

Advanced Operating
Systems and Kernel
Applications:
Techniques and Technologies

Yair Wiseman
Bar-Ilan University, Israel

Song Jiang
Wayne State University, USA

Hershey • New York
InformatIon scIence reference

Director of Editorial Content: Kristin Klinger
Senior Managing Editor: Jamie Snavely
Assistant Managing Editor: Michael Brehm
Publishing Assistant: Sean Woznicki
Typesetter: Sean Woznicki
Cover Design: Lisa Tosheff
Printed at: Yurchak Printing Inc.

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com/reference

Copyright © 2010 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.

Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or
companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

Library of Congress Cataloging-in-Publication Data

Advanced operating systems and kernel applications : techniques and technologies / Yair Wiseman and Song Jiang, editors.
 p. cm.
 Includes bibliographical references and index.
 Summary: "This book discusses non-distributed operating systems that benefit researchers, academicians, and practitioners"-
-Provided by publisher.

 ISBN 978-1-60566-850-5 (hardcover) -- ISBN 978-1-60566-851-2 (ebook) 1.
Operating systems (Computers) I. Wiseman, Yair, II. Jiang, Song.
 QA76.76.O63A364 2009
 005.4'32--dc22
 2009016442

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the
authors, but not necessarily of the publisher.

Editorial Advisory Board
Donny Citron, IBM Research Lab, Israel
Eliad Lubovsky, Alcatel-Lucent LTD., USA
Pinchas Weisberg, Bar-Ilan University, Israel

List of Reviewers
Donny Citron, IBM Research Lab, Israel
Eliad Lubovsky, Alcatel-Lucent LTD., USA
Pinchas Weisberg, Bar-Ilan University, Israel
Moshe Itshak, Radware LTD., Israel
Moses Reuven, CISCO LTD., Israel
Hanita Lidor, The Open University, Israel
Ilan Grinberg, Tel-Hashomer Base, Israel
Reuven Kashi, Rutgers University, USA
Mordechay Geva, Bar-Ilan University, Israel

Preface .. xiv

Acknowledgment ..xviii

Section 1
Kernel Security and Reliability

Chapter 1
Kernel Stack Overflows Elimination .. 1

Yair Wiseman, Bar-Ilan University, Israel
Joel Isaacson, Ascender Technologies, Israel
Eliad Lubovsky, Bar-Ilan University, Israel
Pinchas Weisberg, Bar-Ilan University, Israel

Chapter 2
Device Driver Reliability .. 15

Michael M. Swift, University of Wisconsin—Madison, USA

Chapter 3
Identifying Systemic Threats to Kernel Data: Attacks and Defense Techniques 46

Arati Baliga, Rutgers University, USA
Pandurang Kamat, Rutgers University, USA
Vinod Ganapathy, Rutgers University, USA
Liviu Iftode, Rutgers University, USA

Chapter 4
The Last Line of Defense: A Comparison of Windows and Linux Authentication and
Authorization Features .. 71

Art Taylor, Rider University, USA

Table of Contents

Section 2
Efficient Memory Management

Chapter 5
Swap Token: Rethink the Application of the LRU Principle on Paging to Remove
System Thrashing .. 86

Song Jiang, Wayne State University, USA

Chapter 6
Application of both Temporal and Spatial Localities in the Management of Kernel
Buffer Cache ... 107

Song Jiang, Wayne State University, USA

Chapter 7
Alleviating the Thrashing by Adding Medium-Term Scheduler .. 118

Moses Reuven, Bar-Ilan University, Israel
Yair Wiseman, Bar-Ilan University, Israel

Section 3
Systems Profiling

Chapter 8
The Exokernel Operating System and Active Networks .. 138

Timothy R. Leschke, University of Maryland, Baltimore County, USA

Chapter 9
Dynamic Analysis and Profiling of Multithreaded Systems ... 156

Daniel G. Waddington, Lockheed Martin, USA
Nilabja Roy, Vanderbilt University, USA
Douglas C. Schmidt, Vanderbilt University, USA

Section 4
I/O Prefetching

Chapter 10
Exploiting Disk Layout and Block Access History for I/O Prefetch .. 201

Feng Chen, The Ohio State University, USA
Xiaoning Ding, The Ohio State University, USA
Song Jiang, Wayne State University, USA

Chapter 11
Sequential File Prefetching in Linux .. 218

Fengguang Wu, Intel Corporation, China

Chapter 12
Peer-Based Collaborative Caching and Prefetching in Mobile Broadcast ... 238

Wei Wu, Singapore-MIT Alliance, and School of Computing, National University of Singapore,
 Singapore
Kian-Lee Tan, Singapore-MIT Alliance, and School of Computing, National University of
 Singapore, Singapore

Section 5
Page Replacement Algorithms

Chapter 13
Adaptive Replacement Algorithm Templates and EELRU ... 263

Yannis Smaragdakis, University of Massachusetts, Amherst, USA
Scott Kaplan, Amherst College, USA

Chapter 14
Enhancing the Efficiency of Memory Management in a Super-Paging Environment
by AMSQM ... 276

Moshe Itshak, Bar-Ilan University, Israel
Yair Wiseman, Bar-Ilan University, Israel

Compilation of References .. 294

About the Contributors ... 313

Index ... 316

Preface .. xiv

Acknowledgment ..xviii

Section 1
Kernel Security and Reliability

Chapter 1
Kernel Stack Overflows Elimination .. 1

Yair Wiseman, Bar-Ilan University, Israel
Joel Isaacson, Ascender Technologies, Israel
Eliad Lubovsky, Bar-Ilan University, Israel
Pinchas Weisberg, Bar-Ilan University, Israel

The Linux kernel stack has a fixed size. There is no mechanism to prevent the kernel from overflow-
ing the stack. Hackers can exploit this bug to put unwanted information in the memory of the operat-
ing system and gain control over the system. In order to prevent this problem, the authors introduce a
dynamically sized kernel stack that can be integrated into the standard Linux kernel. The well-known
paging mechanism is reused with some changes, in order to enable the kernel stack to grow.

Chapter 2
Device Driver Reliability .. 15

Michael M. Swift, University of Wisconsin—Madison, USA

Despite decades of research in extensible operating system technology, extensions such as device drivers
remain a significant cause of system failures. In Windows XP, for example, drivers account for 85% of
recently reported failures. This chapter presents Nooks, a layered architecture for tolerating the failure
of drivers within existing operating system kernels. The design consists techniques for isolating drivers
from the kernel and for recovering from their failure. Nooks isolates drivers from the kernel in a light-
weight kernel protection domain, a new protection mechanism. By executing drivers within a domain,
the kernel is protected from their failure and cannot be corrupted. Shadow drivers recover from device
driver failures. Based on a replica of the driver’s state machine, a shadow driver conceals the driver’s

Detailed Table of Contents

failure from applications and restores the driver’s internal state to a point where it can process requests
as if it had never failed. Thus, the entire failure and recovery is transparent to applications.

Chapter 3
Identifying Systemic Threats to Kernel Data: Attacks and Defense Techniques 46

Arati Baliga, Rutgers University, USA
Pandurang Kamat, Rutgers University, USA
Vinod Ganapathy, Rutgers University, USA
Liviu Iftode, Rutgers University, USA

The authors demonstrate a new class of attacks and also present a novel automated technique to detect
them. The attacks do not explicitly exhibit hiding behavior but are stealthy by design. They do not rely
on user space programs to provide malicious functionality but achieve the same by simply manipulating
kernel data. These attacks are symbolic of a larger systemic problem within the kernel, thus requiring
comprehensive analysis. The author’s novel rootkit detection technique based on automatic inference of
data structure invariants, which can automatically detect such advanced stealth attacks on the kernel.

Chapter 4
The Last Line of Defense: A Comparison of Windows and Linux Authentication and
Authorization Features .. 71

Art Taylor, Rider University, USA

With the rise of the Internet, computer systems appear to be more vulnerable than ever from security
attacks. Much attention has been focused on the role of the network in security attacks, but evidence sug-
gests that the computer server and its operating system deserve closer examination since it is ultimately
the operating system and its core defense mechanisms of authentication and authorization which are
compromised in an attack. This chapter provides an exploratory and evaluative discussion of the authen-
tication and authorization features of two widely used server operating systems: Windows and Linux.

Section 2
Efficient Memory Management

Chapter 5
Swap Token: Rethink the Application of the LRU Principle on Paging to Remove
System Thrashing .. 86

Song Jiang, Wayne State University, USA

Most computer systems use the global page replacement policy based on the LRU principle to reduce
page faults. The LRU principle for the global page replacement dictates that a Least Recently Used (LRU)
page, or the least active page in a general sense, should be selected for replacement in the entire user
memory space. However, in a multiprogramming environment under high memory load, an indiscriminate
use of the principle can lead to system thrashing, in which all processes spend most of their time waiting
for the disk service instead of making progress. In this chapter, we will rethink the application of the

LRU principle on global paging to identify one of root causes for thrashing, and describe a mechanism,
named as swap token, to solve the issue. The mechanism is simple in its design and implementation
but highly effective in alleviating or removing thrashing. A key feature of the swap token mechanism
is that it can distinguish the conditions for an LRU page, or a page that has not been used for relatively
long period of time, to be generated and accordingly categorized LRU pages into two types: true and
false LRU pages. The mechanism identifies false LRU pages to avoid use of the LRU principle on these
pages, in order to remove thrashing.

Chapter 6
Application of both Temporal and Spatial Localities in the Management of Kernel
Buffer Cache ... 107

Song Jiang, Wayne State University, USA

As the hard disk remains as the mainstream on-line storage device, it continues to be the performance
bottleneck of data-intensive applications. One of existing most effective solutions to ameliorate the
bottle¬neck is to use the buffer cache in the OS kernel to achieve two objectives: reduction of direct
access of on-disk data and improvement of disk performance. These two objectives can be achieved by
applying both temporal locality and spatial locality in the management of the buffer cache. Tradition-
ally only temporal locality is exploited for the purpose, and spatial locality is largely ignored. As the
throughput of access of sequentially-placed disk blocks can be an order of magnitude higher than that
of access to randomly-placed blocks, the missing of spatial locality in the buffer management can cause
the performance of applications without dominant sequential accesses to be seriously degraded. In the
chapter, we introduce a state-of-the-art technique that seamlessly combines these two locality properties
embedded in the data access patterns into the management of the kernel buffer cache management to
improve I/O performance.

Chapter 7
Alleviating the Thrashing by Adding Medium-Term Scheduler .. 118

Moses Reuven, Bar-Ilan University, Israel
Yair Wiseman, Bar-Ilan University, Israel

A technique for minimizing the paging on a system with a very heavy memory usage is proposed. When
there are processes with active memory allocations that should be in the physical memory, but their accu-
mulated size exceeds the physical memory capacity. In such cases, the operating system begins swapping
pages in and out the memory on every context switch. The authors lessen this thrashing by placing the
processes into several bins, using Bin Packing approximation algorithms. They amend the scheduler to
maintain two levels of scheduling - medium-term scheduling and short-term scheduling. The medium-
term scheduler switches the bins in a Round-Robin manner, whereas the short-term scheduler uses the
standard Linux scheduler to schedule the processes in each bin. The authors prove that this feature does
not necessitate adjustments in the shared memory maintenance. In addition, they explain how to modify
the new scheduler to be compatible with some elements of the original scheduler like priority and real-
time privileges. Experimental results show substantial improvement on very loaded memories.

Section 3
Systems Profiling

Chapter 8
The Exokernel Operating System and Active Networks .. 138

Timothy R. Leschke, University of Maryland, Baltimore County, USA

There are two forces that are demanding a change in the traditional design of operating systems. One
force requires a more flexible operating system that can accommodate the evolving requirements of new
hardware and new user applications. The other force requires an operating system that is fast enough
to keep pace with faster hardware and faster communication speeds. If a radical change in operating
system design is not implemented soon, the traditional operating system will become the performance
bottle-neck for computers in the very near future. The Exokernel Operating System, developed at the
Massachusetts Institute of Technology, is an operating system that meets the needs of increased speed and
increased flexibility. The Exokernel is extensible, which means that it is easily modified. The Exokernel
can be easily modified to meet the requirements of the latest hardware or user applications. Ease in
modification also means the Exokernel’s performance can be optimized to meet the speed requirements
of faster hardware and faster communication. In this chapter, the author explores some details of the
Exokernel Operating System. He also explores Active Networking, which is a technology that exploits
the extensibility of the Exokernel. His investigation reveals the strengths of the Exokernel as well as
some of its design concerns. He concludes his discussion by embracing the Exokernel Operating System
and by encouraging more research into this approach to operating system design.

Chapter 9
Dynamic Analysis and Profiling of Multithreaded Systems ... 156

Daniel G. Waddington, Lockheed Martin, USA
Nilabja Roy, Vanderbilt University, USA
Douglas C. Schmidt, Vanderbilt University, USA

As software-intensive systems become larger, more parallel, and more unpredictable the ability to analyze
their behavior is increasingly important. There are two basic approaches to behavioral analysis: static
and dynamic. Although static analysis techniques, such as model checking, provide valuable informa-
tion to software developers and testers, they cannot capture and predict a complete, precise, image of
behavior for large-scale systems due to scalability limitations and the inability to model complex external
stimuli. This chapter explores four approaches to analyzing the behavior of software systems via dynamic
analysis: compiler-based instrumentation, operating system and middleware profiling, virtual machine
profiling, and hardware-based profiling. The authors highlight the advantages and disadvantages of each
approach with respect to measuring the performance of multithreaded systems and demonstrate how
these approaches can be applied in practice.

Section 4
I/O Prefetching

Chapter 10
Exploiting Disk Layout and Block Access History for I/O Prefetch .. 201

Feng Chen, The Ohio State University, USA
Xiaoning Ding, The Ohio State University, USA
Song Jiang, Wayne State University, USA

As the major secondary storage device, the hard disk plays a critical role in modern computer system. In
order to improve disk performance, most operating systems conduct data prefetch policies by tracking
I/O access pattern, mostly at the level of file abstractions. Though such a solution is useful to exploit
application-level access patterns, file-level prefetching has many constraints that limit the capability of
fully exploiting disk performance. The reasons are twofold. First, certain prefetch opportunities can only
be detected by knowing the data layout on the hard disk, such as metadata blocks. Second, due to the
non-uniform access cost on the hard disk, the penalty of mis-prefetching a random block is much more
costly than mis-prefetching a sequential block. In order to address the intrinsic limitations of file-level
prefetching, we propose to prefetch data blocks directly at the disk level in a portable way. The authors’
proposed scheme, called DiskSeen, is designed to supplement file-level prefetching. DiskSeen observes
the workload access pattern by tracking the locations and access times of disk blocks. Based on analysis
of the temporal and spatial relationships of disk data blocks, DiskSeen can significantly increase the
sequentiality of disk accesses and improve disk performance in turn. They implemented the DiskSeen
scheme in the Linux 2.6 kernel and show that it can significantly improve the effectiveness of file-level
prefetching and reduce execution times by 20-53% for various types of applications, including grep,
CVS, and TPC-H.

Chapter 11
Sequential File Prefetching in Linux .. 218

Fengguang Wu, Intel Corporation, China

Sequential prefetching is a well established technique for improving I/O performance. As Linux runs
an increasing variety of workloads, its in-kernel prefetching algorithm has been challenged by many
unexpected and subtle problems; As computer hardware evolves, the design goals should also be
adapted. To meet the new challenges and demands, a prefetching algorithm that is aggressive yet safe,
flexible yet simple, scalable yet efficient is desired. In this chapter, the author explores the principles of
I/O prefetching and present a demand readahead algorithm for Linux. He demonstrates how it handles
common readahead issues by a host of case studies. Both static, logic and dynamic behaviors of the
readahead algorithm are covered, so as to help readers building both theoretical and practical views of
sequential prefetching.

Chapter 12
Peer-Based Collaborative Caching and Prefetching in Mobile Broadcast ... 238

Wei Wu, Singapore-MIT Alliance, and School of Computing, National University of Singapore,
 Singapore
Kian-Lee Tan, Singapore-MIT Alliance, and School of Computing, National University of
 Singapore, Singapore

Caching and prefetching are two effective ways for mobile peers to improve access latency in mobile
environments. With short-range communication such as IEEE 802.11 and Bluetooth, a mobile peer
can communicate with neighboring peers and share cached or prefetched data objects. This kind of
cooperation improves data availability and access latency. In this chapter the authors review several
cooperative caching and prefetching schemes in a mobile environment that supports broadcasting. They
present two schemes in detail: CPIX (Cooperative PIX) and ACP (Announcement-based Cooperative
Prefetching). CPIX is suitable for mobile peers that have limited power and access the broadcast channel
in a demand-driven fashion. ACP is designed for mobile peers that have sufficient power and prefetch
from the broadcast channel. They both consider the data availability in local cache, neighbors’ cache,
and on the broadcast channel. Moreover, these schemes are simple enough so that they do not incur
much information exchange among peers and each peer can make autonomous caching and prefetching
decisions.

Section 5
Page Replacement Algorithms

Chapter 13
Adaptive Replacement Algorithm Templates and EELRU ... 263

Yannis Smaragdakis, University of Massachusetts, Amherst, USA
Scott Kaplan, Amherst College, USA

Replacement algorithms are a major component of operating system design. Every replacement algo-
rithm, however, is pathologically bad for some scenarios, and often these scenarios correspond to com-
mon program patterns. This has prompted the design of adaptive replacement algorithms: algorithms
that emulate two (or more) basic algorithms and pick the decision of the best one based on recent past
behavior. The authors are interested in a special case of adaptive replacement algorithms, which are
instances of adaptive replacement templates (ARTs). An ART is a template that can be applied to any
two algorithms and yield a combination with some guarantees on the properties of the combination,
relative to the properties of the component algorithm. For instance, they show ARTs that for any two
algorithms A and B produce a combined algorithm AB that is guaranteed to emulate within a factor
of 2 the better of A and B on the current input. They call this guarantee a robustness property. This
performance guarantee of ARTs makes them effective but a naïve implementation may not be practi-
cally efficient—e.g., because it requires significant space to emulate both component algorithms at the
same time. In practice, instantiations of an ART can be specialized to be highly efficient. The authors
demonstrate this through a case study. They present the EELRU adaptive replacement algorithm, which

pre-dates ARTs but is truly a highly optimized multiple ART instantiation. EELRU is well-known in the
research literature and outperforms the well-known LRU algorithm when there is benefit to be gained,
while emulating LRU otherwise.

Chapter 14
Enhancing the Efficiency of Memory Management in a Super-Paging Environment
by AMSQM ... 276

Moshe Itshak, Bar-Ilan University, Israel
Yair Wiseman, Bar-Ilan University, Israel

The concept of Super-Paging has been wandering around for more than a decade. Super-Pages are sup-
ported by some operating systems. In addition, there are some interesting research papers that show
interesting ideas how to intelligently integrate Super-Pages into modern operating systems; however,
the page replacement algorithms used by the contemporary operating system even now use the old
Clock algorithm which does not prioritize small or large pages based on their size. In this chapter an
algorithm for page replacement in a Super-Page environment is presented. The new technique for page
replacement decisions is based on the page size and other parameters; hence is appropriate for a Super-
Paging environment.

Compilation of References .. 294

About the Contributors ... 313

Index ... 316

xiv

Operating Systems research is a vital and dynamic field. Even young computer science students know
that Operating Systems are the core of any computer system and a course about Operating Systems is
more than common in any Computer Science department all over the world.

This book aims at introducing subjects in the contemporary research of Operating Systems. One-
processor machines are still the majority of the computing power far and wide. Therefore, this book
will focus at these research topics i.e. Non-Distributed Operating Systems. We believe this book can be
especially beneficial for Operating Systems researchers alongside encouraging more graduate students
to research this field and to contribute their aptitude.

A probe of recent operating systems conferences and journals focusing on the “pure” Operating
Systems subjects (i.e. Kernel’s task) has produced several main categories of study in Non-Distributed
Operating Systems:

• Kernel Security and Reliability
• Efficient Memory Utilization
• Kernel Security and Reliability
• I/O prefetching
• Page Replacement Algorithms

We introduce subjects in each category and elaborate on them within the chapters. The technical depth
of this book is definitely not superficial, because our potential readers are Operating Systems research-
ers or graduate students who conduct research at Operating System labs. The following paragraphs will
introduce the content and the main points of the chapters in each of the categories listed above.

Kernel Security and reliability

Kernel Stack Overflows Elimination

The kernel stack has a fixed size. When too much data is pushed upon the stack, an overflow will be
generated. This overflow can be illegitimately utilized by unauthorized users to hack the operating
system. The authors of this chapter suggest a technique to prevent the kernel stack from overflowing by
using a kernel stack with a flexible size.

Preface

 xv

Device Driver Reliability

Device Drivers are certainly the Achilles’ heel of the operating system kernel. The writers of the device
drivers are not always aware of how the kernel was written. In addition, many times, only few users may
have a given device, so the device driver is actually not indeed battle-tested. The author of this chapter
suggests inserting an additional layer to the kernel that will keep the kernel away from the device driver
failures. This isolation will protect the kernel from unwanted malfunctions along with helping the device
driver to recover.

Identifying Systemic Threats to Kernel Data: Attacks and Defense
Techniques

Installing a malware into the operating system kernel by a hacker can has devastating results for the
proper operation of a computer system. The authors of this chapter show examples of dangerous mali-
cious code that can be installed into the kernel. In addition, they suggest techniques how to protect the
kernel from such attacks.

efficient memory management

Swap Token: Rethink the Application of the LRU Principle on Paging to
Remove System Thrashing

The commonly adopted approach to handle paging in the memory system is using the LRU replacement
algorithm or its approximations, such the CLOCK policy used in the Linux kernels. However, when
a high memory pressure appears, LRU is incapable of satisfactorily managing the memory stress and
a thrashing can take place. The author of this chapter proposes a design to alleviate the harmful effect
of thrashing by removing a critical loophole in the application of the LRU principle on the memory
management.

Application of both Temporal and Spatial Localities in the Management of
Kernel Buffer Cache

With the objective of reducing the number of disk accesses, operating systems usually use a memory
buffer to cache previously accessed data. The commonly used methods to determine which data should
be cached are utilizing only the temporal locality while ignoring the spatial locality. The author of this
chapter proposes to exploit both of these localities in order to achieve a substantially improved I/O
performance, instead of only minimizing number of disk accesses.

Alleviating the Trashing by Adding Medium-Term Scheduler

When too much memory space is needed, the CPU spends a large portion of its time swapping pages in
and out the memory. This effect is called Thrashing. Thrashing's result is a severe overhead time and as a
result a significant slowdown of the system. Linux 2.6 has a breakthrough technique that was suggested

xvi

by one of these book editors - Dr. Jiang and handles this problem. The authors of this chapter took this
known technique and significantly improved it. The new technique is suitable for much more cases and
also has better results in the already handled cases.

Kernel flexibility

The Exokernel Operating System and Active Networks

The micro-kernel concept is very old dated to the beginning of the seventies. The idea of micro-kernels
is minimizing the kernel. I.e. trying to implement outside the kernel whatever possible. This can make
the kernel code more flexible and in addition, fault isolation will be achieved. The possible drawback of
this technique is the time of the context switches to the new kernel-aid processes. Exokernel is a micro-
kernel that achieves both flexibility and fault isolation while trying not to harm the execution time. The
author of this chapter describes the principles of this micro-kernel.

i/o prefetching

Exploiting Disk Layout and Block Access History for I/O Prefetch

Prfetching is a known technique that can reduce the fetching overhead time of data from the disk to
the internal memory. The known fetching techniques ignore the internal structure of the disk. Most of
the disks are maintained by the Operating System in an indexed allocation manner meaning the alloca-
tions are not contiguous; hence, the oversight of the internal disk structure might cause an inefficient
prefetching. The authors of this chapter suggests an improvement to the prefetching scheme by taking
into account the data layout on the hard disk.

Sequential File Prefetching in Linux

The Linux operating system supports autonomous sequential file prefetching, aka readahead. The variety
of applications that Linux has to support requires more flexible criteria for identifying prefetchable access
patterns in the Linux prefetching algorithm. Interleaved and cooperative streams are example patterns
that a prefetching algorithm should be able to recognize and exploit. The author of this chapter proposes
a new prefetching algorithm that is able to handle more complicated access patterns. The algorithm will
continue to optimize to keep up with the technology trend of escalating disk seek cost and increasingly
popular multi-core processors and parallel machines.

page replacement algorithmS

Adaptive Replacement Algorithm Templates and EELRU

With the aim of facilitating paging mechanism, the operating system should decide on "page swapping
out" policy. Many algorithms have been suggested over the years; however each algorithm has advantages
and disadvantages. The authors of this chapter propose to adaptively change the algorithm according to

 xvii

the system behavior. In this way the operating system can avoid choosing inappropriate method and the
best algorithm for each scenario will be selected.

Enhancing the Efficiency of Memory Management in a Super-Paging
Environment by AMSQM

The traditional page replacement algorithms presuppose that the page size is a constant; however this
presumption is not always correct. Many contemporary processors have several page sizes. Larger pages
that are pointed to by the TLB are called Super-Pages and there are several super-page sizes. This feature
makes the page replacement algorithm much more complicated. The authors of this chapter suggest a
novel algorithm that is based on recent constant page replacement algorithms and is able to maintain
pages in several sizes.

This book contains surveys and new results in the area of Operating System kernel research. The
books aims at providing results that will be suitable to as many operating systems as possible. There
are some chapters that deal with a specific Operating System; however the concepts should be valid for
other operating systems as well.

We believe this book will be a nice contribution to the community of operating system kernel de-
velopers. Most of the existing literature does not focus on operating systems kernel and many operat-
ing system books contain chapters on close issues like distributed systems etc. We believe that a more
concentrated book will be much more effective; hence we made the effort to collect the chapters and
publish the book.

The chapters of this book have been written by different authors; but we have taken some steps like
clustering similar subjects to a division, so as to make this book readable as an entity. However, the
chapters can also be read individually. We hope you will enjoy the book as it was our intention to select
and combine relevant material and make it easy to access.

xviii

Acknowledgment

First of all, we would like to thank the authors for their contributions. This book would not have been
published without their outstanding efforts. We also would like to thanks IGI Global and especially to
Joel Gamon and Rebecca Beistline for their intense guide and help. Our thanks are also given to all the
other people who have help us and we did not mention. Finally, we would like to thank our families who
let us have the time to devote to write this interesting book.

Yair Wiseman
Bar-Ilan University, Israel

Song Jiang
Wayne State University, USA

Section 1
Kernel Security and Reliability

1

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1

Kernel Stack Overflows
Elimination

Yair Wiseman
Bar-Ilan University, Israel

Joel Isaacson
Ascender Technologies, Israel

Eliad Lubovsky
Bar-Ilan University, Israel

Pinchas Weisberg
Bar-Ilan University, Israel

introduction

The management of virtual memory and the relation-
ship of software and hardware to this management
is an old research subject (Denning, 1970). In this
chapter we would like to focus on the kernel mode
stack. Our discussion will deal with the Linux
operating system running on an IA-32 architecture
machine. However, the proposed solutions may be
relevant for other platforms and operating systems
as well.

The memory management architecture of IA-
32 machines uses a combination of segmentation
(memory areas) and paging to support a protected
multitasking environment (Intel, 1993). The x86
enforces the use of segmentation which provides
a mechanism of isolating individual code, data and
stack modules.

Therefore, Linux splits the memory address
space of a user process into multiple segments
and assigns a different protection mode for each of
them. Each segment contains a logical portion of a
process, e.g. the code of the process. Linux uses the

abStract

The Linux kernel stack has a fixed size. There is no mechanism to prevent the kernel from overflowing the
stack. Hackers can exploit this bug to put unwanted information in the memory of the operating system
and gain control over the system. In order to prevent this problem, the authors introduce a dynamically
sized kernel stack that can be integrated into the standard Linux kernel. The well-known paging mecha-
nism is reused with some changes, in order to enable the kernel stack to grow.

DOI: 10.4018/978-1-60566-850-5.ch001

2

Kernel Stack Overflows Elimination

paging mechanism to implement a conventional
demand-paged, virtual-memory system and to
isolate the memory spaces of user processes
(IA-32, 2005).

Paging is a technique of mapping small fixed
size regions of a process address space into chunks
of real, physical memory called page frames. The
size of the page is constant, e.g. IA-32 machines
use 4KB of physical memory.

In point of fact, IA-32 machine support also
large pages of 4MB. Linux (and Windows) do
not use this ability of large pages (also called
super-pages) and actually the 4KB page support
fulfills the needs for the implementation of Linux
(Winwood et al., 2002).

Linux enables each process to have its own
virtual address space. It defines the range of ad-
dresses within this space that the process is allowed
to use. The addresses are segmented into isolated
section of code, data and stack modules.

Linux provides processes a mechanism for
requesting, accessing and freeing memory (Bovet
and Cesati, 2003), (Love, 2003). Allocations are
made to contiguous, virtual addresses by arranging
the page table to map physical pages. Processes,
through the kernel, can dynamically add and re-
move memory areas to its address space. Memory
areas have attributes such as the start address in
the virtual address space, length and access rights.
User threads share the process memory areas of
the process that has spawned them; therefore,
threads are regular processes that share certain
resources. The Linux facility known as “kernel
threads” are scheduled as user processes but lack
any per-process memory space and can only ac-
cess global kernel memory.

Unlike user mode execution, kernel mode does
not have a process address space. If a process ex-
ecutes a system call, kernel mode will be invoked
and the memory space of the caller remains valid.
Linux gives the kernel a virtual address range of
3GB to 4GB, whereas the processes use the virtual
address range of 0 to 3GB. Therefore, there will
be no conflict between the virtual addresses of

the kernel and the virtual addresses of whichever
process.

In addition, a globally defined kernel address
space becomes accessible which is not process
unique but is global to all processes running in
kernel mode. If kernel mode has been entered not
via a system call but rather via a hardware inter-
rupt, a process address space is defined but it is
irrelevant to the current kernel execution.

Virtual memory

In yesteryears, when a computer program was
too big and there was no way to load the entire
program into the memory, the overlays technique
was used. The programmer had to split the pro-
gram into several portions that the memory could
contain and that can be executed independently.
The programmer also was in charge of putting
system calls that could replace the portions in
the switching time.

With the aim of making the programming
work easier and exempting the programmer from
managing the portions of the memory, the vir-
tual memory systems have been created. Virtual
memory systems automatically load the memory
portions that are necessary for the program ex-
ecution into the memory. Other portions of the
memory that are not currently needed are saved
in a second memory and will be loaded into the
memory only if there is a need to use them.

Virtual memory enables the execution of a
program that its size can be up to the virtual ad-
dress space. This address space is set according
to the size of the registers that are used by CPU
to access the memory addresses. E. g. by using a
processor with 32 bits, we will be able to address
4GB, whereas by using a 64 bits processor, we
will be able to address 16 Exabytes. In addition
to the address space increase, since, when an
operating system uses a virtual memory scheme
there is no need to load the entire program, there
will be a possibility to load more programs and to

3

Kernel Stack Overflows Elimination

execute them concurrently. Another advantage is
that the program can start the execution even just
after only a small portion of the program memory
has been loaded

In a virtual memory system any process is ex-
ecuted in a virtual machine that is allocated only
for the process. The process accesses addresses
in the virtual address space. And it can ignore
other processes that use the physical memory at
the same time. The task of the programmer and
the compiler becomes much easier because they
do not need to delve into the details of memory
management difficulties.

Virtual memory systems easily enable to pro-
tect the memory of processes from an access of
other processes, whereas on the other hand virtual
memory systems enable a controlled sharing of
memory portions between several processes. This
state of affairs makes the implementation of mul-
titasking much easier for the operating system.

Nowadays, computers usually have large
memories; hence, the well-known virtual memory
mechanism is mostly utilized for secure or shared
memory. The virtual machine interface also ben-
efits the virtual memory mechanism, whereas the
original need of loading too large processes into
the memory is not so essential anymore (Jacob,
2002).

Virtual memory operates in a similar way to
the cache memory. When there is a small fast
memory and a large slow memory, a hierarchy of
memories will be assembled. In virtual memory
the hierarchy is between the RAM and the disk.
The portion of the program that a chance of ac-
cessing to them is higher will be saved in the fast
memory; whereas the other portions of the pro-
gram will be saved in the slow memory and will
be moved to the fast memory just if the program
accesses them. The effective access time to the
memory is the weighted average that based on
the access time of the fast memory, the access
time of the slow memory and the hit ratio of the
fast memory. The effective access time will low
if the hit ratio is high.

A high hit ratio will be probably produced be-
cause of the locality principle which stipulates that
programs tend to access again and again instruc-
tions and data that they have accessed them lately.
There is a time locality and position locality. Time
locality means the program might access again the
same memory addresses in a short time. Position
locality means the program might access again not
only the same memory address in a short time,
but also the nearby memory addresses might be
accessed in a short time. According to the locality
principles, if instructions or data have been loaded
into the memory, there is a high chance that these
instructions or data will be accessed soon again. If
the operating system loads also program portions
that contain the “neighborhood” of the original
instructions or data, the chances to increase the
hit ratio, will be even higher.

With the purpose of implementing virtual
memory, the program memory space is split into
pieces that are moved between the disk and the
memory. Typically, the program memory space is
split into equal pieces called pages. The physical
memory is also split into pieces in the same size
called frames.

There is an option to split the program into
unequal pieces called segments. This split is logi-
cal; therefore, it is more suitable for protection
and sharing; however on the other hand, since the
pieces are not equal, there will be a problem of
external fragmentation. To facilitate both of the
advantages, there are computer architectures that
use segments of pages.

When a program tries to access a datum in an
address that is not available in the memory, the
computer hardware will generate a page fault.
The operating system handles the page fault by
loading the missing page into the memory while
emptying out a frame of the memory if there is a
need for that. The decision of which page should
be emptied out is typically based on LRU. The
time needed by the pure LRU algorithm is too
costly because we will need to update too many
data after every memory access, so instead most

4

Kernel Stack Overflows Elimination

of the operating systems use an approximation of
LRU. Each page in the memory has a reference bit
that the computer hardware set whenever the page
is accessed. According to the CLOCK algorithm
(Corbato, 1968), (Nicola et al., 1992), (Jiang et
al., 2005), the pages are arranged in a circular
list so as to select a page for swapping out from
the memory, the operating system moves on the
page list and select the first page that its reference
bit is unset. While the operating system moves
on the list, it will unset the reference bits of the
pages that it sees during the move. At the next
search for a page for swapping out, the search
will continue from the place where the last search
was ended. A page that is being used now will not
be swapped out because its reference bit will be
set before the search will find it again. CLOCK
is still dominating the vast majority of operating
systems including UNIX, Linux and Windows
(Friedman, 1999).

Virtual memory is effective just when not
many page faults are generated. According to
the locality principle the program usually access
memory addresses at the nearby area; therefore,
if the pages in the nearby area are loaded in the
memory, just few page faults will occur. During
the execution of a program there are shifts from
one locality to another. These shifts usually cause
to an increase in the number of the page faults.
In any phase of the execution, the pages that are
included in the localities of the process are called
the Working Set (Denning, 1968).

As has been written above, virtual memory
works very similar to cache memory. In cache
memory systems, there is a possibility to imple-
ment the cache memory such that each portion of
the memory can be put in any place in the cache.
Such a cache is called Fully Associative Cache.
The major advantage of Fully Associative Cache is
its high hit ratio; however Fully Associative Cache
is more complex, the search time in it is longer
and its power consumption is higher. Usually,
cache memories are Set Associative meaning each
part of the memory can be put only in predefined

locations, typically just 2 or 4. In Set Associative
Cache the hit ratio is smaller, but the search time
in it is shorter and the power consumption is
lower. In virtual memory, the penalty of missing
a hit is very high because it causes an access to
a mechanical disk that is very slow; therefore, a
page can be located in any place in the memory
even though this will make the search algorithm
more complex and longer.

In the programmer’s point of view, the pro-
grams will be written using only virtual addresses.
When a program is executed, there is a need
to translate the virtual addresses into physical
addresses. This translation is done by a special
hardware component named MMU (Memory
Management Unit). In some cases the operating
system also participates in the translation pro-
cedure. The basis for the address translation is a
page table that the operating system prepares and
maintains. The simpler form of the page table is a
vector that its indices are the virtual page numbers
and every entry in the vector contains the fitting
physical page number. With the aim of translat-
ing a virtual address into a physical address,
there is a need to divide the address into a page
number and an offset inside the page. According
to the page number, the page will be found in the
page table and the translation to a physical page
number will be done. Concatenating the offset to
the physical page number will yield the desired
physical address.

Flat page table that maps the entire virtual
memory space might occupy too much space in
the physical memory. E. g. if the virtual memory
space is 32 bits and the page size is 4KB, there will
be needed more than millions entries in the page
table. If each entry in the page table is 4 bytes,
the page table size of each process will be 4MB.
There is a possibility to reduce the page table size
by using registers that will point to the beginning
and the end of the segment that the program makes
use of. E. g. UNIX BSD 4.3 permanently saves
the page tables of the processes in the virtual
memory of the operating system. The page table

5

Kernel Stack Overflows Elimination

consists of two parts - one part maps the text,
the data and the heap section that typically oc-
cupy a continuous region at the beginning of the
memory; whereas the second part maps the stack
that occupy a region beginning at the end of the
virtual memory. This make a large “hole” in the
middle of the page table between the heap region
and the stack region and the page table is reduced
to just two main areas. Later systems have also
needs of dynamic libraries mapping and thread
support; therefore the memory segments of the
program are scattered over the virtual memory
address space. With the aim of mapping a sparse
address space and yet reducing the page table
size, most of the modern architectures make use
of a hierarchy page table. E. g. Linux uses a three
level architecture independent page table scheme
(Hartig et al., 1997). The tables in the lower levels
will be needed just if they map addresses that the
process accesses. E. g. Let us assume a hierarchy
page table of two levels that the higher level page
table contains 1024 pointers to lower level page
tables and each page table in the lower level also
contains 1024 entries. An address of 32 bits will
be split into 10 bits that will contain the index of
the higher level page table where a pointer to a
page table in a lower level will reside, more 10
bits that will contain an index to a lower level
page table where a pointer to the physical frame
in the memory will reside and 12 bits that will
contain the offset inside the physical page. If the
address space is mapped by 64 bits, two levels page
table will not be enough and more levels should
be added in order to reduce the page table into a
reasonable size. This may make the translation
time longer, but a huge page table will occupy too
much memory space and will be an unnecessary
waste of memory resources.

StacK allocationS

fixed Size allocations

User space allocations are transparent with a large
and dynamically growing stack. In the Linux
kernel’s environment the stack is small-sized and
fixed. It is possible to determine the stack size
as from 2.6.x kernel series during compile time
choosing between 4 to 8KB. The current tendency
is to limit the stack to 4KB.

The allocation of one page is done as one non-
swappable base-page of 4KB. If a 8KB stack is
used, two non-swappable pages will be allocated,
even if the hardware support an 8KB super-page
(Itshak and Wiseman, 2008); in point of fact, IA-
32 machines do not support 8KB super-pages, so
8KB is the only choice.

The rational for this choice is to limit the
amount of memory and virtual memory address
space that is allocated in order to support a large
number of user processes. Allocating an 8KB stack
increases the amount of memory by a factor of
two. In addition the memory must be allocated
as two contiguous pages which are relatively
expensive to allocate.

