilla:extension:{E1B2492D-E6AC-4221-A433-C143E3A1C71E}”>
<em:updates>
<RDF:Seq>

25_596500 ch17.qxd 6/30/05 3:14 PM Page 374

375Chapter 17 — Creating Extensions

<RDF:li resource= Æ
“urn:mozilla:extension:{E1B2492D-E6AC-4221-A433-C143E3A1C71E}:0.2”/>
</RDF:Seq>

</em:updates>

<em:version>0.2</em:version>
<em:updateLink>http://www.iosart.com/firefox/siteleds/SiteLeds_0.2.xpiÆ
</em:updateLink>

</RDF:Description>

<RDF:Description Æ
about=”urn:mozilla:extension:{E1B2492D-E6AC-4221-A433-C143E3A1C71E}:0.2”>
<em:version>0.2</em:version>

<em:targetApplication>
<Description>
<em:id>{ec8030f7-c20a-464f-9b0e-13a3a9e97384}</em:id>
<em:minVersion>0.9</em:minVersion>
<em:maxVersion>1.1</em:maxVersion>
<em:updateLink>http://www.iosart.com/firefox/siteleds/SiteLeds_0.2.xpi

@ta </em:updateLink>
</Description>

</em:targetApplication>
</RDF:Description>

</RDF:RDF>

As you can see, the update RDF file specifies that version 0.2 of the extension with GUID
E1B2492D-E6AC-4221-A433-C143E3A1C71E is available for download from http://
www.iosart.com/firefox/siteleds/SiteLeds_0.2.xpi. It also specifies that ver-
sion 0.2 of the extension is compatible with Firefox (by specifying its GUID) versions 0.1 to
1.1. If, for example, a user has version 0.1 of the SiteLeds extension installed in Firefox 1.0, the
update procedure will detect that there is an available update (version 0.2 of the extension) and
display the appropriate notification.

Automating the Packaging Process
As noted in the previous sections, you must perform several operations each time you want to
create an XPI package for your extension. You need to package the contents of the chrome
directory into a JAR file and then package it along with the install.rdf file into an XPI archive.
You can create a simple script that will automate this process for you. All you need is a ZIP
utility with a command-line interface and a scripting language.

This can be done as follows, using the 7-Zip utility and a simple Windows batch script:

cd chrome
del siteleds.jar
7z a -tzip -mx=0 -r siteleds.jar *
cd ..
del SiteLeds_0.1.xpi
7z a -tzip -mx=9 SiteLeds_0.1.xpi install.rdf chrome\siteleds.jar

25_596500 ch17.qxd 6/30/05 3:14 PM Page 375

376 Part VI — Creating Extensions and Themes

We can put the preceding script in a file named package.bat at the top-level directory of our
extension (in the same directory as the install.rdf file). Clicking on this file creates a fresh
SiteLeds_0.1xpi package in the current directory. As you can see, the script performs a
couple of very simple tasks: It first compresses the contents of the chrome directory and then
creates the final XPI package by compressing the chrome JAR file along with the install.rdf
install manifest.

You can create more elaborate packaging scripts that will automatically update the version
number in all the needed files, upload the extension package to your web server, and perform
additional tasks you are routinely doing when packaging and releasing your extensions. The
point is that even a very simple script can be used to make the process much more efficient.

Developing an Extension without Repackaging
We have seen that you need to install your extension into the browser before you can test it.
This means that you have to constantly repackage and reinstall your extension while developing
it. This process is highly inefficient and frustrating. There is a simple way you can avoid having
to repackage your extension each time you make a change. The idea is that during develop-
ment, you change your manifest files to use plain directories instead of the JAR file and then
install this modified extension into the browser. Now you can work directly on the installed
files without having to repackage anything.

If you want your extension to work with plain directories, you need to change a few things:

1. Instead of packaging the content, skin, and locale directories into the siteleds.jar file, cre-
ate a siteleds subdirectory inside the chrome directory and copy the content, skin, and
locale folders to this new directory. Basically, you are creating a directory at the same
place your JAR file would be and with exactly the same contents.

2. Change the following line in the install.rdf file

<Description about=”urn:mozilla:extension:file:siteleds.jar”>

to

<Description about=”urn:mozilla:extension:file:siteleds”>

If you are using the new-style chrome registration manifest, you should apply similar
changes to your chrome.manifest file instead.

3. Create your XPI file as usual, by compressing the install.rdf file and the chrome directory
(which now contains the siteleds subdirectory and not the siteleds.jar file), and install it
into the browser.

Figure 17-29 shows the contents of the modified XPI package.

Now you can locate your extension installation directory (typically in your profile folder) and
work directly on the installed files. You don’t have to continually repackage your extension to
see the changes. You might have to restart the browser, though, to see the changes made to the
overlay elements.

25_596500 ch17.qxd 6/30/05 3:14 PM Page 376

377Chapter 17 — Creating Extensions

FIGURE 17-29: The contents of the XPI package that uses plain directories

There is one additional thing you can do to avoid restarting the browser when modifying
nonoverlay XUL documents (such as windows and dialogs). By default, Mozilla caches all
XUL documents, meaning that once it loads a XUL file, it won’t be read again from the disk
until you restart the browser. To disable this XUL caching mechanism, set the nglayout
.debug.disable_xul_cache preference to true.

Tips and Tricks
This section provides various techniques that can prove useful in the extension development
process.

Avoiding JavaScript Name Collisions
As mentioned earlier, the JavaScript identifiers we define in overlays are evaluated in the global
scope, meaning that if we are not careful, we can give our function or variable a name that is
already taken by another component. This situation causes a name collision and should be
avoided. To solve the problem, we used unique prefixes for all our global identifiers. This solu-
tion works, but you need to constantly be aware of the problem and remember to add the prefix
to each and every identifier. This also makes the code less readable.

 skin

 classic
 contents.rdf
 siteledsOverlay.css
 state-error.png
 state-modified.png
 state-ok.png
 state-unknown.png

 locale

 en-US
 contents.rdf
 siteledsOverlay.dtd

SiteLeds_0.1xpi

 install.rdf

 chrome
 siteleds
 contents
 contents.rdf
 siteledsOverlay.js
 siteledsOverlay.xul

25_596500 ch17.qxd 6/30/05 3:14 PM Page 377

378 Part VI — Creating Extensions and Themes

There is a better way of handling this situation. You can put all your JavaScript code inside an
object. All the global identifiers, both functions and variables, become members of this object.
Now, as long as the name of this one object is unique, you don’t have to worry about name
collisions.

Let’s rewrite our SiteLeds JavaScript code to use this technique:

var SiteLeds = {
_siteLedsLastRequest: null,
_siteLedsLastContent: null,

pageLoaded: function () {
...

},

pageError: function() {
...

},

checkPage: function() {
...

}
}

window.addEventListener(“load”, SiteLeds.checkPage, false);

Testing Your Code without Creating an Extension
JavaScript code that uses XPCOM components and other browser APIs needs to have certain
privileges to be able to run in the browser. When such code runs from a chrome URL, meaning
that it is a part of the browser or an extension, it has such privileges. Does this mean that you
have to create a chrome package and register it every time you want to experiment with
JavaScript? There is a way to run a privileged JavaScript code from a simple HTML file, as
long as it is located on the local file system.

The trick is to enable the necessary privilege before attempting to use XPCOM and other
restricted interfaces. To enable access to XPCOM from a script, call the netscape
.security.PrivilegeManager.enablePrivilege function with the
UniversalXPConnect parameter. Now you can create a simple HTML file that contains
your JavaScript code and test it without needing to create a chrome package.

An example for working with the preferences XPCOM objects using this technique follows:

<html>
<head>
<script>
function getHome() {
netscape.security.PrivilegeManager.

enablePrivilege(“UniversalXPConnect”);
var prefs = Components.classes[“@mozilla.org/preferences-service;1”].

getService(Components.interfaces.nsIPrefBranch);
var homePage = prefs.getCharPref(“browser.startup.homepage”);
alert(homePage);

}

25_596500 ch17.qxd 6/30/05 3:14 PM Page 378

379Chapter 17 — Creating Extensions

</script>
</head>
<body>
<button onclick=”getHome();”>Get Home</button>

</body>
</html>

When you click on the Get Home button, the script retrieves the user Home Page preference
using the Preferences Service XPCOM object.

When a local file requests a privilege using the preceding mechanism, a security dialog is dis-
played, and you must explicitly grant this privilege before the script execution can be resumed.
You should be very careful when granting such privileges and make sure that you know exactly
which file is requesting them.

As you saw earlier, you can also experiment with your XUL files without installing them into your
browser first. Create a XUL file and open it with your browser just as you would open a local
HTML document. Your XUL interface will appear in the browser content area. If the UI
looks stretched, add align=”start” to the root element of your XUL document (window,
overlay, and so on).

Hacking Existing Extensions
There is no better way to understand how some component works than to look at its source
code. Extensions are no different. Because they are developed using mainly text-based tech-
nologies such as XML and JavaScript, they are open source by their nature. You can learn a lot
by looking at the code of existing extensions and playing around with them.

Suppose that you have a great idea for an extension, but even after you read through all the
available documentation you still can’t figure out how to get started. For example, let’s assume
that you want your extension to add a context menu item that sends the selected text to some
website, and you are not sure how you can modify the context menu, get the selected text, or
open a connection to a remote site. There are already dozens of extensions that perform very
similar operations, and looking at their code will get you on the right track.

Some of the things you can do to start hacking existing extensions are as follows:

� Find an extension that does something similar to what you are trying to accomplish.

� Install the extension and play around with it for a while. See how it works and whether it
indeed has the needed functionality.

� Extract the extension using your favorite ZIP utility and start looking at its code.
Examine the structure of the XUL files and overlays, see how different elements are
styled using CSS, and learn how the extension does things by looking at its JavaScript
code.

25_596500 ch17.qxd 6/30/05 3:14 PM Page 379

380 Part VI — Creating Extensions and Themes

� If there are still things you don’t completely understand, you can do some real hacking —
you can modify the extension, comment things out, and add your own pieces of code.
You can add dump() and alert() calls to examine the value of JavaScript variables,
see how different functions are invoked, and so on. Also, you can use the technique that
allows you to modify an installed extension (described earlier in this chapter) to make the
hacking process more efficient.

One of the greatest benefits of knowing how extensions work is being able to tweak existing
extensions to better suit your needs. You can modify the extension UI to make it prettier or to
change some of its JavaScript code to slightly adjust its behavior. If you believe that your
changes might be useful to anyone besides yourself, you can contact the extension author and
suggest these improvements or even offer your help with the project.

If you want to use in your own work the code you found in another extension or to modify it in
any way, first make sure that the extension license allows it. Many extensions have licenses that
allow you to use their code in your extension under different conditions. Always credit the origi-
nal authors for their work. Many licenses specifically require that, but this is really a matter of
courtesy. Also, if you think that an existing extension is missing some pieces of functionality, con-
sider contacting the author and suggesting a contribution to the existing extension before creat-
ing your own derivative product.

Summary
This chapter explained everything you need to know to start writing your own extensions. You
should now know how extensions are created, packaged, and distributed; how different parts of
Firefox can be customized using extensions; and where to get further documentation and help.

Once you see how simple the process of creating Firefox extensions is, you might be tempted to
start writing your own extension right away. Don’t resist this temptation! Extensions are among
the things that make Firefox the best browser out there, and I’m sure that your new extension
can make it even better.

25_596500 ch17.qxd 6/30/05 3:14 PM Page 380

Creating Themes

Istarted creating themes for Mozilla around August 2002 but didn’t
release my first theme for Firefox (known then as Firebird 0.7) until
November 2003. As with extensions, the Firefox theme process is a work

in progress. Those that started creating themes for Firefox when it was still
in beta stages know this all too well. Now that Firefox 1.0 has been released,
changes are coming more slowly, but they’re still coming.

The following section details the theme creation process from start to fin-
ish, from defining the files to publishing your theme. Some of the concepts
are the same as those used in creating and modifying extensions.

Tools for Creating Themes
You probably have most if not all of the software required to create a Firefox
theme already installed on your computer. There are no theme-specific tools
required for theme creation. Themes consist of the following file types:

� CSS

� Images

� RDF

� XML

All these files are packaged into the final product, known as a compressed
archive. You will need the following tools to create a theme for Firefox:

� A text editor

� An image/graphics editor

� A compression tool

˛ Tools for creating
themes

˛ Building your first
theme

˛ Making your theme
public

˛ Supporting different
operating-system
platforms

˛ Hacking existing
themes

chapter

in this chapter

by Aaron Spuler

26_596500 ch18.qxd 6/30/05 3:15 PM Page 381

382 Part VI — Creating Extensions and Themes

Text Editor
Most files in themes are simple text files (.txt). You can use any text editor to edit them. I use a
Windows-based operating system, and depending on the level of complexity involved, I use
Notepad, WordPad, or even Microsoft Visual Studio .Net. Notepad and WordPad are great
basic text editors, but when I want to do something like a find/replace in multiple files, I use
Visual Studio .Net because it allows multiple files to be open at once. The beauty of the
Mozilla theme engine lies in its cross-platform compatibility. If you weren’t already aware of
this, different operating systems use different ways to store line breaks. Windows-based sys-
tems use carriage return plus line feed (CR/LF), UNIX-based (including Linux) systems use
only LF, and Macintosh systems use only CR. This can cause problems if the software isn’t able
to detect the line-break style of a file. The Mozilla theme engine is able to detect different line-
break styles and accommodate them. That means that you can use any text editor, regardless of
operating system, as long as the file is saved as plain text. Bottom line, use a text editor that
you’re comfortable with.

Image/Graphics Editor
As with text editors, the choice is up to you. Generally, most images in themes are either GIF
or PNG format because of their transparency options. Any image/graphics editor that allows
you to save images with transparency is acceptable. My favorite is Jasc Paint Shop Pro. You can
also use Adobe Photoshop or any similar tool for your operating system. I don’t recommend
editors as simple as Microsoft Paint, as they generally don’t handle transparency properly.

ZIP-Format Compression Tool
A ZIP-compatible compression tool is required to create the JAR file, which is the compressed
archive file. Feel free to use any compression tool that you are comfortable with to create the
JAR file when ready to test or make your theme public. I use WinZip, but your favorite, if dif-
ferent, should work too. Another great tool is 7-Zip. 7-Zip is free and comes with command-
line options built in. With WinZip, command-line tools are an add-on.

The only exception to “use any ZIP-compatible compression tool you want” is Zipmagic; I’ve
heard reports from some folks that it’s incompatible with the JAR file format.