A process that executes in kernel mode, i.e.
executing a system call, will use its own kernel
stack. The entire call chain of a process execut-
ing inside the kernel must be capable of fitting
on the stack. In an 8KB stack size configuration,
interrupt handlers use the stack of the process
they interrupt. This means that the kernel stack
size might need to be shared by a deep call chain
of multiple functions and an interrupt handler. In
a 4KB stack size configuration, interrupts have a
separate stack, making the exception mechanism
slower and more complicated (Robbins, 2004).

The strict size of the stack may cause an over-
flow. Any system call must be aware of the stack
size. If large stack variables are declared and/or
too many function calls are made, an overflow
may occur (Baratloo et al., 2000), (Cowan et al.,
1998).

6

Kernel Stack Overflows Elimination

Memory corruption caused by a stack overflow
may cause the system to be in an undefined state
(Wilander and Kamkar, 2003). The kernel makes
no effort to manage the stack and no essential
mechanism oversees the stack size.

In (Chou et al., 2001) the authors present an
empirical study of Linux bugs. The study com-
pares errors in different subsections of Linux
kernels, discovers how bugs are distributed and
generated, calculates how long, on average, bugs
live, clusters bugs according to error types, and
compares the Linux kernel bugs to the OpenBSD
kernel bugs. The data used in this study was col-
lected from snapshots of the Linux kernel across
seven years. The study refers to the versions
until the 2.4.1 kernel series, as it was published
in 2001. 1025 bugs were reported in this study.
The reason for 102 of these bugs is large stack
variables on the fixed-size kernel stack. Most of
the fixed-size stack overflow bugs are located in
device drivers. Device drivers are written by many
developers who may understand the device more
than the kernel, but are not aware of the kernel
stack limitation. Hence, no attempt is made to
confront this setback. In addition, only a few users
may have a given device; thus, only a minimal
check might be made for some device drivers. In
addition, Cut-and-Paste bugs are very common
in device drivers and elsewhere (Li et al., 2004);
therefore, the stack overflow bugs are incessantly
and unwarily spread.

The goal of malicious attackers is to drive
the system into an unexpected state, which can
help the attacker to infiltrate into the protected
portion of the operating system. Overflowing
the kernel stack can provide the attacker this
option which can have very devastating security
implications (Coverity, 2004). The attackers look
for rare failure cases that almost never happen in
normal system operations. It is hard to track down
all the rare cases of kernel stack overflow, thus
the operating system remains vulnerable. This
leads us to the unavoidable conclusion: Since
the stack overflows are difficult to detect and fix,

the necessary solution is letting the kernel stack
grow dynamically.

A small fixed size stack is a liability when
trying to port code from other systems to Linux.
The kernel thread capability would seem offer
an ideal platform for porting user code and non-
Linux OS code. This facility is limited both by
the lack of a per-process memory space and by a
small fixed sized size stack.

An example of the inadequacy of the fixed size
stack is in the very popular use of the Ndiswrapper
project (Fuchs and Pemmasani, 2005) to imple-
ment Windows kernel API and NDIS (Network
Driver Interface Specification) API within the
Linux kernel. This can allow the use of a Windows
binary driver for a wireless network card running
natively within the Linux kernel, without binary
emulation. This is frequently the solution used
when hardware manufacturers refuse to release
detail of their product so a native Linux driver is
not available.

The problem with this approach is that the
Windows kernel provides a minimum of 12KB
kernel stack whereas Linux in the best case uses
an 8KB stack. This mismatch of kernel stack
sizes can and cause system stack corruptions
leading to kernel crashes. This would ironically
seem to be the ultimate revenge of an OS (MS
Windows) not known for long term reliability on
an OS (Linux) which normally is known for its
long term stability.

current Solutions

Currently, Operating Systems developers have
suggested several methods how to tackle the kernel
stack overflows. They suggest to change the way
of writing the code that supposed to be executed
in kernel mode instead of changing the way that
kernel stack is handled. This is unacceptable - the
system must cater for its users!

The common guidance for kernel code devel-
opers is not to write recursive functions. Infinite
number of calls to a recursive function is a com-

7

Kernel Stack Overflows Elimination

mon bug and it will cause very soon a kernel stack
overflow. Even too deep recursive call can easily
make the stack growing fast and overflowing. This
is also correct for deeply nested code. The kernel
stack size is very small and even the kernel stack
of Windows that can be 12KB or 24KB might
overflow very quickly if the kernel code is not
written carefully.

Also a common guidance is not to use local
variables in kernel code. Global variables are not
pushed upon the kernel stack; therefore they will
save space on the kernel stack and will not cause
a kernel overflow. This guidance is definitely
against software engineering rules. A code with
only global variables is quite hard to be read and
quite hard to be checked and rewritten; however
since the kernel stack space is so precise and even
a tiny exceeding will be terribly devastating, kernel
code developers agree to write an unclear code
instead of having a buggy code.

Another frequent guidance is not to declare local
variables as a single character or even as a string of
characters if the intention is to create a local buffer
for a function in the kernel code. Instead, the buf-
fer should be put in a paged or a non-paged pool
and then a declaration of a pointer to that buffer
can be made. In this way, when a call from this
kernel function is made, not all the buffer will be
pushed upon the kernel stack and only the pointer
will actually be pushed upon the stack.

This is also one of the reasons why the ker-
nel code is not written in C++. C++ needs large
memory space for allocations of classes and
structures. Sometimes, these allocations can be
too large and from time to time they can be a
source for kernel stack overflows.

There were some works that suggested to dedi-
cate a special kernel stack for specific tasks e.g.
(Draves et al., 1991); however, these additional
kernel stacks make the code very complex and the
possibilities for bugs in the kernel code become
more likely to happen.

Some works tried to implement a hardware
solution e.g. (Frantzen and Shuey, 2001); however

such a solution can be difficult to implementation
because of the pipelined nature of the nowadays
machines. In order to increase the rate of comput-
ers, many manufacturers use the pipeline method
(Jouppi and Wall, 1989), (Kogge, 1981), (Wise-
man, 2001), (Patterson and Hennessy, 1997).
This method enables performing several actions
in a machine in parallel mode. Every action is in
a different phase of its performing. The action is
divided into some fundamental sub-actions which
can be performed in one clock cycle. In every
clock cycle, from every action, the machine will
perform a new sub-action. A pipeline machine
can perform different sub-actions in parallel. In
every clock cycle, the machine performs sub-
actions for different actions. The stack handling is
complicated because it is depended on the braches
to functions which are not easy to be predicted;
however, some solutions have been suggested to
this difficulty e.g. (McMahan, 1998).

dynamic Size allocations

In the 1980s, a new operating system concept
was introduced: the microkernels (Liedtke, 1996),
(Bershad et al., 1995). The objective of micro-
kernels was to minimize the kernel code and to
implement anything possible outside the kernel.
This concept is still alive and embraced by some
operating systems researchers (Leschke, 2004),
although the classic operating systems like Linux
still employ the traditional monolithic kernel.

The microkernels concept has two main advan-
tages: First, the system is flexible and extensible,
i.e. the operating system can easily adapt a new
hardware. Second, many malfunctions are isolated
like in a regular application; because many parts
of the operating system are standard processes
and thus are independent. A permanent failure
of a standard process does not induce a reboot;
therefore, the microkernel based operating systems
tend to be more robust (Lu and Smith, 2006).

A microkernel feature that is worthy of note is
the address space memory management (Liedtke,

8

Kernel Stack Overflows Elimination

1995). A dedicated process is in charge of the
memory space allocation, reallocations and free.
The process is executed in user mode; thus, the
page faults are forwarded and handled in user mode
and cannot cause a kernel bug. Moreover, most of
the kernel services are implemented outside the
kernel and specifically the device drivers; hence
these services are executed in user mode and are
not able to use the kernel stack.

Although the microkernel has many theoretical
advantages (Hand et al., 2005), its performance
and efficiency are somewhat disappointing. Nowa-
days, most of the modern operating systems use
a monolithic kernel. In addition, even when an
operating system uses a microkernel scheme, there
still will be minimal use of the kernel stack.

We propose an approach that suggests a dy-
namically growing stack. However, unlike the
microkernel approach, we will implement the
dynamically growing stack within the kernel.

real time considerations

Linux is designed as a non-preemptive kernel.
Therefore, by its nature, is not well suited for
real time applications that require deterministic
response time.

The 2.4.x Linux kernel versions introduced
several new amendments. One of them was the
preemptive patch which supports soft real-time
applications (Anzinger and Gamble, 2000). This
patch is now a standard in the new Linux kernel
versions (Kuhn, 2004). The objective of this
patch is executing the scheduler more often by
finding places in the kernel code that preemptions
can be executed safely. On such cases more data
is pushed onto the kernel stack. This additional
data can worsen the kernel overflow problem.
In addition, these cases are hard to be predicted
(Williams, 2002).

For hard real-time applications, RTLinux
(Dankwardt, 2001) or RTAI (Mantegazz et al.,
2000) can be used. These systems use a nano-
kernel that runs Linux as its lowest priority

execution thread. This thread is fully preemptive
hence real-time tasks are never delayed by non-
real-time operations.

Another interesting solution for a high-speed
kernel-programming environment is the KML
(Kernel Mode Linux) project (Maeda, 2002a),
(Maeda, 2002b), (Maeda, 2003). KML allows
executing user programs in kernel mode and a
direct access to the kernel address space. The
kernel mode execution eliminates the system call
overhead, because every system call is merely a
function call. The main disadvantage of KML is
that any user can write to the kernel memory. In
order to trim down the aforementioned problem,
the author of KML suggests using TAL (Typed
Assembly Language) which checks the program
before loading. However, this check does not al-
ways find the memory leak. As a result, the security
is very poor. It is difficult to prevent illegal memory
access and illegal code execution. On occasion,
memory illegal accesses are done deliberately, but
they also can be performed accidentally.

Our approach to increase the soft real-time
applications responsiveness is to run them as
kernel threads while using fundamental normal
process facilities such as a large and dynamically
growing stack. While running in kernel context,
it is possible to achieve a better predictive re-
sponse time as the kernel is the highest priority
component in the system. The solution provides
the most important benefits you find in the KML
project, although this solution is a more intuitive
and straightforward implementation.

implementation

The objective of this implementation is to sup-
port the demand paging mechanism for the kernel
mode stack. The proposed solution is a patch for
the kernel that can be enabled or disabled using
the kernel configuration tools. In the following
sections the design, implementation and testing
utilities are described.

9

Kernel Stack Overflows Elimination

process descriptor

In order to manage its processes, Linux has for
each process a process descriptor containing the
information related to this process (Gorman,
2004). Linux stores the process descriptors in a
circular doubly linked list called the task list. The
process descriptor’s pointer is a part of a structure
named “thread_info” that is stored under the bot-
tom of the kernel mode stack of each process as
shown in Figure 1.

This feature allows referencing the process
descriptor using the stack pointer without any
memory referencing. The reason for this method
of implementation is improved performance. The
stack pointer address is frequently used; hence, it
is stored in a special purpose register. In order to
get a reference for the current process descriptor
faster, the stack pointer is used. This is done by
a macro called “current”.

In order to benefit the performance and leave
the “current” mechanism untouched, a new alloca-
tion interface is introduced which allocates one
physical page and a contiguous virtual address
space that is aligned to the new stack size.

The new virtual area of the stack size can be
of any size. The thread_info structure is set to
the top of the highest virtual address minus the
thread_info structure size. The stack pointer starts
from beneath the thread_info. Additional physi-
cal pages will be allocated and populated in the

virtual address space if the CPU triggers a page
fault exception.

exceptions

The IA-32 architecture provides 4 protection
levels of code execution. Usually they are called
“rings” and numbered as 0,1,2,3 whereas 0 is the
most privileged ring and 3 is the least privileged.
Linux uses just ring 0 and 3. Ring 0 is used when
the kernel is executed, whereas 3 is used for non-
privileged user space applications.

When a process is executed and an exception
occurs, the ring is switched from 3 to 0. One of
the consequences of this switch is changing of the
stack. The process’ user space stack is replaced
by the process’ kernel mode stack while the CPU
pushes several registers to the new stack. When
the execution is completed, the CPU restores the
interrupted process user space stack using the
registers it pushed to the kernel stack.

If an exception occurs during a kernel execution
in the kernel mode stack, the stack is not replaced
because the task is already running in ring 0. The
CPU cannot push the registers to the kernel mode
stack, thus it generates a double fault exception.
This is called the stack starvation problem.

Figure 1. Kernel Memory Stack and the Process Descriptor

10

Kernel Stack Overflows Elimination

interrupt task

Interrupts divert the processor to code outside the
normal flow of control. The CPU stops what it
is currently doing and switches to a new activity.
This activity is usually held in the context of the
process that is currently running, i.e the interrupted
process. As mentioned, current scheme may lead
to a stack starvation problem if a page fault excep-
tion happens in the kernel mode stack.

The IA-32 provides a special task manage-
ment facility to support process management in
the kernel. Using this facility while running in
the kernel mode causes the CPU to switch an
execution context to a special context, therefore
preventing the stack starvation problem.

The current Linux kernel release uses this kind
of mechanism to handle double fault exceptions
that are non-recoverable exceptions in the kernel.
This mechanism uses a system segment called a
Task State Segment that is referenced via the IDT
(Interrupt Descriptor Table) and the GDT (Global
Descriptor Table) tables. This mechanism provides
a protected way to manage processes although it
is not widely used because of a relatively larger
context switch time.

We suggest adding the special task manage-
ment facility to handle page fault exceptions in
the kernel mode stack. Using this mechanism
it is possible to handle the exceptions by al-
locating a new physical page, mapping it to the
kernel page tables and resuming the interrupted
process. Current user space page faults handling
will remains as is.

eValuation

First, we used the BYTE UNIX benchmark
(BYTE, 2005) in order to check that we did not
introduce unnecessary performance degradation
in the system’s normal flow of execution. The
benchmark that was used checks system perfor-
mance by the following criteria (as can be seen in

the following figures 2, 3): system call overhead,
pipe throughput, context switching, process cre-
ation (spawn) and execl.

Results measurements are presented in lps
(loops per second). We executed the benchmark on
two different platforms. The first test was executed
on a Pentium 1.7GHz with 512MB RAM and a
cache of 2MB running Linux kernel 2.6.9 with
Fedora core 2 distribution. The detailed results are
in Figure 2. Blue columns represent the original
kernel whereas the green columns represent the
patched kernel.

We also executed the BYTE benchmark on
a Celeron Pentium 2.4GHz with 256MB RAM
and a cache of 512KB running Linux kernel 2.6.9
with Fedora core 2 distribution. The results of
this test can be seen in Figure 3. Examination
of the results found no performance degradation
in the new mechanism integrated into the Linux
kernel and the results of all tests were essentially
unchanged.

Second, we performed a functionality test to
check that when the CPU triggers a page fault in
the kernel mode stack, a new page is actually al-
located and mapped to the kernel page tables.

This feature was accomplished by writing a
kernel module and intentionally overloading the
stack by a large vector variable. We then added
printing to the page fault handler and were able
to assess that the new mechanism worked as
expected.

It has to be noted that only page faults that are
in the kernel mode stack are handled using the
task management facility, whereas page faults
triggered from user space processes are handled
as in the original kernel.

Triggering of page faults from the user pro-
cesses stack and even more so from the kernel
mode stack rarely happens. In both scenarios per-
formance decrement in the system is negligible.

In spite of the aforementioned, we obtained
several measurements to ensure that the new
mechanism does not demonstrate anomalous
results.

11

Kernel Stack Overflows Elimination

Page fault latency measurements showed that
the original page fault time is averagely 3.55 mi-
croseconds on the Pentium 1.7GHz we used in
the previous test, whereas the page fault time of
the kernel stack is averagely 7.15 microseconds
i.e. the kernel stack page fault time is apparently
roughly double.

concluSion

An overflow in kernel stack is a common bug in
the Linux operating system. These bugs are dif-
ficult to detect because they are created as a side
effect of the code and not as an inherent mistake
in the algorithm implementation.

Figure 2. BYTE Unix benchmark for Pentium 1.7GHz.

Figure 3. BYTE Unix benchmark for Pentium 2.4GHz.

12

Kernel Stack Overflows Elimination

This chapter shows how the size of the kernel
stack can dynamically grow using the common
mechanism of page faults giving a number of
advantages:

1. Stack pages are allocated on demand. If a
kernel process needs minimal stack only
one page is allocated. Only kernel processes
that need larger stacks will have more pages
allocated.

2. The stack pages allocated per kernel pro-
cess need not be contiguous but rather
non-contiguous physical pages are mapped
contiguously by the MMU.

3. Stack overflows can be caught and damage
to other kernel process stacks prevented.

4. Larger kernel stacks can be efficiently pro-
vided. This facilitates porting of code that
has not been designed for minimal stack
usage into the Linux kernel.

referenceS

Analysis of the Linux kernel (2004). San Francisco,
CA: Coverity Corporation.

Anzinger, G., & Gamble, N. (2000). Design of
a Fully Preemptable Linux Kernel. MontaVista
Software.

Baratloo, A., Tsai, T., & Singh, N. (2000). Trans-
parent Run-Time Defense Against Stack Smashing
Attacks. In Proceedings of the USENIX annual
Technical Conference.

Bershad, B. N., Chambers, C., Eggers, S., Maeda,
C., McNamee, D., & Pardyak, P. et al (1995).
SPIN - An Extensible Microkernel for Applica-
tion-specific Operating System Services. ACM
Operating Systems Review, 29(1).

Chou, A., Yang, J. F., Chelf, B., Hallem, S., &
Engler, D. (2001). An Empirical Study of Op-
erating Systems Errors. In Proceedings of the
18th ACM, Symposium on Operating System
Principals (SOSP), (pp. 73-88), Lake Louise,
Alta. Canada.

Corbato, A. (1968). Paging Experiment with
the Multics System. MIT Project MAC Report,
MAC-M-384.

Cowan, C., Pu, C., Maier, D., Hinton, H., Wal-
pole, J., Bakke, P., et al. (1998). StackGuard:
Automatic Adaptive Detection and Prevention of
Buffer-Overflow Attacks. In Proceedings of the
7th USENIX Security Conference, San Antonio,
TX.

Dankwardt, K. (2001). Real Time and Linux,
Part 3: Sub-Kernels and Benchmarks. Retrieved
from

Denning, P. (1970). Virtual Memory. [CSUR].
ACM Computing Surveys, 2(3), 153–189.
doi:10.1145/356571.356573

Denning, P. J. (1968). The Working Set Model for
Program Behavior. Communications of the ACM,
11(5), 323–333. doi:10.1145/363095.363141

Draves, R. P., Bershad, B. N., Rashid, R. F., &
Dean, R. W. (1991). Using continuations to imple-
ment thread management and communication in
operating systems. In Proceedings of the thirteenth
ACM symposium on Operating systems principles,
Pacific Grove, CA, (pp. 122-136).

Frantzen, M., & Shuey, M. (2001). StackGhost:
Hardware facilitated stack protection. In Proceed-
ings of the 10th conference on USENIX Security
Symposium – Washington, D.C. (Vol. 10, p. 5).

Friedman, M. B. (1999). Windows NT Page
Replacement Policies. In Proceedings of 25th
International Computer Measurement Group
Conference, (pp. 234-244).

13

Kernel Stack Overflows Elimination

Fuchs, P., & Pemmasani, G. (2005). NdisWrapper.
Retrieved from http://ndiswrapper.sourceforge.
net/

Gorman, M. (2004). Understanding The Linux
Virtual Memory Manager. Upper Saddle River,
NJ: Prentice Hall, Bruce Perens’ Open Source
Series.

Hand, S. Warfield, A. Fraser, K. Kotsovinos E.
& Magenheimer, D. (2005). Are Virtual Machine
Monitors Microkernels Done Right? In Pro-
ceedings of the Tenth Workshop on Hot Topics
in Operating Systems (HotOS-X), June 12-15,
Santa-Fe, NM.

Hartig, H. Hohmuth, M. Liedtke, J. Schonberg, &
S. Wolter, J. (1997). The Performance of µ-Kernel-
Based Systems. In Proceedings of the sixteenth
ACM symposium on Operating systems principles,
Saint Malo, France, (p.66-77).

Intel Pentium Processor User’s Manual. (1993).
Mt. Prospect, IL: Intel Corporation. IA-32 Intel
Architecture Software Developer’s Manual,
(2005). Volume 3: System Programming Guide.
Mt. Prospect, IL: Intel Corporation.

Itshak, M., & Wiseman, Y. (2008). AMSQM:
Adaptive Multiple SuperPage Queue Manage-
ment. In Proc. IEEE Conference on Information
Reuse and Integration (IEEE IRI-2008), Las
Vegas, Nevada, (pp. 52-57).

Jacob, B. (2002). Virtual Memory Systems and
TLB Structures. In Computer Engineering Hand-
book. Boca Raton, FL: CRC Press.

Jiang, S., Chen, F., & Zhang, X. (2005). CLOCK-
Pro: an Effective Improvement of the CLOCK
Replacement. In Proceedings of 2005 USENIX
Annual Technical Conference, Anaheim, CA (pp.
323-336).

Jouppi, N. P., & Wall, D. W. (1989). Available
Instruction Level Parallelism for Superscalar
and Superpipelined Machines. In Proc. Third
Conf. On Architectural Support for Programming
Languages and Operation System IEEE/ACM,
Boston, (pp. 82-272).

Kogge, P. M. (1981). The Architecture of Pipelined
Computers. New-York: McGraw-Hill.

Kuhn, B. (2004). The Linux real time interrupt
patch. Retrieved from http://linuxdevices.com/
articles/AT6105045931.html.

Leschke, T. (2004). Achieving speed and flex-
ibility by separating management from protec-
tion: embracing the Exokernel operating sys-
tem. Operating Systems Review, 38(4), 5–19.
doi:10.1145/1031154.1031155

Li, Z., Lu, S., Myagmar, S., & Zhou, Y. (2004).
CP-Miner: A Tool for Finding Copy-paste and
Related Bugs in Operating System Code. In The
6th Symposium on Operating Systems Design
and Implementation (OSDI ‘04), San Francisco,
CA.

Liedtke, J. (1995). On Micro-Kernel Construction.
In Proceedings of the 15th ACM Symposium on
Operating System Principles. New York: ACM.

Liedtke, J. (1996). Toward Real Microker-
nels. Communications of the ACM, 39(9).
doi:10.1145/234215.234473

LINUX Pentiums using BYTE UNIX Benchmarks
(2005). Winston-Salem, NC: SilkRoad, Inc.

Love, R. (2003). Linux Kernel Development (1st
Ed.). Sams.

Lu, X., & Smith, S. F. (2006). A Microkernel
Virtual Machine: Building Security with Clear
Interfaces. ACM SIGPLAN Workshop on Pro-
gramming Languages and Analysis for Security,
Ottawa, Canada, June 10, (pp. 47-56).

14

Kernel Stack Overflows Elimination

Maeda, T. (2002). Safe Execution of User programs
in Kernel Mode Using Typed Assembly Language.
Master Thesis, The University of Tokyo, Tokyo,
Japan.

Maeda, T. (2002). Kernel Mode Linux: Execute
user process in kernel mode. Retrieved from http://
www.yl.is.s.u-tokyo.ac.jp/~tosh/kml/

Maeda, T. (2003). Kernel Mode Linux. Linux
Journal, 109, 62–67.

Mantegazz, P., Bianchi, E., Dozio, L., Papacharal-
ambous, S., & Hughes, S. (2000). RTAI: Real-Time
Application Interface. Retrieved from http://www.
linuxdevices.com/articles/ AT6605918741.html.

McMahan, S. (1998). Cyrix Corp. Branch Pro-
cessing unit with a return stack including repair
using pointers from different pipe stage. U.S.
Patent No. 5,706,491.

Nicola, V. F., Dan, A., & Diaz, D. M. (1992). Analy-
sis of the generalized clock buffer replacement
scheme for database transaction processing. ACM
SIGMETRICS Performance Evaluation Review,
20(1), 35–46. doi:10.1145/149439.133084

Patterson, D. A., & Hennessy, J. L. (1997). Com-
puter Organization and Design (pp. 434-536).
San Francisco, CA: Morgan Kaufmann Publish-
ers, INC.

Robbins, A. (2004). Linux Programming by Ex-
ample. Upper Saddle River, NJ: Pearson Educa-
tion Inc.

Wilander, J., & Kamkar, M. (2003). A Comparison
of Publicly Available Tools for Dynamic Buf-
fer Overflow Prevention. In Proceedings of the
10th Network and Distributed System Security
Symposium (NDSS’03), San Diego, CA, (pp.
149-162).

Williams, C. (2002). Linux Scheduler Latency.
Raleigh, NC: Red Hat Inc.

Winwood, S. J., Shuf, Y., & Franke, H. (2002).
Multiple page size support in the Linux kernel.
Proceedings of Ottawa Linux Symposium, Ottawa,
Canada. Bovet, D. P. & Cesati, M. (2003). Un-
derstanding the Linux Kernel (2nd Ed). Sebastol,
CA: O’reilly.

15

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2

Device Driver Reliability
Michael M. Swift

University of Wisconsin—Madison, USA

introduction

Improving reliability is one of the greatest challenges
for commodity operating systems, such as Windows
and Linux. System failures are commonplace and
costly across all domains: in the home, in the server
room, and in embedded systems, where the existence
of the OS itself is invisible. At the low end, failures
lead to user frustration and lost sales. At the high

end, an hour of downtime from a system failure can
lead to losses in the millions.

Computer system reliability remains a crucial
but unsolved problem. This problem has been ex-
acerbated by the adoption of commodity operating
systems, designed for best-effort operation, in en-
vironments that require high availability. While the
cost of high-performance computing continues to
drop because of commoditization, the cost of failures
(e.g., downtime on a stock exchange or e-commerce
server, or the manpower required to service a help-

abStract

Despite decades of research in extensible operating system technology, extensions such as device drivers
remain a significant cause of system failures. In Windows XP, for example, drivers account for 85% of
recently reported failures. This chapter presents Nooks, a layered architecture for tolerating the failure
of drivers within existing operating system kernels. The design consists techniques for isolating drivers
from the kernel and for recovering from their failure. Nooks isolates drivers from the kernel in a light-
weight kernel protection domain, a new protection mechanism. By executing drivers within a domain,
the kernel is protected from their failure and cannot be corrupted. Shadow drivers recover from device
driver failures. Based on a replica of the driver’s state machine, a shadow driver conceals the driver’s
failure from applications and restores the driver’s internal state to a point where it can process requests
as if it had never failed. Thus, the entire failure and recovery is transparent to applications.

DOI: 10.4018/978-1-60566-850-5.ch002

16

Device Driver Reliability

desk request in an office environment) continues
to rise as our dependence on computers grows.
In addition, the growing sector of “unmanaged”
systems, such as digital appliances and consumer
devices based on commodity hardware and soft-
ware, amplifies the need for reliability.

Device drivers are a leading cause of operating
system failure. Device drivers and other extensions
have become increasingly prevalent in commodity
systems such as Linux (where they are called mod-
ules) and Windows (where they are called drivers).
Extensions are optional components that reside in
the kernel address space and typically communi-
cate with the kernel through published interfaces.
Drivers now account for over 70% of Linux kernel
code, and over 35,000 different drivers with over
112,000 versions exist on Windows XP desktops.
Unfortunately, most of the programmers writing
drivers work for independent hardware vendors
and have significantly less experience in kernel
organization and programming than the program-
mers that build the operating system itself.

In Windows XP, for example, drivers cause
85% of reported failures. In Linux, the frequency of
coding errors is up to seven times higher for device
drivers than for the rest of the kernel. While the
core operating system kernel can reach high levels
of reliability because of longevity and repeated
testing, the extended operating system cannot be
tested completely. With tens of thousands of driv-
ers, operating system vendors cannot even identify
them all, let alone test all possible combinations
used in the marketplace. In contemporary systems,
any fault in a driver can corrupt vital kernel data,
causing the system to crash.

This chapter presents Nooks, a driver reliabil-
ity subsystem that allows existing device drivers
to execute safely in commodity kernels (Swift,
Bershad & Levy, 2005). Nooks acts as a layer
between drivers and the kernel and provides two
key services: isolation and recovery. Nooks allows
the operating system to tolerate driver failures
by isolating the OS from device drivers. With

Nooks, a bug in a driver cannot corrupt or other-
wise harm the operating system. Nooks contains
driver failures with a new isolation mechanism,
called a lightweight kernel protection domain,
that is a privileged kernel-mode environment with
restricted write access to kernel memory.

When a driver failure occurs, Nooks detects
the failure with a combination of hardware and
software checks and triggers automatic recovery. A
new kernel agent, called a shadow driver, conceals
a driver’s failure from its clients while recovering
from the failure (Swift et al, 2006). During normal
operation, the shadow tracks the state of the real
driver by monitoring all communication between
the kernel and the driver. When a failure occurs,
the shadow inserts itself temporarily in place of
the failed driver, servicing requests on its behalf.
While shielding the kernel and applications from
the failure, the shadow driver restarts the failed
driver and restores it to a state where it can resume
processing requests as if it had never failed.

deVice driVer oVerView

A device driver is a kernel-mode software com-
ponent that provides an interface between the
OS and a hardware device. In most commodity
operating systems, device drivers execute in the
kernel for two reasons. First, they require privi-
leged access to hardware, such as the ability to
handle interrupts, which is only available in the
kernel. Second, they require high performance,
which is achieved via direct procedure calls into
and out of the kernel.

driver Software Structure

A driver converts requests from the kernel into
requests to the hardware. Drivers rely on two
interfaces: the interface that drivers export to the
kernel, which provides access to the device, and
the kernel interface that drivers import from the

17

Device Driver Reliability

operating system. The kernel invokes the func-
tions exported by a driver to requests its services.
Similarly, a driver invokes functions imported
from the kernel to request its services. For ex-
ample, Figure 1(a) shows the kernel calling into a
sound-card driver to play a tone; in response, the
sound driver converts the request into a sequence
of I/O instructions that direct the sound card to
emit a sound.

In addition to processing I/O requests, drivers
also handle configuration requests. Configura-
tion requests can change both driver and device
behavior for future I/O requests. As examples,
applications may configure the bandwidth of a
network card or the volume of a sound card.

In practice, most device drivers are members
of a class, which is defined by its interface. Code
that can invoke one driver in the class can invoke
any driver in the class. For example, all network
drivers obey the same kernel-driver interface, and

all sound-card drivers obey the same kernel-driver
interface, so no new kernel or application code is
needed to invoke new drivers in these classes. This
class orientation allows the OS and applications to
be device-independent, as the details of a specific
device are hidden from view in the driver.

In Linux, there are approximately 20 common
classes of drivers. However, not all drivers fit into
classes; a driver may extend the interface for a class
with proprietary functions, in effect creating a new
sub-class of drivers. Drivers may also define their
own semantics for standard interface functions,
known only to applications written specifically for
the driver. In this case, the driver is in a class by
itself. In practice, most common drivers, such as
network, sound, and storage drivers, implement
only the standard interfaces.

Device drivers are either request-oriented or
connection-oriented. Request-oriented drivers,
such as network drivers and block storage driv-

Figure 1. (a) a sound device driver, showing the common interface to the kernel and to all sound drivers,
(b) states of a network driver and sound driver

18

Device Driver Reliability

ers, maintain a single hardware configuration and
process each request independently. In contrast,
connection-oriented drivers maintain separate
hardware and software configurations for each
client of the device. Furthermore, requests on a
single connection may depend on past requests
that changed the connection configuration.

Devices attach to a computer through a bus,
such as PCI (Peripheral Component Interconnect)
or USB (Universal Serial Bus), which is respon-
sible for detecting attached devices and making
them available to software. When detected, the
operating system locates and loads the appropri-
ate device driver. Communication between the
driver and its device depends on the connection
bus. For PCI devices, the driver communicates
directly with the device through regions of the
computer’s physical address space that are mapped
onto the PCI bus or through I/O ports. Thus, loads
and stores to these addresses and ports cause
communication with a device. For USB devices,
drivers create request packets that are sent to the
device by the driver for the USB bus.

Most drivers rely on three types of communi-
cation with devices. First, drivers communicate
control information, such as configuration or I/O
commands, through reads and writes to device
registers in ports or I/O memory for PCI devices
or through command messages for USB devices.
Device registers are a device’s interface to share
information and to receive commands from a
driver. Second, drivers communicate data through
DMA (Direct Memory Access) by instructing the
device or bus to copy data between the device and
memory; the processor is not involved in copy-
ing, reducing the processing cost of I/O. Finally,
devices raise interrupts to signal that they need
attention. In response to an interrupt, the kernel
schedules a driver’s interrupt handler to execute. In
most cases, the interrupt signal is level triggered,
in that an interrupt raised by the device is only
lowered when the driver instructs the device to do
so. Thus, interrupt handling must proceed before
any normal processing, because enabling inter-

rupts in the processor will cause another interrupt
until the driver dismisses the interrupt.

Device drivers can be modeled as abstract state
machines; each input to the driver from the kernel
or output from the driver reflects a potential state
change in the driver. For example, the left side of
Figure 1(b) shows a state machine for a network
driver as it sends packets. The driver begins in state
S0, before the driver has been loaded. Once the
driver is loaded and initialized, the driver enters
state S1. When the driver receives a request to send
packets, it enters state S2, where there is a packet
outstanding. When the driver notifies the kernel
that the send is complete, it returns to state S1.
The right side of Figure 1(b) shows a similar state
machine for a sound-card driver. This driver may
be opened, configured between multiple states, and
closed. The state-machine model aids in designing
and understanding a recovery process that seeks
to restore the driver state by clarifying the state
to which the driver is recovering. For example,
a mechanism that unloads a driver after a failure
returns the driver to state S0, while one that also
reloads the driver returns it to state S1.

nooKS reliability layer

Nooks is a reliability layer that seeks to greatly
enhance OS reliability by isolating the OS from
driver failures. The goal of Nooks is practical:
rather than guaranteeing complete fault tolerance
through a new (and incompatible) OS or driver
architecture, Nooks seeks to prevent the vast
majority of driver-caused crashes with little or no
change to existing driver and system code. Nooks
isolates drivers within lightweight protection
domains inside the kernel address space, where
hardware and software prevent them from corrupt-
ing the kernel. After a driver fails, Nooks invokes
shadow drivers, a recovery subsystem, to recover
by restoring the driver to its pre-failure state.

19

Device Driver Reliability

design

Nooks operates as a layer that is inserted between
drivers and the OS kernel. This layer intercepts
all interactions between drivers and the kernel
to facilitate isolation and recovery. Figure 2
shows this new layer, called the Nooks Isolation
Manager (NIM). Above the NIM is the operating
system kernel. The NIM function lines jutting
up into the kernel represent kernel-dependent
modifications, if any, the OS kernel program-
mer makes to insert Nooks into a particular OS.
These modifications need only be made once.
Underneath the NIM is the set of isolated drivers.
The function lines jutting down below the NIM
represent the changes, if any, the driver writer
makes to interface a specific driver or driver class
to Nooks. In general, no modifications should be
required at this level.

The NIM provides five major architectural
functions, as shown in Figure 2: interposition,
isolation, communication, object tracking, and
recovery.

Interposition

The Nooks interposition mechanisms transpar-
ently integrate existing extensions into the Nooks
environment. Interposition code ensures that: (1)

all driver-to-kernel and kernel-to-driver control
flow occurs through the communication mecha-
nism, and (2) all data transfer between the kernel
and driver is viewed and managed by Nooks’
object-tracking code (described below).

The interface between the extension, the NIM,
and the kernel is provided by a set of wrapper
stubs that are part of the interposition mechanism.
Wrappers resemble the stubs in an RPC system
that provide transparent control and data transfer
across address space (and machine) boundaries.
Nooks’ stubs provide safe and transparent control
and data transfer between the kernel and driver.
Thus, from the driver’s viewpoint, the stubs ap-
pear to be the kernel’s extension API. From the
kernel’s point of view, the stubs appear to be the
driver’s function entry points.

In addition, wrapper stubs provide support for
recovery. When the driver functions correctly,
wrappers pass information about the state of the
driver to shadow drivers. During recovery, wrap-
pers disable communication between the driver
and the kernel to ensure that the kernel is isolated
from the recovery process.

Isolation

The Nooks isolation mechanisms prevent driver
faults from damaging the kernel (or other isolated

Figure 2. The Nooks Isolation Manager as a layer between device drivers and the kernel. The black
lines indicate the minor changes needed to each.

20

Device Driver Reliability

drivers). Every driver in Nooks executes within its
own lightweight kernel protection domain. This
domain is an execution context with the same
processor privilege as the kernel but with write
access to a limited portion of the kernel’s address
space. The major task of the isolation mechanism
is protection-domain management. This involves
the creation, manipulation, and maintenance of
lightweight protection domains.

Communication

The Nooks communication mechanisms enable
procedure calls between lightweight protection
domains. Unlike system calls, which are always
initiated by an application, the kernel frequently
calls into drivers. These calls may generate call-
backs into the kernel, which may then generate
a call into the driver, and so on. This complex
communication style is handled by a new kernel
service, called the Extension Procedure Call
(XPC) - a control transfer mechanism specifically
tailored to isolating driver within the kernel. An
XPC combines both a protection domain change
and a procedure call. This mechanism resembles
a system call, in that parameters must be verified
on entry to the kernel. However, XPC also occurs
from the kernel into the driver as well.

Object Tracking

Nooks object-tracking functions oversee all kernel
resources used by drivers. In particular, object-
tracking code: (1) maintains a list of kernel data
structures that are manipulated by a driver, (2)
controls all modifications to those structures, and
(3) provides object information for cleanup when
a driver fails. Protection domains prevent drivers
from directly modifying kernel data structures.
Therefore, object-tracking code must copy kernel
objects into a driver domain so they can be modi-
fied and copy them back after changes have been
applied. When possible, object-tracking code veri-
fies the type and accessibility of each parameter

that passes between the driver and kernel. Kernel
routines can then avoid scrutinizing parameters,
executing checks only when called from unreli-
able drivers.

Recovery

Nooks’ recovery functions detect and recover from
a variety of driver errors. Nooks detects a software
fault when an extension invokes a kernel service
improperly (e.g., with invalid arguments) or when
an extension consumes too many resources. In this
case, recovery policy determines whether Nooks
triggers recovery or returns an error code to the
driver, which can already handle the failure of
a kernel function. Triggering recovery prevents
further corruption, but may degrade performance
by recovering more frequently. Nooks detects
a hardware fault when the processor raises an
exception during driver execution, e.g., when a
driver attempts to read unmapped memory or to
write memory outside of its protection domain.
Unmodified drivers are unable to handle their own
hardware faults, so in such cases Nooks always
triggers a higher-level recovery.

Nooks relies on shadow drivers to recover
from the failure of a driver. Shadow drivers are a
recovery service that leverage the shared properties
of a class of drivers for recovery. The architecture
consists of three components: shadow drivers,
taps, and a shadow recovery manager.

A shadow driver is a kernel agent that facilitates
recovery for an entire class of device drivers. A
shadow driver instance is a running shadow driver
that recovers for a single, specific driver. The
shadow instance compensates for and recovers
from a driver that has failed. When a driver fails,
its shadow restores the driver to its pre-failure state.
This allows, for example, the recovered driver to
complete requests made before the failure.

21

Device Driver Reliability

implementation

Nooks was implemented within the Linux 2.4.18
kernel on the Intel x86 architecture. The kernel
provides over 700 functions callable by drivers
and other extensions and more than 650 extension-
entry functions callable by the kernel. Moreover,
few data types are abstracted, and drivers directly
access fields in many kernel data structures.

The Linux kernel supports standard interfaces
for many extension classes. For example, there
is a generic interface for block, character, and
network device drivers. The interfaces are imple-
mented as C language structures containing a set
of function pointers.

Most interactions between the kernel and
drivers take place through function calls, either
from the kernel into drivers or from drivers into
exported kernel routines. Drivers directly ac-
cess only a few global data structures, such as
the current task structure As a result, Nooks can
interpose on most kernel-driver interactions by
intercepting the function calls between the driver
and kernel.

Interposition

Interposition allows Nooks to intercept and control
communication between drivers and the kernel.
Nooks interposes on kernel-driver control transfers
with wrapper stubs. Wrappers provide transparency

by preserving existing kernel-driver procedure-
call interfaces while enabling the protection of all
control and data transfers in both directions.

When loading a module, Nooks links the driver
against wrappers rather than to normal kernel
functions. This ensures that Nooks intercepts
all function calls from the driver into the kernel.
Similarly, the kernel’s module initialization code
explicitly invokes a Nooks wrapper on the initial-
ization call into a driver, enabling the driver to
execute within its lightweight protection domain.
Following initialization, wrappers replace all func-
tion pointers passed from the driver to the kernel
with pointers to other wrappers. This causes the
kernel to call wrapper functions instead of driver
functions directly.

In addition to interposing on control transfers,
Nooks must interpose on some data references.
Drivers are linked directly to global kernel vari-
ables that they read but do not write (e.g., the
current time). For global variables that drivers
modify, Nooks creates a shadow copy of the
kernel data structure within the driver’s domain
that is synchronized to the kernel’s version. For
example, Nooks uses this technique for the queue
of packets sent and received by a network driver.
The object tracker synchronizes the contents of the
kernel and driver version of this structure before
and after XPCs into a network driver.

As noted above, Nooks inserts wrapper stubs
between kernel and driver functions. There are

Figure 3. Control flow of driver and kernel wrappers

22

Device Driver Reliability

two types of wrappers: kernel wrappers, which
are called by drivers to execute kernel-supplied
functions; driver wrappers, which are called by
the kernel to execute driver-supplied functions. In
both cases, a wrapper functions as an XPC stub
that appears to the caller as if it were the target
procedure in the called domain.

Both wrapper types perform the body of their
work within the kernel protection domain. There-
fore, the domain change occurs at a different point
depending on the direction of transfer, as shown
in Figure 3. When a driver calls a kernel wrapper,
the wrapper performs an XPC on entry so that the
body of the wrapper (i.e., object checking, copying,
etc.) can execute in the kernel’s domain. Once the
wrapper’s work is done, it calls the target kernel
function directly with a regular procedure call.
In the opposite direction, when the kernel calls a
driver wrapper, the wrapper executes within the
kernel’s domain. When it is done, the wrapper
performs an XPC to transfer to the target function
within the driver.

Wrappers perform four basic tasks. First, wrap-
pers implement the shadow driver tap mechanism
(described later in this chapter). Second, wrappers
check parameters for validity by verifying with the
object tracker and memory manager that pointers
are valid. Third, they implement call-by-value-
result semantics for XPC, by creating a copy of
kernel objects on the local heap or stack within

the driver’s protection domain. These semantics
ensure that updates to kernel objects are trans-
actional, because they are only applied after the
driver completes, when the wrappers copy the
results back to the kernel. Fourth, wrappers per-
form an XPC into the kernel or driver to execute
the desired function, as shown in Figure 3.

While wrappers must copy data between pro-
tection domains, no marshaling or unmarshaling
is necessary, because the driver and kernel share
the same address space. Instead, wrappers may
directly allocate and reference memory in either
the kernel or the driver protection domains. The
code for synchronizing simple objects is placed
directly in the wrappers, while the object tracker
provides synchronization routines for complex
objects with many pointers. As an optimization,
wrappers may pass parameters that are only read
but not written by drivers without modification,
as any attempt to modify the parameter will cause
a memory access fault.

To improve performance, the wrappers rely on
several techniques for moving complex objects
between protection domains. In some cases, Nooks
copies objects into the driver’s protection domain,
following embedded pointers as appropriate. It
is generally unnecessary to copy the complete
transitive closure of an object; while drivers
read pointers more than one level removed from
a parameter, they generally do not write to them.

Figure 4. Protection of the kernel address space. Drivers can read and write their private heap and
stacks, but only read from the kernel.

23

Device Driver Reliability

In other cases, Nooks avoids copying entirely by
changing the protection on the page containing
an object. A “page tracker” mechanism within the
object tracker remembers the state of these mapped
pages and grants and revokes driver access to the
pages. Nooks uses this mechanism to avoid copy-
ing network packets and disk blocks.

Writing a wrapper requires knowing how
drivers use a parameter: whether it is live across
multiple calls to the drivers, whether it can be
passed to other threads or back to the kernel, and
which fields of the parameter can be modified.
This analysis can be manual or performed by static
analysis tools that determine these properties by
analyzing an existing set of drivers.

Isolation

The isolation component of Nooks provides
memory management to implement lightweight
kernel protection domains with virtual memory
protection.

Figure 4 shows the Linux kernel with two
lightweight kernel protection domains, each con-
taining a single driver. All components exist in the
kernel’s address space. However, memory access
rights differ for each component: e.g., the kernel
has read-write access to the entire address space,
while each driver is restricted to read-only kernel
access and read-write access to its local domain.

To provide drivers with read access to the ker-
nel, Nooks’ memory management code maintains a
synchronized copy of the kernel page table for each
domain. Each lightweight protection domain has
private structures, including a domain-local heap,
a pool of stacks for use by the driver, memory-
mapped physical I/O regions, and kernel memory
buffers, such as socket buffers or I/O blocks, that
are currently in use by the driver.

Nooks protects against bugs but not against
malicious code. Lightweight protection domains
reflect this design. For example, Nooks prevents
a driver from writing kernel memory, but it does
not prevent a malicious driver from replacing the

domain-local page table explicitly by reloading
the hardware page table base register.

Furthermore, Nooks currently does not protect
the kernel from Direct Memory Access (DMA) by
a device into the kernel address space. Isolation
is provided through virtual memory page tables,
but devices use DMA to directly access physical
memory. Preventing a rogue DMA requires an IO
memory management unit (IOMMU), which is not
common on PC-class x86 computers. However,
Nooks tracks the set of pages writable by a driver
and could use this information to restrict DMA on
a machine with the suitable hardware support.

Communication

Nooks uses the extension procedure call (XPC)
mechanism to transfer control between driver and
kernel domains. The wrapper mechanism makes
the XPC mechanism invisible to both the kernel
and drivers, which continue to interact through
their original procedural interfaces.

Two functions internal to Nooks manage XPC
control transfer: one to transfer from the kernel
into a driver, and one to transfer from drivers into
the kernel. These functions take a function pointer,
an argument list, and a protection domain. They
execute the function with its arguments in the
specified domain. The transfer routines save the
caller’s context on the stack, find a stack for the
calling domain (which may be newly allocated or
reused when calls are nested), change page tables
to the target domain, and then call the function.
XPC performs the reverse operations when the
call returns.

Changing protection domains requires a change
of page tables. The Intel x86 architecture flushes
the TLB on such a change, and hence there is a
substantial cost to entering a lightweight protection
domain, both from the flush and from subsequent
TLB misses. This cost could be mitigated in a
processor architecture with a tagged TLB, such as
the MIPS or Alpha, or with single-address-space
protection support, such as the IA-64 or PA-RISC.

24

Device Driver Reliability

However, because Nooks’ lightweight protection
domains execute on kernel threads that share the
kernel address space, they reduce the costs of
scheduling and data copying on a domain change
when compared to normal cross-address space or
kernel-user RPCs.

To reduce the performance cost of XPC, Nooks
supports deferred calls, which batch many calls
into a single domain crossing. Nooks can defer
function calls that have no visible side effects to
the call. Wrappers queue deferred function calls
for later execution, either at the entry or exit of a
future XPC. Each domain maintains two queues:
a driver-domain queue holds delayed kernel calls,
and a kernel-domain queue holds delayed driver
calls. As an example, Nooks changes the packet-
delivery routine used by the network driver to
batch the transfer of message packets from the
driver to the kernel. When a packet arrives, the
driver calls a wrapper to pass the packet to the
kernel. The wrapper queues a deferred XPC to
deliver the packet after the driver completes
interrupt processing.

Object Tracking

The object tracker facilitates the recovery of kernel
objects following a driver failure. The Nooks ob-
ject tracker performs two independent tasks. First,
it records the addresses of all objects in use by a
driver in a database. As an optimization, objects
used only for the duration of a single XPC call are
recorded on the kernel stack. Objects with long
lifetimes are recorded in a per-protection-domain
hash table. Second, for objects that drivers may
modify, the object tracker creates and manages
a driver version of the object and records an as-
sociation between the kernel and driver versions.
Wrappers rely on this association to map param-
eters between the driver’s protection domain and
the kernel’s protection domain.

The Nooks implementation supports many
kernel object types, such as tasklets, PCI devices,
inodes, and memory pages. For each of the 52

object types used by drivers, there is a unique
type identifier and code to release instances of
that type during recovery. Complex types also
have a routine to copy changes between a kernel
and driver instance of the type.

When an object “dies” and is no longer usable
by a driver, the object tracker must remove the
object from its database. Determining when an
object will no longer be used requires a careful
examination of the kernel-driver interface. This
task is possible because the kernel requires the
same information to safely reclaim shared objects.
For example, some objects are accessible to the
driver only during the lifetime of a single XPC
call from the kernel. In this case, Nooks adds
the object to the tracker’s database when the call
begins and removes it on return. Other objects
are explicitly allocated and deallocated by the
driver, in which case Nooks knows their lifetimes
exactly. In still other cases, Nooks relies in the
semantics of the object and its use. For example,
drivers allocate a timer data structure to register
for a future callback. Nooks adds this object to
the object tracker when a driver calls the kernel
to add the timer and removes it when the timer
fires, at which point it is no longer used. The
object-tracking code is conservative, in that it
may under-estimate the lifetime of an object and
unnecessarily add and remove the same object
from the database multiple times. It will not,
however, allow a driver to access an object that
the kernel has released.

In addition to tracking objects in use by driv-
ers, the tracker must record the status of locks that
are shared with the kernel. When a driver fails,
Nooks releases all locks acquired by the driver
to prevent the system from hanging. As a result,
calls to lock kernel data structures require an XPC
into the kernel to acquire the lock, synchronize the
kernel and driver versions of the data structure,
and record that the lock was acquired.

25

Device Driver Reliability

Recovery

The recovery code in Nooks consists of three
components. First, the isolation components detect
driver failures and notify the controller. Second,
the object tracker and protection domains support
cleanup operations that release the resources in
use by a driver. This functionality is available to
the third component, a recovery manager, whose
job is to recover after a failure. The recovery
manager may be customized to a specific driver
or class of drivers.

Failure Detection
Nooks triggers recovery when it detects a failure
through software checks (e.g., parameter valida-
tion or livelock detection), processor exceptions,
or notification from an external source. Specifi-
cally, the wrappers, protection domains, and object
tracker notify the Nooks isolation manager of a
failure when:

The driver passes a bad parameter to the •
kernel, such as accessing a resource it had
freed or unlocking a lock not held.
The driver allocates too much memory, •
such as an amount exceeding the physical
memory in the computer.
The driver executes too frequently without •
an intervening clock interrupt (implying
livelock).
The driver generates an invalid processor •
exception, such as an illegal memory ac-
cess or an invalid instruction.

In addition, it is possible to implement an
external failure detector, such as a user- or kernel-
mode agent, that notifies the controller of a failure.
In all cases, the controller invokes the driver’s
recovery manager.

Recovery Managers
The recovery manager is tasked with returning
the system to a functioning state. Nooks supports

three recovery managers. The default recovery
manager is a kernel service that simply unloads
the failed driver, leaving the system running but
without the services of the driver. The restart
recovery manager is a user-mode agent that simi-
larly unloads the failed driver but then executes a
script to reload and restart the driver. The shadow
recovery manager performs complete recovery
in the kernel, oblivious to applications and the
kernel itself. Shadow driver recovery is described
in more detail in the next section.

The XPC, object tracking, and protection do-
main code all provide interfaces to the recovery
managers. The XPC service allows a manager to
signal all the threads that are currently executing
in the driver or have called through the driver
and back into the kernel. The signal causes the
threads to unwind out of the driver by returning
to the point where they invoked the driver without
executing any additional driver code.

The object tracker provides an interface to
recovery managers to enumerate the objects in use
by a driver at the time of failure and to garbage
collect the objects by releasing them to the kernel.
The manager may choose both the set of objects
it releases and the order in which to release them.
Thus, it may preserve objects for use by the driver
after recovery, such as memory-mapped I/O buf-
fers that a hardware device continues to access.

Lightweight kernel protection domains provide
similar support for recovery. The domains record
the memory regions accessible to a driver and
provide interfaces for enumerating the regions
and for releasing the regions to the kernel.

Summary of Nooks

Device drivers are a major source of failure in
modern operating systems. Nooks is a new re-
liability layer intended to significantly reduce
driver-related failures. Nooks isolates drivers in
lightweight kernel protection domains and relies
on hardware and software checks to detect failures.
After a failure, Nooks recovers by unloading and

26

Device Driver Reliability

then reloading the failed driver. Nooks focuses
on achieving backward compatibility, that is, it
sacrifices complete isolation and fault tolerance
for compatibility and transparency with existing
kernels and drivers. As a result, Nooks has the po-
tential to greatly improve the reliability of today’s
operating systems by removing their dependence
on driver correctness.

Shadow driver recovery

Isolation techniques can reduce the frequency
of system crashes, but applications using the
failed driver may continue to crash. Applications
receive erroneous results following a failure, and
the driver loses application state when it restarts.
Most applications are unprepared to cope with
either situation. Rather, applications reflect the
conventional failure model: drivers and the oper-
ating system either fail together or not at all. The
restart recovery manager recovers from driver
failure by unloading and then reloading the failed
driver. However, reloading failed drivers is effec-
tive at preventing system crashes. However, users
of a computer are not solely interested in whether
the operating system continues to function. Of-
ten, users care more about the applications with
which they interact. If applications using drivers
fail, then I have only partially achieved my goal
of improving reliability.

With the restart recovery manager, calls into
a driver that fails and subsequently recovers may
return error codes because the recovery manager
unloads the driver and invalidates open connec-
tions to the driver during recovery. As a result,
clients of a recovered driver would themselves
fail if they depend on the driver during or after
recovery. For example, audio players stopped
producing sound when a sound-card driver failed
and recovered. For the same reason, the restart
recovery manager cannot restart drivers needed
by the kernel, such as disk drivers. Requests to
the disk driver fail while the driver is recovering.
When the Linux kernel receives multiple errors

from a disk driver used for swapping, it assumes
that the device is faulty and crashes the system.

In addition, any settings an application or the
OS had downloaded into a driver are lost when
the driver restarts. Thus, even if the application
reconnects to the driver, the driver may not be
able to process requests correctly.

These weaknesses highlight a fundamental
problem with a recovery strategy that reveals
driver failures to their clients: the clients may
not be prepared to handle these failures. Rather,
they are designed for the more common case that
either drivers never fail, or, if they fail, the whole
system fails.

To address these problems, shadow drivers
are a transparent recovery mechanism for driver
failures. Their design for shadows reflects three
principles:

• Device driver failures should be concealed
from the driver’s clients. If the operating
system and applications using a driver can-
not detect that it has failed, they are unlike-
ly to fail themselves.

• Driver recovery logic should be generic.
Given the huge number and variety of de-
vice drivers, it is not practical to implement
per-driver recovery code. Therefore, the
architecture must enable a single shadow
driver to handle recovery for a large num-
ber of device drivers.

• Recovery services should have low over-
head when not needed. The recovery sys-
tem should impose relatively little over-
head for the common case (that is, when
drivers are operating normally).

Overall, these design principles aim to protect
applications and the OS from driver failure, while
minimizing the cost required to make and use
shadow drivers.

Shadow drivers only apply to device driv-
ers that belong to a class and share a common
calling interface. They recover after a failure by

27

Device Driver Reliability

restarting the driver and replaying past requests
and hence, can only recover from failures that are
both transient and fail-stop. Deterministic failures
may recur when the driver recovers, again causing
a failure. Recoverable failures must be fail-stop,
because shadow drivers must detect a failure in
order to conceal it from the OS and applications.
Hence, shadow drivers require an isolation sub-
system to detect and stop failures before they are
visible to applications or the operating system.

Shadow Driver Operation

Shadow drivers execute in one of two modes: pas-
sive or active. Passive mode is used during normal
(non-faulting) operation, when the shadow driver
monitors all communication between the kernel
and the device driver it shadows. This monitoring
is achieved via replicated procedure calls, called
taps: a kernel call to a device driver function causes
an automatic, identical call to the corresponding
shadow driver function. Similarly, a driver call to
a kernel function causes an automatic, identical
call to a corresponding shadow driver function.
These passive-mode calls are transparent to the
device driver and the kernel and occur only to track
the state of the driver as necessary for recovery.
Based on the calls, the shadow tracks the state
transitions of the shadowed device driver.

Active mode is used during recovery from a
failure. Here, the shadow performs two functions.
First, it impersonates the failed driver, intercept-
ing and responding to calls for service. Therefore,
the kernel and higher-level applications continue
operating as though the driver had not failed. Sec-
ond, the shadow driver restarts the failed driver
and brings it back to its pre-failure state. While
the driver restarts, the shadow impersonates the
kernel to the driver, responding to its requests
for service. Together, these two functions hide
recovery from the driver, which is unaware that
a shadow driver is restarting it after a failure, and
from the kernel and applications, which continue
to receive service from the shadow.

Once the driver has restarted, the active-mode
shadow returns the driver to its pre-failure state.
For example, the shadow re-establishes any
configuration state and then replays pending re-
quests. Shadow drivers rely on the state machine
model of drivers. Whereas the default and restart
recovery managers seek to restore the driver to
its unloaded state or initialized state, shadow
drivers seek to restore drivers to their state at the
time of failure.

A shadow driver is a class driver, aware of the
interface to the drivers it shadows but not of their
implementations. The class orientation has two
key implications. First, a single shadow driver
implementation can recover from a failure of any
driver in its class, meaning that a handful of dif-
ferent shadow drivers can serve a large number of
device drivers. As previously mentioned, Linux,
for example, has only 20 driver classes. Second,
implementing a shadow driver does not require
a detailed understanding of the internals of the
drivers it shadows. Rather, it requires only an
understanding of those drivers’ interactions with
the kernel. Thus, they can be implemented by
kernel developers with no knowledge of device
specifics and have no dependencies on individual
drivers. For example, if a new network interface
card and driver are inserted into a PC, the exist-
ing network shadow driver can shadow the new
driver without change. Similarly, drivers can be
patched or updated without requiring changes to
their shadows.

Taps

As previously described, a shadow driver moni-
tors communication between a functioning driver
and the kernel and impersonates one to the other
during failure and recovery. This is made possible
by a new mechanism, called a tap. Conceptually,
a tap is a T-junction placed between the kernel
and its drivers. It is implemented as a callout
from wrapper stubs. During a shadow’s passive-
mode operation, the tap: (1) invokes the original

28

Device Driver Reliability

driver, and then (2) invokes the corresponding
shadow with the parameters and results of the
call, as shown in Figure 5(a). In active mode, a
tap always invokes the shadow driver, as shown
in Figure 5(b).

The Shadow Recovery Manager

The shadow recovery manager is responsible for
coordinating recovery with shadow drivers. The
Nooks Isolation Manager notifies the shadow
recovery manager that it has detected a failure
in a driver. The shadow recovery manager then
transitions the shadow driver to active mode and
closes the taps. In this way, requests for the driv-
er’s services are redirected to the corresponding
shadow driver. The shadow recovery manager then
initiates the shadow driver’s recovery sequence
to restore the driver. When recovery completes,
the shadow recovery manager returns the shadow
driver to passive-mode operation and re-opens its
taps so that the driver can resume service.

Shadow Drivers

Each shadow driver is a single module written
with knowledge of the behavior (interface) of a
class of device drivers, allowing it to conceal a
driver failure and restart the driver after a failure.
A shadow driver, when passive, monitors com-
munication between the kernel and the driver. It
becomes active when a driver fails and then both
proxies requests for the driver and restores the
driver’s state.

Passive-Mode Monitoring
In passive mode, a shadow driver monitors the
current state of a device driver by observing its
communication with the kernel. In order to return
the driver to its state at the time of failure, the
shadow records the inputs to the driver in a log.
These inputs are then replayed during recovery.
With no knowledge of how drivers operate, the
shadow would have to log all inputs to the driver.
However, because the shadow is implemented
with knowledge of the driver’s interface, and

Figure 5. (a) A sample shadow driver operating in passive mode. (b) A sample shadow driver operating
in active mode.

29

Device Driver Reliability

hence its abstract state machine, not all inputs
must be logged. Instead, the shadow only records
inputs needed to return a driver to its state at
the time of failure. The shadow drops requests
that do not advance the driver’s state or whose
impact has been superseded by later inputs, for
example transitions on a loop in the abstract
state machine.

Figure 6 shows an example of the state ma-
chine transitions for a sound-card driver. The
transitions, made when the kernel issues requests
to the driver, are numbered. The final state of the
sequence is S4, but there is a loop through state
S3. As a result, the shadow may drop requests 2
through 5 from its log, because they do not affect
the final state of the driver.

To implement this state machine, the shadow
driver maintains a log in which it records several
types of information. First, it tracks I/O requests
made to the driver, enabling pending requests to
be re-submitted after recovery. An entry remains
in the log until the corresponding request has been
handled. In addition, for connection-oriented driv-
ers, the shadow driver records the state of each
active connection, such as offset or positioning
information.

The shadow driver also records configuration
and driver parameters that the kernel passes into
the driver. The shadow relies on this information
to reconfigure the driver to its pre-failure state
during recovery. For example, the shadow sound-

card driver logs ioctl calls (command numbers and
arguments) that configure the driver.

For stateful devices, such as a hard disk, the
shadow does not create a copy of the device state.
Instead, a shadow driver depends on the fail-stop
assumption to preserve persistent state (e.g., on
disk) from corruption. In other cases, the shadow
may be able to force the device’s clients to recreate
the state after a failure. For example, a windowing
system can recreate the contents of a frame buffer
by redrawing the desktop.

In many cases, passive-mode calls do no work
and the shadow returns immediately to the caller.
For example, the kernel maintains a queue of
outstanding requests to a disk driver, and hence
the shadow driver for an IDE disk does little in
passive mode. For the network shadow driver, too,
the Nooks object-tracking system performs much
of the work to capture driver state by recording
outstanding packets.

Opaque parameters can pose problems for
recovery as they did for isolation. However, the
class-based approach allows shadow drivers to
interpret most opaque pointers. The standardized
interface to drivers ensures that a client of the
interface that has no knowledge of a driver’s
implementation can still invoke it. Hence, clients
must know the real type of opaque parameters.
The shadow implementer can use the same
knowledge to interpret them. For example, the
Linux Open Sound System interface defines

Figure 6. The State machine transitions for a sound-card shadow driver. Those recorded for recovery
are shown in boldface.

30

Device Driver Reliability

opaque pointer parameters to the ioctl call for
sound-card drivers. The shadow sound-card
driver relies on this standard to interpret and
log ioctl requests.

Active-Mode Recovery
The shadow enters active mode when a failure
is detected in a driver. A driver typically fails by
generating an illegal memory reference or pass-
ing an invalid parameter across a kernel interface.
Nooks’ failure detectors notice the failure and
notify the Nooks Isolation Manager, which in
turn invokes the shadow recovery manager. This
manager immediately locates the corresponding
shadow driver and directs it to recover the failed
driver. The shadow driver’s task is to restore the
driver to the state it was in at the time of failure, so
it can continue processing requests as if it had never
failed. The three steps of recovery are: (1) stopping
the failed driver, (2) reinitializing the driver from
a clean state, and (3) transferring relevant shadow
driver state into the new driver. Unlike Nooks’
restart recovery manager, a shadow driver does
not completely unload the failed driver.

Stopping the Failed Driver
The shadow recovery manager begins recovery
by informing the responsible shadow driver that
a failure has occurred. It also closes the taps,
isolating the kernel and driver from one another’s
subsequent activity during recovery. After this
point, the tap redirects all kernel requests to the
shadow until recovery is complete.

Informed of the failure, the shadow driver first
invokes the isolation service to preempt threads
executing in the failed driver. It also disables the
hardware device to prevent it from interfering
with the OS while not under driver control. For
example, the shadow disables the driver’s interrupt
request line. Otherwise, the device may continu-
ously interrupt the kernel and prevent recovery. On
hardware platforms with I/O memory mapping, the
shadow also removes the device’s I/O mappings
to prevent DMAs into kernel memory.

In preparation for recovery, the shadow garbage
collects resources held by the driver. To ensure
that the kernel does not see the driver “disappear”
as it is restarted, the shadow retains objects that
the kernel uses to request driver services. For
example, the shadow does not release the device
object for network device drivers. The remaining
resources, not needed for recovery, are released.

Reinitializing the Driver
The shadow driver next “boots” the driver from
a clean state. Normally, booting a driver requires
loading the driver from disk. However, the disk
driver may not be functional during recovery.
Hence, the driver code and data must already be
in memory before a failure occurs. For this reason,
the shadow caches a copy of the device driver’s
initial, clean data section when the driver is first
loaded. These data sections tend to be small. The
driver’s code is already loaded read-only in the
kernel, so it can be reused from memory.

The shadow boots the driver by repeating
the sequence of calls that the kernel makes to
initialize a driver. For some driver classes, such
as sound-card drivers, this consists of a single
call into the driver’s initialization routine. Other
drivers, such as network interface drivers, require
additional calls to connect the driver into the
network stack.

As the driver restarts, the shadow reattaches the
driver to the kernel resources it was using before
the failure. For example, when the driver calls the
kernel to register itself as a driver, the taps redirect
these calls to the shadow driver, which reconnects
the driver to existing kernel data structures. The
shadow reuses the existing driver registration,
passing it back to the driver. For requests that
generate callbacks, such as a request to register
the driver with the PCI subsystem, the shadow
emulates the kernel and calls the driver back in
the kernel’s place. The shadow also provides
the driver with its hardware resources, such as
interrupt request lines and memory-mapped I/O
regions. If the shadow had disabled these resources

31

Device Driver Reliability

in the first step of recovery, the shadow re-enables
them, e.g., enabling interrupt handling for the
device’s interrupt line. In essence, the shadow
driver initializes the recovering driver by calling
and responding as the kernel would when the
driver starts normally.

Transferring State to the New Driver
The final recovery step restores the driver to the
state it was in at the time of the failure, permit-
ting it to respond to requests as if it had never
failed. Thus, any configuration that either the
kernel or an application had downloaded to the
driver must be restored. The shadow driver walks
its log and issues requests to the driver that to
restore its state.

The details of this final state transfer depend
on the device driver class. Some drivers are con-
nection oriented. For these, the state consists of
the state of the connections before the failure. The
shadow re-opens the connections and restores the
state of each active connection with configura-
tion calls. Other drivers are request oriented. For
these, the shadow restores the state of the driver
by replaying logged configuration operations and
then resubmits to the driver any requests that were
outstanding when the driver crashed.

As an example, to restart a sound-card driver,
the shadow driver resets the driver and all its
open connections back to their pre-failure state.
Specifically, the shadow scans its list of open
connections and calls the open function in the
driver to reopen each connection. The shadow
then walks its log of configuration commands
for each connection and replays commands that
set driver properties.

For some driver classes, the shadow can-
not completely transfer its state into the driver.
However, it may be possible to compensate in
other, perhaps less elegant, ways. For example,
a sound-card driver that is recording sound stores
the number of bytes it has recorded since the last
reset. After recovery, the sound-card driver ini-
tializes this counter to zero. Because the interface

has no call that sets the counter value, the shadow
driver must insert its “true” value into the return
argument list whenever the application reads the
counter to maintain the illusion that the driver
has not crashed. The shadow can do this because
it receives control (on its replicated call) before
the kernel returns to user space.

After resetting driver and connection state,
the shadow must handle requests that were either
outstanding when the driver crashed or arrived
while the driver was recovering. If a driver
crashes after submitting a request to a device
but before notifying the kernel that the request
has completed, the shadow cannot know whether
the device completed the request. As a result,
shadow drivers cannot guarantee exactly once
behavior and must rely on devices and higher
levels of software to absorb duplicate requests.
So, the shadow driver has two choices during
recovery: restart in-progress requests and risk
duplication, or cancel the request and risk lost
data. For some device classes, such as disks or
networks, duplication is acceptable. However,
other classes, such as printers, may not tolerate
duplicates. In these cases, the shadow driver can-
cels outstanding requests and returns an error to
the kernel or application in a manner consistent
with the driver interface.

After this final step, the driver has been re-
initialized, linked into the kernel, reloaded with
its pre-failure state, and is ready to process com-
mands. At this point, the shadow driver notifies
the shadow recovery manager, which sets the
taps to restore kernel-driver communication and
reestablish passive-mode monitoring.

Active-Mode Proxying of Kernel Requests
While a shadow driver is restoring a failed driver,
it is also acting as a proxy for the driver to conceal
the failure and recovery from applications and
the kernel. Thus, the shadow must respond to
any request for the driver’s service in a way that
satisfies and does not corrupt the driver’s caller.
The shadow’s response depends on the driver’s

32

Device Driver Reliability

interface and the request semantics. In general,
the shadow will take one of five actions:

1. Respond with information that it has recorded
in its log.

2. Report that the driver is busy and that the ker-
nel or application should try again later.

3. Suspend the requesting thread until the driver
recovers.

4. Queue the request for processing after re-
covery and return success.

5. Silently drop the request.

The choice of strategy depends on the caller’s
expectations of the driver.

Writing the proxying code requires knowledge
of the kernel-driver interface, its interactions, and
its requirements. For example, the kernel may
require that some driver functions never block,
while others always block. Some kernel requests
are idempotent (e.g., many ioctl commands), per-
mitting duplicate requests to be dropped, while
others return different results on every call (e.g.,
many read requests). The writer of a shadow for
a driver class uses these requirements to select
the response strategy.

Device drivers often support the concept of be-
ing “busy.” This concept allows a driver to manage
the speed difference between software running
on the computer and the device. For example,
network drivers in Linux may reject requests and
turn themselves off if packets are arriving from
the kernel to quickly and their queues are full. The
kernel then refrains from sending packets until the

driver turns itself back on. The notion of being
“busy” in a driver interface simplifies active proxy-
ing. By reporting that the device is currently busy,
shadow drivers instruct the kernel or application
to block calls to a driver. The shadow network
driver exploits this behavior during recovery by
returning a “busy” error on calls to send packets.
IDE storage drivers support a similar notion when
request queues are full. Sound drivers can report
that their buffers are temporarily full.

The shadow sound-card driver uses a mix of
all five strategies for proxying functions in its
service interface. Table 1 shows the shadow’s
actions for common requests. The shadow sus-
pends kernel read and write requests, which play
and record sound samples, until the failed driver
recovers. It processes ioctl calls itself, either by
responding with information it captured or by
logging the request to be processed later. For ioctl
commands that are idempotent, the shadow driver
silently drops duplicate requests. Finally, when
applications query for buffer space, the shadow
responds that buffers are full. As a result, many
applications block themselves rather than blocking
in the shadow driver.

Shadow Driver Summary

Shadow drivers provide an elegant mechanism
that leverages the properties of device drivers
for recovery. Based on an abstract state machine
modeling an entire class of drivers, shadow
drivers monitor the communication between the
kernel and driver to obtain the driver state dur-

Table 1. The proxying actions of the shadow sound-card driver.

 Request Action

 read / write suspend caller

 interrupt drop request

 query capability ioctl answer from log

 query buffer ioctl act busy

 reset ioctl queue for later / drop duplicate

33

Device Driver Reliability

ing normal operation. When a driver fails, the
shadow relies on this state to conceal the failure
by proxying for the driver. At the same time, the
shadow recovers by restarting the driver, and
then replaying requests to bring the driver back
to its pre-failure state.

eValuation of nooKS
and Shadow driVerS

Any new operating system mechanism must be
evaluated according to the increase in complexity
it adds to the system relative the benefit it provides
and its performance.

code Size and complexity

Table 2 shows the size of the Nooks and shadow
driver implementation. This code can tolerate
the failure of fourteen device drivers. The Nooks
reliability layer comprises less than 26,000 lines
of code.

Shadow drivers have been implemented for
three classes of device drivers: sound-card driv-
ers, network interface drivers, and IDE storage
drivers. Table 2 shows, for each class, the size in
lines of code unique to the shadow driver for the
class. Of the 177 taps, only 31 required actual code
in a shadow; the remainder were no-ops because
the calls did not significantly impact kernel or
driver state.

In contrast, the kernel itself has 2.4 million
lines, and the Linux 2.4 distribution has about
30 million. For comparison, the Linux 2.4.18
kernel includes 118,981 lines of sound driver
code, 264,500 lines of network driver code, and
29,000 lines of IDE storage code. Relative to a
base kernel and its drivers, the Nooks reliability
layer introduces only a modest amount of addi-
tional system complexity. This demonstrates the
leverage that Nooks and shadow drivers provide
by implementing fault tolerance for a much larger
body of driver code.

Table 2. The number of non-comment lines of source code in Nooks and Shadow Drivers.

 Nooks Components # Lines

 Domain Management 2,391

 Object Tracking 1,498

 Extension Procedure Call 928

 Wrappers 14,484

 Recovery 1,849

 Build tools 1,762

 Linux Kernel Changes 924

 Miscellaneous 1,629

 Shadow driver components # Lines

 Shadow recover manager 600

 Tap-generation tools 750

 Shared shadow driver code 750

 Sound shadow driver 666

 Network shadow driver 198

 Storage shadow driver 321

 Total number of lines of code 28,800

34

Device Driver Reliability

reliability

The primary goal of Nooks and shadow drivers
is to improve the reliability of an operating sys-
tem and applications. This section evaluates the
ability of Nooks and shadow drivers to tolerate
driver failures. In the experiments reported below,
Nooks is used to isolate three classes of device
drivers: network, sound card, and IDE storage
drivers. Reliability and performance results for
five representatives of the three driver classes are
presented: sb (SoundBlaster 16 sound card), au-
digy (SoundBlaster Audigy sound card), pcnet32
(AMD PCnet32 10/100 Ethernet card), e1000
(Intel Pro/1000 Gigabit Ethernet card), and ide-
disk (IDE disk driver).

Three platforms are used to evaluate Nooks
and shadow drivers, all based on the Linux 2.4.18
kernel:

1. Linux-Native is the unmodified Linux
kernel.

2. Linux-Nooks is a version of Linux-Native that
includes the Nooks fault isolation subsystem
and the restart recovery manager. When a
driver fails, this system restarts the driver
but does not attempt to conceal its failure.

3. Linux-SD includes Nooks, the shadow driver
recovery manager, and the three shadow
drivers.

Nooks was tested with synthetic fault injec-
tion to insert artificial faults into drivers. The
fault injector automatically changes single
instructions in driver code to emulate a vari-
ety of common programming errors, such as
uninitialized local variables, bad parameters,
and inverted test conditions. The output of the
fault injection tests is a metric of coverage,
not reliability. The tests measure the fraction
of faults (failure causes) that can be detected
and isolated, not the fraction of existing failures
that can be tolerated.

System Survival

This section evaluates Nooks’ ability to isolate the
kernel from driver failure. The goal of these tests
is to measure the survival rate of the operating
system. The application-level workload consists
of programs that stress the sound-card driver,
the network driver, and the storage driver. The
first program plays a short MP3 file. The second
performs a series of ICMP-ping and TCP stream-

Figure 7. The reduction in system crashes observed using Nooks.

35

Device Driver Reliability

ing tests, while the third untars and compiles a
number of files.

To measure isolation, test trials inject faults
into extensions running under two different Linux
configurations, both running the Linux-Nooks
kernel. In the first, called “native,” the Nooks
isolation services were present but unused. In
the second, called “Nooks,” the isolation services
were enabled for the extension under test. For
each driver, 400 trials inject five random faults
into the driver and exercised the system. Not all
fault-injection trials cause faulty behavior, e.g.,
bugs inserted on a rarely (or never) executed path
will rarely (or never) produce an error.

A system crash is the most extreme and easiest
problem to detect, as the operating system pan-
ics, becomes unresponsive, or simply reboots.
In an ideal world, every system crash caused by
a fault-injection trial under native Linux would
result in a recovery under Nooks. As previously
discussed, in practice Nooks may not detect or
recover from certain failures caused by very bad
programmers or very bad luck.

Figure 7 shows the number of system crashes
caused by the fault-injection experiments for
each of the extensions running on native Linux
and Nooks. Of the 333 crashes observed with
native Linux, Nooks eliminated 332, or 99%. In
the remaining crashes, the system deadlocked

when the driver went into a tight loop with inter-
rupts disabled. Nooks does not detect this type
of failure.

In addition, 206 trials caused applications to
fail without crashing the system under native
Linux. Nooks was able to reduce this to 102 ap-
plication failures. These failure manifest as the
driver misbehaving, but not performing illegal
operations. Nooks generally does not detect such
problems (nor is it intended to). However, when
Nooks’ simple failure detectors do detect such
problems, its recovery services can safely restart
the faulty extensions.

Figure 7 also illustrates a substantial differ-
ence in the number of system crashes that occur
for sb driver under Linux, compared to e1000,
pcnet32, and ide-disk. This difference reflects the
way in which Linux responds to kernel failures.
The e1000, pcnet32 and ide-disk extensions are
interrupt oriented, i.e., kernel-mode extension
code is run as the result of an interrupt. The sb
driver is process oriented, i.e., kernel-mode ex-
tension code is run as the result of a system call
from a user process. Linux treats exceptions in
interrupt-oriented code as fatal and crashes the sys-
tem, hence the large number of crashes in e1000,
pcnet32, and ide-disk). Linux treats exceptions in
process-oriented code as non-fatal, continuing
to run the kernel but terminating the offending

Table 3. The applications used for evaluating shadow drivers.

Device Driver Application Activity

Sound mp3 player (zinf) playing 128kb/s audio

(audigy driver) audio recorder (audacity) recording from microphone

speech synthesizer (festival) reading a text file

strategy game (Battle of Wesnoth)

Network network file transfer (scp) of a 1GB file

remote window manager (vnc)

network analyzer (ethereal) sniffing packets

Storage compiler (make/gcc) compiling 788 C files

(ide-disk driver) encoder (LAME) converting 90 MB file .wav to .mp3

database (mySQL) processing the Wisconsin Benchmark

36

Device Driver Reliability

process even though the exception occurred in the
kernel. This behavior is unique to Linux. Other
operating systems, such as Microsoft Windows
XP, deal with kernel processor exceptions more
aggressively by always halting the operating
system. In such systems, exceptions in sb would
cause system crashes.

Application Survival

The previous section evaluated the ability of the
operating system to survive extension failures. This
section answers the question of whether applica-
tions that use a device driver continue to run even
after the driver fails and recovers. Shadow driver
recovery is tested in the presence of simple failures
to show the benefits of shadow drivers compared
to the simple restart recovery manager.