You can go to http://www.winzip.com to get a copy of WinZip and to http://
www.7-zip.org for a copy of 7-Zip.

Building Your First Theme
So you’re ready to create a Firefox theme? Now that you know all the tools required, it’s time to
roll up your sleeves and get to work. The best way to get started is to use the default Firefox
theme as a template.

26_596500 ch18.qxd 6/30/05 3:15 PM Page 382

383Chapter 18 — Creating Themes

Define and Create Your Theme’s Core Files
While it may sound simplistic to say that a theme is composed of images and text files, there
are a great many files, and the Firefox theme engine looks for specific files in specific places.
You should never try to write all the files yourself. No theme author that I know of ever created
a theme that way. It’s better to begin by modifying the default theme. Browse to the location
where you installed Firefox. Up until the release of Firefox 1.0.2, there were zipped versions of
Firefox available for download. Now that those have been discontinued for official releases, you
will need to be able to locate the folder where you installed Firefox.

For those of you using Windows, the default install location for Firefox is C:\Program Files\
Mozilla Firefox.

Mac users have two ways to access the Firefox folder. You can Ctrl+click the Firefox applica-
tion package and select “Show Package Contents,” or you can browse to the /Applications/
Mozilla.app/Contents/MacOS/ folder.

For the Linux users out there, there does not seem to be a standardized location yet for the
Firefox installation. The install location depends on which distribution you are running. I know
the install locations for three popular Linux distributions. Gentoo installs Firefox to the
/usr/lib/MozillaFirefox directory, Debian to the /usr/lib/mozilla-firefox directory, and Fedora
to the /usr/lib/mozillafirefox directory.

The default theme file is named classic.jar, located in the Firefox\chrome directory. If you have
not been able to locate your Firefox directory yet, now is the time to search your computer for
the classic.jar file. You’ll need to open classic.jar with your ZIP format compression tool and
extract the files. After extraction, you should have a directory structure similar to that shown in
Figure 18-1.

FIGURE 18-1: Classic.jar directory structure

Because the default theme is installed during the Firefox installation process, it has a different
directory structure from that of themes that require installation on their own. You’ll need to
move some files around and create some yourself. Figure 18-2 shows the directory structure
that your theme will need.

26_596500 ch18.qxd 6/30/05 3:15 PM Page 383

384 Part VI — Creating Extensions and Themes

FIGURE 18-2: Your theme’s directory structure

Both the preview.png and icon.png files are used in the Themes window. The preview.png file
traditionally shows what the theme looks like when in use, and the icon.png file is displayed to
the left of the theme’s name, as shown in Figure 18-3.

FIGURE 18-3: Themes Manager

Creating the install.rdf File
You might have noticed that the default theme doesn’t have an install.rdf file. This is one of the
files that you need to create. The following is the install.rdf file from my Smoke theme:

<?xml version=”1.0”?>
<RDF xmlns=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”

xmlns:em=”http://www.mozilla.org/2004/em-rdf#”>

<Description about=”urn:mozilla:install-manifest”>
<em:id>{3646e22c-5e51-43fb-b8a4-9ebaf7eb11f2}</em:id>
<em:version>1.5</em:version>

<em:targetApplication>
<Description>

26_596500 ch18.qxd 6/30/05 3:16 PM Page 384

385Chapter 18 — Creating Themes

<em:id>{ec8030f7-c20a-464f-9b0e-13a3a9e97384}</em:id>
<em:minVersion>0.8</em:minVersion>
<em:maxVersion>1.0</em:maxVersion>
</Description>
</em:targetApplication>

<em:name>Smoke</em:name>
<em:description>Based on the Orbital icon set by Florian Freundt
(http://www.freundt.org/florian)</em:description>
<em:creator>Aaron Spuler</em:creator>
<em:contributor>Icons by Florian Freundt</em:contributor>
<em:homepageURL>http://www.spuler.us</em:homepageURL>
<em:updateURL></em:updateURL>
<em:internalName>smoke</em:internalName>
</Description>

</RDF>

Creating the contents.rdf File
The default theme also handles the contents.rdf file differently. Instead of one contents.rdf file,
it has four — one in each subdirectory. You’ll need to delete all four of the contents.rdf files.
After you have deleted all four contents.rdf files, you must create one file and place it in the
root directory of the theme, as shown in Figure 18-2. The following is the contents.rdf file
from my Smoke theme:

<?xml version=”1.0”?>

<RDF xmlns=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:chrome=”http://www.mozilla.org/rdf/chrome#”>

<Seq about=”urn:mozilla:skin:root”>
<li resource=”urn:mozilla:skin:smoke”/>
</Seq>

<Description about=”urn:mozilla:skin:smoke” chrome:name=”smoke”>
<chrome:packages>
<Seq about=”urn:mozilla:skin:smoke:packages”>
<li resource=”urn:mozilla:skin:smoke:global”/>
<li resource=”urn:mozilla:skin:smoke:browser”/>
<li resource=”urn:mozilla:skin:smoke:mozapps”/>
</Seq>
</chrome:packages>
</Description>

<Description chrome:skinVersion=”1.5”
about=”urn:mozilla:skin:smoke:global”/>
<Description chrome:skinVersion=”1.5”
about=”urn:mozilla:skin:smoke:browser”/>
<Description chrome:skinVersion=”1.5”
about=”urn:mozilla:skin:smoke:mozapps”/>

</RDF>

26_596500 ch18.qxd 6/30/05 3:16 PM Page 385

386 Part VI — Creating Extensions and Themes

For the moment, you can use these files as they are, but you’ll want to edit them later. If you
already know the name you want for your theme, replace all instances of Smoke with your
theme’s name. You should probably also change the creator name and URL right now. If you
don’t have a web site, you can leave that portion blank, as I’ve done with the em:updateURL
section. (The update URL is discussed later in this chapter.)

For more information on RDF files, see http://www.xulplanet.com/tutorials/
mozsdk/rdfsyntax.php.

Generate a Custom GUID
A Globally Unique Identifier (GUID) is a 128-bit random number. The number of unique ids
is so large that the chances of generating the same 128-bit number twice are virtually nonexis-
tent. There are two GUIDs in the preceding sample install.rdf posted. One is for Firefox
(ec8030f7-c20a-464f-9b0e-13a3a9e97384), and the other is for the Firefox version of
the Smoke theme (3646e22c-5e51-43fb-b8a4-9ebaf7eb11f2). A GUID is used to
avoid causing confusion by guaranteeing that no two themes or extensions have the same
name. You’ll need to generate a GUID for your theme. This will replace the Firefox Smoke
GUID on the line <em:version>1.5</em:version> in the sample code previously pro-
vided. I use the following tool, available on the Web, to generate GUIDs for themes: http://
www.hoskinson.net/webservices/guidgeneratorclient.aspx, shown in Fig-
ure 18-4. The Rain theme is shown in the screenshot.

FIGURE 18-4: GUID Generator

26_596500 ch18.qxd 6/30/05 3:16 PM Page 386

387Chapter 18 — Creating Themes

This web site is very simple to use: Simply click the Generate GUID button, and the text box
above the button will be populated with a GUID. If you need to create more than one, just
click the button as many times as needed.

Customizing Chrome
Chrome is the user interface portion of the application window that lies outside a window’s
content area. Toolbars, menu bars, progress bars, and window title bars are all examples of ele-
ments that are typically part of the chrome. Every part of the chrome is defined through CSS
files. All the files in your theme contain declarations for objects in the chrome. The most
important CSS file for Firefox is browser\browser.css. This file controls the main display that’s
visible while using the browser. All of the standard buttons (back, forward, stop, reload, print,
go, and so on) are defined in this file. In order to change the attributes for an element, you need
to know its internal id.

Using the DOM Inspector
The DOM Inspector is without a doubt the most useful tool involved when constructing a
theme. I didn’t know about it when creating my first few themes, and believe me, I wish I had.
Without the DOM Inspector, it became a guessing game, and my guesses were wrong more
often than not. With the DOM Inspector, you can find out anything you want to know about
every portion of the browser window. It will tell you the CSS id for any button, what file the
button attributes are defined in, and even in what line the definition starts.

To start using the DOM Inspector, follow these steps:

1. Go to the Tools menu and select DOM Inspector. This opens the DOM Inspector in a
new window.

2. Go to the File menu, select Inspect a Window, and then select the Mozilla Firefox win-
dow. If you’ve done that correctly, the text box at the top of the page will read as follows:
chrome://browser/content/browser.xul.

3. Click the Inspect button. The bottom half of that window should display the browser
window. Figure 18-5 shows the progress so far. My Smoke theme is shown in the
screenshot.

Now you can start to explore the code to generate browser elements. Directly underneath the
File menu is a button that looks like a mouse pointer hovering over a button. This button
allows you to click on a browser element and see its attributes. To activate this feature, click on
the button (it turns darker when you do this); then click on a browser element in the lower
pane. Try that now. Click on the Reload button (it will briefly flash red). In the upper-left
pane, the Reload button will be selected in the DOM tree, and in the upper-right pane, infor-
mation about the Reload button will be populated. Clicking the button to the left of the text
“Object - DOM Node” brings up a menu with six items. The one that we are interested in at
this time is the CSS Style Rules menu item (see Figure 18-6).

26_596500 ch18.qxd 6/30/05 3:16 PM Page 387

388 Part VI — Creating Extensions and Themes

FIGURE 18-5: DOM Inspector

FIGURE 18-6: Reload button, CSS Style Rules

Now that the CSS rules are shown, you can actually see what code controls the Reload button.
The first two lines in the CSS Style Rules pane are irrelevant. The third item details the styles
applied to all buttons. This deals with margins, padding, borders, and text colors. The fourth,
fifth, and sixth items — .toolbarbutton-1 — are general properties that deal with the
main toolbar buttons only. The following buttons are part of the .toolbarbutton-1 group:

� Back

� Forward

� Reload

� Stop

26_596500 ch18.qxd 6/30/05 3:16 PM Page 388

389Chapter 18 — Creating Themes

� Print

� Downloads

� History

� Mail

� Bookmarks

� New Tab

� New Window

� Cut

� Copy

� Paste

The last line, #reload-button, details properties that are specific to the Reload button.

Understanding CSS
Because the entire user interface is defined through Cascading Style Sheets, you’ll need to
know something about CSS to create a Firefox theme. I had never heard of CSS when I
started creating Mozilla themes, and that made the process (unnecessarily) difficult. I still don’t
know all that much about CSS, but I know enough to get around. If you don’t know any CSS,
now might be a good time for a bit of research. A Google search for “CSS Tutorial” will bring
up lots of useful sites to get you started. If you’re interested in a quick tutorial, visit the follow-
ing sites:

� http://www.htmlhelp.com/reference/css/

� http://www.w3schools.com/css/

Creating Needed Graphics
To make your theme truly unique, you’ll need to replace the graphics associated with the
default theme. A great majority of the buttons are found in the files browser\toolbar.png and
browser\toolbar-small.png.

PNG is an extensible file format for the lossless, portable, well-compressed storage of raster
images. PNG is a replacement for GIF because PNG allows for true color (24-bit) images with
alpha transparency, as opposed to GIF, which allows for 256-color images with indexed trans-
parency. Indexed-color, grayscale, and true-color images are supported, plus an optional alpha
channel for transparency. The PNG format was sought as a replacement for the GIF format when
Unisys requested royalties from GIF-supporting software for the use of its patents on the LZW
compression algorithms in 1994.

See http://www.webcolors.freeserve.co.uk/png for more information on the PNG
format.

26_596500 ch18.qxd 6/30/05 3:16 PM Page 389

390 Part VI — Creating Extensions and Themes

Overlay Default Icons
If you want to use the same size buttons as the default theme (24 × 24 pixels for large buttons,
16 × 16 pixels for small buttons), you can simply open the image files and replace them with
your own images in your image editor. I would recommend this method to anyone unfamiliar
with CSS.

The default theme uses one large image file to hold all the large toolbar button images and
another for the small toolbar button images. In Figure 18-7, the buttons are all laid out on a
single *.png image.

FIGURE 18-7: Toolbar.png

The top row of icons is for the normal state (not disabled, not hovered). The second row holds
the icons displayed when you hover over a button with your mouse. The third row is the icons
shown when a button is disabled. You’ll notice that there is only one icon on the fourth row —
that is the bookmarks icon, which has four states in the default theme. When you click on the
bookmarks button, Firefox displays your bookmarks along the left side of the screen. The icon
on the fourth row is displayed while the bookmarks are open.

Personally, I don’t like to use one large image file to hold all the toolbar images. It’s hard to edit
files when they’re stored this way because of image alignment issues. I store each button in a
different image, with three button states per image, as shown in Figure 18-8. The only down-
side to storing each button in a different image is that compression is generally better when all
buttons are stored in a single image, as in Figure 18-7. The compression issues should not
affect your theme at all during normal use — only the size of the jar file.

FIGURE 18-8: Separate images for each button

The normal button image is on top, in the center is the button when hovered over, and on
the bottom is the disabled state image. I do not specify a fourth state for the bookmarks icon
while open. I modified the code to display the hover state for the icon when the bookmarks are
visible.

26_596500 ch18.qxd 6/30/05 3:16 PM Page 390

391Chapter 18 — Creating Themes

Keep in mind that there is no correct way to lay out images; you can simply choose the method
that works best for you. As long as the code you write is valid CSS and points to valid images,
it will work properly.

Layered Images
The easiest way for me to align all the different image states was to put each state on a separate
layer. That way, I could manipulate each layer individually. Another method that might prove
helpful is the use of gridlines.

I use Jasc Paint Shop Pro to edit images while creating themes. To overlay the default theme’s
images, open browser\toolbar.png, as shown in Figure 18-9.

FIGURE 18-9: Paint Shop Pro

Because the default theme uses 24 × 24 pixel images for large icons, you need to have your
images the same size. Open up the image that you would like to use for the Back button and
then copy the image by pressing Ctrl+C, or selecting Edit ➪ Copy. To paste your image as a
new layer, press Ctrl+L or select Edit ➪ Paste ➪ Paste As New Layer. You can then select the
new layer in the layer properties window (it will be called Raster 2), and use the Move tool to
drag your icon over to where the Back button resides in the default icon set. Once you com-
plete that step, your display will look similar to Figure 18-10. The Back button on layer 2 is the
Back button from the Smoke theme.