The crucial question for shadow drivers is
whether an application can continue functioning
following the failure of a device driver on which
it relies. To answer this question, the 10 applica-
tions in Table 3 were tested on each of the three
configurations, Linux-Native, Linux-Nooks, and
Linux-SD.

In each test, common driver bugs were simu-
lated by injecting a null pointer dereference bug

into a device driver while an application using that
driver was running. Because both Linux-Nooks
and Linux-SD depend on the same isolation and
failure-detection services, their recovery capabili-
ties are differentiated by simulating failures that
are easily isolated and detected.

Application Survival Results
Table 4 shows the three application behaviors
observed. When a driver failed, each application
continued to run normally (√), failed completely
(“CRASH”), or continued to run but behaved
abnormally (“MALFUNCTION”). In the latter
case, manual intervention was typically required
to reset or terminate the program.

This table demonstrates that shadow drivers
(Linux-SD) enable applications to continue run-
ning normally even when device drivers fail. In
contrast, all applications on Linux-Native failed
when drivers failed. Most programs running on
Linux-Nooks failed or behaved abnormally, il-
lustrating that restart recovery protects the kernel,
which is constructed to tolerate driver failures, but
does not protect applications. The restart recovery
manager lacks two key features of shadow drivers:
(1) it does not advance the driver to its pre-fail
state, and (2) it has no component to “pinch hit”

Table 4. The observed behavior of several applications following the failure of the device drivers on
which they depend.

Application Behavior

Device Driver Application Activity Linux-Native Linux-Nooks Linux-SD

Sound mp3 player CRASH MALFUNCTION √

(audigy driver) audio recorder CRASH MALFUNCTION √

speech synthesizer CRASH √ √

strategy game CRASH MALFUNCTION √

Network network file transfer CRASH √ √

(e1000 driver) remote window manager CRASH √ √

network analyzer CRASH MALFUNCTION √

IDE compiler CRASH CRASH √

(ide-disk driver) encoder CRASH CRASH √

database CRASH CRASH √

37

Device Driver Reliability

for the failed driver during recovery. As a result,
Linux-Nooks handles driver failures by returning
an error to the application, leaving it to recover
by itself. Unfortunately, few applications can do
this.

Some applications on Linux-Nooks survived
the driver failure but in a degraded form. For
example, mp3 player, audio recorder and strat-
egy game continued running, but they lost their
ability to input or output sound until the user
intervened. Similarly, network analyzer, which
interfaces directly with the network device driver,
lost its ability to receive packets once the driver
was reloaded.

A few applications continued to function
properly after driver failure on Linux-Nooks. One
application, speech synthesizer, includes the code
to reestablish its context within an unreliable
sound-card driver. Two of the network applications
survived on Linux-Nooks because they access the
network device driver through kernel services
(TCP/IP and sockets) that are themselves resilient
to driver failures.

Unlike Linux-Nooks, Linux-SD can recover
from disk driver failures. Recovery is possible
because the IDE storage shadow driver instance
maintains the failing driver’s initial state. During
recovery the shadow copies back the driver’s initial
data and reuses the driver code, which is already
stored read-only in the kernel. In contrast, Linux-
Nooks illustrates the risk of circular dependencies
from rebooting drivers. Following these failures,
the restart recovery manager, which had unloaded
the ide-disk driver, was then required to reload the
driver off the IDE disk. The circularity could only
be resolved by a system reboot. While a second
(non-IDE) disk would mitigate this problem, few
machines are configured this way.

In general, programs that directly depend on
driver state but are unprepared to deal with its loss
benefit the most from shadow drivers. In contrast,
those that do not directly depend on driver state or
are able to reconstruct it when necessary benefit
the least. Experience suggests that few applica-

tions are as fault-tolerant as speech synthesizer.
Were future applications to be pushed in this
direction, software manufacturers would either
need to develop custom recovery solutions on a
per-application basis or find a general solution
that could protect any application from the failure
of a device driver.

Application Behavior During Driver
Recovery
Although shadow drivers can prevent application
failure, they are not “real” device drivers and do
not provide complete device services. As a result,
applications often observe a slight timing disrup-
tion while the driver recovered. At best, output
was queued in the shadow driver or the kernel. At
worst, input was lost by the device. The length of
the delay depends on the recovering device driver
itself, which, on initialization, must first discover
and then configure the hardware.

Few device drivers implement fast reconfigura-
tion, which can lead to brief recovery delays. For
example, the temporary loss of the e1000 network
device driver prevented applications from receiv-
ing packets for about five seconds while the driver
reinitializes. Programs using files stored on the
disk managed by the ide-disk driver stalled for
about four seconds during recovery. In contrast, the
normally smooth sounds produced by the audigy
sound-card driver were interrupted by a pause of
about one-tenth of one second, which sounded
like a slight click in the audio stream.

The significance of these delays depends on the
application. Streaming applications may become
unacceptably “jittery” during recovery. Those
processing input data in real-time might become
lossy. Others may simply run a few seconds longer
in response to a disk that appears to be operating
more sluggishly than usual.

Performance

This section presents benchmark results that evalu-
ate the performance cost of the Nooks and shadow

38

Device Driver Reliability

drivers. The experiments use existing benchmarks
and tools to compare the performance of a system
using Nooks to one that does not. Tests ran on a
Dell 3 GHz Pentium 4 PC running Linux 2.4.18.
The machine includes 1 GB of RAM, a Sound-
Blaster Audigy sound card, an Intel Pro/1000
Gigabit Ethernet adapter, and a single 7200 RPM,
80 GB IDE hard disk drive

The same application reliability benchmarks
are used to evaluate system performance with the

exception of the network applications. For the
network driver, throughput is a more useful metric;
therefore, the throughput-oriented network send
and network receive benchmarks are substituted.
In addition, the web server benchmark measures
network application performance.

For each benchmark, Nooks isolates a single
driver. The benchmark executes both on native
Linux without Nooks (Linux-Native) and then
again on a version of Linux with Nooks and shadow

Figure 8. Comparative application performance of Linux-SD relative to Linux-Native. The X-axis crosses
at 80%.

Figure 9. Absolute CPU utilization by application.

39

Device Driver Reliability

drivers enabled (Linux-SD). Figure 8 shows the
performance of Linux-SD relative to Linux-Native
either in wall clock time or throughput, depending
on the benchmark. Figure 9 shows CPU utilization
measured during benchmark execution (which
is only accurate to a few percent). These figures
show that Nooks achieves 97% and 100% of the
performance of native Linux for these tests.

The primary performance difference is in the
CPU utilization of the benchmarks. As the isola-
tion services are primarily imposed at the point
of the XPC, the rate of XPCs offers a telling
performance indicator. Thus, the benchmarks fall
into two broad categories characterized by the rate
of XPCs: low frequency (a hundred to thousands
XPCs per second), and high frequency (tens of
thousands of XPCs per second).

The sound and storage driver benchmarks
exhibit low XPC rates; between 300 and 1000 per
second. At this low rate, the additional CPU utili-
zation is negligible. For the many low-bandwidth
devices in a system, such as keyboards, mice,
Bluetooth devices, modems, and sound cards,
Nooks offers improved reliability with almost no
performance cost.

The network send and receive benchmarks are
examples of high XPC-frequency applications.
Network receive performance was measured with
the netperf performance tool, where the receiving
node used an isolated Ethernet driver to receive
a stream of 32KB TCP messages using a 256KB
buffer. The machine is bandwidth, not CPU lim-
ited, and hence there is no reduction in throughput.
However, overall CPU utilization increase of 7
percentage points for receiving packets and 29
percentage points for sending packets.

The added cost comes from two factors: execut-
ing more code, to implement Nooks isolation, and
executing existing code more slowly. A single XPC
may take thousands of cycles, because it must copy
data between the kernel and the driver as well as
change the page table. This causes both kernel and
driver code to execute more slowly, because the
x86 architecture must flush the TLB after the page

table changes, leading to subsequent TLB misses.
In addition, the additional code and data copying
puts pressure on the processor caches, leading to
more misses and lower performance.

Performance Summary
This section used a small set of benchmarks to
quantify the performance cost of Nooks. Nooks
imposed a performance penalty of less than
3%, although CPU utilization doubled for some
workloads. The rate of XPCs is a key factor in
the performance impact, as XPCs impose a high
burden, due to cost of flushing the x86 TLB in the
current implementation. The performance costs
of Nooks’ isolation services depend as well on
the CPU utilization imposed by the workload. If
the CPU is saturated, the additional cost can be
significant, because there is no spare capacity to
absorb Nooks overhead.

Summary of Nooks and
Shadow Drivers

Overall, Nooks provides a substantial reliability
improvement at low cost for common drivers.
The results demonstrate that: (1) the performance
overhead of Nooks during normal operation is
small for many drivers and moderate for other
extensions, (2) applications and the OS survived
driver failures that otherwise would have caused
the OS, application, or both to fail. Overall, Nooks
and shadow drivers prevented 99% of system
crashes, with an average performance cost of
1% for drivers.

driVer fault tolerance
in commercial SyStemS

While Nooks remains a research project, several
commercial operating systems provide run-time
mechanisms to isolate the kernel from driver
failures. These mechanisms can be categorized
into two major categories: user-mode drivers to

40

Device Driver Reliability

remove driver code from the kernel, and virtual
machine isolation of drivers.

user-mode drivers

While drivers for most commodity operating
systems are written in kernel-mode, Windows,
Linux and MacOS X all have limited support
for user-mode drivers. This section describes the
support in Windows and Linux.

Microsoft Windows UMDF

In response to driver reliability problems, Mi-
crosoft implemented the User-mode Driver
Framework (UMDF) for Windows XP and Vista
(Microsoft, 2007). As shown in Figure 10a, UMDF
adds a reflector to the device driver stack that
forwards requests to a user-mode driver host
process. I/O requests from applications are sent
first to the I/O manager in the Windows kernel,
which dispatches requests to specific drivers. For

devices with UMDF drivers, the I/O manager
sends requests to the reflector, which forwards
the request to a user-level runtime, which in turn
invokes the UMDF driver.

UMDF drivers are specified as a set of COM
(Component Object Model) interfaces. As a
result, UMDF simplifies driver development by
supporting the C++ language and by providing
runtime support for common driver operations.
However, it therefore cannot provide fault toler-
ance for existing kernel-mode drivers, which must
be written in C.

User-move driver support in Windows is
complicated by the existence of stacked drivers.
In this model, a device is served by a layered set
of drivers, each providing additional functionality.
For example, a driver for a USB device layer over
a generic USB interface driver, which layers over
a driver for the specific host interface attached to
the device. In UMDF, only the top-most driver in
a stack may execute at user-level; the rest must
execute in the kernel.

Figure 10. (a) Microsoft Windows User-Mode Driver Framework. Applications call standard Win32
I/O APIs, and the kernel I/O manager invokes a UMDF device object that forwards the request to user
mode. (b) Linux Userspace I/O (UIO) architecture. Applications link to driver libraries, which use the
Posix I/O APIs to communicate to the UIO manager in the kernel.

41

Device Driver Reliability

In addition, UMDF does not support drivers
requiring interrupt handling, because Windows
cannot field interrupts at user level. Drivers also
cannot use DMA, because a driver could bypass
kernel memory protection. These three limitations
restrict UMDF drivers to devices accessed over
serial ports, USB buses, or a network. In addition,
drivers accessed internally within the kernel, such
as storage and network devices, cannot be sup-
ported. Thus, UMDF supports portable storage
devices, such as PDAs and cell phones, portable
media players, USB bulk transfer devices, and
auxiliary display/video devices, but not network
devices or hard disks.

Linux UIO

Starting with the 2.6.23 kernel, Linux includes the
Userspace I/O (UIO) driver model that can execute
some driver code in user mode (Koch, 2008). With
UIO, drivers consist of a kernel module containing
an interrupt handler and a user-level library for
the remainder of the driver. At startup, a kernel
module registers an interrupt handler and a list of
I/O memory addresses with the UIO manager. The
UIO manager exports this information through
an entry named in the /dev/uioX, where X is the
index of the device. Reading from the device file
returns the number of interrupts since it was last
read, or blocks if there have been none. Memory
mapping the device file provides access to the
device’s memory regions.

In the UIO driver model, all driver functional-
ity except dismissing interrupts executes at user
level. The kernel portion of a UIO driver is solely
responsible for telling the device to stop interrupt-
ing, at which point it signals that the user-level
driver should execute. The driver model provides
no specific API to access device functionality;
the driver code may be linked directly in with
applications. As a result, UIO drivers cannot be
accessed through standard file system interface,
and therefore require changes to application code

to be used. Figure 10(b) illustrates the UMDF
architecture.

Like Nooks, executing driver code at user
level with UIO isolates the kernel from driver
bugs. However, UIO has substantial limitations
not present with Nooks. First, UIO is only avail-
able for devices with a character interface, but not
block or network interfaces. Second, UIO pro-
vides no fault-detection or recover mechanisms.
Finally, UIO requires writing new driver, so does
not preserve the existing investment in drivers.
Nonetheless, the UIO framework is compact,
consisting of 800 lines of code, and can isolate
the kernel from the failure of drivers.

xen hypervisor drivers

Virtual machines raise unique issues for I/O. Most
virtual machine monitors and hypervisors virtual-
ize devices to share them between multiple guest
virtual machines (Barham et al, 2003, and Fraser
et al, 2004). As a result, guest operating systems
talk to a virtual device rather than communicating
directly with a physical device. In some virtual
machine monitor architectures, device drivers
execute within the virtual machine monitor it-
self. This poses the same reliability problems
as executing drivers unprotected within an OS
kernel, as a driver failure may cause the VMM
and all guest VMs to crash. Hosted VMMs rely
on a host operating system for device access. In
this architecture, too, the failure of a driver can
lead the host OS, the VMM, and all guest virtual
machines to crash.

The Xen hypervisor addresses this problem
by executing device drivers in virtual machines,
rather than within the hypervisor. As shown in
Figure 11, the guest OS kernel runs a virtual
driver that exports an interface identical to a real
device driver. Like shadow drivers, a virtual driver
represents a class of devices, such as a network
interface card. Thus, only one virtual driver is
required per class. Instead of using processor

42

Device Driver Reliability

I/O operations, the virtual driver communicates
with a real driver executing in an isolated driver
domain, a virtual machine specific to that driver
or to a set of drivers. Data communication takes
place through a ring buffer, and control is com-
municated through the Xen Hypervisor.

In the driver VM, the real driver runs inside a
standard operating system, and the Xen hypervi-
sor provides it with access to physical devices.
Xen also provides code to receive incoming I/O
requests from guest VMs and invoke the real
driver. A failure of the driver may cause the
operating system and other drivers in the driver
VM to fail, but the guest OS and its applications
are unaffected.

This architecture provides several distinct
benefits:

1. The driver VM can execute unmodified
device drivers, providing compatibility with
existing code.

2. The operating system in the guest VM and
the driver VM may be different, enabling
drivers for one operating system (e.g., Linux
in the driver VM) to be used for device ac-
cess a different guest OS (e.g., Solaris).

3. The code in the guest OS is relatively simple.
In contrast to the thousands of lines of
wrapper code in Nooks, Xen requires only a
small virtual driver. In addition, this virtual
driver is easier to port between operating

systems or versions of a single operating
system.

4. Performance is comparable to Nooks, as
passing data to a driver requires changing
memory protection or copying, and invoking
a driver requires changing page tables when
changing virtual machines.

However, this architecture also imposes ad-
ditional performance costs by running an entire
operating system in the driver’s protection domain.
This requires additional memory and may require
additional administration, to apply patches to
this OS.

reSearch directionS

Within the operating research community, two
further approaches for driver fault tolerance have
been investigated: pushing user-mode drivers
further, to remove all drivers from the kernel; and
applying language-level protections, such as type
safety, to driver code.

user-mode drivers in microkernels

All preceding approachs to driver reliability were
constrained by the need to execute within an
existing monolithic operating system. The Minix
3 operating system is a research system investi-

Figure 11. Xen architecture for device driver isolation. Drivers execute in a special driver virtual ma-
chine, called an Isolated Driver Domain (IDD)..

43

Device Driver Reliability

gating the reliability benefits of a small-kernel
design (Herder et al 2006). Only code needed for
securely multiplexing hardware, such as interrupt
handling, process creation and scheduling, and
inter-process communication, is included in the
kernel. All other services, including networking,
file systems, and device access, execute in separate
user-level processes.

Minix executes driver code similarly to Win-
dows UMDF; an I/O request goes through the
Minix kernel to a user-level driver process (Herder
et al, 2007). However, Minix removes the restric-
tions of UMDF and allows all drivers to execute
at user level. First, it traps device interrupts in the
kernel and instead sends a message to a waiting
driver process. These messages do not interrupt a
driver process, but instead are retrieved the next
time the driver waits for an event. This removes
the need to write re-entrant driver code. Second
user-level code is granted access to I/O hardware
through the kernel. Rather than reading or writing
a device register directly, drivers make a system
call to access the device. In contrast, UMDF
provides no access to devices from user-level. In
addition, Minix 3 depends on hardware support
to prevent a user-level driver from using DMA
to corrupt memory, while UMDF prohibits DMA
completely.

In addition to isolation, Minix 3 provides
recovery mechanisms similar to Nooks. The OS
includes a reincarnation server that (1) is notified
by the kernel when a driver process crashes, and
(2) polls all drivers periodically to determine if
they still function. If a driver fails, the reincarna-
tion server kills and restarts the driver process.
Unlike shadow drivers, the failure is not concealed
from applications.

Minix 3 demonstrates that, with a full-system
redesign and hardware support, drivers can execute
safely and with high performance in user mode.

type-Safe drivers

The preceding driver reliability systems all depend
on hardware memory protection, in the form of
virtual memory protection and processor privilege
levels, to prevent drivers from corrupting the
kernel. In contrast, SafeDrive and Singularity
provides reliable execution of device drivers by
verifying type safety at statically, at compile time,
and dynamically, at runtime.

SafeDrive targets existing drivers for the Linux
operating system, and relies on programmer an-
notations to enable compiler type checking (Zhou
et al, 2006). Rather than relying on hardware
memory protection like Nooks, SafeDrive uses a
compiler to (1) verify the type safety of a driver
statically, when possible, and (2) generate code
to enforce type safety at runtime. Like Nooks,
SafeDrive is compatible with existing drivers and
requires only minor modifications to annotate
driver data structures. In addition, it provides a
recovery mechanism similar to Nooks’ default
recovery manager that safely unloads a failed
driver. Compared to Nooks, SafeDrive imposes
lower performance overhead for drivers with fre-
quent kernel interactions, such as network drivers.
However, it only detects memory errors and not
invalid parameters or livelock problems.

Singularity, like Minix 3, is a new microkernel
operating system (Hunt & Larus, 2007). It requires
that all code, including the OS kernel, device
drivers, and applications be written in Sing#, a
variant of the C# programming language, which
is type safe. As a result, memory protection can
be enforced statically through the compiler, rather
than with hardware at runtime. Similar to Minix
3, drivers execute in separate processes (Spear et
al, 2006), which are isolate through type safety
rather than virtual memory protection. The com-
munication channel between drivers and other
processes is specified as a contract, allowing
compilers to statically ensure that the driver obeys
the interface contract. This reduces the frequency
of coding errors by catching them at compile time,

44

Device Driver Reliability

and reduces the likelihood that a faulty driver will
corrupt other processes.

chapter Summary

Reliability has become a critical challenge for
commodity operating systems. The competitive
pressure on these systems and their huge installed
base, though, prevents the adoption of traditional
fault-tolerance techniques.

This chapter presents a new approach to im-
proving the reliability of operating systems that is
at once efficient and backwards compatible. Rather
than tolerate all possible failures, Nooks targets
the most common failures and thereby improve
reliability at very low cost. In today’s commodity
operating systems, device driver failures are the
dominant cause of system failure.

Nooks prevents drivers from forcing either
the OS or applications to restart. It uses hardware
and software techniques to isolate device drivers,
trapping many common faults and permitting ex-
tension recovery. Shadow drivers ensure that the
OS and applications continue to function during
and after recovery. Dynamic driver update ensures
that applications and the OS continue to run when
applying driver updates.

The Nooks system focuses on backward
compatibility. That is, Nooks sacrifices complete
isolation and fault tolerance for compatibility and
transparency with existing kernels and drivers.
Nevertheless, Nooks demonstrates that it is pos-
sible to realize an extremely high level of operating
system reliability with low performance lost for
common device drivers.

referenceS

Barham, P., Dragovic, B., Fraser, K., Hand, S.,
Harris, T., Ho, A., et al. (2003). Xen and the art
of virtualization. In Proceedings of the 19th ACM
Symposium on Operating Systems Principles.

Fraser, K., Hand, S., Neugebauer, R., Pratt, I.,
Warfield, A., & Williamson, M. (2004). Safe
hardware access with the Xen virtual machine
monitor. In Workshop on Operating System and
Architectural Support for the On-Demand IT
Infrastructure.

Herder, J. N., Bos, H., Gras, B., Homburg, P.,
& Tanenbaum, A. S. (2006). Minix 3: a highly
reliable, self-repairing operating system. ACM
Operating Systems Review, 40(3), 80–89.
doi:10.1145/1151374.1151391

Herder, J. N., Bos, H., Gras, B., Homburg, P., &
Tanenbaum, A. S. (2007). Failure resilience for
device drivers. In The 37th Annual IEEE/IFIP
International Conference on Dependable Systems
and Networks, (pp. 41-50).

Hunt, G., & Larus, J. (2007). Singularity: Rethink-
ing the software stack. Operating Systems Review,
41(2), 37–49. doi:10.1145/1243418.1243424

Koch, H.-J. (2008). The Userspace I/O HOWTO.
Revision 0.5. In Linux kernel DocBook docu-
mentation.

Microsoft (2006). Architecture of the user-mode
driver framework. Version 0.7. Redmond, WA:
Author.

Spear, M., Roeder, T., Hodson, O., Hunt, G., &
Levi, S. (2006). Solving the starting problem:
Device drivers as self-describing artifacts. In
Proceedings of the 2006 EuroSys Conference,
pages 45-58.

Swift, M., Annamalau, M., Bershad, B. N., &
Levy, H. M. (2006). Recovering device drivers.
ACM Transactions on Computer Systems, 24(4).
doi:10.1145/1189256.1189257

Swift, M. M., Bershad, B. N., & Levy, H. M.
(2005). Improving the reliability of commodity op-
erating systems. ACM Transactions on Computer
Systems, 23(1). doi:10.1145/1047915.1047919

45

Device Driver Reliability

Zhou, F., Condit, J., Anderson, Z., Bagrak, I., En-
nals, R., Harren, M., et al. (2006). SafeDrive: Safe
and recoverable extensions using language-based
techniques. In Proceedings of the 7th USENIX
Symposium on Operating Systems Design and
Implementation.

46

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 3

Identifying Systemic
Threats to Kernel Data:

Attacks and Defense Techniques

Arati Baliga
Rutgers University, USA

Pandurang Kamat
Rutgers University, USA

Vinod Ganapathy
Rutgers University, USA

Liviu Iftode
Rutgers University, USA

introduction

Integrity of the operating system kernel is critical
to the security of all applications and data on the
computer system. Tampering with the kernel is tra-
ditionally performed by malware, commonly known
as rootkits. The term “rootkit” was originally used
to refer to a toolkit developed by the attacker, which

would help conceal his presence on the compromised
system. The rootkit was typically installed after the
attacker obtained “root” level control and attempted
to hide the malicious objects belonging to him, such
as files, processes and network connections.

A rootkit infested system can be exploited by
remote attackers stealthily, such as exfiltration of
sensitive information or system involvement in
fraudulent or malicious activities without the user’s
knowledge or permission. The lack of appropriate

abStract

The authors demonstrate a new class of attacks and also present a novel automated technique to detect
them. The attacks do not explicitly exhibit hiding behavior but are stealthy by design. They do not rely
on user space programs to provide malicious functionality but achieve the same by simply manipulating
kernel data. These attacks are symbolic of a larger systemic problem within the kernel, thus requiring
comprehensive analysis. The author’s novel rootkit detection technique based on automatic inference of
data structure invariants, which can automatically detect such advanced stealth attacks on the kernel.

DOI: 10.4018/978-1-60566-850-5.ch003

47

Identifying Systemic Threats to Kernel Data

detection tools allows such systems to stealth-
ily lie within the attackers realm for indefinite
periods of time. Recent studies have shown a
phenomenal increase in the number of malware
that use stealth techniques commonly employed by
rootkits. For example, a report by MacAfee Avert
Labs (MacAfee, 2006) observes a 600% increase
in the number of rootkits in the three year period
from 2004-2006. Indeed, this trend continues
even today; according to the forum antirootkit.
com (Antirootkit, n.d.), over 200 rootkits were
discovered in the first quarter of 2008 alone.

rootkit evolution

Rootkits attack techniques have matured over
the past few years, posing a realistic threat to
commodity operating systems. Comprehensive
detection of such advanced rootkits is still an open
research problem. The new attack techniques used
by rootkits have in turn triggered the development
of novel techniques to detect their presence. The
evolution of rootkits and techniques to detect them
continues to be an arms race between attackers
and defenders. Figure 1 shows the evolution in
rootkit attack techniques. Rootkits have evolved

from manipulating user space binaries and shared
libraries to modifying control and non-control data
in the kernel. The latest rootkits install themselves
below the operating system.

Early rootkits operate by modifying system
binaries and shared libraries replacing them with
trojaned versions. The goal of these trojaned
binaries is to hide malicious objects or grant
privileged access to malicious processes. For
example, a trojaned ps binary will not list the
malicious processes running on the system. A
trojaned login process can give root privileges
to a malicious user. To detect trojaned system
binaries and shared libraries, tools such as Trip-
wire (Kim, 1994) and AIDE (Aide, n.d.) were
developed. These tools generate checksums of
authentic binaries when run on a clean system and
store them in a database. A user can examine the
system at later points in time, using these tools,
and compare the checksums of system binaries
with those previously stored in the database. A
mismatch in checksum indicates the presence of
the trojaned binary. Other detection tools used an
anti-virus like approach, where the presence of
a rootkit is detected using a database of known
signatures, such as a specific sequence of bytes

Figure 1. Evolution of rootkit attack techniques

48

Identifying Systemic Threats to Kernel Data

in memory, or by the presence of certain files on
disk. This approach does not protect the system
against newer unknown rootkits. Rootkits could
thwart such detectors by using polymorphic and
metamorphic techniques for code obfuscation,
traditionally used by viruses to escape detection
from anti-virus programs.

To escape detection from disk based integrity
checkers, rootkits have evolved to make modi-
fications to kernel code and certain well known
immutable data structures in the kernel, such as
the system call table, to achieve the same goals.
These rootkits are known as kernel-level rootkits
because they modify the kernel. Modifications
to the kernel make the rootkit powerful enough
to control all application level views. For ex-
ample, intercepting the file related system calls,
allows the rootkit to control all files accesses by
all applications on the system. The rootkit can
intercept these accesses and perform the neces-
sary filtering to hide its malicious objects. Since
the rootkit manipulates the kernel, which is the
trusted computing base of the system, it can also
manipulate any user level applications on the
system. Such applications include the rootkit
detection tools that run in user space. Therefore,
researchers proposed isolating the rootkit detec-
tors from the operating system by either moving
them onto a secure co-processor that does not rely
on the operating system (Petroni, 2004), (Zhang,
2002) or isolating them using the virtualization
architecture where the detector is run in a sepa-
rate virtual machine (Garfinkel, 2003), (Payne,
2008). The rootkit detectors, built to detect the
kernel level rootkits, use a checksum/secure hash
based method to detect corruption of the kernel
code or other well known immutable data struc-
tures in the kernel, such as the system call table.
The hashes are pre-computed over the memory
locations of a clean system, where the code and
data structures are stored. They are periodically
recomputed and compared with the stored hashes
to detect code or data structure corruption (Petroni,
2004),(Garfinkel, 2003).

To further thwart detection tools, rootkit au-
thors have adopted stealthier techniques. Since
detection tools solely checked the integrity of the
kernel code and some well known data structures,
such as the system call table, rootkits delved
deeper into the kernel and altered data structures
that were less known. For example, instead of
modifying file related system calls in the system
call table, rootkits modified hooks in the virtual
file system layer instead. For a while, the arms
race continued where the rootkit explored a new
data structure that it could exploit, while the detec-
tor had to incorporate the newly discovered data
structure in its verification list. Most of the data
that the rootkits modified was immutable control
data i.e. function pointers used by various layers
in the kernel. An automated approach was later
developed to uniformly check for manipulation of
all control data in the kernel, by validating every
function pointer against a valid kernel function
address (Petroni, 2007).

Since the integrity of mostly immutable control
data can be verified, rootkit authors have advanced
another step and have built innovative attacks
that work by solely manipulating data structures
that are mutable (Butler, 2005). This defeats the
existing integrity checking mechanism of storing
checksums and performing periodic comparisons
because these data structures are also modified by
authentic kernel code. We demonstrated some at-
tacks that work by modifying relatively immutable
non-control data (Baliga, 2007), (Baliga, 2009).
These attacks modify variable values to alter the
behavior of kernel algorithms. They escape de-
tection because they manipulate non-control data
within data structures not typically monitored by
rootkit detectors. Detection approach was built
to detect these advanced attacks using manual
specifications, as long as the attack obeys some
constraint (Petroni, 2006). This approach is effec-
tive as long as a manual security expert is capable
of analyzing, anticipating and specifying the
constraints on data structures that might become
the target of future attacks.

49

Identifying Systemic Threats to Kernel Data

More recent trends have shown rookits that
operate below the operating system layer. Re-
searchers have demonstrated rootkits that use the
virtual machine technology to subvert the system
(King, 2006), (Rutkowska, 2006) and rootkits
that work independently of the operating system
without requesting its services or affecting its state
(David, 2008). While these indicate a new trend
in the development of rootkits, they are likely to
be unpopular because they are highly platform
specific and depend on specific hardware features
for their deployment. The operating system is still
an attractive target because kernel level rootkits
work independent of the hardware and can there-
fore be easily ported across different platforms.
The kernel also provides a large code base and
numerous amounts of complex data structures,
providing the rootkit authors with several avenues
for building stealthy innovative attacks.

our contribution

The focus of this chapter is on attacks that alter
code and data structure in the operating system
kernel. Conventionally, rootkits provide all ma-
licious functionality as user space programs. To
conceal their presence, rootkits tamper with the
kernel. This involves modifying kernel code or
data structures in the system call paths that are
capable of affecting the user’s view of the system.
Typically, rootkits intercept control by installing
hooks within the system call control path, which
provide them with the capability of filtering
requests and responses. The most common data
structure manipulated by rootkits for this purpose
is the system call table. As detection techniques
matured to monitor the well known data structures
targeted by rootkits, rootkits evolved to modify
other less known data structures for control in-
terception. Others evolved to modify non-control
data to achieve similar goals.

While the data structures that are tampered have
changed over the years, the intent of tampering is
still the same, namely to hide the malicious files,

process and network connections. These rootkits
can be easily detected by tools that use the hid-
ing behavior as a symptom for detection. In fact,
tools such as Strider Ghostbuster (Wang, 2005)
detect the presence of rootkits, merely from their
attempt to hide.

In this chapter, we demonstrate a new class
of attacks and also present a novel automated
technique to detect them. The attacks do not ex-
plicitly exhibit hiding behavior but are stealthy by
design. They do not rely on user space programs
to provide malicious functionality but achieve the
same by simply manipulating kernel data. These
attacks are symbolic of a larger systemic problem
within the kernel, thus requiring comprehensive
analysis. Our novel rootkit detection technique
based on automatic inference of data structure
invariants, which can automatically detect such
advanced stealth attacks on the kernel. We have
built a prototype Gibraltar, which evaluates our
approach. Gibraltar has automatically detected all
publicly known rootkits as well as other stealth
attacks discussed by us and proposed in other
research literature.

attacKS

In this section, we present four stealth attacks that
we designed and one designed by another research
group (Shellcode, 2006), all of which achieve
their malicious objectives by solely changing
kernel data. None of them explicitly exhibit hid-
ing behavior and therefore cannot be detected by
tools that use hiding behavior as a symptom for
detection. These attacks span different subsystems
in the kernel and are indicative of a more systemic
threat posed by future rootkits.

disable firewall

This attack hooks into the netfilter framework
of the Linux kernel and stealthily disables the
firewall installed on the system. The user cannot

50

Identifying Systemic Threats to Kernel Data

determine this fact by inspecting the system using
iptables. The rules still appear to be valid and the
firewall appears to be in effect. In designing this
attack, the goal of the attacker is to disable the
network defense mechanisms employed by the
target systems, thereby making them vulnerable
to other attacks over the network.

Background: Netfilter is a packet filtering
framework in the Linux kernel. It provides hooks
at different points in the networking stack. This
was designed for kernel modules to hook into
and provide different functionality such as packet
filtering, packet mangling and network address
translation. These hooks are provided for each
protocol supported by the system. The netfilter
hooks for the IP protocol are shown in Figure 2.
Each of the hooks, Pre-routing, Input, Forward,
Output and Post-routing, are hooks at different
points in the packets traversal. Iptables is a fire-
wall management command line tool available
on Linux. Iptables can be used to set the firewall
rules for incoming and outgoing packets. Iptables
uses the netfilter framework to enforce the firewall
rules. Packets are filtered according to the rules
provided by the firewall.

Attack Description: The pointers to the netfilter
hooks are stored in a global table called nf_hooks.
This is an array of pointers that point to the handlers
registered by kernel modules to handle different
protocol hooks. This data structure is exported even
by the latest 2.6 Linux kernel. We modified the hook
corresponding to the IP protocol and redirected it to
our dummy code, effectively disabling the firewall.

The firewall rules that we used during this experi-
ment are shown in Figure 3. The INPUT rules deny
admission for incoming traffic to the web server
running on the system. Before the attack, we were
unable to access this web server externally. After
we inserted the attack module, we could access the
web content hosted by the web server running on
http port (port 80). Running iptables command to
list the firewall rules still shows that the same rules
are in effect (as shown in Figure 3). The user has
no way of knowing that the firewall is disabled as
the rules appear to be in effect.

Impact: A stealthy attack such as the one de-
scribed cannot be detected by the existing set of
tools. Since our attack module is able to filter all
packets without passing it to the firewall, it can
run other commands upon receipt of a specially
crafted packet sent by the remote attacker.

resource wastage

This attack causes resource wastage and perfor-
mance degradation on applications by generating
artificial memory pressure, which can lead to a
thrashing (Wiseman, 2009), (Jiang, 2009). The
goal of this attack is to show that it is possible
to stealthily influence the kernel algorithms by
simply manipulating data values. This attack
targets the zone balancing logic, which ensures
that there are always enough free pages available
in the system memory.

Background: Linux divides the total physical
memory installed on a machine into nodes. Each

Figure 2. Hooks provided for the Linux netfilter framework

51

Identifying Systemic Threats to Kernel Data

node corresponds to one memory bank. A node
is further divided into three zones: zone dma,
zone normal and zone highmem. Zone dma is
the first 16MB reserved for direct memory access
(DMA) transfers. Zone normal spans from 16MB
to 896MB. This is the zone that is used by user
applications and dynamic data requests within
the kernel. This zone and zone dma are linearly
mapped in the kernel virtual address space. Zone
highmem is memory beyond 896MB. This zone
is not linearly mapped and is used for allocations
that require a large amount of contiguous memory
in the virtual address space.

Each zone is always kept balanced by the kernel
memory allocator called the buddy allocator and
the page swapper kswapd. The balance is achieved
using zone watermarks, which are basically indica-
tors for gauging memory pressure in the particular
zone. The zone watermarks have different values
for all the three zones. These are initialized on
startup depending on the number of pages present
in the zones. These three watermarks are called
pages_min, page low and pages_high respectively
as shown in Figure 4. When the number of free
pages in the zones, drops below pages_low pages,
kswapd is woken up. kswapd tries to free pages
by swapping unused pages to the swap store. It
continues this process until the number of pages
reaches pages_high and then goes back to sleep.

When the number of pages reaches pages_min,
the buddy allocator tries to synchronously free
pages. Note that sometimes the number of free
pages can go below the pages_min, due to atomic
allocations requested by the kernel.

Attack Description: The zone watermarks
for each zone are stored in a global data structure
called zone_table. Zone_table is an array of zone_t
data structures that correspond to each zone. Zone
watermarks are stored inside this data structure.
This symbol is exported even by the 2.6 kernel.
The location of this table can be found by referring
to the System.map file. We wrote a simple kernel
module to corrupt the zone watermarks for the zone
normal memory zone. The original and new values
for these watermarks are shown in Table 1. We
push the pages_min and the pages_low watermarks
very close to the pages_high watermark. We also
make the pages_high watermark very close to the
total number of pages in that zone.

This forces the zone balancing logic to maintain
the number of free pages close to the total number
of pages in that zone, essentially wasting a big
chunk of the physical memory. Table 1 shows that
210065 (820.56 MB) pages are maintained in the
free pool. This attack can be similarly carried out
for other zones as well, wasting almost all memory
installed on the system. The table indicates that
only about 60MB is used and the rest is main-

Figure 3. Firewall rules deny admission to web server port

52

Identifying Systemic Threats to Kernel Data

tained in the free pool, causing applications to
constantly swap to disk. This attack also imposes
a performance overhead on applications as shown
in Table 2. The three tasks that we used to measure
the performance overhead are file copy of a large
number of files, compilation of the Linux kernel
and file compression of a directory. The table
shows the time taken when these tasks were car-
ried out on a clean kernel and after the kernel was

tampered. The performance degradation imposed
by this attack is considerable.

Impact: This attack resembles a stealthier
version of the resource exhaustion attack, which
traditionally has been carried out over the network
(Schuba, 1997), (Wang, 2002), (Moore,2006). We
try to achieve a similar goal i.e to overwhelm the
compromised system subtly by creating artificial
memory pressure. This leads to a considerable
performance overhead on the system. This also
causes a large amount of memory to be unused
all the time to maintain the high number of pages
in the free pool, leading to resource wastage. The
attacker could keep the degradation subtle enough
to escape detection over extended periods.

entropy pool contamination

This attack contaminates the entropy pool and the
polynomials used by the Pseudo-Random Number
Generator (PRNG) to stir the pools. The goal of

Figure 4. Kernel Memory Allocation: Zone balancing logic and usage of zone watermarks

Table 1. Watermark values and free page count
before and after the resource wastage attack for
the normal zone

 Watermark Original Value Modified Value

 pages_min 255 210000

 pages_low 510 21500

 pages_high 765 220000

 total free pages 144681 210065

 total number of pages in zone: 225280

Table 2. Performance degradation exhibited by applications after the resource wastage attack

 Application Before Attack After Attack Degradation (%)

 file copy 49s 1m 3s 28.57

 compilation 2m 33s 2m 56s 15.03

 file compression 8s 23s 187.5

53

Identifying Systemic Threats to Kernel Data

this attack is to degrade the quality of the pseudo
random numbers that are generated by the PRNG.
The kernel depends on the PRNG to supply good
quality pseudo random numbers, which are used
by all security functions in the kernel as well as
by applications for key generation, generating
secure session id’s, etc. All applications and kernel
functions that depend on the PRNG are in turn
open to attack.

Background: The PRNG provides two inter-
faces to user applications namely /dev/random and
/dev/urandom as shown in Figure 5. The PRNG
depends on three pools for its entropy require-
ments: the primary pool, the secondary pool and
the urandom pool. The /dev/random is a blocking
interface and is used for very secure applications.
The device maintains an entropy count and blocks
if there is insufficient entropy available. Entropy is
added to the primary pool from external events such
as keystrokes, mouse movements, disk activity
and network activity. When a request is made for
random bytes, bytes are moved from the primary
pool to the secondary and the urandom pools. The
/dev/urandom interface on the other hand is non-
blocking. The contents of the pool are stirred when
the bytes are extracted from the pools. A detailed
analysis of the Linux random number generator
is available in (Gutterman, 2006).

Attack Description: This attack constantly
contaminates the entropy pool by writing zeroes

into all the pools. This is done by loading an attack
module that consists of a kernel thread. The thread
constantly wakes up and writes zeroes into the en-
tropy pools. It also attacks the polynomials that are
used to stir the pool. Zeroing out these polynomials
nullifies a part of the extraction algorithm used
by the PRNG. The location of the entropy pool
is not exported by the Linux kernel. We can find
the location by simply scanning kernel memory.
Entropy pool has the cryptographic property of
being completely random (Shamir, 1999). Since
we know the size of the entropy pools, this can be
found by running a sliding window of the same
sizes through memory and calculating the entropy
of the data within the window. Kernel code and
data regions are more ordered than the entropy
pools and have a lower entropy value. The pool
locations can therefore be successfully located.

We measured the quality of the random num-
bers generated by using the diehard battery of tests
(Marsaglia, 1996). The results are summarized
in Table 3. Diehard is the suite of tests used to
measure the quality of random numbers generated.
Any test that generates a value extremely close to
0 or 1 represents a failing sequence. More about
the details of these tests can be found in (Mar-
saglia, 1996). We run the tests over ten different
10MB files that were generated by reading from
the /dev/random device. The table shows that
the sequence that is generated after attack, fails

Figure 5. The Linux Random Number Generator

54

Identifying Systemic Threats to Kernel Data

miserably in two of the tests: cnt1s and mindist
and partially in the others. A failure in any one
of the tests means that the PRNG is no longer
cryptographically secure.

Impact: After the attack, the generated pseudo
random numbers are of poor quality, leaving the
system and applications vulnerable to crypta-
nalysis attacks.

disable pseudo-random
number generator

This attack overwrites the addresses of the de-
vice functions registered by the Pseudo-Random
Number Generator (PRNG) with the function
addresses of the attack code. The original func-
tions are never invoked. These functions always
return a zero when random bytes are requested
from the /dev/random or /dev/urandom devices.
Note that though this appears similar to the attack
by traditional rootkits that hook into function
pointers, there is a subtle difference. Since this
particular device does not affect user-level view
of objects, this is not a target for achieving hid-
ing behavior and hence, not monitored by kernel
integrity monitors.

Background: Linux provides a flexible archi-
tecture where different file systems and devices
can use a common interface. This interface is

provided by a layer called the virtual file system
(VFS) layer. A new file system or a device pro-
vides a set of hooks when registering with the
VFS layer. Figure 6 depicts two file systems ext3
and MS-DOS and one device /dev/random that are
registered with the VFS layer. This enables user
applications to access files residing on both file
systems and the access to the device file with a
common set of system calls. The system call is
first handled by the VFS code. Depending on
where the file resides, the VFS layer invokes the
appropriate function registered by the file system
or device during registration. Some system calls
such as the close system call are directly handled
by the VFS layer, which simply requires release
of resources.

Attack Description: The kernel provides func-
tions for reading and writing to the /dev/random
and /dev/urandom devices. The data structures
used to register the device functions are called
random_state_ops and urandom_state_ops for
the devices /dev/random and /dev/urandom re-
spectively. These symbols are exported by the
2.4 kernel but are not exported by the 2.6 kernel.
We could find this data structure by first scanning
for function opcodes of functions present within
random_state_ops and urandom_state_ops. We
then used the function addresses in the correct
order to find the data structure in memory. Once

Table 3. Results from running the Diehard battery of tests after contamination of the entropy pool

File# bday operm binrnk6x8 cnt1s parkinglot mindist sphere squeeze osum craps

1 0.765454 0.497607 0.197306 0.000000 0.159241 0.000000 0.893287 0.423572 0.641313 0.147407

2 0.044118 0.180747 0.143452 0.000000 0.012559 0.000000 0.055361 0.769919 0.002603 0.066102

3 0.079672 0.999996 0.467953 0.000000 0.132155 0.000000 0.001550 0.190808 0.032007 0.468605

4 0.009391 0.000334 0.010857 0.000000 0.400118 0.000000 0.000258 0.573443 0.051299 0.057709

5 0.059726 0.996908 0.754544 0.000000 0.065416 0.000000 0.212797 0.276961 0.009343 0.389614

6 0.384023 0.975071 0.003450 0.000000 0.004431 0.000000 0.021339 0.047575 0.139662 0.082087

7 0.002450 0.458676 0.014060 0.000000 0.002061 0.000000 0.000010 0.044232 0.068223 0.836221

8 0.001195 0.840548 0.115478 0.000000 0.192544 0.000000 0.001535 0.024058 0.000078 0.214631

9 0.427721 0.553566 0.138635 0.000000 0.311526 0.000000 0.071177 0.296367 0.003107 0.679244

10 0.654884 0.106287 0.212463 0.000000 0.072483 0.000000 0.212785 0.338967 0.122016 0.710536

55

Identifying Systemic Threats to Kernel Data

these data structures are located in memory, the
attack module replaces the genuine function
provided by the character devices with the attack
function. The attack function for reading from
the device simply returns a zero when bytes are
requested. After the attack, every read from the
device returns a zero.

Impact: All security functions within the
kernel and other security applications rely on
the PRNG to supply pseudo random numbers.
This attack stealthily compromises the security
of the system, without raising any suspicions
from the user.

adding a new binary format

The goal of this attack is to invoke malicious
code each time a new process is created on the
system (Shellcode, 2006). While rootkits typically
achieve this form of hooking by modifying kernel
control data, such as the system call table, this
attack works by inserting a new binary format
into the system.

Attack. This attack operates by introducing a
new binary format into the list of formats supported
by the system. The handler provided to support this
format is malicious in nature. The binary formats
supported by a system are maintained by the kernel

in a global linked list called formats. The binary
handler, specific to a given binary format, is also
supplied when a new format is registered.

A new process is created on the system, the
kernel creates the process address space, sets up
credentials and in calls the function search_bi-
nary_handler, which is responsible for loading the
binary image of the process from the executable
file. This function iterates through the formats list
to look for an appropriate handler for the binary
that it is attempting to load. As it traverses this list,
it invokes each handler in it. If a handler returns
an error code ENOEXEC, the kernel considers
the next handler on the list; it continues to do
so until it finds a handler that returns the code
SUCCESS.

This attack works by inserting a new binary
format in the formats list and supplying the kernel
with a malicious handler that returns the error code
ENOEXEC each time it is invoked. Because the
new handler is inserted at the head of the formats
list, the malicious handler is executed each time
a new process is executed.

Impact: The attacker is able to successfully
invoke malicious code each time a new process
is created on the system.

Figure 6. File and device hooks in the Linux virtual file system (vfs) layer

56

Identifying Systemic Threats to Kernel Data

rootKit detection Via
automated inVariant
inference

To automatically detect stealth attacks on the
kernel such as the ones discussed in the last sec-
tion, we propose a novel approach based upon
automatic inference of data structure invariants.
This approach is based on the hypothesis that
kernel data structures exhibit invariants during its
normal operation. A kernel rootkit that alters the
behavior of the kernel algorithms violates some
of these invariants and therefore can be detected.
This approach can uniformly detect rootkits that
modify both control and non-control data. To
evaluate this hypothesis, we built a prototype
Gibraltar, whose design and implementation, we
discuss below.

The key idea is to monitor the values of
kernel data structures during a training phase,
and hypothesize invariants that are satisfied by
these data structures. These invariants serve as
specifications of data structure integrity. For ex-
ample, an invariant could state that the values of
elements of the system call table are a constant
(an example of a control data invariant). Similarly,
an invariant could state that all the elements of
the running-tasks linked list (used by the kernel
for process scheduling) are also elements of the
all-tasks linked list that is used by the kernel for
process accounting (an example of a non-control
data invariant) (Butler, 2005),

(Petroni, 2006). These invariants are then
checked during an enforcement phase; violation
of an invariant indicates the presence of a rootkit.
Because invariants are inferred automatically and
uniformly across both control and non-control
data structures, the approach presented in this
section, overcomes the shortcomings of prior
rootkit detection techniques.

Because Gibraltar aims to detect rootkits,
it must execute on an entity that is outside the
control of the monitored kernel, such as a copro-
cessor (Petroni, 2004), (Zhang, 2002) or inside

a separate virtual machine (Garfinkel, 2003). In
our architecture, Gibraltar executes on a separate
machine (the observer) and monitors the execu-
tion of the target machine (the target) as shown
in Figure 7. Both the observer and the target are
interconnected via a secure back-end network
using the Myrinet PCI intelligent network cards
(Myricom, n.d.) 1. The back end network allows
Gibraltar to remotely access the target kernel’s
physical memory. Gibraltar is built to infer data
structure invariants when supplied with raw
kernel memory as input. Since coprocessor and
VMM based external monitors use a similar
asynchronous monitoring technique to read the
target memory, Gibraltar can be easily adapted
to work with these infrastructures.

Figure 8 presents the architecture of Gibraltar.
It operates in two modes, namely, a training mode
and an enforcement mode. In the training mode,
Gibraltar infers invariants on data structures of the
target’s kernel. Training happens in a controlled
environment on an uncompromised target (e.g.
a fresh installation of the kernel on the target
machine). In the enforcement mode, Gibraltar
ensures that the data structures on the target’s
kernel satisfy the invariants inferred during the
training mode.

As shown in Figure 8, Gibraltar consists of four
key components (shown in the boxes with solid
lines). The page fetcher responds to requests by
the data structure extractor to fetch kernel

memory pages from the target. The data
structure extractor, in turn, extracts values of data
structures on the target’s kernel by analyzing raw
physical memory pages. The data structure extrac-
tor also accepts as input the data type definitions
of the kernel running on the target machine and
a set of root symbols that it uses to traverse the
target’s kernel memory pages. Both these inputs
are obtained via an off line analysis of the source
code of the kernel version executing on the target
machine. The output of the data structure extractor
is the set of kernel data structures on the target. The
invariant generator processes these data structures

57

Identifying Systemic Threats to Kernel Data

and infers invariants. These invariants represent
properties of both individual data structures, also
called objects, (e.g. scalars, such as integer vari-
ables and arrays and aggregate data structures,
such as structs) as well as collections of data
structures (e.g. linked lists). During enforcement,
the monitor uses the invariants as specifications
of kernel data structure integrity, which raises an
alert when an invariant is violated by a kernel data
structure. The following sections elaborate on the
design of each of these components.

the page fetcher

Gibraltar executes on the observer, which is isolat-
ed from the target system. Gibraltar’s page fetcher
is a component that takes a physical memory
address as input, and obtains the corresponding
memory page from the target. The target runs a
Myrinet PCI card to which the page fetcher issues a
request for a physical memory page. Upon receiv-
ing a request, the firmware on the target initiates
a DMA request for the requested page. It sends
the contents of the physical page to the observer
upon completion of the DMA. The Myrinet card
on the target system runs an enhanced version of

Figure 7. Gibraltar running on the Observer remotely fetches kernel snapshots from the target via the
Myrinet back end network

Figure 8. Boxes with solid lines show components of Gibraltar. Boxes with dashed lines show data used
as input or output by the different components

58

Identifying Systemic Threats to Kernel Data

the original firmware. Our enhancement ensures
that when the card receives a request from the
page fetcher, the request is directly interpreted
by the firmware and serviced.

the data Structure extractor

This component reconstructs snapshots of the
target kernel’s data structures from raw physi-
cal memory pages. The data structure extractor
processes raw physical memory pages using two
inputs to locate data structures within these pages.
First, it uses a set of root symbols, which denote
kernel data structures whose physical memory
locations are fixed, and from which all data struc-
tures on the target’s heap are reachable. In our
implementation, we use the symbols in the System.
map file of the target’s kernel as the set of roots.
Second, it uses a set of type definitions of the data
structures in the target’s kernel. Type definitions
are used as described below to recursively identify
all reachable data structures. We automatically
extracted 1292 type definitions by analyzing the
source code of the target Linux-2.4.20 kernel us-
ing a CIL module (Necula, 2002).

The data structure extractor uses the roots
and type definitions to recursively identify data
structures in physical memory using a standard
worklist algorithm as shown in Figure 9. The
extractor first adds the addresses of the roots to a
worklist; it then issues a request to the page fetcher
for memory pages containing the roots. It extracts
the values of the roots from these pages, and uses
their type definitions to identify pointers to more
(previously-unseen) data structures. For example,
if a root is a C struct, the data structure extrac-
tor adds all pointer-valued fields of this struct to
the worklist to locate more data structures in the
kernel’s physical memory. This process continues
in a recursive fashion until all the data structures
in the target kernel’s memory (reachable from
the roots) have been identified. A complete set of
data structures reachable from the roots is called a
snapshot. The data structure extractor periodically
probes the target and outputs snapshots.

When the data structure extractor finds a
pointer-valued field, it may require assistance in
the form of code annotations to clarify the seman-
tics of the pointer. In particular, the data structure
extractor requires assistance when it encounters

Figure 9. Algorithm used by the data structure extractor

59

Identifying Systemic Threats to Kernel Data

linked lists, implemented in the Linux kernel us-
ing the list_head structure. In Linux, other kernel
data structures (called containers) that must be
organized as a linked list simply include the list
head data structure. The kernel provides func-
tions to add, delete, and traverse list head data
structures. Such linked lists are problematic for
the data structure extractor. In particular, when it
encounters a list head structure, it will be unable
to identify the container data structure. To handle
such linked lists, we use the Container annotation.
The annotation explicitly specifies the type of the
container data structure and the field within this
type, to which the list head pointers refer. The
extractor uses this annotation and locates the
container data structure. In our experiments, we
annotated all 163 annotations of the list_head data
structure in the Linux-2.4.20 kernel.

In addition to linked lists, Gibraltar may
also require assistance to disambiguate opaque
pointers (void *), dynamically allocated arrays
and untagged unions. For example, the extractor
would require the length of dynamically-allocated
arrays in order to traverse and locate objects in
the array. We plan to add support for dynamic
arrays, opaque pointers and untagged unions in
future work.

Because the page fetcher obtains pages from
the target asynchronously (without halting the
target), it is likely that the data structure extractor
will encounter inconsistencies, such as pointers
to non-existent objects. Such invalid pointers are
problematic because the data structure extractor
will incorrectly fetch and parse the memory re-
gion referenced by the pointer (which will result
in more invalid pointers being added to the work
list of the traversal algorithm). To remedy this
problem, we currently place an upper bound on
the number of objects traversed by the extractor. In
our experiments, we found that on an idle system,
the number of data structures in the kernel varies
between 40,000 and 65,000 objects. We therefore
place an upper bound of 150,000; the data structure
extractor aborts the collection of new objects when

this threshold is reached. In our experiments, this
threshold was rarely reached, and even so, only
when the system was under heavy load.

the invariant generator

In the training mode, the output of the data struc-
ture extractor is used by the invariant generator,
which infers likely data structure invariants.
These invariants are used as specifications of data
structure integrity.

To extract data structure invariants, we adapted
Daikon (Ernst, 2006), a state of the art invariant
inference tool. Daikon was developed to dynami-
cally infer invariants for application programs.
An invariant is a property that holds at a certain
point or points in a program; these are often used
in assert statements and for formal specifications.
For application programs, invariants can be useful
mainly in program understanding. It can also be
used for generating test cases, predicting incom-
patibilities in component integration, automating
theorem proving and repairing inconsistent data
structures.

Daikon attempts to infer likely program
invariants by observing the values of variables
during multiple executions of a program. Daikon
first instruments the program to emit a trace that
contains the values of variables at selected pro-
gram points, such as the entry points and exits
of functions. It then executes the program on a
test suite, and collects the traces generated by the
program. Finally, Daikon analyzes these traces and
hypothesizes invariants—properties of variables
that hold across all the executions of the program.
The invariants produced by Daikon conform to one
of several invariant templates. For example, the
template x == const checks whether the value of
a variable x equals a constant value const (where
const represents a symbolic constant; if x has
the constant value 5, Daikon will infer x == 5 as
the invariant). Daikon also infers invariants over
collections of objects. For example, if it observes
that the field bar of all objects of type struct foo

60

Identifying Systemic Threats to Kernel Data

at a program point have the value 5, it will infer
the invariant “The fields bar of all objects of type
struct foo have value 5.”

We had to make three key changes to adapt
Daikon to infer invariants over kernel data
structures.

• Inference over snapshots. Daikon is
designed to analyze multiple execution
traces obtained from instrumented pro-
grams and extract invariants that hold
across these traces. We cannot use Daikon
directly in this mode because the target’s
kernel is not instrumented to collect ex-
ecution traces. Rather, we obtain values
of data structures by asynchronously ob-
serving the memory of the target kernel.
To adapt Daikon to infer invariants over
these data structures, we represent all the
data structures in one snapshot of the tar-
get’s memory as a single Daikon trace. As
described in 3.2, the data structure extrac-
tor periodically reconstructs snapshots of
the target’s memory. Multiple snapshots
therefore yield multiple traces. Daikon
processes all these traces and hypothesiz-
es properties that hold across all traces,
thereby yielding invariants over kernel
data structures

• Naming data structures. Because
Daikon analyzes instrumented programs,
it represents invariants using global vari-
ables and the local variables and formal
parameters of functions in the program.
However, because Gibraltar aims to infer
invariants on data structures reconstructed
from snapshots, the invariants output by
Gibraltar must be represented using the
root symbols. Gibraltar represents each
data structure in a snapshot using its name
relative to one of the root symbols. For
example, Gibraltar represents the head of
the all-tasks linked list, using the name

init tasks->next task (here, init tasks is a
root symbol). The extractor names each
data structure as it is visited for the first
time.

In addition, Gibraltar also associates each
name with the virtual memory address of the data
structure that it represents in the snapshot. These
addresses are used during invariant inference,
where they help identify cases where the same
name may represent different data structures in
multiple snapshots. This may happen because of
deallocation and reallocation. For example, sup-
pose that the kernel deallocates (and reallocates,
at a different address) the head of the all-tasks
linked list. Because the name init tasks->next task
will be associated with different virtual memory
addresses before and after allocation, it represents
different data structures; Gibraltar ignores such
objects during invariant inference.

• Linked data structures. Linked lists are
ubiquitous in the kernel and, as demon-
strated later in 4.2, can be exploited sub-
tly by rootkits. It is therefore important to
preserve the integrity of kernel linked lists.
Daikon, however, does not infer invariants
over linked lists. To overcome this short-
coming, we represented kernel linked lists
as arrays in Daikon trace files, and lever-
aged Daikon’s ability to infer invariants
over arrays. We then converted the invari-
ants that Daikon inferred over these arrays
to invariants over linked lists.

Daikon infers invariants that conform to 75 dif-
ferent templates (Ernst, 2006), and infers several
thousand invariants over kernel data structures
using these templates. In the discussion below,
and in the experimental results reported in section
4, we focus on five templates; in the templates
below, var denotes either a scalar variable or a
field of a structure.

61

Identifying Systemic Threats to Kernel Data

• Membership template (var € {a, b, c}).
This template corresponds to invariants
that state that var only acquires a fixed set
of values (in this case, a, b or c). If this
set is a singleton {a}, denoting that var is a
constant, then Daikon expresses the invari-
ant as var == a.

• Non-zero template (var != 0). The non-
zero template corresponds to invariants
that determine that a var is a non-NULL
value (or not 0, if var is not a pointer).

• Bounds template (var <= const), (var
>= const). This template corresponds to
invariants that determine lower and upper
bounds of the values that var acquires.

The three example templates discussed above
correspond to invariants over variables and fields
of C struct data structures. These invariants can
be inferred over individual objects, as well as
over collections of data structures (e.g. the fields
bar of all objects of type struct foo have value 5).
Invariants over collections describe a property
that hold for all members of that collection across
all snapshots.

• Length template (length(var) == const).
This template describes invariants over
lengths of linked lists.

• Subset template (coll1 TODO-SUBSET
coll2). This template represents invariants
that describe that the collection coll1 is a
subset of collection coll2. This is used, for
instance, to represent invariants that de-
scribe that every element of one linked list
is also an element of another linked list.

The last two example templates are used to
describe properties of kernel linked lists. As re-
ported in section 4, in our experiments, invariants
that conformed to the Daikon templates sufficed
to detect all the conventional and the modern
stealth attacks on the kernel that we tested.
However, to accommodate for rootkits that only

violate invariants that conform to other kinds of
templates, we may need to extend Gibraltar with
more templates in the future. Fortunately, Daikon
supports an extensible architecture. Newer invari-
ant templates can be supplied to Daikon, thereby
allowing Gibraltar to detect more attacks.

the monitor

During enforcement, the monitor ensures that the
data structures in the target’s memory satisfy the
invariants obtained during training. As with the
invariant generator, the monitor obtains snapshots
from the data structure extractor, and checks the
data structures in each snapshot against the invari-
ants. This ensures that any malicious modifications
to kernel memory that cause the violation of an
invariant are automatically detected.

persistent vs. transient invariants

The invariants inferred by Gibraltar can be catego-
rized as either persistent or transient. persistent
invariants represent properties that are valid across
reboots of the target machine, provided that the
target’s kernel is not reconfigured or recompiled
between reboots. All the examples in Figures 11-
15 are persistent invariants.

An invariant is persistent if and only if the
names of the variables in the invariant persist
across reboots and the property represented by the
invariant holds across reboots. Thus, a transient
invariant either expresses a property of a variable
whose name does not persist across reboots or
represents a property that does not hold across
reboots. For example, consider the invariant in
Figure 10, which expresses a property of a struct
file operations object. This invariant is transient
because it does not persist across reboots. The
name of this object changes across reboots as it
appears at different locations in kernel linked lists;
consequently, the number of next and prevs that
appear in the name of the variable differ across
reboots.

62

Identifying Systemic Threats to Kernel Data

The distinction between persistent and transient
invariants is important because it determines
the number of invariants that must be inferred
each time the target machine is rebooted. In
our experiments, we found that out of a total of
approximately 718,000 invariants extracted by
Gibraltar, approximately 40,600 invariants persist
across reboots of the target system.

Although it is evident that the number of
persistent invariants is much smaller than the
total number of invariants inferred by Gibraltar
(thus necessitating a training each time the target
is rebooted), we note that this does not reflect
poorly on our approach. In particular, the per-
sistent invariants can be enforced as Gibraltar
infers transient invariants after a reboot of the
target machine, thus providing protection during
the training phase as well. The cost of retraining
to obtain transient invariants can potentially be
ameliorated with techniques such as live-patching
(Chen, 2006), (Arnold, 2008), which can be used
to apply patches to a running system.

experimental reSultS

This section presents the results of experiments
to test the effectiveness and performance of
Gibraltar at detecting rootkits that modify both
control and non-control data structures. We focus
on three concerns:

Detection accuracy. We tested the effective-
ness of Gibraltar by using it to detect both publicly
available rootkits as well as those proposed in the
research literature (Shellcode, 2006), (Baliga,
2007), (Petroni, 2007). Gibraltar detected all these
rootkits (Section 4.2).

False positives. During enforcement Gibraltar
raises an alert when it detects an invariant viola-
tion; if the violation was not because of a mali-
cious modification, the alert is a false positive.
Our experiments showed that Gibraltar has a false
positive rate of 0:65% (Section 4.3).

Performance. We measured three aspects of
Gibraltar’s performance and found that it imposes
a negligible monitoring overhead (Section 4.4).

All our experiments are performed on a target
system with a Intel Xeon 2.80GHz processor with
1GB RAM, running a Linux-2.4.20 kernel (infra-
structure limitations prevented us from upgrading
to the latest version of the Linux kernel). The
observer also has an identical configuration.

experimental methodology

Our experiments with Gibraltar proceeded as fol-
lows. We first ran Gibraltar in training mode and
executed a workload that emulated user behavior
(described below) on the target system. We config-
ured Gibraltar to collect fifteen snapshots during
training. Gibraltar analyzes these snapshots and
infers invariants. We then configured Gibraltar
to run in enforcement mode using the invariants
obtained from training. During enforcement, we
installed rootkits on the target system, and ob-
served the alerts generated by Gibraltar. Finally,
we studied the false positive rate of Gibraltar
by executing a workload consisting of benign
applications.

Workload. We chose the Lmbench (McVoy,
1996) benchmark as the workload that runs on
the target system. This workload consists of a
micro benchmark suite that is used to measure
operating system performance. These micro

Figure 10. Example of a transient invariant. The name of the variable changes across reboots.

63

Identifying Systemic Threats to Kernel Data

benchmarks measure bandwidth and latency for
common operations performed by applications,
such as copying to memory, reading cached files,
context switching, networking, file system opera-
tions, process creation, signal handling and IPC
operations. This benchmark therefore exercises
several kernel subsystems and modifies several
kernel data structures as it executes.

detection accuracy

We report the results obtained in the use of the
inferred invariants to detect conventional root-
kits and modern stealth attacks proposed by us
and other research literature (Shellcode, 2006),
(Baliga, 2007), (Petroni, 2007).

Detecting conventional rootkits. We used
fourteen publicly-available rootkits (Packetstorm,
n.d.) that modify kernel data structures to test the
effectiveness of Gibraltar. Most of these rootkits
hide user level objects by modifying function
pointers in the kernel. We also included one root-
kit proposed in the research literature (Petroni,
2006); this rootkit hides malicious processes by
altering non-control data. This rootkit relies on
the fact that process accounting utilities, such as
ps, and the kernel’s task scheduler consult differ-
ent process lists. The process descriptors of all
tasks running on a system belong to a linked list
called the all-tasks list (represented in the kernel

by the data structure init_tasks->next task). This
list contains process descriptors headed by the
first process created on the system. The all-tasks
list is used by process accounting utilities. In
contrast, the scheduler uses a second linked list,
called the run-list (represented in the kernel by
run_queue_head->next), to schedule processes
for execution. This rootkit removes the process
descriptor of a malicious user-space process from
the all-tasks list (but not from the run-list). This
ensures that the process is not visible to process
accounting utilities, but that it will still be sched-
uled for execution. This technique is also used by
the Windows rootkit named fu (Butler, 2005).

Table 4 summarizes the list of the conventional
rootkits that we used in our experiments. Gibraltar
successfully detects all the above rootkits. Each
of these rootkits violated a persistent invariant.
All rootkits, except for the process hiding attack,
violated a object invariant conforming to the
template var == constant, where var is a function
pointer within the data structures modified by the
rootkit and constant is the value of the function
pointer. The process hiding attack violates the sub-
set invariant, run-list TODO-SUBSET all-tasks,
which states that each element in the run-list is
also an element of the all-tasks list. The process
hiding attack violates this invariant by removing
an entry from the all-tasks list and is therefore
detected by Gibraltar.

Table 4. Conventional rootkits for Linux, publicly available and found in research literature (Petroni,
2006). This table shows the data structures modified by the rootkit. Gibraltar successfully detects all
the rootkits.

Attack Name Data Structures Affected

Rootkits from Packet Storm [5].

Adore-0.42, All-root, Kbd, Kis 0.9, Linspy2, Modhide, Phide, Rial, Rkit 1.01,
Shtroj2, Synapsys-0.4, THC Backdoor

System call table

Adore-ng Vfs hooks, udp recvmsg

Knark 2.4.3 System call table, proc hooks

Rootkits from research literature [19].

Hiding Process Attack all-tasks list

64

Identifying Systemic Threats to Kernel Data

Detecting modern stealth attacks. We used
five stealth attacks developed by us and those
discussed in prior work (Shellcode, 2006), (Baliga,
2007) to test Gibraltar. Table 5 summarizes these
attacks, and shows the data structures modified by
the attack, the invariant type (collection/object)
violated, and the template that classifies the invari-
ant. Each of the invariants that was violated was a
persistent invariant, which survives a reboot of the
target machine. We discuss the invariants violated
by each attack in detail below. The details of the
first four attacks mentioned below are described
earlier in this chapter (Section 2).

Disable Firewall Attack

Gibraltar inferred the invariant shown in Figure 11
on the netfilter framework for the disable firewall
attack. This attack overwrites the hook with the at-
tack function, thereby violating the invariant, which
states that the function pointer nf_hooks[2][1].next.
hook is a constant. Because this attack modifies
kernel function pointers, it can also be detected
by SBCFI (Petroni, 2007), which automatically
extracts and enforces kernel control flow integ-

rity. In fact, function pointer invariants inferred
by Gibraltar implicitly determine a control flow
integrity policy that is equivalent to SBCFI.

Resource Wastage Attack

Gibraltar identifies the invariants shown in Figure
12 for the three watermarks, manipulated by the
resource wastage attack. These values are initial-
ized upon system startup, and typically do not
change in an uncompromised kernel. The attack
sets the pages min, pages low and pages high
watermarks to 210,000, 215,000 and 220,000
respectively. The values of these watermarks are
close to 225,280, which is the total number of
pages available on our system. Gibraltar detects
this attack because the invariants shown in Figure
12 are violated.

Entropy Pool Contamination Attack

Figure 13 shows the invariants that Gibraltar
identifies for the coefficients of the polynomial
that is used to stir entropy pools in an uncompro-
mised kernel (the poolinfo data structure shown

Table 5. Modern stealth attacks on kernel data (Shellcode, 2006), (Baliga, 2007). This table shows the
data structure modified by the attack, the type of invariant violated and the template that the invariant
conforms to.

 Attack Name Data Structures Affected Invariant Type Template

 Disable Firewall struct nf_hooks[] Object Membership (constant)

 Resource Wastage struct zone_struct Object Membership (constant)

 Entropy Pool Contamination struct poolinfo Collection Membership

 Disable PRNG struct random_state_ops Object Membership (constant)

 Adding Binary Format formats list Collection Length

Figure 11. An invariant inferred on the netfilter hook. Firewalls are disabled by modifying the function
pointer, thereby violating the invariant.

65

Identifying Systemic Threats to Kernel Data

in this Figure is represented in the kernel by one
of random_state->poolinfo or sec_random_state-
>poolinfo). The coefficients are initialized upon
system startup, and must never be changed during
the execution of the kernel. The attack violates
these invariants when it zeroes the coefficients of
the polynomial. Gibraltar detects this attack when
the invariants are violated.

Disable PRNG Attack

The invariants inferred by Gibraltar on our system
for the random fops and urandom fops are shown
in Figure 14. The attack code changes the values
of the above two function pointers, violating the
invariants. As with Attack 1, this attack can also
be detected using SBCFI.

Adding Binary Format Attack

Gibraltar infers the invariant shown in Figure 15
on the formats list on our system, which has two
registered binary formats. The size of the list is
constant after the system starts, and changes only
when a new binary format is installed. Because
this attack inserts a new binary format, it changes
the length of the formats list violating the invari-
ant in Figure 10; consequently, Gibraltar detects
this attack.

invariants and false positives

Invariants. As discussed in Section 3, Gibraltar
uses Daikon to infer invariants; these invariants
express properties of both individual objects, as
well as collections of objects (e.g., all objects of
the same type; invariants inferred over linked

Figure 12. Invariants inferred by Gibraltar for zone_table[1], a data structure of type zone_struct (Gi-
braltar infers similar invariants for the other elements of the zone_table array).

Figure 13. The invariants satisfied by the coefficients of the polynomial used by the stirring function in the
PRNG. The coefficients are the fields of the struct poolinfo data structure, shown above as poolinfo.

Figure 14. Invariants inferred for the PRNG function pointers. These are replaced to point to attacker
specified code, thereby disabling the PRNG.

66

Identifying Systemic Threats to Kernel Data

lists are also classified as invariants over collec-
tions). Table 6 reports the number of invariants
inferred by Gibraltar on individual objects as well
as on collections of objects. Table 6 also presents
a classification of invariants by templates; the
length and subset invariants apply only to linked
lists. As this table shows, Gibraltar automatically
infers several thousand invariants on kernel data
structures.

False Positives. To evaluate the false positive
rate of Gibraltar, we designed a test suite consist-
ing of several benign applications, that performed
the following tasks: (a) copying the Linux kernel
source code from one directory to another; (b)
editing a text document (an interactive task); (c)
compiling the Linux kernel; (d) downloading
eight video files from the Internet; and (e) perform
file system read/write and meta data operations
using the IOZone benchmark (Norcott, 2001).
This test suite ran for 42 minutes on the target.
We enforced the invariants inferred using the

workload described in 4.1.
The false positive rate is measured as the ratio

of the number of invariants for which violations are
reported and the total number of invariants inferred
by Gibraltar. Table 6 presents the false positive rate,
further classified by the type of invariant (object/
collection) that was erroneously violated by the
benign workload, and the template that classifies
the invariant. As this table shows, the overall false
positive rate of Gibraltar was 0.65%.

performance

We measured three aspects of Gibraltar’s perfor-
mance: (a) training time, i.e. the time taken by
Gibraltar to observe the target and infer invariants;
(b) detection time, i.e. the time taken for an alert
to be raised after the rootkit has been installed;
and (c) performance overhead, i.e. the overhead
on the target system as a result of periodic page
fetches via DMA.

Training time. The training time is calculated
as the cumulative time taken by Gibraltar to
gather kernel data structure snapshots and infer
invariants when executing in training mode.
Overall, the process of gathering 15 snapshots
of the target kernel’s memory requires approxi-
mately 25 minutes, followed by 31 minutes to
infer invariants, resulting in a total of 56 minutes
for training.

Training is currently a time-consuming process
because our current prototype invokes Daikon to
infer invariants after collecting all the kernel snap-
shots. Training time can potentially be reduced by
adapting Daikon to use an incremental approach
to infer invariants. In this approach, Daikon would
hypothesize invariants using the first snapshot,

Figure 15. Invariants inferred on the formats list; the attack modifies the length of the list

Table 6. Invariants and false positives classified
by the type of invariant and the template used
to mine the invariant. Gibraltar infers a total of
718,940 invariants. Average false positive rate:
0.65%.

Invariants False Positives

Templates Object Collection Object Collection

Member-
ship

643,622 422 0.71% 1.18%

Non-zero 49,058 266 0.17% 2.25%

Bounds 16,696 600 0% 0%

Length NA 4,696 NA 0.66%

Subset NA 3,580 NA 0%

67

Identifying Systemic Threats to Kernel Data

in parallel with the execution of the workload to
produce more snapshots. As more snapshots are
produced, Daikon can incrementally refine the
set of invariants. We leave this enhancement for
future work.

Detection time. We measure the detection
time as the interval between the installation of the
rootkit and Gibraltar detecting that an invariant has
been violated. Because Gibraltar traverses the data
structures in a snapshot and checks invariants over
each data structure, detection time is proportional
to the number of objects in each snapshot and the
order in which they are encountered by the traversal
algorithm. Gibraltar’s detection time varied from
a minimum of fifteen seconds (when there were
41,254 objects in the snapshot) to a maximum of
132 seconds (when there were 150,000 objects in
the snapshot). On average, we observed a detec-
tion time of approximately 20 seconds.

Monitoring overhead. The Myrinet PCI card
fetches raw physical memory pages from the target
using DMA; because DMA increases contention
on the memory bus, the target’s performance will
potentially be affected. We measured this overhead
using the Stream benchmark (McCalpin, 1995),
a synthetic benchmark that measures sustainable
memory bandwidth. Measurement is performed
over four vector operations, namely, copy, scale,
add and triad and averaged over 100 executions.
The vectors are chosen so that they clear the
last-level cache in the system, forcing data to be
fetched from main memory. Gibraltar imposes a
negligible overhead of 0.49% on the operation of
the target system.

concluSion

Conventionally, rootkits tamper with the kernel
to achieve stealth, while most of the malicious
functionality is provided by accompanying user
space programs. Therefore, stealth is achieved by
trying to hide the objects, such as files, processes
and network connections present in user space be-

longing to the attacker. Since user space programs
can access or modify user space objects using
system calls, the rootkit is limited to manipulating
code or data structures that are reachable from the
system call paths alone.

We demonstrated a new class of stealth attacks
that do not employ the traditional hiding behavior
used by rootkits but are stealthy by design. They
manipulate data within several different sub-
systems in the kernel to achieve their malicious
objectives. They are based upon the observation
that kernel rootkits need not necessarily be limited
to manipulation of data structures that lie within
the system call paths. Other subsystems within the
kernel are also vulnerable to such attacks. To dem-
onstrate this threat, we built several new attacks.
We have designed attack prototypes to demonstrate
that such attacks are realistic and indicative of a
more systemic problem in the kernel.

Previously proposed rootkit detection tech-
niques largely detect attacks that modify kernel
control data; techniques that detect non-control
data attacks, especially on dynamically-allocated
data structures, require specifications of data
structure integrity to be supplied manually. In this
chapter, we presented a novel rootkit detection
technique that detects rootkits uniformly across
control and non-control data. The approach is
based on the hypothesis that several invariants
are exhibited by kernel data structures at runtime
during its correct operation. A rootkit that modi-
fies the behavior of the kernel algorithms violates
some of these invariants. We presented a prototype
Gibraltar, a tool that automatically infers and
enforces specifications of kernel data structure
integrity. Gibraltar infers invariants uniformly
across control and non-control kernel data, and
enforces these invariants as specifications of data
structure integrity. Our experiments showed that
Gibraltar successfully detects rootkits that modify
both control and non-control data structures, and
does so with a low false positive rate and negligible
performance overhead.

68

Identifying Systemic Threats to Kernel Data

future worK

Research over the past few years has made sig-
nificant strides in the development of stealth at-
tacks and tools and techniques for monitoring the
integrity of the kernel. Numerous novel research
challenges have also emerged that show promise
towards building more robust and comprehensive
kernel integrity monitors. Below, we discuss
some interesting directions for future work in
this area.

data Structure repair

Detection of rootkits that tamper with the kernel
data structures has received a lot of attention over
the past five years. Detection techniques are able
to identify the data structures that are modified
by the attack. While some work has been done in
containment of ongoing attacks (Baliga, 2008),
the commonly employed approach in the face
of such attacks is to format the disk and install
a new operating system image. The current re-
sponse procedure besides being tedious and time
consuming does not scale with the current attack
growth rate.

Kernel integrity monitors such as Gibraltar
discussed in this chapter monitor invariants ex-
hibited by kernel data. These are used as integrity
specifications and are checked during runtime. The
monitor can therefore, identify the data structure
and the invariant that is violated when an alert is
raised by the system. In such cases, repair of the
data structure comprises of restoring the invariant
that is violated. For example, if a data structure
exhibits the constancy invariant, then a violation
occurs when the rootkit replaces this value with
a different one. The repair action comprises of
restoring the old value. While restoring other more
complex invariants might require sophisticated
methods, we believe that data structure repair is
a promising research direction.

To secure the monitor, current approaches iso-
late it from the system that it monitors. As a result,

the monitor is limited to external asynchronous
memory based scans. It is unable to acquire locks
from the operating system that is concurrently
executing and modifying the data structures that
are monitored. Repairing data structures requires
the monitor to be able to make modifications to
kernel data structures without affecting the cor-
rectness of kernel code. This also requires the
invention of better mechanisms for realizing inline
data structure repairs.

mining complex invariants

Complex invariants that express conjunction
or disjunction between simple invariants might
express interesting properties. It is also possible
to mine more complex invariants that express re-
lationships between different data structure fields
or between different data structures altogether. In-
variants might also be mined using more complex
invariant templates. Verifying a large number of
invariants has performance implications for the
monitor. Therefore a careful study of the kind of
invariants that are more likely to be violated by
attacks will provide some insight into the type of
invariants that are more interesting than others.

referenceS

Anti rootkit software, news, articles and forums.
(n.d.) Retrieved fromhttp://antirootkit.com/.