26_596500 ch18.qxd 6/30/05 3:16 PM Page 391

392 Part VI — Creating Extensions and Themes

FIGURE 18-10: Paint Shop Pro, layered overlay

Simply repeat the process until you have covered all images from the default theme with the
images you want to appear in your theme. If you put each individual image on its own layer,
you can easily manipulate them later on to correct alignment issues. When you are finished
editing, select the Raster 1 and then press the Delete key on the keyboard to remove the
default images. When saving the image, you might be asked if you want to merge all layers.
Select Yes to finish saving the file.

If you are using separate images for each button, as I choose to do, the process is similar. You
can skip the step on deleting the layer containing the default images, but make sure to put each
state of the images on a different layer to help with alignment.

Most image editors have the capability to display gridlines behind the images to aid with align-
ment. In Figures 18-9 and 18-10, the gridlines are shown as the gray and white squares visible
on the background of the images.

An easy way to create the small toolbar icons is to simply resize the large toolbar icons. If
you’ve already completed the large toolbar icons, you can press Shift+S or choose Image ➪
Resize to shrink your image and then save it as a different name than the large toolbar icon.
If you don’t use a different name, you will lose the large toolbar icon because the file will be
overwritten.

Different image editors handle things slightly differently, but all have the ability to display
gridlines and resize images. If you are unsure how to perform an action, consult the help file for
your image editor for more information.

26_596500 ch18.qxd 6/30/05 3:16 PM Page 392

393Chapter 18 — Creating Themes

Graphics Locations
If you are familiar with CSS, you can modify attributes freely. The majority of the buttons that
you see while using Firefox are defined within the browser\browser.css file. I would say that
about 90 percent of the Firefox interface that you see from day to day is defined in that file. If
you are ever unsure of where a button’s image is located, refer to the DOM Inspector example
to find which CSS file the button’s code resides in; then you can look at that CSS file to find
out the exact location of the image.

Main Toolbar
The majority of the buttons you see when using Firefox are defined within the browser\
browser.css file. Browsing through this file will give you the location of all the images used, and
you can modify attributes for buttons here. Figure 18-11 displays the main toolbar of the Atlas
theme.

FIGURE 18-11: Main toolbar

Extensions Window
The Extensions window requires a few graphics of its own, and they are defined in the
mozapps\extensions\extensions.css file. If you wish to put icons on the buttons in the lower
left, that is possible. I do not provide icons for those buttons in my themes. Figure 18-12 dis-
plays the Extensions window of the Mars theme.

FIGURE 18-12: Extensions window

26_596500 ch18.qxd 6/30/05 3:16 PM Page 393

394 Part VI — Creating Extensions and Themes

Options Window
The Options window requires a few icons for the option categories. The code that governs
them resides in the browser\pref\pref.css file. Figure 18-13 displays the Options window of the
Apollo theme.

FIGURE 18-13: Options window

In Firefox 1.1, the location of the code that handles the Options window will be changing. The
new location is the browser\preferences\preferences.css file. Figure 18-14 displays the new
Options window of Firefox 1.1 with the Neptune theme.

FIGURE 18-14: Options window, Firefox 1.1

26_596500 ch18.qxd 6/30/05 3:16 PM Page 394

395Chapter 18 — Creating Themes

Bookmarks Manager
The Bookmarks Manager has seven buttons to theme. The code defining the buttons is in the
browser\bookmarks\bookmarksManager.css file. Figure 18-15 shows the Bookmarks Manager
window of the Pluto theme.

FIGURE 18-15: Bookmarks Manager

Help Window
The icons for the Help window are not actually included within the classic.jar file; they are in
the Firefox\Chrome\help.jar file. To theme the Help window, I recommend using the DOM
Inspector to find out the CSS id of each button and then adding the code to theme the buttons
at the bottom of the global\global.css file. Be sure to set the !important flag after defining
any styles for the Help window buttons so that your styles will be used instead of the default.
Figure 18-16 shows the Help window of the Playground theme.

FIGURE 18-16: Help window

Icon Conversion
I did not draw any of the images in my themes. I am somewhat of a novice when it comes to
creating images. The method I used to create the button images in my themes was to find
existing icon sets. After receiving permission from the icon creator to use his or her work, I
converted the ICO files to PNG files.

26_596500 ch18.qxd 6/30/05 3:16 PM Page 395

396 Part VI — Creating Extensions and Themes

To create a PNG image from an ICO file, I use a product from Axialis IconWorkshop (see
Figure 18-17). This is not a free program, and it is available for Windows users only. After
opening the ICO file with IconWorkshop, you’ll need to select the size that you want to export
as PNG from the list on the right. After selecting the image size, press Ctrl+Shift+T, or select
File ➪ Export ➪ PNG with Transparency.

FIGURE 18-17: IconWorkshop

A Linux utility called ImageMagick will convert ICO files to PNG format. You can find more
information at http://www.imagemagick.org/.

A Mac program called IconBuilder can convert ICO files to PNG format. You can find more
information at http://www.iconfactory.com/iconbuilder.asp.

Supporting Popular Extension Buttons
While not a requirement, supporting the buttons of popular extensions does enhance a theme.
Theming the buttons of an extension is handled slightly differently from theming the standard
buttons of Firefox. To theme an extension’s button, you need to find out the button’s CSS id.
This can be done one of two ways: with the DOM Inspector or by manually opening up the
extension’s JAR file and looking at the code. Either way will work, but I prefer to open the JAR
file and look in the CSS there for any button ids. That way, I’m certain that I’ll theme all but-
tons of the extension. After locating the button ids and creating images, you’ll need to add lines
of code to your theme to support the extension’s buttons. The best way to do this is to open
global\global.css and insert lines of code at the bottom of this file. Add the code for all of the
extension’s buttons to the bottom of global.css and point the button ids to your images.

26_596500 ch18.qxd 6/30/05 3:16 PM Page 396

397Chapter 18 — Creating Themes

To ensure that your image is shown, you must specify the !important flag in the line of code
identifying the button image. The !important flag means that once an attribute is defined as
!important, it can never be changed, even if the element is redefined in another CSS file.
Here is an example of its use:

#extension-button {
list-style-image: url(“chrome:\\browser\skin\extension_button.png”) !important;
}

Let’s look at a real-world example. I’ll show you how to support the Basics extension, available
at my web site: http://www.spuler.us. The Basics extension does only one thing: adds a
button to the left side of the tab bar that opens a new tab when clicked. This emulates the
behavior of the New Tab button that resides in the tab bar for Mozilla and Netscape. The
Basics extension utilizes a 16 × 16 pixel image — anything taller than 16 pixels would not fix
properly on the tab bar. By default, I have the image for the button set to look identical to the
small version of the New Tab button, because many users will be using the default theme.
Figure 18-18 shows the default theme with the Basics extension installed.

FIGURE 18-18: Default theme, Basics extension

I support the Basics extension in all my themes. If I had left out the code for the Basics exten-
sion, the iCandy Junior theme would have looked like something was not quite right, because
the Basics button would display the icon that is bundled with the extension — the icon from
the default Firefox theme, as shown in Figure 18-19.

FIGURE 18-19: iCandy Junior theme, Basics extension not supported

26_596500 ch18.qxd 6/30/05 3:16 PM Page 397

398 Part VI — Creating Extensions and Themes

To add support for the Basics extension, I needed to add some code to the browser\browser.css
file. This approach generally works for most extensions, but remember to specify the attributes
as !important. If you come across an extension where this method does not work, add the
code to the global\global.css file instead. The code that I needed to add to browser\browser.css
for the Basics extension is as follows:

.tabs-newbutton {
list-style-image: url(“chrome://browser/skin/icons/basics.png”) !important;

}

After you add that code to the browser\browser.css file and supply the necessary image, the
button is themed appropriately, as demonstrated in Figure 18-20.

FIGURE 18-20: iCandy Junior theme, Basics extension supported

By now, you can see how adding support for extensions to your themes can enhance them.
However, just because you don’t provide support for an extension doesn’t mean that the exten-
sion will not work. The extension will still work, but without support for it, the extension’s but-
tons will not be themed to match the rest of the icons used throughout your theme. Listed are
a number of popular extensions that I support on my Firefox themes:

� Basics

� Calendar

� Chromedit

� CuteMenus

� Download Manager

� Google Bar

� JavaScript Debugger

� Quicknote

� Search Button

� Scrollable Tabs

� Tabbrowser Preferences

� Toolbar Enhancements

26_596500 ch18.qxd 6/30/05 3:16 PM Page 398

399Chapter 18 — Creating Themes

� Translation Panel

� Web Developer Toolbar

Packaging the Files
Now that you’ve customized the graphics and modified your code, you can take care of the last
remaining tasks before creating the JAR file archive for your theme.

The install.rdf file needs to be modified to reflect your theme. Replace the GUID of Smoke
(3646e22c-5e51-43fb-b8a4-9ebaf7eb11f2) with the custom GUID you created ear-
lier. The following also need to be changed:

� name

� description

� creator

� contributor (optional)

� homepageUrl (optional)

� updateURL (optional)

� internalName

Any optional elements can be left blank. The name element is the theme’s name. The
internalName element will need to be identical to the theme’s name, but lowercase.

Earlier, you used the contents.rdf file from the Smoke theme. The only modification left is to
change every instance of smoke to the internalName in your install.rdf file.

Creating an Update Definition File
If you would like users to be able to automatically update the theme without having to go to
your web site and reinstall, you can specify an updateURL in the install.rdf file. I prefer that
users know what has changed in my themes, so I don’t utilize this feature. If you wish to use
this feature, you will need to create a file, named updade.rdf, and place it on a web site. Specify
the URL of the update.rdf file in the updateURL field of the install.rdf file. A sample
update.rdf file follows:

<RDF:RDF xmlns:RDF=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:em=”http://www.mozilla.org/2004/em-rdf#”>

<RDF:Description
about=”urn:mozilla:extension:{88060a48-addf-4060-87db-c9aec3e5615a}”>
<em:version>1.5.1</em:version>
<em:updateLink>http://www.website.com/theme.jar</em:updateLink>
</RDF:Description>

</RDF:RDF>

26_596500 ch18.qxd 6/30/05 3:16 PM Page 399

400 Part VI — Creating Extensions and Themes

The GUID listed in the urn:Mozilla:extension field must be the GUID of the theme.
The em:version is the version of the theme located online, the most recent version number.
When Firefox looks for an update to a theme, it will query the URL of the update.rdf file and
compare the version number in the update.rdf file to the version number of the theme currently
installed. If the version number in update.rdf is greater than what is currently installed, Firefox
will update the theme with the file located in the em:updateLink field.

Now that all files are ready, you can create the JAR file for your theme. Using your ZIP-format
compression tool, create an archive named theme.jar, replacing “theme” with the name of your
new theme. Make sure that you do not select the “Save Path Info” option if it is offered.

Testing
To install your new theme, open the Themes window from within Firefox by selecting Tools ➪
Themes. You can drag your theme JAR file on the left pane of the Themes window or use the
Local Install extension mentioned in Chapter 3. MR Tech’s Local Install extension can be
found at http://www.mrtech.com/extensions. If the theme doesn’t install, check to
see that the install.rdf and contents.rdf files are formatted properly. Also, verify that the JAR
file directory structure matches that previously shown in Figure 18-2.

On a Mac, the drag-and-drop functionality is disabled, and the Local Install extension is the
only method of installing a theme stored locally.

Using the DOM Inspector
If your theme installs properly but you still need to make minor adjustments, you can once
again use the DOM Inspector. For any element not displaying as expected, you can view its
attributes in the DOM Inspector, using the same process that you used earlier to locate button
ids and attributes. You can examine the attributes in use and correct any mistakes in your CSS
files. After making corrections, repackage the JAR file. Repeat this process as many times as
necessary to get the theme exactly as you want it. If you are stuck on something and can’t figure
it out, the greatest source of information that I know of for Firefox themes is the MozillaZine
Themes forum (http://forums.mozillazine.org/viewforum.php?f=18). Many
theme authors visit this forum regularly to get help and offer advice to others.

A quicker way to see your changes without reinstalling the theme is to replace the file manu-
ally. Navigate to your profile folder, as described in Chapter 1. Then navigate to the extensions
folder and locate the folder that is named after the GUID of your theme. Opening that folder
will show the theme file; you can replace this with the newly corrected version. You’ll have to
exit Firefox before replacing the file, but afterwards you can open Firefox and see the changes
immediately. Another advantage of this method is that when you install the theme multiple
times, multiple copies of the jar file are stored in the profile directory.

26_596500 ch18.qxd 6/30/05 3:16 PM Page 400

401Chapter 18 — Creating Themes

Deploying Your Theme
Once you feel that the theme is ready for general use, you need to deploy it. There are two ways
of deploying a theme: hosting it on your web site or hosting it on the Mozilla Update web site.
There are pros and cons to each method.

Hosting your theme on the Mozilla Update site means that many people will be able to see it,
but you won’t be able to manage your files. One popular complaint is that there can be two ver-
sions of your theme available to the public if you host the file on Mozilla Update and on a per-
sonal site — the most recently updated copy on your web site and a possibly outdated copy on
the Mozilla Update site. The site administrator does all file management on Mozilla Update,
and you have to file a bug in Bugzilla (http://bugzilla.mozilla.org) in order for
changes to take place. This process usually takes several weeks. The Mozilla Update site has
been known to be out of commission for long periods. Many theme authors like having control
over their files and thus don’t post them on the Mozilla Update site. To find out more informa-
tion, visit https://addons.update.mozilla.org/about.

Hosting your theme on your web site gives you total control over your files, but it may or may
not get as much visibility as the Mozilla Update site. I used to host my files on both Mozilla
Update and http://www.spuler.us, but now I prefer to manage my own files. (Currently,
my site is averaging 2.2 million hits and 45GB of bandwidth traffic per month.)

Creating JavaScript Installer Links
Hosting the theme on your web site requires some JavaScript to provide a clickable install link
for the theme. Otherwise, users will have to download the theme and then use a local install
method. The following is a sample install link:

<a href = “javascript:void (InstallTrigger.installChrome
(InstallTrigger.SKIN,’icandyjr_fb.jar’,’iCandy Junior.’))”>Install

You will need to modify the link to match your theme name and filename. That link will pop
up a dialog in Firefox like that shown in Figure 18-21.

FIGURE 18-21: JavaScript install confirmation

Making Your Theme Public
After you’ve hosted your theme on a web site, you need to get the word out. A few web sites
where you can post your theme release include the following:

26_596500 ch18.qxd 6/30/05 3:16 PM Page 401

402 Part VI — Creating Extensions and Themes

� http://www.mozillazine.org

� http://www.gfxoasis.com

� http://www.neowin.net

All of these sites have dedicated Mozilla/Firefox theme forums for postings. After all, the more
people who know about the theme, the better.