Arnold, J. B. (2008). Ksplice: An automatic sys-
tem for rebootless linux kernel security updates.
Retrieved from http://web.mit.edu/ksplice/doc/
ksplice.pdf.

Baliga, A. (2009). Automated Detection and
Containment of Stealth Attacks on the Operat-
ing System Kernel. Ph. D Thesis, Department of
Computer Science, Rutgers University.

69

Identifying Systemic Threats to Kernel Data

Baliga, A., Ganapathy, V., & Iftode, L. (2008).
Automatic Inference and Enforcement of Kernel
Data Structure Invariants. In Proceedings of the
2008 Annual Computer Security and Applications
Conference, Anaheim, CA.

Baliga, A., Iftode, L., & Chen, X. (2008). Auto-
mated Containment of Rootkit Attacks. Elsevier
Journal on Computers and Security, 27(Nov),
323–334.

Baliga, A., Kamat, P., & Iftode, L. (2007). Lurk-
ing in the shadows: Identifying systemic threats
to kernel data. In Proceedings of the 2007 IEEE
Symposium on Security and Privacy, Oakland,
CA.

Butler, J. (2005). Fu rootkit. http://www.rootkit.
com/project.php?id=12.

Chen, H., Chen, R., Zhang, F., Zang, B., & Yew,
P.-C. (2006). Live updating operating systems
using virtualization. Proceedings of the 2nd
international conference on Virtual execution
environments, Ottawa, Canada.

Ernst, M. D., Perkins, J. H., Guo, P. J., McCa-
mant, S., Pacheco, C., Tschantz, M. S., & Xiao,
C. (2007). The Daikon system for dynamic de-
tection of likely invariants. Science of Computer
Programming, 69.

Garfinkel, T., & Rosenblum, M. (2003). A virtual
machine introspection based architecture for in-
trusion detection. In Proceedings of the Network
and Distributed Systems Security Symposium,
San Diego, CA.

Gutterman, Z., Pinkas, B., & Reinman, T. (2006).
Analysis of the linux random number generator.
In Proceedings of the 2006 IEEE Symposium on
Security and Privacy, Oakland, CA.

MacAfee AVERT Labs. (2006). Rootkits, part 1
of 3: A growing threat. MacAfee AVERT Labs
Whitepaper.

Marsaglia, G. (1996). The marsaglia random
number cdrom including the diehard battery of
tests of randomness. Retrieved from http://stat.
fsu.edu/pub/diehard

McCalpin, J. D. (1995). Memory bandwidth and
machine balance in current high performance
computers. IEEE Technical Committee on Com-
puter Architecture newsletter.

McVoy, L., & Staelin, C. (1996). Lmbench: por-
table tools for performance analysis. In Proceed-
ings of the USENIX Annual Technical Conference,
May 1996.

Moore, D., Shannon, C., Brown, D. J., Voelker,
G. M., & Savage, S. (2006). Inferring internet
denial-of-service activity. ACM Transactions on
Computer Systems.

Myricom: Pioneering high performance com-
puting. (n.d.). Retrieved from http://www.myri.
com

Necula, G. C., McPeak, S., Rahul, S. P., & Weimer,
W. (2002). Cil: Intermediate language and tools
for analysis and transformation of c programs. In
Proceedings of the 11th International Conference
on Compiler Construction, Grenoble, France.

Nick, J., Petroni, L., Fraser, T., Walters, A., &
Arbaugh, W. A. (2006). An architecture for
specification-based detection of semantic integrity
violations in kernel dynamic data. In Proceedings
of the USENIX Security Symposium, Vancouver,
Canada.

Nick, J., Petroni, L., & Hicks, M. (2007). Auto-
mated detection of persistent kernel control-flow
attacks. In Proceedings of the 14th ACM confer-
ence on Computer and Communications Security,
Alexandria, VA.

Norcott, W. (2001). Iozone benchmark. Retrieved
from http://www.iozone.org

Packetstorm. (n.d.). Retrieved from http://packet-
stormsecurity.org/UNIX/penetration/rootkits/.

70

Identifying Systemic Threats to Kernel Data

Petroni, N., Jr., Fraser, T., Molina, J., & Arbaugh,
W. A. (2004). Copilot - a coprocessor-based kernel
runtime integrity monitor. In Proceedings of the
USENIX Security Symposium, San Diego, CA.

Rutkowska, J. (2007). Defeating hardware based
ram acquisition. Blackhat Conference, Arlington,
VA.

Schuba, C. L., Krsul, I. V., & Kuhn, M. G. spaf-
ford, E. H., Sundaram, A. & Zamboni, D. (1997).
Analysis of a denial of service attack on tcp. In
Proceedings of the 1997 Symposium on Security
and Privacy, Oakland, CA.

Shamir, A., & van Someren, N. (1999). Playing
”hide and seek” with stored keys. In Proceedings
of the Third International Conference on Financial
Cryptography, London, UK.

Shellcode Security Research Team. (2006). Regis-
tration weakness in linux kernel’s binary formats.
Retrieved from http://goodfellas.shellcode.com.
ar/own/binfmt-en.pdf.

Wang, H., Zhang, D., & Shin, K. (2002). Detect-
ing syn flooding attacks. In Proceedings of the
INFOCOM Conference, Manhattan, NY.

Wang, Y., Beck, D., Vo, B., Roussev, R., & Ver-
bowski, C. (2005). Detecting stealth software
with strider ghostbuster. Proceedings of the 2005
International Conference on Dependable Systems
and Networks, Yokohama, Japan.

Zhang, X., van Doorn, L., Jaeger, T., Perez, R.,
& Sailer, R. (2002). Secure coprocessor-based
intrusion detection. In Proceedings of the 10th
workshop on ACM SIGOPS European workshop,
St-Emilion, France.

71

Copyright © 2010, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 4
The Last Line of Defense:

A Comparison of Windows and Linux
Authentication and Authorization Features

Art Taylor
Rider University, USA

abStract

With the rise of the Internet, computer systems appear to be more vulnerable than ever from security
attacks. Much attention has been focused on the role of the network in security attacks, but evidence
suggests that the computer server and its operating system deserve closer examination since it is ulti-
mately the operating system and its core defense mechanisms of authentication and authorization which
are compromised in an attack. This chapter provides an exploratory and evaluative discussion of the
authentication and authorization features of two widely used server operating systems: Windows and
Linux.

the laSt line of defenSe: the
operating SyStem

The number of computer security incidents re-
ported from various forms of attacks has increased
significantly since the introduction of the Internet
(CERT1; Yegneswaran, Barford, & Ullrich, 2003).
Though it is clear that the introduction of the Inter-
net coupled with the decreased cost of networking
has helped to pave the way for attackers, the end
result of most malicious attacks is the alteration

of the host operating system. This alteration is
often with the intent of propagating the malicious
program and continuing the attack (virus, Trojan
horse) or potentially damaging, stealing or alter-
ing some content on the host machine. While this
type of attack may be aided by the network and
security weaknesses therein, the attack could not
be successful without ultimately compromising
the host operating system. While much attention
has focused on securing the network, since it is
ultimately the operating system which is compro-
mised, a closer examination of the defense mecha-

The Last Line of Defense

72

nisms of the operating system may be warranted
(Losocco, Smalley, Mucklebauer, Taylor, Turner,
& Farrell, 1998). Security weaknesses in host
operating systems are therefore a major concern
for the IT practitioner. If unwanted modification
of the host system can be prevented, then the at-
tack may be thwarted despite any weaknesses in
the network which allows the attacker to contact
the host machine.

There has been a distinction drawn in research
between application security and operating system
security. It has become increasingly clear, how-
ever, that such a distinction is academic and that
in practice malicious programs and the individuals
who create them make no such distinction. Mal-
ware such as Code Red exploited weaknesses in
both application and operating system security
(Staniford, Paxson, & Weaver, 2002). What is
required is an end-to-end solution, one that consid-
ers not only the distributed nature of the current
computing environment and the network, but the
close relationship between the application program
and the operating system (Howell & Kotz, 2000;
Saltzer, Reed, & Clark, 1981; Thompson, 1984).
Recent focus on the concept of endpoint security
represents an additional effort to understand and
mediate these risks (Kadrich, 2007).

This chapter will examine specific security
features of the host operating system in a descrip-
tive and exploratory manner. By understanding
the security controls available at the operating
system level and the security weaknesses in those
systems it is possible understand how to better
prevent attacks on these systems.

Operating systems and their underlying secu-
rity mechanisms are clearly a varied landscape
which over time can be quite fluid. This chapter
will focus on two common server operating
systems: Microsoft Windows Server 2003 and
Red Hat Enterprise Linux Server 5. Rather than
refer to specific versions of these operating sys-
tems, this chapter will use the terms Windows
and Linux to refer to Windows Server 2003 and
Red Hat Enterprise Linux Server 5 respectively.

(As this chapter goes to press, the next version
of Windows server operating system, Windows
Server 2008, is in Beta 3; the updates to security
features in this release considered relevant to
this discussion will be identified and evaluated
in this chapter.)

Security and operating System
Security architecture

Early computers operated in closed environments
with experienced and generally trusted personnel.
The introduction of time-sharing with multiple
concurrent processes required the consideration
of how to manage the resources of the computer
relative to the processes using the computer.
Initial computer security concerns had focused
on protecting executing tasks or processes from
each other. Lampson (1974) expanded on that with
a broad definition of protection that involved all
resources under control of the operating system:
memory, CPU registers, files (disk resources) and
password security. Lampson proposed protection
domains to define access rights and objects and
associated object access lists. Under this para-
digm, access to objects is enforced in relation to
the protection domain of the user. The evalua-
tion of operating system security requires a firm
definition of the somewhat nebulous concept
of the functionality and purpose of a computer
operating system. An expansive definition could
complicate qualitative comparisons with other
operating systems which have not been developed
with such a broad definition. For this reason, this
discussion will consider the operating system
the set of software which controls access to the
hardware resources (CPU, disk, peripherals) of
the server and will focus on specific operating
system functionality which is of central impor-
tance to security, in particular, authentication and
authorization (Lampson, 2004). The definitions
used here identify authenticating principals as
those which involve the process of determining
which security principal made a request, and

73

The Last Line of Defense

authorizing access as the process of determining
who is trusted (authorized) to perform specific
operations on an object.

In order to evaluate operating system security
a set of standard principles is useful to provide a
basis for discussion and comparison. Such a stan-
dard set of principles was established by Saltzer
and Schroeder (1975) and remain relevant today
(see Table 1). The evaluation presented here will
examine these security principles in relation to
the operating security functions of authentication
and authorization. This evaluation will add ac-
countability to this list since this has evolved as
a central tenet of security on multi-user operating
systems. This is defined as our ability to trust
that the action performed on the system has by a
known security principal.

apples to oranges: comparing
windows and linux

Any assessment of Windows and Linux must take
into account the institutional and developmental
background of these two operating systems.
The Windows operating system is a product of
a business entity with specific organizational
goals. This business entity seeks to maintain
the revenue stream generated by the sale of its

software product through continual upgrades
to the product. Since users are not compelled
to upgrade software, the business entity needs
to convince them of the need to upgrade by
addressing previous product shortcomings and
adding functionality to the product. The design
and structure of the Windows operating system
reflects this strategy in the continued addition of
features to the core operating system. The Internet
Information Server Web server, the built-in DNS
and DHCP services and Active Directory direc-
tory services all represent additions to the core
Windows operating system. The functionality
and design of many Windows security features
also reflect this approach where specific features
and functionality have been added as part of the
core operating system. This composition of the
operating system is a key component of a specific
business model chosen by Microsoft. Rather than
leave it to customers to piece together a complete
computing solution, they make the selection for
them and produce a product which is complete,
more robust than the previous version and easy
to use since components do not need to be added
to provide the computing solution the customer
is seeking.

The composition of the Linux operating sys-
tem reflects a different approach. Linux is a Unix

Principle Description

least privilege A user’s security permissions should only be adequate for the task being performed.

economy of mechanism The system must be sufficiently small and simple to allow verification and implementation.

complete mediation Access to each object in the system must be checked by the operating system.

open design The design of the system must be open to scrutiny by the community.

separation of privilege A process which requires multiple security conditions to be satisfied is more reliable than a
process which only requires one condition to be satisfied.

least common mechanism The amount of security mechanism in use by more than one task should be minimized.

psychological acceptability The human interface should be designed for ease-of-use so that excessive complexity does
not hinder user acceptance of the security mechanism.

fail-safe defaults. System defaults should be restrictive such that the default is lack of access.

Table 1. Computer security principles

The Last Line of Defense

74

variant, a version of original Unix developed at
Bell Labs in New Jersey in 1971 for academic
and research work (Ritchie, 1978). Linux was
developed about 20 years after the original Unix
and is not a product owned by a single company.
Its design is purposely sparse and modular. The
core operating system component is the Linux
kernel and it is this kernel that is packaged with
numerous open source operating system utilities
and programs to create the various Linux distri-
butions available today. There is no overarching
business strategy and accompanying update
cycle which impacts the development of Linux
distributions. This combined with the fact that
the business model under which Linux distribu-
tion vendors operates is new and volatile have
led to a varied landscape of Linux distributions.
Though some Linux distributions are marketed
as complete solutions, most Linux users will add
a variety of additional components to the system
to provide the complete solution. Linux distribu-
tion vendors consider this a benefit of using a
modular, flexible operating system and refer to
this approach as a “best-of-breed approach” where
the user can choose the components best suited
to their environment.

To identify the best approach to developing an
operating system or to define which components
are truly part of an operating system is beyond the
scope of this chapter. But in order to make a valid
“apples-to-apples” comparison of Windows and
Linux security, it is important to acknowledge the
fact that Windows installations commonly use just
the components provided with the operating sys-
tem but Linux installations commonly add com-
ponents to complete the computing environment.
Any assessment of authentication, authorization
must take this into consideration and discuss the
security components commonly added to com-
plete the Linux computing environment in order
to make reasonable comparison. For purposes of
this comparison we assume a standard Windows
distribution which effectively is bundled with
significant security and administration features

such as Active Directory, IIS and DNS, and Red
Hat Linux ES with SELinux extensions.

The following sections will provide an evalu-
ation of Windows and Linux security in relation
to authentication and authorization. The next
section will evaluate authentication, evaluating
Windows and then Linux. The section following
will evaluate authorization, evaluating Windows
and then Linux.

authentication

windows authentication

Authentication on Windows allows a user to login
to either a local workstation or a network domain
of Windows hosts. A login process requests the
user name and password interacts with the local
security authority to request a security access
token which contains the security identifier
(SID) for the user. The Security Account Man-
ager (SAM) database contains user and group
names, security identifiers and passwords stored
in encrypted form. The SAM database is stored
in the Windows registry but is not accessible by
system users. In Windows, the login process and
local security authority are processes which run
in user-space. A security reference monitor is
executed in kernel-space and is used to determine
whether or not a user has permission to access a
system object (WindowsSecurity.com).

In larger installations of Windows clients,
Active Directory (AD) is commonly for user au-
thentication and is considered a central component
of the Windows server product line. Active Direc-
tory is a customization of the LDAP (Lightweight
Directory Access Protocol) for storage of user
information (user name, password) and Kerberos
to provide trusted logins over the network. A
detailed description of AD is beyond the scope
of this chapter, but key authentication features
are relevant to this discussion. AD provides both
authentication and authorization features over one

75

The Last Line of Defense

or more network segments with the collection of
network hosts considered the domain. Security
rules are related to domains. Users using cli-
ent computers which use AD for authentication
request authentication from an AD server in a
network login process which is generally similar
to the standard Windows login (without AD). Later
revisions of Windows have simplified administra-
tion of AD through security trust models which
provide a hierarchy of trust relationships with the
ability to inherit trust models.

Within Windows, domain security models
from multiple domains can be combined to manage
security across multiple servers and organizational
departments connected over a network. In many
cases, users who have authenticated in one domain
need to use resources in another domain. This
requires one domain to trust another domain’s
users with what is known as inter-domain trust.
These trust relationships are transitive by default
and are reflected through the hierarchy of the
domain tree, thus simplifying administration.
Trust relationships can be one-way or reciprocal
and hierarchies of trust can be established (NT
Security, 2005).

Use of AD enhances Windows security by pro-
viding simplified administration of the complex
security models of medium to large sized organi-
zations. This improves Windows implementation
of the psychological acceptability security prin-
ciple by making it easier, and thus more likely, to
implement a consistent enterprise-wide security
model. The secure login process also enhances
accountability since we are more certain the user
is who they say they are.

Windows authentication is started using a
trusted path (Loscocco et al, 1998; Yee, 2002),
a trusted communication channel between the
user and the secure system which can only be
initiated by the user. A user name and password
prompt are displayed using the GINA (Graphical
Identification and Authentication) facility. This is
a replaceable DLL which can be substituted with
another DLL to provide a different form of authen-

tication (for example, Smartcards or fingerprint
readers) (MSDN Tech Report: GINA). The user
then enters a user name and password and the
local security authority is asked to authenticate
the user using the password provided. The local
security authority then invokes the authentication
package provided with Windows, or may invoke
a custom package to provide authentication.

The password provided by the user is converted
to a cryptographic hash. The plain text version
of password entered by the user is discarded and
this cryptographic hash is compared to the cryp-
tographic hash stored in a user database for the
user being authenticated. If the entries match, then
the security access token for that user is returned
containing the security identifier (SID) for the
user. The Windows security identifier uniquely
identifies every user and group on the local host
or in the domain and is used to determine autho-
rization privileges throughout the system (NT
Security, 2005).

Logging in to a Windows domain uses a
slightly different approach to the authentication
process. Since a domain login will most likely
be performed over a network, a nonce (a unique
number generated only once) is used to reduce the
possibility of a replay attack to gain passwords
for a system. This nonce is used to encrypt the
password before sending it from the client to the
domain server. As with the local login, if the en-
crypted password matches, the user is considered
authenticated and the security access token for
the user is returned.

An alternative network login facility known as
LAN Manager (LM) is supported in Windows for
backwards compatibility. This login facility has
a number of well-known and significant security
weaknesses as revealed by applications which
can crack these passwords within 5-15 minutes
(Lemos, 2003). Despite these weaknesses, the
storage of these weak passwords has persisted for
some time as a default option on the many desktop
versions of Windows though it is possible to turn
the feature off in some versions.

The Last Line of Defense

76

Windows provides a runas utility which
allows a user to run a program as another user,
effectively allowing the user to change their
identity to execute a specific program. The user
must provide the user name and password of the
user identity under which the program will run.
This feature raises issues with the several secu-
rity principles. The user of this feature implies
that an unprivileged user has been given access
to a privileged account and thereby violating the
“least privilege” principle since with the execu-
tion of the privileged program the user is now
considered a privileged user. This also raises the
potential violation of “accountability” since a
single user has assumed two identities within a
single session.

linux authentication

User authentication in the Unix world has tradi-
tionally varied from implementation to implemen-
tation with a core set of authentication services
usually available. This assessment will examine
the basic authentication services provided with
Linux and then examine the features and function-
ality provided through common Linux extensions
which provide additional security.

Linux basic authentication is performed us-
ing a login process which authenticates a user
and provides a “shell” in which the user can then
operate. The login process checks to see that lo-
gins are allowed and prompts for the user name.
If the user is attempting to login as root (an
administrator account), the login process restricts
the login to specific terminals or locations. If the
user is allowed to continue the process, the plain
text password entered and the salt value (a 12 bit
random number) retrieved from the password file
is added and the result is encrypted with DES or
MD5 encryption (depending on how the system is
configured). This encrypted value is then checked
against a password file. If a match is found, the
user id and group id of the user are returned (Bacic,
n.d.; Morris & Thompson, 1979).

Earlier Linux versions used a one-way DES
encryption algorithm and stored the result along
with a user name, user ID and group ID in a file
readable by all users (/etc/passwd). It is still pos-
sible to do this in Linux but an option to use a more
secure MD5 encryption algorithm and store the
results in a file readable only by the administra-
tor (/etc/shadow) is available during installation
and is recommended by Red Hat (Red Hat Linux
Technical Guide). Once the user has logged in, a
user id and group id are associated with the user
and are later used to determine accessibility rights
for objects on the system.

While early versions of Linux used the basic
authentication services described in previous
paragraphs, most installations now use the Plug-
gable Authentication Module (PAM). PAM is a
product of efforts by the former Open Software
Foundation (currently the Open Group) to address
shortcomings and variations in authentication,
account management, and session management
across Unix variants. When PAM is installed,
Linux uses an abstraction layer to communicate
an authentication request to the PAM subsystem.
The PAM subsystem then chooses one or more
modules to perform the authentication.

The use of a PAM login module which sup-
ports LDAP (Lightweight Directory Access
Protocol) is used in many Linux installations to
allow network authentication to be performed
using an LDAP server. The Kerberos utility is
also used for authentication, an approach similar
to that of Window’s domain authentication and
allows authentication realms to be established and
inter-realm trust relationships to be configured
(Kerberos1). Both PAM and Kerberos provide sim-
plified administration of larger Linux installations,
thus enhancing the Linux implementation of the
“psychological acceptability” security principle.
Kerberos also improves upon accountability since
it provides a stronger login mechanism which
improves trust.

Linux provides a switch-user (su) utility which
allows a user in a particular session to authenticate

77

The Last Line of Defense

as a new user. This utility requires all users other
than the root user to enter the password for the
user identity they are trying to assume. Alterna-
tively, a program can run with a set of privileges
different than the set of privileges associated with
the user without performing authentication as the
user. This can be done by setting a specific file
system identifier for the program being executed
with the setuid bit. This feature has the effect
of allowing a user executing a program to as-
sume the identity of another user (the owner of
the executable file that is the program) without
authentication. Though commonly used in early
versions of Unix, current security best practices
discourages the use of the setuid bit. As with the
Windows runas utility, the use of these features
are contrary to the tenets of the “least privilege”
principle and reduces the “accountability” of the
users on the system.

By default, non-root users, users who do not
have super-user privileges, may shutdown the
system. Configuration parameters in Linux can
be changed to restrict this capability to a specific
set of users.

authoriZation

windows authorization

Windows authorization involves a set of user and
group identifiers for each user and group on the
system. Objects on the system (files, directories,
peripherals) have associated access control lists
(ACL) which identify which users and groups can
access an object. Actions permitted are reading,
executing, writing, and deleting. Users can belong
to one or more group.

Authorization in Windows is enforced by the
security reference monitor running in kernel-
space. An access control list identifies the users
or groups that can access an object. The security
reference monitor manages the request for the
object by the program (on behalf of the user). First

the access denied entries in the list are checked
and if any match the security identifier (SID) of
the user requesting the resource, no other access
control list entries are checked and access is de-
nied. Next the access allowed entries are checked
until enough entries are found to grant access to
the object. If there are not enough entries found to
grant access to the object, or there are no entries
found then object access is denied.

An administrator account exists in Windows
which provides a supreme (super-user) set of privi-
leges. An administrator can set and change access
control lists and can grant or deny user privileges
and can access any object on the Windows system
regardless of the access control list entries for the
object. Windows supports a number of different
administrator accounts each with different levels
of authorization.

Windows also provides access control facilities
to perform certain system actions such as system
shutdown or backup. These are referred to as user
rights and can be assigned to specific users (Win-
dows Privileges). Windows Integrity Controls
(WIC) available in Vista provides capabilities
similar to MAC but does not provide the same
level of security granularity. WIC is a mandatory
access control which overrides discretionary ac-
cess controls such as file permissions and manages
the interaction of objects only allowing the object
initiating the action to interact with objects of the
same or lower privilege. An object which attempts
to interact with an object of higher privilege will
be denied regardless of the permissions of the
user. WIC authorizations are associated with an
object, not the user.

WIC provides stronger authentication and a
finer granularity of control than discretionary
access controls, but it appears to have been imple-
mented primarily to address the damage caused
by malware such as virus and worms and does
not go as far as MAC in providing robust control
over the interaction of objects. Objects which
are considered associated with the Internet are
given low WIC priority and thus have difficulty

The Last Line of Defense

78

making changes to the operating system. This
feature improves Windows implementation of
fail-safe defaults in providing mandatory rather
than just discretionary controls and also improves
the implementation of complete mediation by the
operating system by improving the granularity of
that mediation. (Note that as this chapter goes to
press, it is not clear that WIC will be in Windows
Server 2008.)

linux authorization

By default, Linux uses a discretionary access
control approach to authorization. Authoriza-
tion privileges are either read, write, or execute.
The objects under the control of the operating
system are files and directories and special files
which provide access to device drivers (Bacic,
n.d.; Ritchie, 1978). When a program attempts to
access an object in Linux, a system call is made
which requests that the kernel return a handle
(reference) to the object. The request specifies an
operation as read, write, or execute for the object.
The ability to delete an object is implied by the
write permission.

When an object request has been made, the
kernel first checks to determine whether or not
the user has permission to use the object. If user
permissions on the file match the user permis-
sions of the program requesting the object, then
the kernel will move to the next step. In this
step, the privilege type for the user is evaluated.
If the privilege type on the object is suitable for
the operation being requested, the object handle
is returned to the object. If no user permissions
on the file are found to match the user requesting
the object, then group permissions are checked.
If the group identifier for the user matches that of
the file, then the next step is to determine which
access privilege will be used. If no suitable access
privileges are found which satisfy the access be-
ing requested then the program is not permitted
to use the object.

linux Security modules and
mandatory access controls

In response to heightened security concerns and
a Linux user-base which is expanding to larger
mission critical operations there has been an ef-
fort to provide extensible and flexible security
features in Linux without having the operating
system kernel source code fracture into numerous
variants. The Linux Security Module was designed
to provide a lightweight, general purpose, access
control framework which supports kernel-space
mediation of object access (Wright, Cowan, Mor-
ris, Smalley, & Kroah-Hartman, 2002).

Linux Security Modules (LSM) provide a plug-
gable architecture for the enforcement of security
authorization by the kernel. A strict, finely-grained
authorization model can be substituted using an
LSM module, or a less-restrictive, discretionary
access model could be used instead by using a
different LSM module.

Security-Enhanced Linux (SELinux) provides
mandatory access controls (MAC) and role-based
access control using LSM. MAC allows a set of
permissions to be defined for subjects (users, pro-
grams and processes) and objects (files, devices).
It is based on the principal of least privilege and
allows an administrator to grant an application
just the permissions needed to perform its task.
Permissions (authorization) can be assigned not to
the user but to the application (Karsten, n.d.).

aSSeSSment

Table 2 summarizes the assessment of the security
features of authentication and authorization in
Windows and Linux. It is clear from this table that
both Windows and Linux have provided adequate
solutions for a number of the principles cited by
Saltzer and Schroeder.

Recent releases of Windows and Linux have
both attempted to improve implementations of
least privilege and fail-safe defaults, more no-

79

The Last Line of Defense

tably in Windows where it can be argued that
many security exploits took advantages of these
weaknesses. Fail-safe defaults have been an issue
in previous versions of Windows with the default
storage of weak LM passwords. Likewise least
privilege was often violated through a dependency
of operating system utilities and a number of ap-
plications of running at administrator privilege
level. Least privilege issues are addressed in the
Vista release of Windows through WIC but at
this time (prior to the release of Windows Server
2008) it is still unclear that this feature will be
in Windows Server 2008 and whether the Vista
implementation of mandatory access controls
will completely address the problem of persistent
least privilege failures in Windows applications.
Fail-safe defaults have been addressed partly
through various patches to the Windows OS and
partly through WIC which will force more careful
consideration of access privileges on the part of
Windows developers.

 Windows developers have put a great deal of
effort into easing administration of security poli-
cies at the enterprise level. This effort improves
the psychological acceptability of Windows and
is superior to the Linux environment where in the
past it often required installation of one or more
packages to implement enterprise-wide secu-
rity policies (for example Kerberos and LDAP).

Recent efforts by vendors such as Red Hat have
addressed this through bundling of packages for
security hardened distributions, but Windows AD
still has the advantage in ease of administration
(psychological acceptability).

While it has no specific bearing on authentica-
tion or authorization, the principle of open design is
not met by Windows. Though this is not a surprise
given the nature of the Windows’ development
and the view that the underlying source code is
the intellectual property of Microsoft, the idea
that this diminishes the quality of the security
code as proposed by Saltzer and Schroeder has
some bearing on this discussion. The following
sections will extend this discussion in more detail,
assessing these security principles in terms of
authentication and authorization.

evaluation of oS implementation of
Security principles

The principle of least privilege raises concern
with both operating systems. According to Saltzer
and Schroeder “every program and every user
of the system should operate using the least set
of privileges to complete the job” (1975, p. 7).
Compliance with this principle is troublesome
in a large part because of the history of each
operating system.

Principle Windows Linux

least privilege Partial Yes

economy of mechanism Partial Partial

complete mediation Yes Yes

open design No Yes

separation of privilege Partial Partial

least common mechanism n/a n/a

psychological acceptability Yes Partial

fail-safe defaults No Yes

accountability Yes Yes

Table 2. Summary of assessment

The Last Line of Defense

80

Windows legacy environment (DOS, Windows
95) is that of a single user computer not necessarily
connected to the network where any security that
existed was implemented largely through physical
security mechanisms (a lock on the computer;
the computer in a locked office). These early PC
operating systems were single user systems and
did not limit accessibility to any part of the system.
If a user had access to the computer, the user had
access to all components of the computer. Thus
programs operating in this environment had ac-
cess to operating system resources. By nature of
this design, any programs running in this legacy
Windows environment violated the principle of
least privilege.

For business policy reasons, Microsoft has long
been committed to providing backwards compat-
ibility with legacy applications. Consequently, in
order to run many of these legacy applications in
a Windows environment which supports access
privileges, these programs must operate with
administration privileges, privileges in excess of
“what is needed to complete the job” (Saltzer &
Schroeder, 1975, p. 6).

Linux provides the ability for a program to
assume rights in excess of what the user running
the program has available. Whether or not this is
required would need to be evaluated on a case to
case basis, but it is possible that many of these
applications violate the principle of least privilege
and their execution under different user accounts
provides questionable accountability.

Linux provides a super-user account known
as the root account, which has access rights and
control over all objects on the operating system.
The existence of this account violates the principle
of least privilege since the actions performed
using this account rarely require complete and
unfettered access to operating system resources.
For example, administration of the printer queue
does not require the ability to delete all files on
the system as the root account allows.

Linux with MAC provides robust control of
privileges by allowing a set of permissions to be

defined for security principals (objects) such as
users, programs or processes and security objects
such files or devices. It is based on the principal
of least privilege and allows an administrator to
grant an application only the permissions needed
to perform its task. This feature also improves
the implementation of the principle of complete
mediation and fail-safe defaults in providing
mandatory rather than just discretionary control
over the interaction of operating system objects
(security principals). This provides a much better
implementation of the least privilege principle
than current versions of Windows.

Windows provides a similar set of capabilities
with the administrator account but provides
the ability to create other accounts which have
some but not all of the administrator account
privileges. Using this capability, administrative
accounts could be established with various gra-
dations of security required for administrative
tasks (for example, a backup account to perform
backups, a network account to perform network
maintenance). The proper use of these limited
administrative accounts provides better compli-
ance with the principle of least privilege.

Both the Linux root account and the Win-
dows administrator account exist largely
for convenience reasons. The Linux operating
system is derived from the Unix operating system
which began in an academic research environment
where access security was not a major concern.
As Unix matured, however, it quickly became a
best practices standard to severely limit the use
of the root account when running Unix. For this
reason, few legacy applications running on Linux
use root account privileges and it continues to be
widely discouraged.

The ubiquitous buffer overflow attack has
been used extensively on Windows platforms
over the past five years (CERT2, 2003; CERT3,
2005; Microsoft-1; Yegneswarean et al, 2003).
This attack involves exploiting memory bounds
within a program (usually a network program)
and loading the overrun memory with a different

81

The Last Line of Defense

program (Bates, 2004). Once the new program
is loaded, the program which has been exploited
executes the new program code which has been
loaded into the overrun buffer. These exploits
are in part due to an inadequate least privilege
implementation on the host operating system. Any
Windows exploit which involves installation of
software on the host operating system is poten-
tially the result of account privileges assigned to
an application in excess of what was needed by
the application (CERT Incident Note IN-2001-09).
Such exploits are rare on Linux and even when
they do occur, the exploit does not always achieve
root access permissions and are thus limited in
the amount of malicious activity which can be
performed on the system (CERT Vulnerability
Note VU#596387).

The principle of economy of mechanism sug-
gests that the system under examination must be
small and open to inspection. It is most likely
that Saltzer and Schroeder were proposing that
the operating system being examined would be
sufficiently small as to allow a quick security
audit. Both Linux and Windows have grown to be
large, complex operating systems with numerous
modules used for authentication and authorization.
It is not clear that either operating system would
fully conform to this principle.

The principle of complete mediation applies
to the manner in which the core operating system
manages security. This operating system operation
was a concern when Saltzer and Schroeder wrote
their principles in 1975, but modern operating
systems provide adequate implementations of this
principle. Both Windows and Linux check the
permissions of objects in kernel-space. Media-
tion is thorough and complete in both operating
systems.

The principle of open design also applies to the
ability to audit the security operations of operating
system. Linux is an open source operating system
which allows examination of its source code and
therefore complies with this principle. Windows
is proprietary source code and Microsoft does not

generally allow examination of its source code
so therefore Windows does not comply with this
principle.

The principle of separation of privilege recom-
mends that more than one security mechanism
should be used to implement security features.
In relation to authentication and authorization,
Windows and Linux have had limited implemen-
tation of this feature. With the addition of WIC
and MAC which add mandatory access controls
to the legacy discretionary access controls of
the operating system, separation of privilege
has improved in both operating systems though
additional mechanisms could be added, for ex-
ample defaulting to both biometric and password
authentication, or providing multiple levels of
authentication for a security principle. (Though
WIC is definitely a part of the Windows desktop
operating system, it is not clear if it will be part
of the Windows Server 2008 release.)

The principle of least common mechanism
applies to implementation of internal operating
system security and control of system tasks. It is
not practical to evaluate this principle in relation
to authentication and authorization.

With regard to fail-safe defaults, both Windows
and Linux provide installation default accounts,
but unlike previous versions of both operating
systems they no longer use default passwords.
Passwords are chosen during installation and
if password best practices are followed, an ac-
ceptable level of authentication security should
be maintained. An additional level of security is
provided with mandatory access controls. The
implementation of these controls in SELinux pro-
vides robust control over the default behavior of
applications. A Windows (Vista) implementation
of this control provides some controls but lacks
the complete implementation of MAC and it is un-
certain whether this will become part of Windows
Server 2008. Currently Linux provides the most
complete implementation of this principle.

In evaluating their default password authenti-
cation methods, the use of password encryption

The Last Line of Defense

82

does differ. Linux uses a password salt, a random
value generated and added to the users password
before encryption. This increases the difficulty of
guessing the password with a brute force attack.
Windows does not use a password encryption salt
which combined with other weaknesses has led
to some well publicized concerns about the ease
of cracking Windows passwords (Lemos, 2003).
A fair analysis of Windows authentication must
however consider the user of AD to provide au-
thentication. AD has become the common method
for user authentication for Windows systems. The
AD password does not have the password weak-
nesses of LM passwords and essentially provides
a secure authentication process and enhances the
authorization process.

Considering the principle of psychological ac-
ceptability, using Active Directory the Windows
network authentication scheme is more robust and
flexible, making administration of authentication
and authorization easier. Similar domain security
administration is possible with Linux (LDAP +
Kerberos), but is currently more difficult to ad-
minister than its Windows counterpart. Though
there are incompatibility issues with using Linux
and Windows network authentication together
(a common requirement in today’s information
technology centers), these incompatibilities are
not insurmountable and are not severe enough
to change this assessment.

Though it does not fall under the categories
established by Saltzer and Schroeder (1975), ac-
countability issues should be considered under
authentication and authorization. General shared
user accounts should be limited and discouraged
since a user account shared amongst multiple users
does not provide accountability for the actions per-
formed by that user account on the system (since
it could be one of many users). For this reason,
authentication for shared accounts should either
be eliminated or severely limited by the system.
In Windows, the “guest” account is commonly
used as a shared account and is now disabled by
default. In Linux, the “nobody” account is com-

monly used by a number of programs but login
is disabled by default.

Summary and concluSion

In evaluating the authentication and authorization
of Windows and Linux on the basis of Saltzer and
Schroeder’s security principles and accountability,
Linux distributions of SELinux using MAC have
an advantage in authentication and authorization.
The lack of open design in Windows limits the
auditability of its authentication and authorization
features and is considered a detriment. Mali-
cious software running in user-space is the most
common cause of security exploits. Mandatory
access controls (MAC) provide a higher level
of security which can mitigate weaknesses in
application security. These controls add another
layer of security to the management of authori-
zation requests by the operating system and thus
improve the Linux implementation of separation
of privilege and the default behavior of applica-
tions (fail-safe defaults). Windows does not cur-
rently provide an implementation of MAC in their
server product and consideration of this reduces
the authentication and authorization security of
that operating system.

Windows implementation of network security
with AD demonstrates the benefits of psychologi-
cal acceptability in security features. As Saltzer
and Schroeder understood, providing ease of use
greatly improves the likelihood that the security
feature will be used (psychological acceptability).
The ability to create consistent security policies
and the ability to implement them throughout an
enterprise is a significant benefit. Windows has
an advantage in this area as Linux implementa-
tions of such features have had limited develop-
ment and must contend with the predominance of
Windows client operating system on the desktop
and the persistent interoperability issues that
exist in integrating Windows authorization and
authentication features with Linux.

83

The Last Line of Defense

Auditing the security of operating systems in
complex enterprise environments involves evalu-
ation of a number of factors which is beyond the
scope of this chapter. The evaluation presented
represents a start. A next step would be the ex-
pansion of evaluative criteria in addition to the
security principles identified here followed by the
assignment of statistical weights for those crite-
ria. The statistical weights used would represent
the perceived value of those security criteria to
the enterprise. Aggregation of those weights
would provide a representative score for each
operating system which could then be combined
with other qualitative criteria to arrive at a final
assessment.

referenceS

Bacic, E. M. (n.d.). UNIX & Security. Canadian
System Security Centre, Communications Se-
curity Establishment. Retrieved January 7, 2005
from http://andercheran.aiind.upv.es/toni/unix/
Unix_and_Security.ps.gz

Bates, R. (2004). Buffer overrun madness. ACM
Queue, 2(3).

CERT1 (2004). CERT, [Data File]. Accessed on
December 20, 2004 from http://www.cert.org/
cert_stats.html

CERT2 (2003). Incident note IN-2001-09, Code
Red II: Another worm exploiting buffer over-
flow In IIS indexing service DLL. Retrieved on
December 20, 2004 from http://www.cert.org/
incident_notes/IN-2001-09.html

CERT3 (2005). CERT Vulnerability Note
VU#596387, Icecast vulnerable to buffer overflow
via long GET request. US-CERT Vulnerability
Notes Database. Retrieved on January 4, 2005
from http://www.kb.cert.org/vuls/id/596387

Kadrich, M. (2007). Endpoint security. New York:
Addison-Wesley Professional.