Supporting Different Operating-System Platforms
One of the underlying goals of the Mozilla organization is cross-platform compatibility.
Unfortunately, there is a bug with themes. On themes using native scroll bars (meaning that
the scroll bars are drawn by the operating system rather than themed), the code is slightly dif-
ferent for the Mac operating systems than for all other operating systems. The default theme,
as well as all of my own themes, suffer from this bug. This means that you’ll have to maintain
two versions of your theme: one for Mac users and one for those who use Windows, Linux, and
all other operating systems that run Firefox. I submitted a bug to Bugzilla in October 2003 and
progress has been slow, but it finally looks like a solution may be near. Keep an eye out for
updates at https://bugzilla.mozilla.org/show_bug.cgi?id=222654 for the
most up-to-date information. For compatibility with all operating systems, I recommend mak-
ing both a Mac and a non-Mac version of your theme available to users until bug 222654 is
fixed.

There are quite a few differences between the two scrollbars.css files, so it is not feasible to list
the differences between them at this time. You can obtain a copy of both files by visiting
http://www.hackingfirefox.com/themes.

Hacking Existing Themes
If you wish to modify existing themes, you should be able to do that easily. Now that you know
the process for creating a theme from the default theme, modifying an existing theme will be
much easier. You don’t have to redefine the install.rdf and contents.rdf files, and the directory
structure will already be set up properly for you.

Using the method to extract the contents of the default jar file, do the same for the existing
theme you wish to hack. Then you can go ahead and modify images or attributes in CSS files
as you did when creating your theme. When you finish, you can re-create the JAR archive for
the existing theme. Then replace the unhacked version in your profile folder, using the method
I suggested. After you restart Firefox, your hacked version of the preexisting theme will load
instead of the unhacked version.

26_596500 ch18.qxd 6/30/05 3:16 PM Page 402

403Chapter 18 — Creating Themes

Summary
This chapter covers the core topics for creating a Firefox theme. The chapter starts by defining
the necessary tools and then moves on to describe the procedure for using the default theme as
a base. Definition of core files, CSS, and image customizations are covered. Package and
deployment of your theme are discussed. Information for supporting multiple operating sys-
tems and to hack existing themes is also provided.

While this chapter covers the basics, there will be a lot of work on your own to customize the
graphics and CSS files to your liking.

26_596500 ch18.qxd 6/30/05 3:16 PM Page 403

26_596500 ch18.qxd 6/30/05 3:16 PM Page 404

Numerics
7-Zip compression tool, 43–44, 322, 382

A
Aaron Spuler’s themes, 72–73
about:cache, 92
about:config

accessibility.typeaheadfind.timeout

hack, 237
Download Manager, 200
editing, 18
mousewheel options, 192
opening, 17
plugins, 217–218
Preference Name column, 17
preferences

filtering, 18
finding, 18–19

Status column, 17
tabbed browsing, 185
Type column, 17
Value column, 17

accessibility.typeaheadfind.timeout

hack, 237
accessing older extensions, 34–35
ad blocking

with Adblock extension, 127–134
with content handling, 123–126
with image blocking function, 120–122
with popup blocking function, 119–120

Adblock extension, 53, 127–134
Adblock Project forum, 133
addEventListener function, 360
adding

keyboard shortcuts, 368–369
search engines to search box, 225
toolbar buttons, 162, 369–371
toolbar items, 143
toolbars, 369–370

Adobe Photoshop, 323
Adobe Photoshop Elements, 323
Adobe Reader plugin, 219
Advanced Installer tool, 263–264
alert() function, 342
All-in-One Gestures extension, 194–196
Altavista’s Babelfish translation engine, 230
Alt-Text for Link extension, 53

Amazon.com search plugin, 226–227
anti-phishing measures and tools, 116
Apollo theme, 72
appearance of web pages, 371–373
Apple QuickTime plugin, 219, 252
Atlas theme, 72, 79
attributes

id, 327
list-style-image, 329
sitestate, 327–328
tooltiptext, 327
xmlns, 327

audio, 54, 173
autoinstallation, 114
automatic indentation (text editor), 322
automating

extension packaging, 375–376
Firefox installation, 244
profile creation, 249–250

Axialis IconWorkshop, 396

B
Babelfish translation engine, 230
background colors for browser window, 58–62
background images

browser window, 62–65
finding, 63

Backup directory, 13
backup extensions

Bookmark Backup, 277–278
Bookmarks Synchronizer, 278–279

backups
files, 14–16
Mozbackup, 275–276
Mozbackup tool, 14–15
plugins, 276–277
profiles, 14–16, 267–268, 274–275

BBCode extension, 55, 292
BBCodeXtra extension, 292
BBEdit text editor, 8
behavior of downloads

clearing download history, 198–201
default download location, 197–198
MIME types, 209–212
pausing, 203
preferences, 201–202
seamless download integration, 215–216

Index

27_596500 bindex.qxd 6/30/05 3:17 PM Page 405

behavior of downloads (continued)
showing in status bar, 202
sorting to directories, 208–209
target windows, 206–208

behavior of links, 183–184
behavior of windows, 189
BitTorrent download manager, 214
blocking

advertisements
with Adblock extension, 127–134
with content handling, 123–126
with image blocking function, 120–122
with popup blocking function, 119–120

cookies, 110–111
error dialogs, 88
JavaScript, 134

Blue theme, 72
BlueFyre builds, 98
blur event, 357
Bookmark Backup extension, 54, 277–278
bookmarks

home pages, 181–182
ICON property, 78
icons, 77–79
live bookmarks system icon, 159, 161–162
Quick Searches, 224
Toolbar Enhancements extension, 164–165

Bookmarks Synchronizer extension, 278–279
bookmarks toolbar, 157–158
bookmarks.html file

backup, 15, 274
contents, 270

box model scheme (XUL), 301
branch builds, 98
branch versions of builds, 97
browser plugin, 316
browser settings

error dialogs, 88
home page

multiple home pages, 180–183
single home page, 179–180

link behavior, 183–184
premature timeouts, 86
profile, 10
saving, 188
smooth scrolling, 88

browser window
background color, 58–62
background images, 62–65

browser.cache.disk.capacity hack, 92–93
browser.cache.disk.parent_directory hack,

91–92

browser.cache.memory.capacity hack, 94
browser.dom.window.dump.enabled

preference, 342
browser.xul.error_pages.enabled hack, 88
browsing history

cache, 106
clearing, 105–108
deleting individual items, 108
Download Manager, 106–107
locations of, 105
viewing individual items, 108

brushed metal background (themes), 73
bubbling phase (event propagation), 358–359
bugs in themes, 402
Bugzilla website, 88
builds

BlueFyre builds, 98
branch builds, 98
branch versions, 97
Builds forum, 201
milestone versions, 97
MMOY builds, 98
MOOX builds, 98
optimized builds, 97–98
stipe builds, 98
test builds, 201
third-party builds, 96–98
trunk builds, 98, 201

button element, 352
buttons (toolbars)

adding, 162, 369–371
EMButtons extension, 51–52, 54, 163–164
icons, 371
Mozilla Updates button, 162
Toolbar Enhancements extension, 164–165

C
cache, 106
cache directory

clearing, 91
profiles, 271

capturing phase (event propagation), 358
Cascading Style Sheets (CSS)

colors, 59
comments, 59
defined, 307
documentation, 25
font modifications, 147
resources, 309
rules, 308–309
siteledsOverlay.css, 329
specification, 309

406 Index ■ B–C

27_596500 bindex.qxd 6/30/05 3:17 PM Page 406

standards, 25
theme creation, 389
tutorials, 389
XUL documents, 307–308

changing
disk cache location, 91–92
disk space amount for disk cache, 92–93
Master Password, 104

checkbox element, 353–354
checking installed plugins, 217–218
Checky extension, 296
Chinese language translation, 230
chrome

programming extensions, 346
resources

content, 325
defined, 324
locale, 325
skin, 325

themes, 387
chrome directory, 271, 334
chrome manifest files

new-style, 339–340
old-style, 333–338

Chrome Registration Failed error dialog, 341
chrome registry, 325
chrome URLs, 324–326
chromeEdit extension

downloading, 8, 27
editing environment, 27–28
features, 54

classic.jar file, 383
cleaning up, 99–100
clearing

browsing history, 105–108
cache directory, 91
download history, 106–107, 198–201
form data, 102
login data, 102
settings, 201

click event, 356
clock, 54, 170–171
colors

CSS (Cascading Style Sheets), 59
hexadecimal codes, 59
menus, 147
tabs, 185

ColorZilla extension, 289, 343
command event, 356–357
command-line interface

compression tools, 323
installer, 244

comments
CSS (Cascading Style Sheets), 59
INI files, 247

Compact Menu extension, 147–149
compatibility of extensions, 319
compatibility.ini file, 270
components.ini file, 270
compreg.dat file, 270
compression tools

command-line interface, 323
7-Zip, 43–44, 322, 382
theme creation, 382
WinRar, 245, 322
WinZip, 322, 382

conditional statements (JavaScript), 304
config.ini file

comments, 247
contents, 247
editing, 247
Path parameter, 249
Run Mode parameter, 248
Show Dialog parameter, 248
structure, 247

config.trim_on_minimize hack, 95
configuration INI file

comments, 247
contents, 247
editing, 247
Path parameter, 249
Run Mode parameter, 248
Show Dialog parameter, 248
structure, 247

Configuration Mania extension
Browser category, 282
Debug category, 283
functionality, 28–29, 54, 281
HTTP Network category, 282
mouse scrolling, 193–194

configuring
plugins, 220
web server, 343–344

connections
FTP server, 86, 279–280
performance testing, 88–90
web server

keep-alive, 85
persistent connections, 85
simultaneous connections, 84–85

Console extension, 8–9, 293
content directory, 46–47, 334
content handling, 123–126
content resource (chrome), 325

407Index ■ C

27_596500 bindex.qxd 6/30/05 3:17 PM Page 407

content.interrupt.parsing hack, 87
content.maxtextrun hack, 87
content.max.tokenizing.time hack, 87
content.notify.backoffcount hack, 87
content.notify.interval hack, 87
content.notify.ontimer hack, 87
content.notify.threshold hack, 87
contents.rdf file, 335–337, 385–386
context menus, 366–368
context menus (toolbars), 157
Context Search extension, 227
converting ICO files to PNG, 396
CookieCuller extension, 136
cookies

blocking, 110–111
defined, 109, 134
deleting, 110, 136
disabling, 170
Exceptions window, 110–111
expiration date, 135
privacy settings, 109, 134–135
removing, 110, 136
Stored Cookies window, 110, 136
View Cookies extension, 55, 288–289
viewing, 110

cookies.txt file
backup, 15, 275
contents, 270

copying plugins, 218–220
Corel Paint Shop Pro, 323
cpuinfo program, 97
CPU-Z tool, 96
Create Profile wizard (Profile Manager), 268–269
creating

custom installer, 256–259
dialogs, 361–362
dynamic overlays, 327–329
favicons, 77
Master Password, 104
preferences, 365
profiles, 5, 249–250, 268–269
themes

contents.rdf file, 385–386
CSS (Cascading Style Sheets), 389
default theme file, 383
DOM Inspector, 387–389
extension buttons, 396–399
file types, 381
graphics, 389–396
GUID generator, 386–387
install.rdf file, 384–385
packaging the files, 399

tools, 381–382
update.rdf file, 399–400

toolbars, 159
userChrome.css file, 143
Windows desktop icons, 253

Crimson Editor, 322
Cross Platform Component Object Model (XPCOM),

314–316
CSS (Cascading Style Sheets)

colors, 59
comments, 59
defined, 307
documentation, 25
font modifications, 147
resources, 309
rules, 308–309
siteledsOverlay.css, 329
specification, 309
standards, 25
theme creation, 389
tutorials, 389
XUL documents, 307–308

CSS Hacks and Filters: Making Cascading Stylesheets Work,
Joseph W. Lowery, 124

current date/time, 54, 170–171
current profile, 272
currentTarget property, 359
custom installer

creating, 256–259
dialogs, 258
full installer, 258
stub installer, 258–259

Customize Toolbar window, 158–159
customizing

Firefox
context menus, 366–368
keyboard shortcuts, 368–369
menus, 366–368
toolbar buttons, 369–371
toolbars, 369–370

menus
colors, 147
Compact Menu extension, 147–149
CuteMenus extension, 153–155
font style, 147
font weight, 147
fonts, 146–147
Hacked CuteMenus extension, 154
icons, 150–153
Menu Editor extension, 149–150
spacing, 145–146

408 Index ■ C

27_596500 bindex.qxd 6/30/05 3:17 PM Page 408

toolbars
adding items, 143
Customize Toolbar window, 158–159
flexible space, 158–159
moving items, 159
reducing space around icons, 65–67
removing items, 143, 158–159

CuteMenus extension, 53, 153–155

D
data types of preferences, 364
date/time, 54, 170–171
-dd parameter (installer), 244–245
debug messages, 342–343
debugging extensions

logging, 342
preferences settings, 341–342

debugging JavaScript
Configuration Mania extension, 283
JavaScript Console extension, 8–9, 293
JavaScript Debugger extension, 293

debugging tools
JavaScript Console, 342
standard console, 342
Venkman extension, 343

defaults
download location, 198
Google search, 223
home page, 179
theme file, 383

defaults.ini file, 270
Delete Icons extension, 79
deleting

cookies, 110, 136
favicons, 77–78
icons, 79
individual items from browsing history, 108
menus, 143–145
profiles, 269–270
themes, 70
toolbar items, 143

deploying
extensions, 343
plugins, 251
themes, 401

description element, 353
description of an extension, 339
desktop icons (Windows), 253
desktop-icon.nsi source code, 254–256
detecting

external download managers, 214–215
MIME type spoofing, 213

MIME types, 210–212
plugins, 217–218

DHTML (dynamic HTML), 134
dialog element, 361–362
dialogs

creating, 361–362
custom installer, 258
disabling, 248
modal dialogs, 361
opening, 362
windows, 361

DICT network protocol, 229
DICT Search extension, 229
DictionarySearch extension, 227–229
directories

Backup directory, 13
chrome directory, 334
extensions, 46–47
profiles, 271
user path, 10–13

directory structure
extensions, 334
themes, 383–384

Disable Targets For Downloads extension, 53, 206–208
disabling

automatic extension installation, 114
cookies, 170
dialog windows, 248
extensions, 320
JavaScript, 114–115, 170
plugin support for specific file extensions, 220
smooth scrolling, 88
Windows shell: protocol, 115

disk cache
changing disk space amount, 92–93
changing location of, 91–92
statistics, 92
viewing, 92

DNS (Domain Name Server) resolution information, 86
document events, 357
Document Inspector

Document - DOM Nodes panel, 6
extensions

programming, 346–349
troubleshooting, 343

installing, 3–5
theme creation, 387–388
themes, 389
troubleshooting, 5
XUL, 6–7, 292

Document Object Model (DOM), 309–314
documentation for CSS, 25

409Index ■ C–D

27_596500 bindex.qxd 6/30/05 3:17 PM Page 409

DOM Inspector. See Document Inspector
Domain Name Server (DNS) resolution information, 86
domain registry, 325
Doodle Classic theme, 79
Doodle Plastik theme, 79
download extensions

Disable Targets For Downloads, 53, 206–208
Download Manager Tweak, 53, 204–205
Download Sort, 53, 208–209
Download Statusbar, 53–54, 202–204
FlashGot, 53

Download Manager Tweak extension, 53, 204–205
download managers

BitTorrent, 214
detecting, 214–215
Download Manager

about:config, 200
clearing history, 106–107, 198–201
default download location, 197–198
preferences, 201–202
sidebar display, 204–205
tab display, 204–205

FlashGot extension, 53, 215
GetRight, 214–216
Internet Download Manager, 214
Launchy extension, 214–215
LeechGet, 214
Mass Downloader, 214–216
Offline Explorer Pro, 214
ReGet Deluxe, 214
seamless download integration, 215–216
Star Downloader, 214
WackGet, 214

Download Sort extension, 53, 208–209
Download Statusbar extension, 53–54, 203–204
downloading

extensions
Adblock, 127
Bookmark Backup, 278
Bookmarks Synchronizer, 279
chromeEdit, 8, 27
Compact Menu, 147
Context Search, 227
CookieCuller, 136
CuteMenus, 154
Delete Icons, 79
DICT Search, 229
EMButtons, 52
Extension Uninstaller, 37
ForecastFox, 171
FoxyTunes, 173
Googlebar, 238

Hacked CuteMenus, 154
InfoLister, 51
Launchy, 215
Linkification, 235
Linky, 234
ListZilla, 48
Local Install, 41
ScrapBook, 284
SearchStation, 231
SessionSaver, 188
Show Old Extensions, 35
Slim Extension List, 51
Spoofstick, 116
Statusbar Clock, 171
StockTicker, 174
Tab Mix, 191
Ultrabar, 239
User Agent Switcher, 290
ViewSourceWith, 291
Web Developer, 170, 286
Yahoo! Toolbar, 168

Nullsoft Scriptable Install System (NSIS) installer
engine, 253

Shockwave plugin, 252
themes

Aaron Spuler’s themes, 73
Mostly Crystal, 76
Phoenity, 76

tools
Advanced Installer, 264
MaSaI Installer, 262
Mozbackup, 276
Orca MSI editor, 262–263
Regex Coach, 133
7-Zip, 43, 382
WinZip, 382

downloads.rdf file, 271, 275
drop-down lists, 355
DTD files, 332
dump() function, 342
dynamic HTML (DHTML), 134
dynamic overlays, 318, 327–329
dynamically switching themes, 67–68

E
Ecma website, 307
ECMA-262 standard (JavaScript), 303
ECMAScript, 303
EditCSS extension, 55
editing

about:config, 18
extensions, 42, 44, 47

410 Index ■ D

27_596500 bindex.qxd 6/30/05 3:17 PM Page 410

INI files, 247
prefs.js file, 19–21
profile, 10
themes, 68–69
userChrome.css file, 23–25
userContent.css file, 25–26
user.js file, 22

editors
BBEdit, 8
carriage return plus line feed (CR/LF), 382
Crimson Editor, 322
EditPad, 7–8
features

automatic indentation, 322
line numbering, 322
parentheses matching, 322
syntax highlighting, 321

freeware, 322
GEdit for GNOME, 8
jEdit, 8, 322
Kate for KDE, 8
KDevelop, 8
line feed (LF), 382
Mellel, 8
Nedit, 8, 322
Notepad++, 7–8
PSPad, 7–8
theme creation, 382
VIM, 322
Win32Pad, 7–8

EditPad text editor, 7–8
Electronic Frontier Foundation, 128
elements (XUL)

button, 352
checkbox, 353–354
description, 353
dialog, 361–362
keyset, 368–369
label, 352, 362
listbox, 354
menu, 355
menuitem, 355
menulist, 355
menupopup, 355
menuseparator, 355
overlay, 327
radio, 354
radiogroup, 354
script, 362
statusbar, 328
statusbar-display id, 328
statusbarpanel, 326, 328

textbox, 353
toolbar, 369–370
toolbarbutton, 352, 370–371
toolbarpalette, 371
toolbox, 369

email, 54
EMButtons extension, 51–52, 54, 163–164
em:creator property, 339
em:description property, 339
em:file property, 339
em:homepageURL property, 339
em:id property, 338
em:name property, 339
em:targetApplication property, 339
em:version property, 339
encryption

page security system icon, 160
viewing encryption status of websites, 104–105

entities, 332
error dialogs

blocking, 88
Chrome Registration Failed, 341
unblocking, 88

error handling, 330
event handlers (JavaScript), 305–307
event handling, 357–360
events

commands, 357
default actions, 360
document events, 357
event propagation, 358–360
focus events, 357
keyboard events, 357
mouse events, 356–357
notification, 358–360

Exceptions window (cookies), 110–111
Extensible User-Interface Language (XUL)

applications, 300
box model scheme, 301
defined, 5
Document Inspector, 6–7, 292
JavaScript, 303
layout, 301–302
refreshing cache file, 99
removing cache file, 99
Resource Description Framework (RDF), 302–303
resources, 303
user interface definition, 300
XML advantages, 300

Extensible User-Interface Language (XUL) documents
CSS (Cascading Style Sheets), 307–308
dynamic overlays, 318

411Index ■ E

27_596500 bindex.qxd 6/30/05 3:17 PM Page 411

Extensible User-Interface Language (XUL) documents
(continued)

JavaScript, 307
opening, 300–301
siteledsOverlay.xul, 333
widgets, 301

Extensible User-Interface Language (XUL) elements
button, 352
checkbox, 353–354
description, 353
dialog, 361–362
keyset, 368–369
label, 352, 362
listbox, 354
menu, 355
menuitem, 355
menulist, 355
menupopup, 355
menuseparator, 355
overlay, 327
radio, 354
radiogroup, 354
script, 362
statusbar, 328
statusbar-display id, 328
statusbarpanel, 326, 328
textbox, 353
toolbar, 369–370
toolbarbutton, 352, 370–371
toolbarpalette, 371
toolbox, 369

Extensible User-Interface Language (XUL) events
commands, 357
default actions, 360
document events, 357
event propagation, 358–360
focus events, 357
keyboard events, 357
mouse events, 356–357
notification, 358–359

extension buttons (themes), 396–399
Extension Developer extension, 54, 294, 343
Extension Manager

listing extensions, 48–49
managing extensions, 34
modifying extension options, 30–31
reviewing currently installed extensions, 14

Extension Mirror website, 345
Extension Room website, 345
Extension Uninstaller API extension, 36
Extension Uninstaller extension, 35–37, 54

extensions
accessing older extensions, 34–35
Adblock, 53, 127–134
All-in-One Gestures, 194–196
Alt-Text for Link, 53
autoinstallation, 114
BBCode, 55, 292
BBCodeXtra, 292
Bookmark Backup, 54, 277–278
Bookmarks Synchronizer, 278–279
Checky, 296
chrome manifest files, 334–337
chromeEdit

downloading, 8, 27
editing environment, 27–28
features, 54

ColorZilla, 289, 343
Compact Menu, 147–149
compatibility, 319
Configuration Mania

Browser category, 282
Debug category, 283
functionality, 28–29, 54, 281
HTTP Network category, 282
mouse scrolling, 193–194

Context Search, 227
CookieCuller, 136
CuteMenus, 53, 153–155
debug messages, 342–343
debugging

logging, 342
preferences settings, 341–342

defined, 316
Delete Icons, 79
deploying, 343
description, 339
DICT Search, 229
DictionarySearch, 227–229
directories, 46–47
directory structure, 334
Disable Targets For Downloads, 53, 206–208
disabling, 320
DOM Inspector, 310
Download Manager Tweak, 53, 204–205
Download Sort, 53, 208–209
Download Statusbar, 53–54, 202–204
dynamic overlays, 318
EditCSS, 55
editing, 42, 44, 47
EMButtons, 51–52, 54, 163–164
Extension Developer, 54, 294, 343

412 Index ■ E

27_596500 bindex.qxd 6/30/05 3:17 PM Page 412

Extension Uninstaller, 35–37, 54
Extension Uninstaller API, 36
files

contents.rdf, 335–337
Extensions.rdf, 41
formats, 33
install.js, 45
install.rdf, 338–339
license.txt, 45

Firefox UltraBar, 54
FlashGot, 53, 215
ForecastFox, 54, 171–172
FoxyTunes, 54, 173
global extensions, 250–251
Globally Unique Identifiers (GUIDs), 41–42, 338
Gmail Notifier, 54
Googlebar, 54, 166–168, 237–238
Grease Monkey, 53
Hacked CuteMenus, 154
home page, 343
HTML Validator, 294–295
Html Validator, 55
ieview, 291–292
importance of, 316–317
InfoLister, 49–51, 54
Install New Theme, 71
installation package, 340
installing, 39–40, 114, 319
JAR file, 45–46
JavaScript, 318
JavaScript Console, 8–9, 293, 342
JavaScript Debugger, 293
JavaScript Installer Links, 344
JavaScript installer links, 345
JavaScript name collisions, 377–378
Launchy, 53, 214–215
Linkification, 53, 234–235
Linky, 53, 232–234
listing, 48–49, 345
ListZilla, 48–49, 54
LiveHTTPHeaders, 55, 210–212, 287
Local Install, 40–41, 53, 71–72, 286
locales, 318
Make Link, 55
managing, 34
Menu Editor, 149–150
Mimetype Editor, 55, 210–213
modifying, 42, 44, 47, 379–380
Mouse Gestures, 291
Named Anchors, 55
naming, 335, 339
options, 30–31

packaging
automated packaging, 375–376
chrome manifest files, 333–337
custom update file, 374–375
install manifest files, 338
manually, 341
optional elements, 373–374
XPI file, 340–341

Popup ALT, 53
Preferential, 29–30, 54
programming

chrome, 346
DOM Inspector, 346–349
resources, 350–351
source code, 349–350

Reload Every, 53
RIP, 53
Sage, 53
ScrapBook, 53, 55, 283–284
SearchStation, 230–231
SessionSaver, 186–188
Show Failed URL, 88
Show Old Extensions, 35
Single Window, 54
SiteLeds

chrome.manifest file, 340
contents.rdf file, 335–337
DTD file, 332–333
error handling, 330
functionality, 323
installation package, 340
install.rdf file, 338–339
JavaScript, 329–332
packaging, 333–334
siteleds.jar file, 337
siteledsOverlay.css, 329
siteledsOverlay.js, 329–332
siteledsOverlay.xul, 333
status bar, 327–329
user interface, 326–327

skins, 318
Slim Extension List, 51–53, 286
Slim List Extension, 35
sorting, 51
Spoofstick, 116
Statusbar Clock, 54, 170–171
StockTicker, 174–175
structure, 45–46
SwitchProxy, 173–174
Tab Mix, 54, 190–191
Tabbrowser Extensions, 54
Tabbrowser Preferences, 54, 188–189

413Index ■ E

27_596500 bindex.qxd 6/30/05 3:17 PM Page 413

extensions (continued)
target application, 339
TargetAlert, 53
temporary copy, 42
testing, 341
Toolbar Enhancements, 54, 91, 164–165
Translate, 230
troubleshooting, 39–40, 343
Tweak Network Settings, 85
Ultrabar, 238–239
undoclosetab, 54
uninstalling, 36–38, 320
updates, 111–113, 319
URLid, 53
User Agent Switcher, 55, 289–290
uses, 317–318
Venkman, 293, 343
versions, 339
View Cookies, 55, 288–289
ViewSourceWith, 290–291
Web Developer, 55, 169–170, 284–286
WebMailCompose, 53
XPI extension, 319
Yahoo! Companion, 54
Yahoo! Toolbar, 168–169, 239–240

extensions directory (profiles), 271
Extensions Manager, 318
extensions.disabledObsolete preference, 34, 36
extensions.dss.enabled preference, 67–68
external download managers

BitTorrent, 214
detecting, 214–215
FlashGot extension, 53, 215
GetRight, 214–216
Internet Download Manager, 214
Launchy extension, 214–215
LeechGet, 214
Mass Downloader, 214–216
Offline Explorer Pro, 214
ReGet Deluxe, 214
seamless download integration, 215–216
Star Downloader, 214
WackGet, 214

extracting installer, 245–247

F
favicons

creating, 77
deleting, 77–78
removing, 77–78
replacing, 77

FFDeploy, 256

file formats
extensions, 33
PNG, 389

File Transfer Protocol (FTP)
access, 279–280
idle and keep-alive settings, 86
idle connections, 86

file types for themes, 381
files

backups, 14–16
chrome manifest files, 333–336
config.ini file

comments, 247
contents, 247
Path parameter, 249
Run Mode parameter, 248
Show Dialog parameter, 248
structure, 247

DTD files, 332
extensions

contents.rdf, 335–336
contents.rdf file, 337
Extensions.rdf file, 41
formats, 33
install.js, 45
install.js file, 45
install.rdf, 338–339
license.txt, 45
license.txt file, 45

ICO files, converting to PNG, 396
INI files, 247
install manifest files, 338
JAR files, 45–46, 68
profiles

bookmarks.html, 15, 270, 274
chrome/userChrome.css, 275
chrome/userContent.css, 275
compatibility.ini, 270
components.ini, 270
compreg.dat, 270
cookies.txt, 15, 270, 275
defaults.ini, 270
downloads.rdf, 271, 275
formhistory.dat, 15, 271, 275
history.dat, 270
hostperm.1, 15
key3.db, 271, 275
localstore.rdf, 270
mimetypes.rdf, 270
parent.lock, 271
pluginreg.dat, 271
prefs.js, 15, 19–21, 270, 274