Howell, J. & Kotz, D. (2000). End-to-end autho-
rization. Proceedings of the 4th Symposium on
Operating Systems Design and Implementation
(151 164). San Diego, CA.

Karsten, W. (n.d.). Fedora Core 2, SELinux
FAQ. Retrieved on January 5, 2005 from http://
fedora.redhat.com/docs/selinux-faq-fc2/index.
html#id3176332

Kerberos1 (n.d.). Kerberos: the Network Authen-
tication Protocol. Retrieved January 5, 2005 from
http://web.mit.edu/kerberos/www/

Lampson, B. (1974). Protection. SIGOPS Operat-
ing System Review, 8, 18-24.

Lampson, B. (2004). Computer security in the
real world. IEEE Computer, 37, 37-46.

Lemos, R. (2003). Cracking Windows passwords
in seconds. CNET News.com. Retrieved July 22,
2003 from http://news.zdnet.com/2100-1009_22-
5053063.html

Loscocco, P. A., Smalley, S. D., Mucklebauer,
P. A., Taylor, R. C., Turner, S. J., & Farrell, J. F.
(1998). The inevitability of failure: The flawed
assumption of security in modern computing
national security agency.

Microsoft-1, Microsoft Security Bulletin MS03-
026, Buffer Overrun In RPC Interface Could Al-
low Code Execution (823980) revised September
10, 2003, Retrieved on January 7, 2005 from http://
www.microsoft.com/technet/security/bulletin/
MS03-026.mspx

Microsoft-2, Microsoft, Inc. (2005). Loading and
Running a GINA DLL. (n.d.). Retrieved January 7,
2005 from http://whidbey.msdn.microsoft.com/
library/default.asp?url=/library/en-us/security/
security/loading_and_running_a_gina_dll.asp

Morris, R., & Thompson, K. (1979). Password
security: A case history. Communications of the
ACM , 22 , 594-597.

The Last Line of Defense

84

MSDN Technical Library, Interactive Authentica-
tion (GINA). Retrieved on December 21, 2004
from http://msdn.microsoft.com/library/default.
asp?url=/library/en-us/secauthn/security/interac-
tive_authentication.asp

NT Security (2005). Network strategy report: Win-
dows NT security. Retrieved on January 5, 2005
from http://www.secinf.net/windows_security/
Network_Strategy_Report_Windows_NT_Se-
curity.html

Red Hat-1, Red Hat Linux Reference Guide,
Shadow Passwords. Retrieved January 6, 2005
from http://www.redhat.com/docs/manuals/
linux/RHL-9-Manual/ref-guide/s1-users-groups-
shadow-utilities.html

Ritchie, D. M. & Thompson, K. (1978). The UNIX
time-sharing system. The Bell System Technical
Journal, 57, 1905-1920.

Ritchie, D. M. (1979). On the Security of UNIX,
in UNIX SUPPLEMENTARY DOCUMENTS,
AT & T.

Saltzer, J. H., Reed, D. P., & Clark, D. D. (1984).
End-to-end arguments in system design. ACM
Transactions on Computer Systems, 2 , 277-
288.

Saltzer, J. H., & Schroeder, M. D. (1975). The
protection of information in computer systems.
Proceedings of the IEEE, 63, 1278-1308.

Samar, V. & Schemers, R. (1995). Unified Login
with Pluggable Authentication Modules (PAM).
Request For Comments: 86.0, Open Software
Foundation (October 1995).

Staniford, S., Paxson, V., & Weaver, N. (2002).
How to own the Internet in your spare time. Pro-
ceedings of the 11th Usenix Security Symposium,
149-167.

Thompson, K. (1984). Reflections on trusting trust.
Communication of the ACM, 27, 761-763.

Wright C., Cowan C., Morris J., Smalley S. &
Kroah-Hartman G. (2002). Linux security mod-
ules: General security support for the Linux kernel.
Proceedings of Usenix 2002.

Yee, K. User Interaction Design for Secure Sys-
tems 2002

Yegneswaran, V., Barford, P. & Ullrich, J. (2003).
Internet intrusions: Global characteristics and
prevalence, 138-147. New York: ACM Press.

This work was previously published in the Handbook of Research on Information Security and Assurance, edited by J. Gupta
and S. Sharma, pp. 518-528, copyright 2009 by Information Science Reference (an imprint of IGI Global).

Section 2
Efficient Memory Management

86

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 5

Swap Token:
Rethink the Application of the

LRU Principle on Paging to
Remove System Thrashing

Song Jiang
Wayne State University, USA

abStract

Most computer systems use the global page replacement policy based on the LRU principle to reduce
page faults. The LRU principle for the global page replacement dictates that a Least Recently Used (LRU)
page, or the least active page in a general sense, should be selected for replacement in the entire user
memory space. However, in a multiprogramming environment under high memory load, an indiscriminate
use of the principle can lead to system thrashing, in which all processes spend most of their time waiting
for the disk service instead of making progress. In this chapter, we will rethink the application of the
LRU principle on global paging to identify one of root causes for thrashing, and describe a mechanism,
named as swap token, to solve the issue. The mechnism is simple in its design and implementation but
highly effective in alleviating or removing thrashing. A key feature of the swap token mechanism is that
it can distinguish the conditions for an LRU page, or a page that has not been used for relatively long
period of time, to be generated and accordingly categorize LRU pages into two types: true and false
LRU pages. The mechanism identifies false LRU pages to avoid use of the LRU principle on these pages,
in order to remove thrashing. A prototype implementation of the swap token mechanism in the Linux
kernel as well as some experiment measurements are presented. The experiment results show that the
mechanism can consistently reduce the program execution slowdown in a multiprogramming environment
including SPEC2000 programs and other memory-intensive applications by up to 67%. The slowdown
reductions mainly come from reductions of up to 95% of total page faults during program interactions.
This chapter also shows that the mechanism introduces little overhead to program executions, and its
implementations on Linux (and Unix) systems are straightforward.

DOI: 10.4018/978-1-60566-850-5.ch005

87

Swap Token

introduction

The virtual memory system allocates physical
memory to multiple concurrently running pro-
grams in a computer system through a global
page replacement algorithm, especially when
the aggregate memory demand is larger than
the available physical memory space. A com-
monly used replacement algorithm in a virtual
memory management is the global Least Recent
Used (LRU) replacement, which selects an LRU
memory page, or the least actively used page, for
replacement throughout the entire user memory
space of the system. According to the observed
common memory reference behavior, the LRU
replacement policy takes the assumption that
a page will not be used again in the near future
if it has not been accessed for a certain period
of time. In a single programming environment
where only one process is running at a time, this
assumption as well as the corresponding LRU
principle, which always selects LRU pages for
replacement -- hold well for many application
programs, leading to an efficient memory use
for their execution. However, as the assumption
and the principle are directly adopted in memory
management designs and implementations for
multiprogramming systems, many of computing
practitioners can experience following difficulty
in their program executions. When the aggregate
memory demand of multiple concurrently running
programs exceeds the available user memory space
to a certain degree, the system starts thrashing
--- none of the processes are able to establish
their working sets, causing a large number of
page faults in the system, low CPU utilization,
and a long delay for each process. Although a
large amount of CPU cycles are wasted due to
the excessive page faults in the shared use of the
memory, people seem to have accepted this real-
ity, and to believe that these additional cycles are
unavoidable due to the memory shortage and due

to the fairness requirement for the concurrently
running programs.

As the LRU principle is based on access
patterns exhibited in one program’s execution,
a direct application of the principle on the con-
currently running programs is problematic and
may cause system thrashing. Let us take a close
look into the way an LRU replacement policy is
implemented in a multiprogramming system. An
allocated memory page of a process will become
a replacement candidate according to the LRU
principle if the page has not been accessed for
a certain period of time under two conditions:
(1) the process does not need to access the page;
and (2) the process is conducting page faults (a
sleeping process) so that it is not able to access
the page although it might have done so without
the page faults. We call the LRU pages generated
on the first condition true LRU pages, and those
on the second condition false LRU pages. These
false LRU pages are produced by the time delay of
page faults, not by the access delay of the process.
Therefore, this delay does not necessarily hint
that the page is not going to be accessed again
by the process soon, or the LRU assumption is
not applicable for the false LRU pages. However,
LRU page replacement implementations do not
distinguish these two types of LRU pages, and
treats them equally by attempting to replace any
LRU pages!

Whenever page faults occur due to memory
shortage in a multiprogramming environment,
false LRU pages of a process can be generated,
which will weaken the ability of the process to
achieve its working set. For example, if a process
does not access its already obtained memory
pages on the false LRU condition, these pages
may become replacement candidates (the LRU
pages) when the memory space is being demanded
by other processes. When the process is ready to
use these pages in its execution turn, these LRU
pages may have been replaced to satisfy memory

88

Swap Token

demands from other processes. The process then
has to ask the virtual memory system to retrieve
these pages back probably by generating and
replacing false LRU pages from other processes.
The false LRU pages may be cascaded among
the concurrently running programs, eventually
causing system into thrashing, in which processes
chaotically compete for pages by swapping in and
out pages frequently, but are unable to establish
their working sets and make little progress, wast-
ing CPU cycles.

Such a problem can be very serious for the
following two reasons. First, these LRU pages
are produced by the time delay of page faults,
not by the access delay of the process. The LRU
assumption is not held. Thus, the probability of
accessing these pages soon is much greater than
that of accessing true LRU pages, which produces
high page fault ratios. Second, the delay from
page fault penalty increases with the increase
of the number of page faults due to increasingly
congested disk. The increased page fault penalty
could produce even more false LRU pages. Pro-
cesses receiving many page faults are the ones
that demand memory space dynamically and the
ones that incrementally establish their working
sets. On the other hand, a process that requests a
stable working set in a short period of time and
then frequently accesses it in its entire execution,
could soon get the working set established and
probably keep it, or keep a major part of it in its
lifetime. Therefore, it suffers the least from the
system thrashing.

bacKgroundS of
thraShing protectionS

Researchers in the operating system field have
proposed several schemes to protect system from
thrashing during program interactions, and even
implemented some in practical systems. The
framework of local page replacements [Alderson
et al. 1972] and working set models [Denning

1968-1] have been designed for the purpose.
Once a thrashing is detected, load controls [Den-
ning 1968-2] can be used to eliminate it. In this
section, we will briefly overview these schemes
and techniques, and discuss their limitations,
which motivates the design of the swap token
mechanism.

local page replacement

Although most paging systems use the global page
replacement, the local page replacement has been
proposed to protect systems from thrashing in a
multiprogramming environment. A local replace-
ment requires that the paging system select pages
for a process only from its allocated memory space
when no free pages can be found in their memory
allotments. Unlike the global replacement policy,
the local policy needs a memory allocation scheme
to respond to the need of each process. Two com-
monly used policies are equal and proportional
allocations, which cannot capture dynamically
changing memory demand of each process [Al-
derson et al. 1972]. As a result, the memory space
may not be well utilized. On the other hand, an
allocation dynamically adapting to the memory
demands of individual programs will actually
turn the scheme into the global replacement. The
VMS [Kenah et al. 1984] is a representative op-
erating system using a local replacement policy,
in which the memory is partitioned into multiple
independent areas, each of which is localized to
a collection of processes that compete with one
another for memory space. With this scheme,
system administrators can guarantee that a pro-
cess, or a collection of processes, will always
at least keep a certain percentage of memory.
Unfortunately, this scheme can be difficult to
administer [Lazowska et al. 1978]. Allocating
too small a number of pages to a partition can
result in excessive swapping, whereas setting
the number too high can cause underutilization
of memory [Lazowska et al. 1978]. Researchers
and system practitioners seem to have agreed on

89

Swap Token

that a local policy is not an effective solution for
virtual memory management.

the working Set model

Denning [Denning 1968-1] proposes the work-
ing set model to measure the current memory
demand of a running program in the system. A
working set of a program is a set of its recently
accessed pages. Specifically, at virtual time t,
the program’s working set Wt, is the subset of all
pages of the program which has been accessed in
the previous θ virtual time units (the working set
window). The task’s virtual time is a measure of
the duration the program has control of the pro-
cessor and is executing instructions. A working
set replacement algorithm is used to ensure no
pages in the working set of a running program will
be replaced [Denning 1970]. Since the I/O time
caused by page faults is excluded in the working
set model, the working set replacement algorithm
can theoretically eliminate the thrashing caused
by chaotic memory competition. However, the
implementation of this model is very expensive
because a working set monitoring is required for
each individual process based on its virtual time
[Morris 1972].

The affordable LRU approximations of work-
ing set algorithm, such as two-handed clock, FIFO
with second chance, have to replace virtual time
with real time in determining the working sets.
This approximation leaves a loophole for the false
LRU pages.

load controls

A commonly used method to protect systems
from thrashing is load control, which adjusts the
memory demands from multiple processes by
changing the multiprogramming level (MPL), or
the number of active processes in the system. It
suspends/reactivates, even swaps out/in processes
to control memory demands after the thrashing is

detected. The 4.4 BSD operating system [McKu-
sick et al. 1996], AIX system in the IBM RS/6000
[IBM 1996], HP-UX 10.0 in HP 9000 [HP 1995]
are the examples to adopt this method. In addition,
HP-UX system provides a ̀ `serialize()” command
to run the processes once at a time after thrashing
is detected.

advantages of a lightweight
thrashing prevention mechanism

The most destructive aspect of thrashing is that,
although thrashing may have been triggered by
a brief, random peak in workloads (e.g. all of the
users of a system happen to press the Enter keys at
the same second), the system might keep thrashing
for an indefinitely long time. This could likely
happen in a networked system, where multiple
users coincidentally run memory-intensive pro-
grams simultaneously without coordination on the
usage of the memory. Because thrashing is often
a result of a sudden spike of memory demand in
the workload, a lightweight, dynamic protection
mechanism that brings only momentary change
to the system behaviors for eliminating thrashing
is more desirable than a brute-force action, such
as process suspension or even a process removal.
This is because suspension-based load control
strategy has several limitations. First, a suspension/
reactivation scheme is based on the detection of
thrashing. Before certain conditions are detected
and the suspension/reactivation actions are taken,
the system has been thrashing and its memory has
been under-utilized for a period of time. Second,
in a multiprogramming environment, a short mo-
ment of lack or availability of free memory, or
increase or decrease of page fault rates, may not
necessarily indicate that thrashing is immediately
coming or leaving. Thus, it is hard to determine the
timing of suspension/reactivation of processes in
the load control strategy, especially for programs
of very dynamically changing memory demands.
A wrong decision can significantly degrade the

90

Swap Token

system performance because of high costs as-
sociated with these operations. Finally, when a
process is suspended, a large portion of its entire
working set can be replaced for other processes.
Re-establishing the working set after its reactiva-
tion, particularly for a large suspended program,
could involve significant overhead. For these
reasons, in the most of today’s operating systems,
such as Solaris and Linux, only the approxima-
tion of global LRU replacement is implemented
without a built-in suspension/reactivation-based
load control mechanism.

It is noted that the ultimate solution to con-
stant and serious thrashing in a system due to
memory shortage is to increase physical memory
size, and a thrashing due to a significant memory
shortage can only be removed through swapping
out processes to reduce memory demands. The
swap token mechanism is intended to remove the
thrashing which can be considered as a temporary
and short-term pathological system condition
caused by limited memory shortage. Using the
swap token mechanism at the first place, it is
possible to eliminate system thrashing at its early
stage, minimizing the usage of load control. As a
proactive and lightweight mechanism, swap token
aims to achieve the same goal as load control
for thrashing protection, but without the limita-
tions of load control. Therefore, with the swap
token mechanism and load control guarding at
two different levels and two different stages, the
system performance will become more stable and
cost-effective.

In the remaining of the chapter, we will first
experimentally show the access behaviors of
some typical programs in Section 3. We then
show how system thrashing can be developed
when multiple of the programs run together in
Section 4. Section 5 describes the design of the
swap token mechanism, whose effectiveness is
experimentally evaluated in Section 6.

experimental obSerVation of
program’S acceSS patternS

the benchmark programs

We have selected five memory-intensive appli-
cation programs, three of which are from SPEC
2000 (gcc, gzip, and vortex), and the other two are
programs for data reordering and matrix computa-
tion. All of these programs are both CPU-intensive
and memory-intensive, and are briefly described
as follows

• gcc: an optimized C programming lan-
guage compiler from SPEC 2000.

• gzip: a data compression utility from SPEC
2000.

• vorte: a data-oriented database program
from SPEC 2000.
bit-reversals (• bit-r): This program carries
out data reordering operations which are
required in many Fast Fourier Transform
(FFT) algorithms.
LU decomposition (• LU): This is a standard
matrix LU decomposition program for
solving linear systems.

experimental System Setup

The machine used in the experiments is a Pentium
II at 400 MHz with a physical memory space of
384 MBytes. The operating system is Redhat
Linux release 6.1 with the kernel 2.2.14. Program
memory space is allocated in units of 4KByte
pages. The disk is an IBM Hercules with capacity
of 8,450 MB.

When memory related activities in a program
execution occur, such as memory accesses and
page faults, the system kernel is heavily involved.
To gain insights into the memory system behav-
iors of application programs, program executions
are monitored at the kernel level by using some
lightweight instrumentation in the kernel. A user
monitor program is designed with two function-

91

Swap Token

alities: adjusting user memory space allocation
and collecting system data. To flexibly adjust
the available memory space for user programs
in the experiments, the monitor program requests
a memory space of certain pre-defined size, and
excludes it from the page replacement with the
help from the kernel. The remaining memory is
available for executions of application programs
in our experiments. The monitor program will not
affect the experiment measurements, because (1) it
consumes few CPU cycles; (2) Its resident memory
is excluded from the global page replacement
scope, so its memory usage has no interactions
with application programs. The monitor program
dynamically collects following memory system
statistics once in every one second for each in-
teresting process:

Memory Allocation Demand (• MAD): is the
total amount of requested memory space,
in pages, reflected in the page table of the
process. This memory allocation demand
is maintained and recorded in the kernel
data structure of task_struct.
Resident Set Size (• RSS): is the total amount
of physical memory used by the process, in
pages, and can be read from task_struct.
Number of Page Faults (• NPF): is the num-
ber of page faults of the process, and can
be read from task_struct. There are two
types of page faults for each process: mi-
nor page faults and major page faults. A
minor page fault will cause an operation to
relink the requested page in memory into
the page table. The cost of a minor page
fault is negligible. A major page fault hap-
pens when the requested page is not in
the memory and has to be retrieved from
the disk. We only collect major page fault
events for each process.
Number of Accessed Pages (• NAP): is the
number of accessed pages by the process
within the last time interval of one sec-
ond. During a program execution, a system

routine is periodically called to examine
all the reference bits in the process’s page
table to get the number.

In the experiments each program is first run in
a dedicated environment to observe its memory
access behavior without occurrence of major page
faults and page replacements because the memory
demand from a single program is smaller than the
available user space.

memory access behavior in
the dedicated environment

We use memory-time graphs to show the memory
usage of the selected programs in the dedicated
execution environment. In the graphs, the x axis
represents the execution time, and the y axis
represents the number of memory pages for three
memory usage curves: memory allocation demand
(MAD), resident set size (RSS), and number of
accessed pages (NAP). The memory usage curves
of the five benchmark programs measured by
MAD, RSS, and NAP are presented in Figures 1
and 2. With regard to the development of memory
demands, the memory usage patterns for the pro-
grams can be classified in three types according
to the graphs:

• Quickly acquiring memory allotments:
This type of programs demands stable
memory allocations from the beginning of
program executions. When the available
space is sufficient, they can quickly ac-
quire their allotments in the early stage of
their executions. Programs bit-r and gzip
belong to this type.

• Gradually acquiring memory allot-
ments: This type of programs gradually
increases their memory allotments as their
executions proceed, and accesses their
data sets regularly in each stage until their
executions complete. When the available
space is sufficient, their RSS sizes in each

92

Swap Token

Figure 1. Memory-time graphs depicting the memory behaviors of programs, gcc, gzip, and vortex, for
their dedicated executions.

Figure 2. Memory-time graphs depicting the memory behaviors of programs, bit-r and LU, for their
dedicated executions.

93

Swap Token

time interval form stair climbing curves as
their executions proceed. Program vortex
belongs to this type.

• Non-regularly changing memory allot-
ments: This type of programs has non-
regular memory demands in their life times
of executions. Their demands on memory
sizes are changed dynamically with high
variations. When the available space is suf-
ficient, there are multiple ups and downs
in the RSS curves in their executions.
Programs gcc and LU belong to this type.

memory performance due to
interactionS of different
typeS of programS

performance metrics

We use slowdown to measure the degradation
of a program performance due to its concurrent
execution, which is defined as the ratio between
the execution time of the program in a shared
environment and its execution time in a dedicated
environment without major page faults. Major
sources of the slowdown are the penalty of page
faults, shared CPU cycles, processor context
switch, and monitoring activity overheads.
Among them, we found that context switch and
monitoring activity overheads are trivial in our
measurements.

memory performance of
program interactions

Recall that we have classified three types of
memory usage patterns in programs, namely,
type 1: quickly acquiring memory allotments;
type 2: gradually acquiring memory allotments;
and type 3: non-regularly changing memory
allotments. There are seven typical groups of
execution interactions between these three types
of programs: type 1 and type 2 (group 1), type
1 and type 3 (group 2), type 2 and type 3 (group

3), three types together (group 4), multiple type
1’s (group 5), multiple type 2’s (group 6), and
multiple type 3’s (group 7). To provide insights
into the LRU page replacement behaviors during
program interactions, five representative program
interaction groups are described in this chapter.
The performance results of many other program
interactions are consistent with the reported ones.
In order to clearly and concisely present effects of
the false LRU pages on the program executions,
two programs in each group are selected.

The five selected program interaction groups
includes gzip with vortex (belonging to group 1),
bit-r with gcc (belonging to group 2), vortex with
gcc (belonging to group 3), two vortex programs,
each with a different input (belonging to group 6),
and two LU programs (belonging to group 7).

In the experiments, the available user memory
space was adjusted by the monitor program accord-
ingly so that each program has considerable per-
formance degradation due to 20% to 50% memory
shortage. The shortage ratios are calculated based
on the peak memory demands during programs’
executions. In practice, the real memory shortage
ratios are smaller due to their dynamically chang-
ing memory demands, as shown in Figures 1 and
2. As the program execution reaches the shortage
range, these memory-constrained programs start
thrashing, but are not completely page-fault I/O
bound. It is the range where improvements on
page replacement algorithms can help the most.
The swap token mechanism aims at eliminating
thrashing in this situation and intends to leave
the true page-fault I/O bound situation to load
control.

Figure 3 presents the memory behaviors mea-
sured by MAD and RSS of programs gzip and
vortex. In the figures, both RSS curves fluctuate
during the concurrent execution, which demon-
strates the impact of the gap between memory
demands and the limited memory allocations for
each process. The gap persists for a long period of
time, even though the memory is enough to satisfy
the demand for one process at a time.

94

Swap Token

A process gains more memory pages and in-
creases its RSS through page faults. On the other
hand, it loses pages when these pages become old.
In this way the global page replacement policy
attempts to make the memory allocated among
multiple processes to conform their respective
memory demands.

Unfortunately, what a process loses includes
false LRU pages, which are generated during its
period of faulting. The losing of these false LRU
pages does not reflect the memory demands. This

study shows that the proportion of false LRU pages
in all the page faults keeps increasing with the
increase of memory shortage. Consequently, the
dynamic memory allocations are hard to reflect
the memory demands of processes. For example,
gzip established its working set during the period
of time between 600th second and 760th second,
because we observed that its page fault rate is
significantly reduced. Then some of its memory
allocation was transferred to vortex, illustrated
by the lowered gzip RSS curve and increased

Figure 3. The memory performance of gzip and vortex in their concurrent execution.

Figure 4. The memory performance of bit-r and gcc in their concurrent execution.

95

Swap Token

vortex RSS curve after 760th second in Figure
3. We believe the pages gzip lost are part of its
working set, because it had increased number
of page faults and tried to gain some allocation
back after then. Though vortex can take certain
memory spaces from gzip, it is unable to build
up its working set. This is because it also lost a
large number of false LRU pages when it tried to
build up its working set, which should not have
been lost considering the needs of vortex. Unfor-
tunately, we observed that the system ended up
with high page fault rates for both processes and
a low CPU utilization. We found that a process is
powerful to get additional memory allocation in
the global replacement policy when it has large
memory shortage between its RSS and its work-
ing set. However, when it gets more memory, it
becomes less powerful, and tends to lose memory.
For this reason we see the fluctuating RSS curves
for the concurrently running programs in the
system thrashing. Our experiments show that the
execution times of both programs are significantly
increased due to the page faults in the concurrent
execution. The slowdown of gzip is 5.23, and is
3.85 for vortex.

Figure 4 presents the memory usage behavior
measured by MAD and RSS of concurrently run-

ning programs bit-r and gcc. Gcc belongs to type
3 which has two spikes in MAD and RSS due to
its dynamic memory demands. For bit-r, its RSS
curve dropped sharply from 32,800 pages to about
16,500 pages at the 165th second caused by the first
RSS spike of gcc at the same time. After the spike,
the RSS of gcc was decreased, which allowed bit-r
to regain its RSS. When the second RSS spike of
gcc arrived at the 365th second, the RSS of bit-r
dropped again. However, this time the RSS of
gcc began to lose its pages at about 450th second
before it could establish its working set. After that,
both programs exhibited fluctuating RSS curves.
The second spike requires only 7% more memory
demand than the first spike, which causes a much
longer execution delay. Consequently, program
gcc’s second spike of the MAD and RSS curves
were stretched to a delay of 357 seconds due to
page faults. During this period, there was a big
gap between the RSS and MAD, up to more than
20,000 pages. The experiments consistently show
that the execution times of both programs were
significantly increased due to the page faults in
the interaction. The slowdown of bit-r is 2.69,
and is 3.63 for gcc.

Figure 5 presents the memory behavior mea-
sured by MAD and RSS of concurrently running

Figure 5. The memory performance of gcc and vortex in their concurrent execution.

96

Swap Token

programs gcc and vortex. Regarding program
vortex, its RSS curve suddenly dropped to about
14,000 pages after it reached to 26,800 pages due
to its memory competition from gcc. After that,
its RSS curve entered the fluctuating stage. The
fluctuating RSS curves of vortex and the first spike
of gcc caused a large number of page faults to
both processes, which extended the first spike of
gcc by 865 seconds, and extended a RSS stair in
vortex by 563 seconds. The second spike of gcc
arrived after vortex finished its execution. Then it
ran smoothly. The experiments consistently show
that the execution times of both processes are sig-
nificantly increased due to their page faults. The
slowdown of gcc is 5.61, and is 3.37 for vortex.

Figure 6 presents the memory behavior mea-
sured by MAD and RSS of votex1 and vortex2,
two concurrently running vortex programs, each
with a different input. Although the input files are
different, their memory access patterns are similar.
But neither could establish its working set. The
experiments again show that the execution times
of both programs are significantly increased due
to the page faults in the interaction. The slowdown
for vortex1 is 3.58, and is 3.33 for vortex2.

Figure 7 presents the memory behavior mea-

sured by MAD and RSS of two concurrently
running programs LU. The experiments show
that frequently climbing and dropping slopes of
RSS can incur memory reallocations and trigger
fluctuating RSS curves, leading to inefficient
memory use and low CPU utilization. The dy-
namic memory demands from the program caused
the system to stay in the thrashing state for most
of their execution time. The execution times of
both processes are significantly increased due to
the page faults. The slowdowns for the two LU
processes are 3.57 and 3.40, respectively.

development of thrashing

The experiments have shown that thrashings can
be triggered with a moderate amount of memory
shortage and can cause significant performance
degradations. False LRU pages play their role
in the process -- they make global replacement
policies blind to a program’s true memory needs,
and a portion of the working set identified as the
false LRU pages mistakenly replaced. Here are
certain conditions that probably cause thrashings
based on the experimental studies.

Figure 6. The memory performance of two vortex programs (vortex1 and vortex2), each with a different
input, in their concurrent execution.

97

Swap Token

When the memory demand of a process •
has a sudden jump for additional memory
allocation, its RSS can be easily increased
accordingly at the beginning because ad-
dition of new pages do not need I/O op-
erations to access data on the disk (zero-
filled pages instead of disk-read pages).
If the process cannot establish its work-
ing set before many false LRU pages are
produced, the number of lost pages on the
false LRU condition can exceed the num-
ber of obtained pages through page fault-
ing, causing its RSS to drop. In addition,
the increased memory demand of this pro-
cess causes other processes in the system
to generate more false LRU pages. In this
way thrashing is triggered. The examples
of this condition include: the starting ex-
ecution stage of gzip in the left figure of
Figure 3, the second spike of gcc in the
bit-r / gcc interaction in Figure 4, the first
spike of gcc in the gcc / vortex interaction
in Figure 5, and all the RSS jumps of both
LU processes in Figure 7.
If memory access patterns of concurrently •
running programs, in terms of working set
size, memory usage behavior, and access

frequency, are similar, false LRU pages
can be easily generated for both processes,
which can trigger the system thrashing. The
interactions between two vortex processes
in Figure 6 and between two LU processes
in Figure 7 are examples of this condition.
When the available memory space is sig-•
nificantly less than the aggregate memory
demand of the processes, all the processes
compete for the limited memory alloca-
tions. A small number of page faults may
trigger a large number of false LRU pages.
This condition will be shown in Figure 8
before the token is taken by a process.

deSign and implementationS
of Swap toKen

We choose the Linux OS as a base to evaluate the
design and implementation of swap token. The
swap token has been implemented in Linux Ker-
nel 2.2 by Song Jiang and in Linux kernel 2.6 by
Rik van Riel. As a more thorough evaluation has
been conducted for the implementation in Kernel
2.2, the discussions on the topic in the chapter are
based on this implementation.

Figure 7. The memory performance of two LU programs in their concurrent execution.

98

Swap Token

the lru page replacement in linux

An approximate LRU algorithm is adopted in
the Linux kernels as its global page replacement
policy. When a page fault occurs, kernel func-
tion do_page_fault() will be called to handle it.
If the page fault is caused by a legal access to a
page missed in memory but stored in the swap
file on disk, the kernel will try to get a free page
in memory and load the requested page from the
swap file by kernel function do_swap_page().
If there are no free memory pages available, the
kernel will make a room for the page by selecting
a victim page from the memory for replacement.
If the replaced page is dirty, it has to be written
back first to the swap file, which also contributes
to the number of major page faults (NPF).

To select victim pages, kernel function __
get_free_pages() is invoked by the swap daemon
kswapd, which is waken up when the free physical
memory space is below a threshold or when a page
faulted program cannot find a page from the free
page pool. The function will look into the process
space of each eligible process in the system to see
if it is a candidate from which memory pages can
be found for swapping. It always starts from the
process with the largest resident pages. The kernel
will then check through all of the virtual memory
pages in the page table of the selected process.
Generally, once the kernel finds that the reference
bit of a page table entry is turned off (indicating
that the page has not been accessed since it was
reset last time by the function), the kernel will
select the page for replacement. If the bit is on,
the kernel will turn it off, and keep checking the
next page in the table. If no pages can be replaced
from this process, the next candidate process will
be tried. This implementation effectively emulates
the behavior of the LRU replacement algorithm
with a small overhead. However it also generates
false LRU pages during concurrent execution of
programs as we have discussed.

Most operating systems have protection
mechanisms to resolve serious thrashing problems.

For example, a process will be killed in Linux to
release its memory space when the process keeps
being denied its requested pages. A process will be
swapped out for the same purpose in the 4.4 BSD
operating system. If the free page pool cannot be
filled in a timely manner, the system will start to
swap out or remove processes.

Unfortunately, the existence of false LRU
pages makes kernel function __get_free_pages()
in Linux (and the pageout daemon in 4.4 BSD)
easily and quickly find “qualified” pages, includ-
ing many false LRU pages, to fill the free page
pool. As the result, the system can be involved
in a “pre-thrashing” state for a significantly long
period of time before the kernel is awakened to
swap out or remove processes. The CPU utiliza-
tion in the pre-thrashing state can be extremely
low due to the large number of page faults. The
system developers of the 4.4 BSD operating sys-
tem points out that the system performance can
be much better when the memory scheduling is
done by page replacement operations than when
the process swapping is used [McKusick et al.
1996]. The swap token mechanism is a page-
replacement-oriented memory scheduling scheme
to address the thrashing issue before the system
has to swap out or remove processes.

the implementation of the
Swap token in linux

The basic idea of the swap token mechanism is to
keep false LRU pages from spreading over all the
concurrently running processes, and to make the
working set of at least one process be identified and
established. A token is a newly introduced global
and mutually exclusive variable in the kernel,
which has two states, indicating either the token
is available or the token has been taken by a page
faulted process. The token is initialized when the
system is booted. In the implementation, a process
requests the token right before it invokes func-
tion do_swap_page(), which is called right after
a page fault occurs and before the page is loaded

99

Swap Token

from the swap file. This arrangement makes sure
that the token only goes to the process in need of
memory. The token is only taken by a process
when page faults occur due to memory shortage.
In other words, a process will not compete for the
token until the memory space is insufficient for
it. The system functions exactly as the original
Linux system when memory space is sufficient
for processes. In the implementation, a new status,
called swapping_status, is introduced for each
process to indicate whether the process is in the
stage of swapping in/out pages.

As we have explained, false LRU pages are
generated for a process in its page swapping
period. The process does not access its allocated
memory because it does not have a chance to do
so due to swapping.

Therefore, these pages should be prevented
from swapping out. With the swap token mecha-
nism, a process holding the token can prevent
its false LRU pages from being replaced. In the
process of searching for and marking LRU pages
(by turning off their reference bits) for page re-
placement, kernel function __get_free_pages()
skips the process that holds the token and is in the
swapping status. In this way the memory pages
of the process with the token are protected when
and only when it has unsolved page faults, and
false LRU pages are eliminated from it.

The LRU pages of a process identified during a
normal computing phase are the true LRU pages,
which are the replacement candidates targeted
by the swap token mechanism. To this end, the
privilege for the process holding the token is
removed as soon as the process resolves its page
faults by turning off its swapping status, which
allows __get_free_pages() to include the process
in its search for LRU pages for replacement. In
our implementation, there is an exception handler.
When the privileged process cannot find LRU
pages from other processes for replacement, the
system will have to select LRU pages for the
process from its own resident space.

The swap token mechanism is highly light-

weight. Its only additional operations are to set
the token/swapping status, and to decide whether
the process holding the token should be skipped or
not when the system is searching for LRU pages
for replacement. Thus, the implementation incurs
very little overhead.

fairness issue in memory usage

If a process has fully established its working
set, and it is able to regularly access it, there is a
good chance for the process to keep its allocated
memory space even with the competition from
other processes through their page faults, because
it would generate few false LRU pages when the
process establishes its working set and has a small
number of page faults. Therefore, this process
can be expected to efficiently finish its execu-
tion and then release its space to other processes,
which allows multiple processes to finish their
executions one by one with a high CPU utiliza-
tion even with a considerable memory shortage.
Most operating systems make efforts to keep
the system away from thrashing and stay in this
situation until load controls have to be applied.
As a lightweight, proactive thrashing protection
mechanism, swap token allows a process to keep
the token for the rest of its lifetime once it receives
it. When a program exits its execution, the token
will be returned for public use.

The fairness issue of memory usage among
processes in thrashing is usually addressed in the
load control policies, rather than explicitly consid-
ered in the global page replacement policies. For
example, the 4.4 BSD operating system initially
suspends a process after thrashing. If the thrash-
ing continues, additional processes are suspended
until enough memory space becomes available. In
order to address the issue of fairness, even if there
is not enough memory, the suspended processes
are allowed to reactivate its execution after about
20 seconds. If the thrashing condition returns,
other processes will be selected for suspension to
free memory space. As a mechanism to overcome

100

Swap Token

the limitations of the global LRU replacement
implementation, the fairness issue remains to be
addressed in the load control policies.

a close look at the effect
of Swap token

To show how a swap token functions and its ef-
fectiveness, let us take a close look at its running
behavior during program interactions. The follow-
ing program segment is used in the experiment:

#define LOOP 1000

#define SIZE (53*1024*1024/

sizeof(double));

double * mem_page;

int size= SIZE;

 mem_page = (double *)calloc(SIZE,

 sizeof(double));

 for (i = 0; i < LOOP; i++){

 for (j = 0; j < SIZE; j += step){

 mem_page[j] = mem_page[j] + 1;

 Other computing work only on mem_

 page[j];

 }

 if ((i+1)%10 == 0)

 SIZE = (long)(0.9*SIZE);

 }

This program uses 1000 loop iterations to ac-
cess a large array. At first the program sequentially
accesses its entire data array for ten times. Then for
each of its next ten iterations, the program reduces
its accessing range over the array by removing
10% of all its accesses at the end of the array. The
available user memory space was adjusted to 60
MB. The access pattern produces a large number
of page faults when there is a memory shortage.
In this experiment, we will demonstrate how the
token works to address the serious performance
degradation by reducing false LRU pages in
program interaction environment.

We let two instances of the program run si-
multaneously, allocating a 53 MB array for one
process (referred as small process hereafter) and
a 58 MB array for another process (referred as
large process hereafter) by adjusting variable size
in the program. Closely tracing the page access
behaviors of each process before and after the
token was set in the system, we present the impact
of the token to each of the interacting programs.
Figure 8 presents space-time graphs for the small
process (left graph) and the large process (right
graph) during their interaction, where y-axis
represents three types of memory pages at dif-
ferent virtual addresses: recently visited pages
(or the pages that have been accessed in the last
one-second time window}, swapped-out pages,
and resident but not recently visited pages, and
the x-axis represents the execution time sequence.
The RSS size of each process can be approximated
by the sum of the number of “visited pages” and
the number of “resident but not visited pages” at
any execution point.

We have observed that each of the processes
expanded its RSS through page faulting and
meanwhile lost some of its pages under the false
LRU condition. The combination of these two
activities causes three effects: (1) neither process
could establish its working set; (2) the RSS size
of each process fluctuated; and (3) little useful
work could be done.

The token was set in the system and taken by
the small process (left graph in Figure 8) at the
execution time of 125th second. After this time,
this process successfully kept its useful memory
pages and avoided false LRU pages, whose ef-
fect is reflected in the increased lightly gray area
for “resident but not visited pages”. During the
same period of time, the large process reduced its
number of “resident but not visited pages”. Once
the small process established its working set, all its
obtained pages were frequently visited. The token
only avoids swapping out the false LRU pages,
but still treats the true LRU pages as replacement
candidates. This can be confirmed by observing

101

Swap Token

the phase when the small process started reducing
its working set. Although the process still held the
token, its true LRU pages were migrated to the
large process so that the large one can use these
released pages. The right graph in Figure7 shows
that the large process did increase its RSS size from
this time. Then the large process quickly finished
its execution after the small process holding the
token left the system.

It is interesting to see that the token was also
beneficial to the process that did not own the token.
The right graph in Figure 8 shows that the large
process without the token took about 50 seconds
to finish one pass of access to the array before
the token was set in the system. After the token
was taken by the small process, the one pass ac-
cess time of the large process was reduced to less
than 25 seconds, although its RSS was reduced.
The reason for this is as follows. Since the I/O
bandwidth of the disk became a bottleneck when
a system conducted a large number of page faults
for both processes, the page fault penalty increased
accordingly. When one process got the token, its
number of page faults was significantly reduced,
and it consumed much less I/O bandwidth. Thus,

the page fault penalty of the process without the
token was also greatly reduced, and more useful
work can be done even though its number of page
faults may be increased.

performance of the
Swap toKen mechaniSm

The performance of swap token is experimentally
evaluated using the five selected groups of the
interacting programs. Each of the experiments
has the exactly same condition as its counterpart
conducted in Section 4.2, except that swap token
is introduced in the experiments.