414 Index ■ E–F

27_596500 bindex.qxd 6/30/05 3:17 PM Page 414

profiles.ini, 12, 271
search.rdf, 270
signons.txt, 271, 275
userChrome.css, 15, 23–25, 143, 185
userChrome-example.css file, 141–142
userContent.css, 15, 25–26, 123–126
user.js, 15, 22, 271
xpti.dat, 270
XUL.mfl, 270

RDF files, 335, 386
themes

classic.jar file, 383
contents.rdf file, 385–386
icon.png file, 384
install.rdf file, 68, 384–385
JAR files, 68
preview.png file, 384
update.rdf file, 399–400

filtering preferences (about:config), 18
Find-As-You-Type feature, 235–237
finding

background images, 63
preferences (about:config), 18–19
profile, 12

Firefox Builds forum, 201
Firefox customization

context menus, 366–368
keyboard shortcuts, 368–369
menus, 366–368
toolbar buttons, 369–371
toolbars, 369–370

Firefox extensions. See extensions
Firefox installation

automating, 244
built-in installer options, 243–244
Custom installation type, 4
FFDeploy, 256
installation path modifications, 249
installer

command-line options, 244
custom installer, 256–259
destination directory, 244–245
downloading, 243
extracting, 245–247
silent mode, 244–245, 248

Microsoft Windows Installer (MSI), 260–261
original installation file, 13
Standard installation type, 3–4
status dialogs, 245

Firefox profile. See profile
Firefox source code, 350
Firefox themes. See themes
Firefox UltraBar extension, 54

fireFTP, 279–280
Flash plugin, 251–252
FlashGot extension, 53, 215
focus event, 357
fonts

Cascading Style Sheets (CSS), 147
menus, 146–147

ForecastFox extension, 54, 171–172
foreign language translation systems, 230
form data

clearing, 102
privacy, 101–102
saving, 101

formatting URLs with special characters, 273
formhistory.dat file

backup, 15, 275
contents, 271

forums
Adblock Project, 133
Firefox Builds, 201
MozillaZine forums, 351
MozillaZine Themes, 400

FoxyTunes extension, 54, 173
freeware text editors, 322
French language translation, 230
FrontMotion’s Firefox MSI, 260–261
FTP (File Transfer Protocol)

access, 279–280
idle and keep-alive settings, 86
idle connections, 86

functions
addEventListener, 360
alert(), 342
dump(), 342
getBoolPref, 365
getCharPref, 365
getIntPref, 365
handleLabelClick, 358
preventDefault, 360
setBoolPref, 365
setCharPref, 365
setIntPref, 365
siteLedsCheckPage(), 330–331
siteLedsPageError(), 330
siteLedsPageLoaded(), 330–331

G
GEdit for GNOME text editor, 8
general.smoothScroll hack, 88
gestures

All-in-One Gestures extension, 194, 196
Mouse Gestures extension, 291

415Index ■ F–G

27_596500 bindex.qxd 6/30/05 3:17 PM Page 415

getBoolPref function, 365
getCharPref function, 365
getIntPref function, 365
GetRight download manager, 214–216
GIF file (search plugins), 226
GIMP graphics editor, 323
glayout.initialpaint.delay hack, 87
global extensions and themes, 250–251
Globally Unique Identifiers (GUIDs)

extensions, 41–42, 338
GUID Generator tool, 386
themes, 386

Gmail Notifier extension, 54
Google

default Google search, 223
default home page, 179
Googlebar extension, 54, 166–168, 237–238

graphics editors, 323, 382
graphics file formats, PNG, 389
graphics for themes

Bookmarks Manager, 395
Extensions window, 393
Help window, 395
icon conversion, 395–396
icons, 390–391
layered images, 391–392
Main toolbar, 393
Options window, 394
PNG file format, 389

Grease Monkey extension, 53
GUIDs (Globally Unique Identifiers)

extensions, 41–42, 338
GUID Generator tool, 386–387
themes, 386

H
Hacked CuteMenus extension, 154
handleLabelClick function, 358
hexadecimal codes for colors, 59
hiding

menus, 143–145
tab bar, 184

history
cache, 106
clearing, 105–108
deleting individual items, 108
Download Manager, 106–107, 198–201
location of, 105
viewing individual items, 108

history.dat file, 270
HM NIS Editor, 254, 257

home page
extensions, 343
multiple home pages, 180–183
single home page, 179–180

hosting themes, 401
hostperm.1 file, 15
HTML Validator extension, 294–295
Html Validator extension, 55
HTTP pipelining, 85–86
HTTP/1.1 Persistent Connections standards, 85
hyperlinks

behavior, 183–184
turning nonlinked links into linkable links, 234

I
iCandy Junior theme, 72, 79
ICO files, converting to PNG, 396
ICON property, 78
IconBuilder program, 396
icon.png file, 384
icons

bookmarks, 77–79
deleting, 79
favicons

creating, 77
deleting, 77–78
removing, 77–78
replacing, 77

menus, 150–153
reducing space around toolbar icons, 65–67
removing, 79
search plugins, 226
system icons, 159–162
themes, 390–391, 395–396
toolbar buttons, 371
websites, 77
Windows desktop icons, 253

IconWorkshop (Axialis), 396
id attribute, 327
idle connections (FTP), 86
ids. See GUIDs (Globally Unique Identifiers)
ieview extension, 291–292
if. . .else statement (JavaScript), 304
image blocking function, 120–122
image editors, 323, 382
ImageMagick utility, 396
images, saving from web pages, 63
increasing memory cache size, 93–94
InfoLister extension, 49–51, 54
INI files, 247
install manifest files, 338
Install New Theme extension, 71
installation package for extensions, 340

416 Index ■ G–I

27_596500 bindex.qxd 6/30/05 3:17 PM Page 416

installer
command-line options, 244
custom installer, 256–259
destination directory, 244–245
downloading, 243
extracting, 245–247
silent mode, 244–245, 248

installer links
extensions, 344–345
themes, 401

Installer Software Development Kit (Microsoft), 260
installing

Aaron Spuler’s themes, 73
Document Inspector, 3–5
extensions, 39–40, 114, 319
Firefox

automating installation, 244
Custom installation type, 4
custom installer, 256–259
FFDeploy, 256
installation path modifications, 249
installer (built-in), 243–248
Microsoft Windows Installer (MSI), 260–261
original installation file, 13
Standard installation type, 3–4
status dialogs, 245

Flash plugin, 251–252
Phoenity theme, 76
plugins, 220
Shockwave plugin, 251–252
themes, 57, 70–72, 400

install.js file (extensions), 45
install.rdf file, 338–339, 384–385
install.rdf file (themes), 68
Internet Download Manager, 214
Internet Relay Chat (IRC), 351
Italian language translation, 230

J
Japanese language translation, 230
JAR files

extensions, 45–46
themes, 68

Jargon File website, 229
Java, 303
JavaScript

blocking, 134
conditional statements, 304
debugging, 283
defined, 303
disabling, 114–115, 170
ECMAScript, 303
event handlers, 305–307

extensions, 318
functions, 305
installer links

extensions, 344–345
themes, 401

localized strings, 365–366
loops, 305
name collisions, 377–378
resources, 307
SiteLeds extension, 329–332
standards, 303
suspicious behaviors, 114
syntax, 303–305
tabbed browsing, 189
Toolbar Enhancements extension, 164–165
tutorial, 307
variables, 305
XPCOM (Cross Platform Component Object

Model), 315–316
XUL (Extensible User-Interface Language), 303
XUL documents, 307

JavaScript Console extension, 8–9, 293, 342
JavaScript Debugger extension, 293
JavaScript Guide website, 307
javascript.options.showInConsole

preference, 341
javascript.options.strict preference, 342
jEdit text editor, 8, 322

K
Kate for KDE text editor, 8
KDevelop text editor, 8
keep-alive

FTP server connection, 86
web server connection, 85

keyboard events, 357
keyboard shortcuts

adding, 368–369
EMButtons extension, 163
toolbars, 159

key3.db file, 271, 275
keydown event, 357
keypress event, 357
keyset element, 368–369
keyup event, 357
Korean language translation, 230

L
label element, 352, 362
language translation systems, 230
launching the Profile Manager, 268
Launchy extension, 53, 214–215
layout with XUL, 301–302

417Index ■ I–L

27_596500 bindex.qxd 6/30/05 3:17 PM Page 417

LeechGet download manager, 214
license.txt file (extensions), 45
Lila theme, 79
line numbering (text editors), 322
Linkification extension, 53, 234–235
links

behavior, 183–184
turning nonlinked links into linkable links, 234–235

Linky extension, 53, 232–234
Linux

automating profile creation, 250
cpuinfo program, 97
Googlebar extension, 167
ImageMagick utility, 396
Profile Manager, 268
profiles, 267
text editors, 7–8
user path, 11

listbox element, 354
listing

extensions, 48–49, 345
themes, 48–49

list-style-image attribute, 329
ListZilla extension, 48–49, 54
live bookmarks system icon, 159, 161–162
LiveHTTPHeaders extension, 55, 210–212, 287
load event, 357
Local Install extension, 40–41, 53, 71–72, 286
locale directory, 46, 334
locale resource (chrome), 325
locales (extensions), 318
localized strings in JavaScript, 365–366
localstore.rdf file, 270
logging, 342
login data

clearing, 102
privacy, 101–102
saving, 101

loops (JavaScript), 305
Lowery, Joseph W., CSS Hacks and Filters: Making

Cascading Stylesheets Work, 124
Lynx text-only browser, 121

M
Mac OS X

Googlebar extension, 167
IconBuilder program, 396
Profile Manager, 268
profiles, 267
text editors, 7–8
user path, 12

Macromedia
Distribution Program, 252
Flash plugin, 251–252
Shockwave plugin, 251–252

Make Link extension, 55
MAKEMSI MSI tool, 263–264
managing extensions, 34
manifest files

new-style, 339–340
old-style, 333–338

Mars theme, 72
MaSaI Installer, 260, 262
Mass Downloader download manager, 214–216
Master Password

changing, 104
creating, 104

media player, 54, 173
Mellel text editor, 8
memory cache, 93–94
memory optimization in Windows, 94–95
Menu Editor extension, 149–150
menu element, 355
Menu Icons theme, 152–153
menuitem element, 355
menulist element, 355
menupopup element, 355
menus

colors, 147
Compact Menu extension, 147–149
context menus (toolbars), 157
customizing, 366–368
CuteMenus extension, 153–155
deleting, 143–145
font style, 147
font weight, 147
fonts, 146–147
Hacked CuteMenus extension, 154
hiding, 143–145
icons, 150–153
Menu Editor extension, 149–150
multilevel menus, 355–356
removing, 143–145
spacing, 145–146

menuseparator element, 355
Microsoft Windows Installer (MSI), 260–261
Microsoft Windows Scripts, 253
Microsoft’s Installer Software Development Kit, 260
milestone versions of builds, 97
Mime Type Editor extension, 55
MIME types

associating with values, 212
defined, 209
detecting, 210–211

418 Index ■ L–M

27_596500 bindex.qxd 6/30/05 3:17 PM Page 418

profiles, 213
spoofing, 213

Mimetype Editor extension, 210–213
mimetypes.rdf file, 270
MMOY builds, 98
modal dialogs, 361
modifying

about:config, 18
extension options, 30–31
extensions, 42, 44, 47, 379–380
installation path, 249
preferences, 365
prefs.js file, 19–21
profile, 10
themes, 68–69, 402
userChrome.css file, 23–25
userContent.css file, 25–26
user.js file, 22

MOOX builds, 98
Mostly Crystal theme, 74–76, 79, 150–152
mouse events, 356–357
mouse gestures

All-in-One Gestures extension, 194–196
Mouse Gestures extension, 291

mouse scrolling, 192–194
mousedown event, 356–357
mousemove event, 357
mouseout event, 357
mouseover event, 357
mouseup event, 356–357
mousewheel options (about:config), 192–193
moving

profiles, 271–273
toolbar items, 159

MozBackup tool, 14–15, 275–276
Mozilla Cross-Reference website, 350
Mozilla DOM Documentation website, 314
Mozilla DOM Reference website, 314
Mozilla Update service, 111–113
Mozilla Update website, 286, 345, 401
Mozilla Updates button, 162
Mozilla XPCOM website, 316
Mozilla XUL project page, 303
Mozilla.org website, 350
MozillaZine Extensions Forum website, 345
MozillaZine forums, 351
MozillaZine Knowledge Base, 5, 16, 350
MozillaZine Themes forum, 400
MozillaZine.org website, 96
MR Tech

Local Install extension, 40–41, 53, 71–72, 286
website address, 53

-ms parameter (installer), 244–245, 248

MSI (Microsoft Windows Installer), 260–261
multilevel menus, 355–356
multiple home pages, 180–183
Multipurpose Internet Mail Extensions (MIME) types,

210–213. See MIME types
music, 54, 173
Mycroft website, 226–227

N
name collisions in JavaScript, 377–378
name resolution, 86
Named Anchors extension, 55
names of preferences, 363
naming

extensions, 335, 339
profiles, 268–269

navigation toolbar, 157–158
Nedit text editor, 8, 322
Neptune theme, 73
netscape.public.mozilla newsgroups, 351
network settings

Domain Name Server (DNS) resolution
information, 86

HTTP pipelining, 85–86
persistent connections, 85
simultaneous connections, 84–85

network.dnsCacheExpiration hack, 86
network.ftp.idleConnectionTimeout hack, 86
network.http.keep-alive.timeout hack, 86
network.http.max-connections hack, 85
network.http.max-connections-per-

server hack, 85
network.http.max-persistent-connections-

per-proxy hack, 85
network.http.max-persistent-connections-

per-server hack, 85
network.http.pipelining hack, 85
network.http.pipelining.firstrequest

hack, 85
network.http.pipelining.maxrequests hack,

85–86
network.http.proxy.pipelining hack, 85
networking preferences, 85
newsgroups, 351
new-style chrome manifest files, 339–340
NGLayout core technology, 86
Noia 2.0 eXtreme theme, 79
Noia 2.0 Lite theme, 79
Notepad++ text editor, 7–8
notification

events, 358–360
Gmail Notifier extension, 54
Update Notification Service, 112

419Index ■ M–N

27_596500 bindex.qxd 6/30/05 3:17 PM Page 419

Nullsoft Installer script, 253–254
Nullsoft Scriptable Install System (NSIS) installer engine,

253, 257

O
object models

DOM (Document Object Model), 309–314
XPCOM (Cross Platform Component Object

Model), 314–316
Offline Explorer Pro download manager, 214
old extensions, 35
old-style chrome manifest files, 333–338
opening

about:config, 17
dialogs, 362
Extensions Manager, 318
search results, 232–233
XUL documents, 300–301

Opera plugins, 217
optimized builds, 97–98
optimizing memory in Windows, 94–95
optimizing performance

cleaning up, 99–100
disk cache location, 91–92
network settings

Domain Name Server (DNS) resolution
information, 86

FTP idle and keep-alive, 86
network.http.max-connections hack, 85
network.http.max-connections-per-server hack, 85
persistent connections, 85
pipelining, 85–86
simultaneous connections, 84–85

page rendering, 86–87
processor-based optimizations, 96–97
RFC standards, 83

options (extensions), 30–31
Orca MSI editor, 262–263
ordering of system icons, 161
organizing web research, 283–284
overlay element, 327

P
package name (chrome URL), 325
packaging extensions

automated packaging, 375–376
chrome manifest files, 333–337
custom update file, 374–375
install manifest files, 338
manually, 341
optional elements, 373–374
XPI file, 340–341

packaging theme files, 399
page rendering, 86–87
page security system icon, 159–160
page validation

Checky extension, 296
HTML Validator extension, 294–295

Paint Shop Pro (Corel), 323
parameters

config.ini file
Path, 249
Run Mode, 248
Show Dialog, 248

installer
-dd, 244–245
-ms, 244–245, 248

parentheses matching (text editors), 322
parent.lock file, 271
passwords

Master Password
changing, 104
creating, 104

Password Manager, 102–103
Path parameter (config.ini file), 249
pattern matching, 131–133
pausing downloads, 203
performance optimization

cleaning up, 99–100
disk cache location, 91–92
network settings

Domain Name Server (DNS) resolution
information, 86

FTP idle and keep-alive, 86
persistent connections, 85
pipelining, 85–86
simultaneous connections, 84–85

page rendering, 86–87
processor-based optimizations, 96–97
RFC standards, 83
Windows memory optimization, 94–95

performance testing, 88–90
persistent connections, 85
phishing, 116
Phoenity theme, 76, 79
Phoenix Profile directory, 11
Photoshop (Adobe), 323
Photoshop Elements (Adobe), 323
pipelining, 85–86
Playground theme, 73, 79
pluginreg.dat file, 271
plugins

about:config, 217–218
Adobe Reader, 219

420 Index ■ N–P

27_596500 bindex.qxd 6/30/05 3:17 PM Page 420

Apple QuickTime plugin, 219
backups, 276–277
browser plugin, 316
checking installed plugins, 217–218
configuring, 220
copying, 218–220
defined, 216, 316
deploying, 251
detecting, 217–218
disabling support for specific file extensions, 220
Flash, 251–252
installing, 220
Opera, 217
QuickTime, 252
RealPlayer, 219–220, 252
reference, 217
registering, 276
restoring, 276–277
search plugins, 225–227
security risks, 218
Shockwave, 251–252
Toolbar Enhancements extension, 165
tutorial on plugin design, 227

Pluto theme, 73, 79
PNG file format, 389
Popup ALT extension, 53
popup blocker system icon, 159, 161
popup blocking function, 119–120
portable profile, 273–274
posting theme releases, 401–402
Preference Name column (about:config), 17
preferences

about:config
filtering, 18
finding, 18–19

browser.dom.window.dump.enabled, 342
creating, 365
data types, 364
Download Manager, 201–202
extensions.disabledObsolete, 34, 36
extensions.dss.enabled, 67–68
javascript.options.showInConsole, 341
javascript.options.strict, 342
modifying, 365
names, 363
networking, 85
retrieving values, 365
tabbed browsing, 188–189
tree structure, 363

Preferential extension, 29–30, 54
Preferential Extension website, 19

prefs.js file
backup, 15, 274
contents, 270, 274
modifying, 19–21

premature timeouts, 86
preventDefault function, 360
preview.png file, 384
privacy

cookies, 109, 134–135
form data, 101–102
login data, 101–102

processor-based optimizations, 96–97
Profile Manager

Create Profile wizard, 268–269
launching, 268
Linux, 268
Mac OS X, 268
profile creation, 5
Windows, 268

profiles
automating profile creation, 249–250
backups, 14–16, 267–268, 274–275
browser settings, 10
contents, 10
creating, 5, 249–250, 268–269
current profile, 272
deleting, 269–270
directories, 271
files

bookmarks.html, 15, 270, 274
chrome/userChrome.css, 15, 275
chrome/userContent.css, 15, 275
compatibility.ini, 270
components.ini, 270
compreg.dat, 270
cookies.txt, 15, 270, 275
defaults.ini, 270
downloads.rdf, 271, 275
formhistory.dat, 15, 271, 275
history.dat, 270
hostperm.1, 15
key3.db, 271, 275
localstore.rdf, 270
mimetypes.rdf, 270
parent.lock, 271
pluginreg.dat, 271
prefs.js, 15, 19–21, 270, 274
profiles.ini, 12, 271
search.rdf, 270
signons.txt, 271, 275
userChrome.css, 185
user.js, 15, 271

421Index ■ P

27_596500 bindex.qxd 6/30/05 3:17 PM Page 421

profiles (continued)
xpti.dat, 270
XUL.mfl, 270

finding, 12
Linux, 267
Mac OS X, 267
MIME types, 213
modifying, 10
moving, 271–273
naming, 268–269
portable profile, 273–274
saving data stored in profiles, 269
startup profile, 270
Windows, 267

profiles.ini file, 12, 271
programming editors

BBEdit, 8
carriage return plus line feed (CR/LF), 382
Crimson Editor, 322
EditPad, 7–8
features

automatic indentation, 322
line numbering, 322
parentheses matching, 322
syntax highlighting, 321

freeware, 322
GEdit for GNOME, 8
jEdit, 8, 322
Kate for KDE, 8
KDevelop, 8
line feed (LF), 382
Mellel, 8
Nedit, 8, 322
Notepad++, 7–8
PSPad, 7–8
theme creation, 382
VIM, 322
Win32Pad, 7–8

programming extensions
chrome, 346
DOM Inspector, 346–349
resources, 350–351
source code, 349–350

properties
currentTarget, 359
em:creator, 339
em:description, 339
em:file, 339
em:homepageURL, 339
em:id, 338
em:name, 339
em:targetApplication, 339

em:version, 339
target, 359

proxy servers
pipelining, 85
switching, 173–174

PSPad text editor, 7–8

Q
Quick Searches, 224–225
QuickTime plugin, 219, 252
Qute theme, 79

R
radio buttons, 354
radio element, 354
radiogroup element, 354
Rain theme, 73
RDF (Resource Description Framework), 302–303
RDF files, 335, 386
RealPlayer plugin, 219–220, 252
reducing space around toolbar icons, 65–67
refreshing XUL cache file, 99
ReGet Deluxe download manager, 214
regex (regular expressions), 131–133
Regex Coach, 133
registering

Macromedia Distribution Program, 252
plugins, 276

regular expressions (regex), 131–133
Reload Every extension, 53
removing

cookies, 110, 136
debug messages, 342–343
favicons, 77–78
icons, 79
individual items from browsing history, 108
menus, 143–145
search plugins, 226
themes, 70
toolbar items, 143, 158–159
XUL cache file, 99

rendering of pages, 87
rendering of web pages, 86
replacing favicons, 77
requests (defined), 84
resize event, 357
Resource Description Framework (RDF), 302–303
resources (chrome)

content, 325
defined, 324
locale, 325
skin, 325

422 Index ■ P–R

27_596500 bindex.qxd 6/30/05 3:17 PM Page 422

restoring
closed tabs, 186–187
plugins, 276–277

retrieving preference values, 365
RFC standards, 83
RIP extension, 53
RSS feeds, 161–162
Russian language translation, 230

S
Safari-style tabs (themes), 73
Sage extension, 53
Sanitize option, 201
saving

data stored in profiles, 269
form data, 101
images from web pages, 63
login data, 101
settings, 37, 188

ScrapBook extension, 53, 55, 283–284
script element, 362
scripts

Microsoft Windows Scripts, 253
Nullsoft Installer script, 253–254

scroll bars (themes), 402
scroll event, 357
scrolling

Configuration Mania extension, 193–194
mousewheel options (about:config), 192–193
smooth scrolling

disabling, 88
mouse settings, 192–193

seamless download integration, 215–216
search

adding search engines, 225
Amazon.com, 226–227
Google, 223
Googlebar extension, 166–168, 237–238
Linky extension, 232–234
opening search results, 232–233
plugins, 225–227
Quick Searches, 224–225
search box, 225
SearchStation extension, 230–231
Ultrabar extension, 238–239
web page searches

Context Search extension, 227
dictionary, 227–229
Find-As-You-Type feature, 235–237

Yahoo! Toolbar extension, 168–169, 239–240
search.rdf file, 270

security
anti-phishing measures and tools, 116
page security system icon, 159–160
plugins, 218
Windows shell: protocol, 115

Select Components screen, 4
server requests (defined), 84
SessionSaver extension, 186–188
setBoolPref function, 365
setCharPref function, 365
setIntPref function, 365
settings

backing up, 267–268
browser settings

error dialogs, 88
premature timeouts, 86
smooth scrolling, 88

clearing, 201
home page

multiple home pages, 180–183
single home page, 179–180

link behavior, 183–184
network settings

Domain Name Server (DNS) resolution
information, 86

FTP idle and keep-alive, 86
HTTP pipelining, 85–86
persistent connections, 85
simultaneous connections, 84–85

saving, 37, 188
7-Zip compression tool, 43–44, 322, 382
Shockwave plugin, 251–252
shortcuts

adding, 368–369
EMButtons extension, 163
toolbars, 159

Show Dialog parameter (config.ini file), 248
Show Failed URL extension, 88
Show Old Extensions extension, 35
sidebar

SearchStation extension, 230–231
Translator, 231–232

signons.txt file, 271, 275
silent mode

Firefox installer, 244–245, 248
Flash installer, 252
Nullsoft Installer script, 254
Shockwave installer, 252

simultaneous connections, 84–85
Single Window extension, 54
SiteLeds extension

chrome.manifest file, 340
contents.rdf file, 335–337

423Index ■ R–S

27_596500 bindex.qxd 6/30/05 3:17 PM Page 423

SiteLeds extension (continued)
DTD file, 332–333
error handling, 330
functionality, 323
installation package, 340
install.rdf file, 338–339
JavaScript, 329–332
packaging, 333–334
siteleds.jar file, 337
siteledsOverlay.css, 329
siteledsOverlay.js, 329–332
siteledsOverlay.xul, 333
status bar, 327–329
user interface, 326–327

siteLedsCheckPage() function, 330–331
siteLedsPageError() function, 330
siteLedsPageLoaded() function, 330–331
sitestate attribute, 327–328
skin directory, 46–47, 334
skin resource (chrome), 325
skins

defined, 318
FoxyTunes extension, 173

Slim Extension List extension, 51–53, 286
Slim List Extension extension, 35
Smoke theme, 73
smooth scrolling

disabling, 88
mouse settings, 192–193

sorting
downloads to directories, 208–209
extensions, 51

source code
extensions, 349–350
Firefox, 350

spacing
menus, 145–146
toolbar icons, 65–67

spoofing
MIME type spoofing, 213
Spoofstick extension, 116

Spuler, Aaron, themes, 72–73
SRC file (search plugins), 226
standard console, 342
standards

CSS (Cascading Style Sheets), 25
HTTP/1.1 Persistent Connections, 85
JavaScript, 303
RFC standards, 83

Star Downloader download manager, 214
statistics for disk cache, 92

status bar
current date/time, 54, 170–171
downloads, 202
dynamic overlays, 327–329
media player, 54, 173
SiteLeds extension, 323
stock quotes, 174–175
system icons, 159–162
weather forecast, 54, 171–172

status bar extensions
Download Statusbar, 53–54, 202–204
ForecastFox, 54, 171–172
FoxyTunes, 54, 173
Gmail Notifier, 54
Statusbar Clock, 54, 170–171
StockTicker, 174–175
SwitchProxy, 173–174

Status column (about:config), 17
Statusbar Clock extension, 54, 170–171
statusbar element, 328
statusbar-display id element, 328
statusbarpanel element, 326, 328
statusbarpanel-iconic class, 327
stipe builds, 98
StockTicker extension, 174–175
Stored Cookies window, 110, 136
structure of extensions, 45–46
style sheets (CSS)

colors, 59
comments, 59
defined, 307
documentation, 25
font modifications, 147
resources, 309
rules, 308–309
siteledsOverlay.css, 329
specification, 309
standards, 25
theme creation, 389
tutorials, 389
XUL documents, 307–308

subskins (themes), 72
switch statement (JavaScript), 304
switching

proxy servers, 173–174
themes, 67–68

SwitchProxy extension, 173–174
syntax highlighting (text editors), 321
system icons, 159–162

424 Index ■ S

27_596500 bindex.qxd 6/30/05 3:17 PM Page 424

T
Tab Mix extension, 54, 190–191
tabbed browsing

about:config, 185
colors of tabs, 185
JavaScript, 189
link behavior, 183–184
multiple home pages, 180–183
native options, 183–184
page rendering, 86
preferences, 188–189
SessionSaver extension, 186–188
tab bar

appearance, 185
displaying, 185
hiding, 184
settings, 185

tabs
colors, 185
location of, 185–186
restoring closed tabs, 186–187

userChrome.css file, 185
window behavior, 189

Tabbrowser Extensions extension, 54
Tabbrowser Preferences extension, 54, 188–189
target application for extensions, 339
target property, 359
TargetAlert extension, 53
temporary copy of extensions, 42
test builds, 201
testing

extensions, 341
system performance, 88–90
themes, 400

text editors
BBEdit, 8
carriage return plus line feed (CR/LF), 382
Crimson Editor, 322
EditPad, 7–8
features

automatic indentation, 322
line numbering, 322
parentheses matching, 322
syntax highlighting, 321

freeware, 322
GEdit for GNOME, 8
jEdit, 8, 322
Kate for KDE, 8
KDevelop, 8
line feed (LF), 382
Mellel, 8
Nedit, 8, 322

Notepad++, 7–8
PSPad, 7–8
theme creation, 382
VIM, 322
Win32Pad, 7–8

text entry boxes, 353
text labels, 352
textbox element, 353
text-only browser, 121
themes

Aaron Spuler’s themes, 72–73
Apollo, 72
Atlas, 72, 79
Blue, 72
brushed metal background, 73
bugs, 402
Chrome, 387
creating

contents.rdf file, 385–386
CSS (Cascading Style Sheets), 389
default theme file, 383
DOM Inspector, 387–389
extension buttons, 396–399
file types, 381
graphics, 389–390, 392, 394–396
GUID generator, 386–387
install.rdf file, 384–385
packaging the files, 399
tools, 381–382
update.rdf file, 399–400

cross-platform compatibility, 402
defined, 57
deleting, 70
deploying, 401
directory structure, 383–384
Doodle Classic, 79
Doodle Plastik, 79
editing, 68–69
files

classic.jar file, 383
contents.rdf file, 385–386
icon.png file, 384
install.rdf file, 68, 384–385
JAR files, 68
preview.png file, 384
update.rdf file, 399–400

global themes, 250–251
Globally Unique Identifiers (GUIDs), 386
graphics

Bookmarks Manager, 395
Extensions window, 393
Help window, 395

425Index ■ T

27_596500 bindex.qxd 6/30/05 3:17 PM Page 425

themes (continued)
icon conversion, 395–396
icons, 390–391
layered images, 391–392
Main toolbar, 393
Options window, 394
PNG file format, 389

hosting, 401
iCandy Junior, 72, 79
Install New Theme extension, 71
installing, 57, 70–72, 400
JavaScript installer links, 401
Lila, 79
listing, 48–49
Local Install extension, 71–72
Mars, 72
Menu Icons, 152–153
modifying, 68–69, 402
Mostly Crystal, 74–76, 79, 150–152
MozillaZine Themes forum, 400
Neptune, 73
Noia 2.0 eXtreme, 79
Noia 2.0 Lite, 79
Phoenity, 76, 79
Playground, 73, 79
Pluto, 73, 79
posting releases, 401–402
Qute, 79
Rain, 73
removing, 70
Safari-style tabs, 73
scroll bars, 402
Smoke, 73
subskins, 72
support

for final released builds, 57
for older themes, 68–69

switching, 67–68
testing, 400
Toy Factory, 79
troubleshooting, 70–71
updates, 111–113
visual cue for website encryption status, 104–105

Themes window, 14
third-party builds, 96–98
time display, 54, 170–171
timeouts, 86
toolbar buttons

adding, 162, 369–371
EMButtons extension, 51–52, 54, 163–164
icons, 371
Mozilla Updates button, 162

toolbar element, 369–370
Toolbar Enhancements extension, 54, 91, 164–165
toolbarbutton element, 352, 370–371
toolbarpalette element, 371
toolbars

adding, 369–370
adding items, 143
bookmarks toolbar, 157–158
context menus, 157
creating, 159
Customize Toolbar window, 158–159
flexible space, 158–159
Googlebar extension, 54, 166–168, 237–238
keyboard shortcuts, 159
moving items, 159
navigation toolbar, 157–158
reducing space around icons, 65–67
removing items, 143, 158–159
turning on/off, 157–158
Ultrabar extension, 238
Yahoo! Toolbar extension, 168–169, 239–240

toolbox element, 369
tools

Advanced Installer, 263–264
cpuinfo, 97
Document Inspector

Document - DOM Nodes panel, 6
installing, 3–5
troubleshooting, 5
XUL hierarchy, 6–7

FFDeploy, 256
GUID Generator, 386–387
HM NIS Editor, 254
IconWorkshop (Axialis), 396
ImageMagick utility, 396
Installer Software Development Kit (Microsoft), 260
JavaScript Console, 8–9, 293, 342
MAKEMSI, 263–264
MaSaI Installer, 260, 262
MozBackup, 14–15
Mozbackup, 275–276
Orca MSI editor, 262–263
Regex Coach, 133
7-Zip, 43–44, 322, 382
standard console, 342
text editors, 382
theme creation, 381–382
WinRar, 245, 322
WinZip, 322, 382

tooltiptext attribute, 327
Toy Factory theme, 79
Translate extension, 230

426 Index ■ T

27_596500 bindex.qxd 6/30/05 3:17 PM Page 426

Translator sidebar, 231–232
trimming memory in Windows, 95
troubleshooting

Document Inspector, 5
extensions, 39–40, 343
themes, 70–71

trunk builds, 98, 201
tuning

cleaning up, 99–100
disk cache location, 91–92
network settings

Domain Name Server (DNS) resolution
information, 86

FTP idle and keep-alive, 86
persistent connections, 85
pipelining, 85–86
simultaneous connections, 84–85

page rendering, 86–87
RFC standards, 83
Windows memory, 94–95

turning nonlinked links into linkable links, 234–235
turning on/off toolbars, 157–158
tutorials

CSS (Cascading Style Sheets), 389
JavaScript, 307
plugin design, 227

Tweak Network Settings extension, 85
TweakFactor.com website, 86
Type column (about:config), 17
types (chrome URL), 325

U
UI (user interface) elements

button, 352
checkbox, 353–354
description, 353
dialog, 361–362
keyset, 368–369
label, 352, 362
listbox, 354
menu, 355
menuitem, 355
menulist, 355
menupopup, 355
menuseparator, 355
overlay, 327
radio, 354
radiogroup, 354
script, 362
statusbar, 328
statusbar-display id, 328
statusbarpanel, 326, 328

textbox, 353
toolbar, 369–370
toolbarbutton, 352, 370–371
toolbarpalette, 371
toolbox, 369

UI (user interface) events
commands, 357
default actions, 360
document events, 357
event propagation, 358–360
focus events, 357
keyboard events, 357
mouse events, 356–357
notification, 358–359

Ultrabar extension, 238–239
unblocking error dialogs, 88
undoclosetab extension, 54
uninstalling

clean up procedures, 99–100
extensions, 36–38, 320

unique ids. See GUIDs (Globally Unique Identifiers)
UNIX user path, 11
unload event, 357
update.rdf file, 399–400
updates

extensions, 111–113, 319
Flash, 251
Mozilla Update service, 111–113
Shockwave, 251
themes, 111–113
Update Notification Service, 112

upgrade clean up procedures, 99–100
URLid extension, 53
URLs

chrome URLs, 324–326
formatting with special characters, 273
Google searches, 223
Show Failed URL extension, 88

User Agent Switcher extension, 55, 289–290
user interface (SiteLeds extension), 326–327
user interface (UI) elements. See UI (user interface

elements)
user interface (UI) events. See UI (user interface events)
user interfaces. See XUL (Extensible User-Interface

Language)
user path, 10–13
user preferences. See preferences
userChrome.css file

backup, 15, 275
creating, 143
modifying, 23–25
tabbed browsing, 185

427Index ■ T–U

27_596500 bindex.qxd 6/30/05 3:17 PM Page 427

userChrome-example.css file, 141–142
userContent.css file

backup, 15, 275
blocking advertisements, 123–126
modifying, 25–26

user.js file
backup, 15
browser.cache.disk.capacity hack, 92–93
browser.cache.disk.parent_directory

hack, 91–92
browser.cache.memory.capacity hack, 94
browser.xul.error_pages.enabled hack, 88
config.trim_on_minimize hack, 95
content.interrupt.parsing hack, 87
content.maxtextrun hack, 87
content.max.tokenizing.time hack, 87
content.notify.backoffcount hack, 87
content.notify.interval hack, 87
content.notify.ontimer hack, 87
content.notify.threshold hack, 87
contents, 271
general.smoothScroll hack, 88
glayout.initialpaint.delay hack, 87
modifying, 22
network.dnsCacheEntries hack, 86
network.dnsCacheExpiration hack, 86
network.ftp.idleConnectionTimeout

hack, 86
network.http.keep-alive.timeout hack, 86
network.http.max-connections hack, 85
network.http.max-connections-per-server

hack, 85
network.http.max-persistent-

connections-per-proxy hack, 85
network.http.max-persistent-

connections-per-server hack, 85
network.http.pipelining hack, 85
network.http.pipelining.firstrequest

hack, 85
network.http.pipelining.maxrequests

hack, 85
network.http.proxy.pipelining hack, 85

V
validation services

Checky extension, 296
HTML Validator extension, 294–295

Value column (about:config), 17
variables (JavaScript), 305
Venkman extension, 293, 343
versions of extensions, 339
View Cookies extension, 55, 288–289

viewing
cookies, 110
disk cache, 92
individual items in browsing history, 108
XUL hierarchy, 6–7

ViewSourceWith extension, 290–291
VIM text editor, 322
Virtual Entity of Relevant Acronyms website, 229

W
WackGet download manager, 214
WDG (Web Design Group) website, 309
weather forecast, 54, 171–172
web bugs, 128
Web Design Group (WDG) website, 309
Web Developer extension, 55, 169–170, 284–286
web page searches

Context Search extension, 227
dictionary, 227–229
Find-As-You-Type feature, 235–237

web pages
appearance, 371–373
background images, 63
rendering, 86–87
translation systems, 230

web research, organizing, 283–284
web servers

configuring, 343–344
persistent connections, 85
pipelining, 85
requests (defined), 84
RFC standards, 83
simultaneous connections, 84–85

WebMailCompose extension, 53
WebReference JavaScript website, 307
website name resolution, 86
websites

Adblock Project forum, 133
BBEdit, 8
Bugzilla, 88
Ecma, 307
EditPad, 8
Electronic Frontier Foundation, 128
encryption status, 104–105
Extension Mirror, 345
Extension Room, 345
icons, 77
Jargon File, 229
JavaScript Guide, 307
jEdit, 8
Kdevelop, 8
Lynx text-only browser, 121

428 Index ■ U–W

27_596500 bindex.qxd 6/30/05 3:17 PM Page 428

Macromedia Distribution Program, 252
Mellel, 8
Mozilla Cross-Reference, 350
Mozilla DOM Documentation, 314
Mozilla DOM Reference, 314
Mozilla Update, 286, 345, 401
Mozilla XPCOM, 316
Mozilla XUL project page, 303
Mozilla.org, 350
MozillaZine Extensions Forum, 345
MozillaZine Knowledge Base, 5, 16, 350
MozillaZine.org, 96
MR Tech, 53
Mycroft, 226–227
Nedit, 8
Notepad++, 8
Preferential Extension, 19
PSPad, 8
Virtual Entity of Relevant Acronyms, 229
Web Design Group (WDG), 309
WebReference JavaScript, 307
Win32Pad, 8
WinRar, 245
XUL Planet, 303, 316
XULPlanet, 350

widgets (XUL)
button, 352
checkbox, 353–354
defined, 301
description, 353
dialog, 361–362
keyset, 368–369
label, 352, 362
listbox, 354
menu, 355
menuitem, 355
menulist, 355
menupopup, 355
menuseparator, 355
overlay, 327
radio, 354
radiogroup, 354
script, 362
statusbar, 328
statusbar-display id, 328
statusbarpanel, 326, 328
textbox, 353
toolbar, 369–370
toolbarbutton, 352, 370–371
toolbarpalette, 371
toolbox, 369

Windows
automating profile creation, 249–250
compression tools, 322
CPU-Z tool, 96
desktop icons, 253
FFDeploy, 256
Googlebar extension, 167
memory

optimizing, 94–95
trimming, 95

Microsoft Windows Installer (MSI), 260–261
Microsoft Windows Scripts, 253
Profile Manager, 268
profiles, 267
text editors, 7–8
user path, 11

windows
background color, 58–62
background images, 62–65
behavior, 189
dialogs, 361

Windows shell: protocol, 115
Win32Pad text editor, 7–8
WinRar compression tool, 245, 322
WinZip compression tool, 322, 382
wizard for creating profiles, 268–269

X
xmlns attribute, 327
XPCOM (Cross Platform Component Object Model),

314–316
XPI extension, 319
XPI package, 340–341
xpti.dat file, 270
XUL (Extensible User-Interface Language)

applications, 300
box model scheme, 301
defined, 5
Document Inspector, 6–7, 292
JavaScript, 303
layout, 301–302
refreshing cache file, 99
removing cache file, 99
Resource Description Framework (RDF), 302–303
resources, 303
user interface definition, 300
XML advantages, 300

XUL documents
CSS (Cascading Style Sheets), 307–308
dynamic overlays, 318
JavaScript, 307

429Index ■ W–X

27_596500 bindex.qxd 6/30/05 3:17 PM Page 429

XUL documents (continued)
opening, 300–301
siteledsOverlay.xul, 333
widgets, 301

XUL elements
button, 352
checkbox, 353–354
description, 353
dialog, 361–362
keyset, 368–369
label, 352, 362
listbox, 354
menu, 355
menuitem, 355
menulist, 355
menupopup, 355
menuseparator, 355
overlay, 327
radio, 354
radiogroup, 354
script, 362
statusbar, 328
statusbar-display id, 328
statusbarpanel, 326, 328

textbox, 353
toolbar, 369–370
toolbarbutton, 352, 370–371
toolbarpalette, 371
toolbox, 369

XUL events
commands, 357
default actions, 360
document events, 357
event propagation, 358–360
focus events, 357
keyboard events, 357
mouse events, 356–357
notification, 358–359

XUL Planet website, 303, 316
XUL.mfl file, 270
XULPlanet website, 350

Y
Yahoo! Companion extension, 54
Yahoo! Toolbar extension, 168–169, 239–240

Z
ZIP format compression tools, 322

430 Index ■ X–Z

27_596500 bindex.qxd 6/30/05 3:17 PM Page 430

Magazine

The most hardco
re technol

ogy magazine

out there,
 for the d

o-it-yourse
lfers who

jump at the c
hance to

be involve
d with

the latest a
nd greates

t technolog
y products

.

AAVVAILABLE NOW ON NEWSSTAILABLE NOW ON NEWSSTANDS ANDS

EVEREVERYWHERE!YWHERE!

IF YOU ENJOYED THIS EXTREMETECH BOOK YOU’LL LOVE...

28_596500 bob.qxd 6/30/05 3:18 PM Page 431

How to take it
to the Extreme.

Available wherever books are sold.
Wiley and the Wiley logo are trademarks of John Wiley & Sons, Inc. and/or its affiliates. The ExtremeTech logo is a trademark of Ziff
Davis Publishing Holdings, Inc. Used under license. All other trademarks are the property of their respective owners.

™

If you enjoyed this book,
there are many others like
it for you. From Podcasting
to Hacking Firefox,
ExtremeTech books can
fulfill your urge to hack,
tweak and modify,
providing the tech tips and
tricks readers need to get
the most out of their
hi-tech lives.

28_596500 bob.qxd 6/30/05 3:18 PM Page 432