Figure 9 presents the memory performance
measured by MAD and RSS of concurrently
running programs gzip and vortex when the swap
token is introduced. At the execution time of 250th
second, both programs started page faults due to a
memory shortage. The token was taken by vortex
after then. Figure 8 shows that the once seriously
fluctuating RSS curves of vortex observed in the
original system in Figure 3 disappeared. Although
the RSS curve of vortex does not exhibit the be-

Figure 8. The memory behaviors of the process which accesses an array of 53 MB and takes the token
in the middle of its execution (left figure) and the other process which accesses an array of 58 MB and
does not own the token (right figure) during their execution interaction.

102

Swap Token

havior as it is shown in the dedicated environment,
where its RSS curve was almost overlapped with
its MAD curve (see Figures 1 and 2), we believe
this RSS curve represents its real memory de-
mands for its effective execution (or its working
set size). There are two reasons for this: (1) The
page fault rate is significantly lower than that in
its counterpart experiment for the original system.
Even when RSS curve of vortex is considerably
lower than its MAD curve after the 470th second,
its page fault rates are lowered by at least 70%
compared with those measured at the same ex-
ecution stage in the original system. (2) The RSS
curve of vortex is consistent with its NAP curve in
the dedicated environment. The NAP curve was
increased much slowly than MAD curve, which
reflects that the recently accessed memory size
did not increase as MAD did. Therefore, the gap
between its RSS and MAD curves in Figure 9
was enlarged in its late execution stage, where its
fluctuation was caused by the content change of
its working set. While eliminating the thrashing
quickly, the swap token distinguished true and
false LRU pages, and only kept the working set
of the protected process in the memory, rather
than simply pinned all of its pages in memory.

The experiments also show that the execution
times of both programs are significantly reduced
by the swap token compared with the times in the
original Linux. The slowdown of gzip is 2.63 (a
reduction of 50%), and is 1.83 for vortex (a reduc-
tion of 52%). The page fault reductions for gzip
and vortex are 45% and 80%, respectively.

Figure 10 presents the memory performance
measured by MAD and RSS of concurrently
running programs bit-r and gcc when the swap
token is introduced. At the execution time of 146th
second, the first RSS spike of gcc caused many
page faults for both processes due to memory
shortage. The token was taken by gcc after this
moment. Figure 10 shows that gcc quickly built
up its working set, reflected by keeping its first
RSS spike with a short delay after taking the
token, while bit-r sharply decreased its RSS
during this short period of time. Process gcc
established its working set in its second spike
more quickly than it did in its first spike, due to
the difference between their reference behaviors:
gcc accessed its working set more frequently in
the second spike than it did in the first spike.
The swap token mechanism attempted to reduce
false LRU pages without affecting the ability of

Figure 9. The memory performance of gzip and vortex in their concurrent execution managed with
swap token.

103

Swap Token

global LRU to reflect memory access patterns of
processes. The measurements show that the ex-
ecution times of both programs are significantly
reduced by the swap token compared with the
times in the original Linux LRU. The slowdown
of bit-r is 2.08 (a reduction of 23%), and is 2.25
for gcc (a reduction of 38%). The page fault
reductions for bit-r and gcc are 20% and 82%,
respectively.

Figure 11 presents the memory performance
measured by MAD and RSS of concurrently
running programs gcc and vortex when the swap
token is introduced. At the execution time of 397th
second, both processes started page faults due to
memory shortage. The token was taken by gcc
after this time.

Figure 11 shows that gcc quickly built up its
working set, reflected by keeping the first RSS

Figure 10. The memory performance of bit-r and gcc in their concurrent execution managed with swap
token.

Figure 11. The memory performance of gcc and vortex in their concurrent execution managed with
swap token.

104

Swap Token

spike narrow after taking the token, while gzip
sharply reduced its RSS during this short period
of time. Vortex finished its execution before the
second RSS spike of gcc arrived. Process gcc
finished its execution without major page faults
after another 42 seconds. The execution times
of both processes are significantly reduced by
the swap token compared with the ones with the
original Linux LRU. The slowdown of gcc is 1.85
(a reduction of 67%), and is 1.54 for vortex (a
reduction of 54%). The page fault reductions for
gcc and vortex are 95% and 79%, respectively.

Figure 12 presents the memory performance
measured by MAD and RSS of two concurrent
running programs vortex1 and vortex2 when the
swap token is applied. At the execution time of
433rd second, both processes started page faults
due to memory shortage. The token was taken by
vortex1 after this moment. Figure 11 shows that
the process then quickly built up its working set,
reflected by its climbing RSS curve after the token
was taken, while vortex2 continuously fluctuated
its RSS during this period of time. Vortex1 with
the token smoothly finished the execution and left
the system at the execution time of 668th second.
Vortex2 then immediately obtained the needed

memory space, reflected by the sharp increase
of its RSS, and finished its execution without
major page faults after another 161 seconds. The
execution times of both programs are significantly
reduced by the swap token compared with the
ones in the original Linux LRU. The slowdown
of vortex1 is 1.95 (a reduction of 46%), and is
2.08 for vortex2 (a reduction of 38%). The page
fault reductions for vortex1 and vortex2 are 93%
and 63%, respectively.

Figure 13 presents the memory performance
measured by MAD and RSS of two concurrently
running programs LU1 and LU2 when the swap
token is introduced. In the first spikes of both
LU1 and LU2 processes after a few seconds of
executions, both processes started page faults due
to memory shortage.

The token was taken by LU1 after this moment.
Figure 12 shows that LU1 quickly built up its
working set, reflected by keeping its RSS curve
very similar to its RSS curve in the dedicated
environment after taking the token, while LU2
could only obtain a moderate amount of RSS
during this period of time. Process LU1 with the
token ran smoothly. In the last 25 seconds of the
execution of LU1, its RSS curve was lowered

Figure 12. The memory performance of two vortex programs (vortex1 and vortex2), each with a different
input, in their concurrent execution managed with swap token.

105

Swap Token

while the RSS curve of LU2 accordingly rose by
obtaining true LRU pages from LU1. The mea-
surements show that the execution times of both
processes are significantly reduced by the swap
token compared with the ones in the original Linux
LRU. The slowdown of LU1 is 2.57 (a reduc-
tion of 28%), and is 2.99 for LU2 (a reduction
of 12%). The page fault reductions for LU1 and
LU2 are 87% and -116%, respectively. It is noted
that the execution time of LU2 was still reduced,
though its number of page faults was significantly
increased. This is because the page fault penalty
was reduced with more available I/O bandwidth
after the token was taken by LU1.

concluding remarKS

Management of memory hierarchies has been an
intensive study for several decades. Regarding
the large gap in access time between memory and
disk, a lot of work has been done to reduce the
number of page faults for each program. Research
on page replacement algorithms have been a clas-
sical topic since 1960s and many improvements
over the LRU page replacement policy have been

recently proposed, including 2Q, LIRS, and ARC.
However, in a multiprogramming environment,
the interactions between concurrently running
programs can have a large impact on memory
usage pattern. Specifically, an uncoordinated use
of memory among the processes can lead to the
system thrashing when their aggregate memory de-
mand considerately exceeds physical memory.

In the chapter, we have investigated sources
of memory performance degradation in program
interactions by carefully examining the LRU
memory page replacement and its representative
implementations in Linux systems. We have exper-
imentally demonstrated that the false LRU pages
can be a serious loophole in the LRU replacement
implementations because these implementations
do not correctly reflect and predict memory access
patterns of interacting programs.

In order to overcome the limitations in the LRU
replacement in program interactions, the swap
token mechanism is designed and implemented
in the memory management system of the Linux
kernel. Rather than pinning all pages of a token-
holding process in memory, the swap token only
protects its true LRU pages from swapping to
establish an orderly page replacement, and allows

Figure 13. The memory performance of two LU programs (LU1 and LU2), each with a different input,
in their concurrent execution managed with swap token.

106

Swap Token

its false LRU pages to be selected for replace-
ment no matter whether a process possesses the
token. In this way we can avoid the drawbacks of
existing brute-force thrashing mechanisms. The
experiments show that the swap token mechanism
can consistently and significantly reduce the
page faults and the execution times of memory-
demanding programs in a multiprogramming
environment. As the swap token mechanism is
not designed specifically for specific operating
systems, its implementation can be also applied
to other operating systems.

referenceS

Alderson, A., Lynch, W. C., & Randell, B. (1972).
Thrashing in a Multiprogrammed System. Oper-
ating Systems Techniques. London: Academic
Press.

Coffman, E. G. Jr, & Ryan, T. A. (1972). A Study of
Storage Partitioning Using a Mathematical Model
of Locality. Communications of the ACM, 15(3),
185–190. doi:10.1145/361268.361280

Corporation, H. P. (1995). HP-UX 10.0. Memory
Management White Paper.

IBM Corporation (1996). AIX Versions 3.2 and 4
Performance Tuning Guide.

Denning, P. J. (1968a). The Working Set Model for
Program Behavior. Communications of the ACM,
11(5), 323–333. doi:10.1145/363095.363141

Denning, P. J. (1968b). Thrashing: Its Causes and
Prevention. In Proceedings of AFIPS Conference,
(pp. 915-922).

Denning, P. J. (1970). Virtual Memo-
ry. Computer Survey , 2(3), 153–189.
doi:10.1145/356571.356573

Kenah, L. J., & Bate, S. F. (1984). VAX/VMS
Internals and Data Structures. Digital Press.

Lazowska, E. D., & Kelsey, J. M. (1978). Notes
on Tuning VAX/VMS. Technical Report 78-12-01.
Dept. of Computer Science, Univ. of Washing-
ton.

McKusick, M. K., Bostic, K., Karels, M. J., &
Quarterman, J. S. (1996). The Design and Imple-
mentation of the 4.4 BSD Operating System.
Reading, MA: Addison Wesley.

Morris, J. B. (1972). Demand Paging through
Utilization of Working Sets on the MANIAC II.
Communications of the ACM, 15(10), 867–872.
doi:10.1145/355604.361592

107

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 6

Application of both Temporal
and Spatial Localities
in the Management of
Kernel Buffer Cache

Song Jiang
Wayne State University, USA

abStract

As the hard disk remains as the mainstream on-line storage device, it continues to be the performance
bottleneck of data-intensive applications. One of existing most effective solutions to ameliorate the bottle-
neck is to use the buffer cache in the OS kernel to achieve two objectives: reduction of direct access of
on-disk data and improvement of disk performance. These two objectives can be achieved by applying
both temporal locality and spatial locality in the management of the buffer cache. Traditionally only
temporal locality is exploited for the purpose, and spatial locality, which refers to the on-disk sequen-
tiality of requested blocks, is largely ignored. As the throughput of access of sequentially-placed disk
blocks can be an order of magnitude higher than that of access to randomly-placed blocks, the missing
of spatial locality in the buffer management can cause the performance of applications without dominant
sequential accesses to be seriously degraded. In the chapter, we introduce a state-of-the-art technique
that seamlessly combines these two locality properties embedded in the data access patterns into the
management of the kernel buffer cache management. After elaboration on why the spatial locality is
needed in addition to the temporal locality, we detail a framework, DULO (DUal LOcality), in which
these two properties are taken account of simultaneously. A prototype implementation of DULO in the
Linux kernel as well as some experiment results are presented, showing that DULO can significantly
increases disk I/O throughput for real-world applications such as Web server, TPC benchmark, file system
benchmark, and scientific programs. It reduces their execution times by as much as 53%. We conclude
the chapter by identifying and encouraging a new direction for research and practice on the improve-
ment of disk I/O performance, which is to expose more disk-specific data layout and access patterns to
the upper-level system software for disk-oriented policies.

DOI: 10.4018/978-1-60566-850-5.ch006

108

Application of both Temporal and Spatial Localities in the Management of Kernel Buffer Cache

introduction

The hard drive is the most commonly used sec-
ondary storage device supporting file accesses
and virtual memory paging. While its capacity
growth pleasantly matches the rapidly increas-
ing data storage demand, its electromechanical
nature causes its performance improvements to
lag painfully far behind processor speed progress.
It is apparent that the disk bottleneck effect is
worsening in modern computer systems, while the
role of the hard disk as dominant storage device
will not change in the foreseeable future, and the
amount of disk data requested by applications
continues to increase.

The performance of a disk is constrained by its
mechanical operations, including disk platter rota-
tion (spinning) and disk arm movement (seeking).
A disk head has to be on the right track through
seeking and on the right sector through spinning
for reading/writing its desired data. Between the
two moving parts of a disk drive affecting its
performance, the disk arm is its Achilles’ Heel.
This is because an actuator has to move the arm
accurately to the desired track through a series
of actions including acceleration, coast, decel-
eration, and settle. As an example, for a typical
high performance drive of 10,000 RPM, average
seek time is 6.5 milliseconds, while its average
rotation time is 3 milliseconds. Thus, accessing
of a stream of sequential blocks on the same track
achieves a much higher disk throughput than that
accessing of several random blocks does.

In the current practice, there are several major
efforts in parallel to break the disk bottleneck. One
effort is to reduce disk accesses through memory
caching. By using replacement algorithms to ex-
ploit the temporal locality of data accesses, where
data are likely to be re-accessed in the near future
after they are accessed, requests for on-disk data
can be satisfied without actually being passed to
disk. To minimize disk activities in the number
of requested blocks, all current replacement al-
gorithms are designed by choosing block miss

reduction as the sole objective. However, this can
be a misleading metric that may not accurately
reflect real system performance. For example,
requesting ten sequential disk blocks can be com-
pleted much faster than requesting three random
disk blocks, where disk seeking is involved. To
improve real system performance, spatial local-
ity, a factor that can make a difference as large
as an order of magnitude in disk performance,
must be considered. However, spatial locality
is unfortunately ignored in current buffer cache
managements. In the discussion of this chapter,
spatial locality specifically refers to the sequen-
tiality of the disk placements of the continuously
requested blocks.

Another effort to break the disk bottleneck
is reducing disk arm seeks through I/O request
scheduling. I/O scheduler reorders pending re-
quests in a block device’s request queue into a
dispatching order that results in minimal seeks
and thereafter maximal global disk throughput.
Example schedulers include Shortest-Seek-Time-
First (SSTF), C-SCAN, as well as the Deadline
and Anticipatory I/O schedulers (Iyer et al. 2001)
adopted in the current Linux kernels.

The third effort is prefetching. A prefetching
manager predicts future request patterns associated
with a file opened by a process. If a sequential
access pattern is detected, then the prefetching
manager issues requests for the blocks following
the current on-demand block on behalf of the
process. Because a file is usually contiguously
allocated on disk, these prefetching requests can
be fulfilled quickly with few disk seeks.

While I/O scheduling and prefetching can
effectively exploit spatial locality and dramati-
cally improve disk throughput for workloads
with dominant sequential accesses, their ability
to deal with workloads mixed with sequential
and random data accesses, such as those in Web
services, databases, and scientific computing ap-
plications, is very limited. This is because these
two strategies are positioned at a level lower than
the buffer cache. While the buffer cache receives

109

Application of both Temporal and Spatial Localities in the Management of Kernel Buffer Cache

I/O requests directly from applications and has the
power to shape the requests into a desirable I/O
request stream, I/O scheduling and prefetching
only work on the request stream passed on from
the buffer cache and have very limited ability to
re-catch the opportunities lost in the buffer cache
management. Hence, in the worst case, a stream
filled with random accesses makes I/O scheduling
and prefetching largely ineffective, because no
spatial locality is left for them to exploit.

Concerned with the lack of ability to exploit
spatial locality in buffer cache management, the
solution to the deteriorating disk bottleneck is a
new buffer cache management scheme that ex-
ploits both temporal and spatial localities, which
is named as Dual LOcality scheme (DULO).
DULO introduces dual locality into the caching
component in an operating systems by tracking
and utilizing disk placements of in-memory pages
in its buffer cache management. The objective is
to maximize the sequentiality of I/O requests that
are serviced by disks. For this purpose, DULO
gives preference to random blocks for staying in
the cache, while sequential blocks that have their
temporal locality comparable to those random
blocks are replaced first. With the filtering effect
of the cache on I/O requests, DULO influences
the I/O requests made by applications so that more
sequential block requests and less random block
requests are passed to the disk thereafter. The disk
is then able to process the requests with stronger
spatial locality more efficiently.

challengeS with
dual locality

Application of dual locality in the cache man-
agement raises challenges that do not exist in a
traditional system. In the current cache manage-
ments, replacement algorithms only consider
temporal locality (a position in a queue in the case
of LRU) to make a replacement decision. While
introduction of spatial locality necessarily has to

compromise the weight of temporal locality in a
replacement decision, the role of temporal local-
ity must be appropriately retained in the decision.
For example, we may give randomly accessed
blocks more privilege of staying in cache due to
their weak spatial locality (weak sequentiality),
even though they have weak temporal locality
(large recency). However, we certainly cannot
keep them in cache forever if they do not have
sufficient re-accesses that indicate temporal local-
ity. Otherwise, they would pollute the cache with
inactive data and reduce the effective cache size.
The same consideration also applies to the block
sequences of different sizes. We prefer to keep a
short sequence because it only has a small number
of blocks to amortize the cost of an I/O operation.
However, how do we make a replacement decision
when we encounter a not-recently-accessed short
sequence and a recently-accessed long sequence?
The challenge is essentially how to make the
tradeoff between temporal locality (recency) and
spatial locality (sequence size) with the goal of
maximizing disk performance.

the dulo Scheme

We now present the DULO scheme to exploit both
temporal locality and spatial locality simultane-
ously and seamlessly. Because Least Recently
Used (LRU) or its variants are the most widely
used replacement algorithms, the DULO scheme
is designed by using the LRU algorithm and its
data structure --- the LRU stack, as a reference
point.

In LRU, newly fetched blocks enter into its
stack top and replaced blocks leave from its
stack bottom. There are two key operations in
the DULO scheme: (1) Forming sequences. A
sequence is defined as a number of blocks whose
disk locations are close to each other and have been
accessed sequentially in a series without interrup-
tion during a limited time period. Additionally, a
sequence is required to be stable so that blocks in

110

Application of both Temporal and Spatial Localities in the Management of Kernel Buffer Cache

it would be fetched together next time when they
are read from disk. Specifically, a random block
is a sequence of size 1. (2) Sorting the sequences
in the LRU stack according to their recency
(temporal locality) and size (spatial locality), with
the objective that sequences of large recency and
size are placed close to the LRU stack bottom.
Because the recency of a sequence changes while
new sequences are being added, the order of the
sorted sequence should be adjusted dynamically
to reflect the change.

Structuring lru Stack

To facilitate the operations presented above,
DULO partitions the LRU stack into two sec-
tions (shown in Figure 1 as a vertically placed
queue). The top part is called staging section
used for admitting newly fetched blocks, and the
bottom part is called eviction section used for
storing sorted sequences to be evicted in their
orders. The staging section is again partitioned
into two segments. The first segment is called
correlation buffer, and the second segment is
called sequencing bank. Its role is to filter high
frequency references and to keep them from
entering the sequencing bank, so as to reduce the
consequential operational cost. The sequencing

bank is used to prepare a collection of blocks
to be sequenced, and its size ranges from 0 to a
maximum value, BANK_MAX.

Suppose in the beginning the staging section
of an LRU stack consists of only the correlation
buffer (the size of the sequencing bank is 0), and
the eviction section holds the rest of the stack.
When a block leaves the eviction section and a
block enters the correlation buffer at its top, the
bottom block of the correlation buffer enters the
sequencing bank. When there are BANK_MAX
blocks leaving the eviction section, the size of
sequencing bank is BANK_MAX. We refill the
eviction section by taking the blocks in the bank,
forming sequences out of them, and inserting
them into the eviction section in a desired order.
There are three reasons for us to maintain two
interacting sections and use the bank to conduct
sequence forming: (1) The newly admitted blocks
have a buffering area to be accumulated for
forming potential sequences. (2) The sequences
formed at the same time must share a common
recency, because their constituent blocks are from
the same block pool --- the sequencing bank in
the staging section. By restricting the bank size,
we make sure that the block recency will not be
excessively compromised for the sake of spatial
locality. (3) The blocks that are leaving the stack
are sorted in the eviction section for a replace-
ment order reflecting both their sequentiality and
their recency.

block table: a data Structure
for dual locality

To complement the missing spatial locality in
traditional caching systems, we introduce a data
structure in the OS kernel called block table. The
block table is analogous in structure to the multi-
level page table used for process address transla-
tion. However there are clear differences between
them because they serve different purposes: (1)
The page table covers virtual address space of a
process in the unit of page and page address is an

Figure 1. The LRU stack is structured for the
DULO replacement algorithm

111

Application of both Temporal and Spatial Localities in the Management of Kernel Buffer Cache

index into the table, while the block table covers
disk space in the unit of block, and block disk
location is an index into the table. (2) The page
table is used to translate a virtual address into its
physical address, while the block table is used to
provide the times of recent accesses for a given
disk block. (3) The requirement on the page table
lookup efficiency is much more demanding and
performance-critical than that on the block table
lookup efficiency because the former supports
instruction execution while the latter facilitates
I/O operations. That is the reason why a hardware
TLB has to be used to expedite page table lookup,
but there is no such a need for block table. (4)
Each process owns a page table, while each disk
drive owns a block table in memory.

In the system we set a global variable called
disk access clock, which ticks each time a block
is fetched into memory. The block being fetched
takes the current clock time. We then record the
timestamp in an entry at the leaf level of the block
table corresponding to the block disk location,
which we called BTE (Block Table Entry). When
the block is being released, we reset the informa-
tion recorded for that block to prevent new blocks
allocated to the same location inheriting stale
information. Each BTE allows at most two most
recent access times recorded in it. Whenever a new
time is added, the oldest time is replaced if the
BTE is full. In addition, to manage efficiently the
memory space held by block table(s), a timestamp
is set in each table entry at directory levels. Each
time the block table is looked up in a hierarchical
way to record a new access time, the time is also
recorded as a timestamp in each directory entry
that has been passed. In this way, each directory
entry keeps the most recent timestamp among those
of all its direct/indirect children entries when the
table is viewed as a tree. The entries of the table
are allocated in an on-demand fashion.

The memory consumption of the block table
can be flexibly controlled. When system memory
pressure is too high and the system needs to reclaim
memory held by the table, it traverses the table

with a specified clock time threshold for recla-
mation. Because the most recent access times are
recorded in the directories, the system will remove
a directory once it finds its timestamp is smaller
than the threshold, and all the subdirectories and
BTEs under it will be removed.

forming Sequences

When the bank is full, it is the time to traverse all
the blocks in the bank to collect all the sequences.
To ensure the sequentiality and the stability re-
quirement of a sequence, the algorithm determines
that the last block (A) of a developing sequence
should not be coalesced with the closest block (B)
in the bank if the two blocks belong to one of the
following cases:

Block B is not close enough to block A. This •
includes the case that the LBN (Logical
Block Number) of block B is less than that
of block A, where a long rotation time is
involved to move the disk head from block
A to block B. Currently, DULO uses 4 as
the distance threshold. The reason is that,
if the distance between block B and block
A is within the threshold, the read-ahead
mechanism in most hard drives, which is
enabled by default, can fetch block B into
disk caches automatically after it fetches
block A. So the cost of reading of block B
is very cheap.
Block B and block A are not sequentially •
fetched from disk this time. If the most re-
cent time stamp of block B is not greater
than the most recent time stamp of block
A by 1, the accesses of block A and block
B are intersected by the access of the third
block, and high cost disk head seeks are
involved.
Block B and block A were not sequentially •
fetched from disk last time. This includes
the case where one and only one of the two
blocks was not accessed before the current

112

Application of both Temporal and Spatial Localities in the Management of Kernel Buffer Cache

clock time (i.e., it has only one timestamp),
and the case that their non-recent time
stamps have a difference larger than 1.
The current sequence size reaches 128, •
which is the maximal allowed sequence
size and we deem to be sufficient to amor-
tize a disk operation cost.

If any one of the conditions is met, a complete
sequence has been formed and a new sequence
starts to be formed. Otherwise, block B becomes
part of the sequence, the following blocks will be
tested continuously.

the dulo replacement algorithm

There are two challenging issues to be addressed in
the design of the DULO replacement algorithm.

The first issue is the potentially prohibitive
overhead associated with the DULO scheme. In
the strict LRU algorithm, both missed blocks and
hit blocks are required to move to the stack top.
This means that a hit on a block in the eviction
section is associated with a bank sequencing cost
and a cost for sequence ordering in the eviction
section. These additional costs that can incur in a
system with few memory misses are unacceptable.
In fact, the strict LRU algorithm is seldom used
in real systems because of its overhead associated
with every memory reference (Jiang et al. 2005).
Instead, its variant, the CLOCK replacement
algorithm, has been widely used in practice. In
CLOCK, when a block is hit, it is only flagged
as young block without being moved to the stack
top. When a block has to be replaced, the block
at the stack bottom is examined. If it is a young
block, it is moved to the stack top and its ̀ `young
block’’ status is revoked. Otherwise, the block
is replaced. It is known that CLOCK simulates
LRU behaviors very closely and its hit ratios are
very close to those of LRU. For this reason, we
build the DULO replacement algorithm based
on the CLOCK algorithm. That is, it delays the
movement of a hit block until it reaches the stack

bottom. In this way, only block misses could trig-
ger sequencing and the eviction section refilling
operations. While being compared with the miss
penalty, these costs are very small.

The second issue is how the sequences in the
eviction section are ordered for replacement ac-
cording to their temporal and spatial locality. We
adopt an algorithm similar to GreedyDual-Size
used in Web file caching (Cao et al. 2007). It
makes its replacement decision by considering the
recency, size, and fetching cost of cached files. In
our case, file size is equivalent to sequence size, and
file fetching cost is equivalent to the I/O operation
cost for a sequence access. For sequences whose
sizes are distributed in a reasonable range, which
is limited by bank size, we currently assume their
fetching cost is the same. Our algorithm can be
modified to accommodate cost variance if neces-
sary in the future.

The DULO algorithm associates each sequence
with a value H, where a relatively small value
indicates the sequence should be evicted first. The
algorithm has a global inflation value L, which
records the H value of the most recent evicted
sequence. When a new sequence s is admitted into
the eviction section, its H value is set as H(s) =
L + 1/size(s), where size(s) is the number of the
blocks contained in s. The sequences in the eviction
section are sorted by their H values with sequences
of small H values at the LRU stack bottom. In the
algorithm a sequence of large size tends to stay at
the stack bottom and to be evicted first. However,
if a sequence of small size is not accessed for a
relatively long time, it will be replaced. This is
because a newly admitted long sequence could
have a larger H value due to the L value, which is
continuously being inflated by the evicted blocks.
When all sequences are random blocks (i.e., their
sizes are 1), the algorithm degenerates into the
LRU replacement algorithm.

As we have mentioned before, once a bank
size of blocks are replaced from the eviction sec-
tion, we take the blocks in the sequencing bank to
form sequences and order the sequences by their

113

Application of both Temporal and Spatial Localities in the Management of Kernel Buffer Cache

H values. Note that all these sequences share the
same current L value in their H value calcula-
tions. With a merge sorting of the newly ordered
sequence list and the ordered sequence list in the
eviction section, we complete the refilling of the
eviction section, and the staging section ends up
with only the correlation buffer.

performance reSultS

To demonstrate the performance improvements
of DULO on a modern operating system, we
implement it in the recent Linux kernel 2.6.11.
To exhibit the impact of introducing spatial lo-
cality into replacement decisions under different
circumstances, we run two types of applications,
whose I/O operations are mostly file accesses
and VM paging respectively. As file system
fragmentation may have substantial impact on
system performance, we also test DULO on an
aged file system.

the dulo implementation

As many other Unix variants, Linux uses an LRU
variant as its replacement policy, which brings up
some implementation issues. So let’s start with
a brief description of the implementation of the
Linux replacement policy.

Linux Caching

Linux adopts an LRU variant similar to the 2Q
replacement (Johnson el al. 1994). The Linux 2.6
kernel groups all the process pages and file pages
into two LRU lists called the active list and the
inactive list. As their names indicate, the active
list is used to store recently actively accessed
pages, and the inactive list is used to store those
pages that have not been accessed for some time.
A faulted-in page is placed at the head of the inac-
tive list. The replacement page is always selected
at the tail of the inactive list. An inactive page is

promoted into the active list when it is accessed
as a file page, or it is accessed as a process page
and its reference is detected at the inactive list tail.
An active page is demoted to the inactive list if it
is determined to have not been recently accessed.
Linux uses an adaptive method to refill inactive
list with pages picked from active list. When the
page reclaiming at the tail of the inactive list
becomes difficult, more pages are picked from
active list to inactive list.

Implementation Issues

In our prototype implementation of DULO, we do
not replace the original Linux page frame reclaim-
ing code with a faithful DULO scheme imple-
mentation. Instead, we opt to keep the existing
data structure and policies mostly unchanged, and
seamlessly adapt DULO into them. We make this
choice, which has to tolerate some compromises
of the original DULO design, to serve the pur-
pose of demonstrating what improvements a dual
locality consideration could bring to an existing
spatial-locality-unaware system without changing
its basic underlying replacement policy.

In Linux, we partition the inactive list into a
staging section and an eviction section because the
list is the place where new blocks are added and
old blocks are replaced. To keep DULO effective
and make it cooperate well with existing policies
in Linux, both staging section and eviction sec-
tion need to have reasonable lengths, which are
now limited by inactive list. The length of evic-
tion section presents DULO’s ability to control
the eviction order of the pages. The longer the
eviction is, the more power DULO has to protect
the high-cost random blocks from being evicted.
Different with other LRU variants, where newly
fetched pages enter the head of the only list, inac-
tive list provides a shorter evaluation period for
newly fetched pages, during which frequently
referenced ones are re-visited and promoted to
active list and unfrequently referenced ones are
evicted.

114

Application of both Temporal and Spatial Localities in the Management of Kernel Buffer Cache

The anonymous pages that do not yet have
mappings on disk are treated as random blocks
until they are swapped out and are associated with
some disk locations. To map the LBN (Logical
Block Number) of a block into a one-dimensional
physical disk address, we use a technique described
in (Schindler et al. 2002) to extract track bound-
aries. To characterize accurately block location
sequentiality, all the defective and spare blocks
on disk are counted. We also artificially place
a dummy block between the blocks on a track
boundary in the mapping to show the two blocks
are non-sequential.

The experiment is conducted on a Dell desktop
with a single 3.0GHz Intel Pentium 4 processor,
512MB memory, and a Western Digital 7200 RPM
IDE disk with a capacity of 160GB. The read-ahead
mechanism built in the hard drive is enabled. The
operating system is Redhat WS4 with its kernel
updated to Linux 2.6.11. The file system is Ext2.
In the experiments, we change the memory sizes
available for benchmarks to observe their perfor-
mance with different memory sizes.

Experiment Results on File Accesses

In the evaluation of impact of DULO on the per-
formance of file access, we select benchmarks
that represent different access patterns, including
almost-all sequential accesses (TPC-H), almost
all random accesses (diff), and mixed I/O access
patterns (BLAST, PostMark, LXR). DULO shows
the most performance advantages with bench-
marks that have considerable amount of both short
sequences and long sequences by increasing the
number of disk accesses to long sequences and
keeping data of short sequence in memory.

Here are insights on the experiment results.
First, the increases of sequence sizes are directly
correlated to the improvement of the execution
times or I/O throughputs. Let us take BLAST
as an example. With a memory size of 512MB,
Linux has 8.2% accesses whose sequence sizes
equal to 1, while DULO reduces this percentage

to 3.5%. At the same time, in DULO there are
57.7% sequences whose sizes are larger than 32,
compared with 33.8% in Linux. Accordingly, there
is a 20.1% execution time reduction by DULO. In
contrast, with the memory size of 192MB DULO
reduces random accesses from 15.2% to 4.2% and
increases sequences longer than 32 from 19.8% to
51.3%. Accordingly, there is a 53.0% execution
time reduction. The correlation clearly indicates
that the size of requested sequence is a critical fac-
tor affecting disk performance and DULO makes
its contributions through increasing sequence
sizes. Second, DULO increases the sequence
size without excessively compromising temporal
locality. This is demonstrated by the small differ-
ence of hit ratios between Linux and DULO. For
example, DULO reduces the hit ratios of PostMark
by 0.53%~ 1.6%, while it slightly increases the hit
ratio of BLAST by 1.1% ~ 2.2%. In addition, this
observation also indicates that reduced execution
times and increased server throughputs are results
of the improved disk I/O efficiency, rather than the
reduced I/O operations in terms of the number of
accessed blocks, which is actually the objective of
traditional caching algorithms. Third, sequential
accesses are important in leveraging the buffer
cache filtering effect by DULO. We observe that
DULO achieves more performance improvement
for BLAST than it does for PostMark and LXR.
BLAST has over 40% sequences whose sizes are
larger than 16 blocks, while PostMark and LXR
have only 30% and 15% such sequences. The
small portion of sequential accesses in PostMark
and LXR make DULO less capable of keeping
random blocks from being replaced because there
are not sufficient number of sequentially accessed
blocks to be replaced first.

Meanwhile, DULO has only limited or little
influence on the performance of workloads with
almost-all-sequential and a random accesses. Take
TPC-H and diff as examples. Workload TPC-H has
more than 85% of the sequences that are longer than
16 blocks. For this almost-all-sequential workload,
DULO can only slightly increase the sizes of short

115

Application of both Temporal and Spatial Localities in the Management of Kernel Buffer Cache

sequences, and accordingly reduce execution time
by 2.1% with a memory size of 384MB. However,
for the almost-all-random workload diff, more than
80% of the sequences are shorter than 4 blocks.
Unsurprisingly, DULO cannot create sequential
disk requests from workload requests consisting
of purely random blocks. As expected, DULO
cannot reduce the execution time.

Experiment Results with
an Aged File System

The free space of an aged file system is usually
fragmented, and sometimes it is difficult to find
a large chunk of contiguous space for creating or
extending files. This usually causes large files to
consist of a number of fragments of various sizes,
and files in the same directory to be dispersed on the
disk. This non-contiguous allocation of logically
related blocks of data worsens the performance
of I/O-intensive applications. However, it could
provide DULO more opportunities to show its
effectiveness by trying to keep small fragments
in memory.

The experiments with an aged file system
shows that, for workloads dominated with long
sequential accesses such as TPC-H, an aged file
system degrades its performance. For example,
with a memory size of 448MB, the execution
time of TPC-H on an aged file system is 107%
more than on a fresh file system. This is because
on an aged file system large data files scanned
by TPC-H are broken into pieces of various
sizes. Accessing of small pieces of data on disk
significantly increases I/O times. Dealing with
sequences of various sizes caused by aged file
system, DULO can reduce execution time by
a larger percentage than it does on a fresh file
system. For TPC-H, with a fresh file system
DULO can hardly reduce the execution time.
However, with an aged file system DULO man-
ages to identify sequences of small sizes and
give them a high caching priority, so that their
high I/O costs can be avoided. This results in a

16.3% reduction of its execution time with the
memory size of 448MB.

For workloads with patterns mixed of sequen-
tial accesses and random accesses, such as BLAST
and PostMark, an aged file system has different
effects on DULO’s performance, depending on
sequentiality of the workloads and memory sizes.
For BLAST, which abounds in long sequences,
DULO reduces its execution time by a larger per-
centage on an aged file system than it does on a
fresh file system when memory size is large. For
workloads with a relatively small percentage of
long sequences, the reduction of long sequences
makes its access pattern close to that in almost-
all-random applications, where the lack of suf-
ficient long sequences causes short sequences to
be replaced quickly. Thus we expect that DULO
may reduce less execution time with an aged file
system than it does with a fresh file system. This
is confirmed by our experimental results.

While programs and file systems are designed
to preserve sequential accesses for efficient disk
accesses, DULO is important in keeping system
performance from degradation due to an aged
file system and to help retaining the expected
performance advantage associated with sequential
accesses.

Experiments on Virtual Memory Paging

In order to study the influence of the DULO
scheme on VM paging performance, we use a
representative scientific computing benchmark
--- sparse matrix multiplication (SMM) from an
NIST benchmark suite SciMark2. The total work-
ing set, including the result vector and the index
arrays, is around 348MB.

To cause the system paging and stress the swap
space accesses, we have to adopt small memory
sizes, from 336MB to 440MB, including the
memory used by the kernel and applications.

To increase spatial locality of swapped-out
pages in the disk swap space, Linux tries to allo-
cate contiguous swap slots on disk to sequentially

116

Application of both Temporal and Spatial Localities in the Management of Kernel Buffer Cache

reclaimed anonymous pages in the hope that they
would be efficiently swapped-in in the same order.
However, the data access pattern in SMM foils
the system effort. The swap-in accesses of the
vector arrays recording the positions of elements
in a matrix turn into random accesses, while the
elements of matrix elements are still sequentially
accessed. This explains why DULO can signifi-
cantly reduce the execution times of the program
(by up to 38.6%). This is because DULO detects
the random pages in the vector array and caches
them with a higher priority. Because the matrix
is a sparse one, the vector array cannot obtain
sufficiently frequent reuses to allow the original
kernel to keep them from being paged out. In addi-
tion, the similar execution times between the two
kernels when there is enough memory (exceeding
424MB) to hold the working set shown in the figure
suggest that DULO’s overhead is small.

reSearch on improVing and
expoSing on-diSK layout for
upper-leVel SoftwareS

We know that the disk head seek time far domi-
nates I/O data transfer time, and the efficiency of
accessing sequential data on the disk can be one
order of magnitude higher than that of accessing
of random data. As the hard disk has been and is
expected to continue to be the mainstream on-line
storage device in the foreseeable future, efforts
on making sure on-disk data are sequentially
accessed are critical to maintain a high I/O per-
formance. Exposing information from the lower
layers up for better utilization of hard disk is an
active research topic.

Most of the existing work focuses on using
disk-specific knowledge for improving data place-
ments on disk that facilitate the efficient servicing
of future requests. For example, Fast File System
(FFS) and its variants allocate related data and
metadata into the same cylinder group to minimize
seeks (Mckusick et al. 1994; Ganger et al. 1997).

There have been many other techniques to control
the data placement on disk (Arpaci-Dusseau et al.
2003; Black et al. 1991) or reorganize selected disk
blocks (Hsu el al. 2003), so that related objects
are clustered and the accesses to them become
more sequential. Traxtent-aware file system ex-
cludes track boundary block from being allocated
for better disk sequential access performance
(Schindler et al. 2002). The effort on improving
access sequentiality through statically arranging
data layout on the disk is effective only when the
actually accesses take place in the assumed order.
If not or the access order changes from time to
time, many random accesses can still occur.

As the techniques focusing only on the disk
alone cannot fully solve the issue, another com-
plimentary effort, represented by DULO, is to
expose the data layout information to the upper-
lever software such as the buffer cache manage-
ment module in the OS kernel, so that they can
leverage the information in their policies for a
higher I/O throughput. Besides DULO, DiskSeen
is another example of such effort (Ding et al.
2007). DiskSeen improves the effectiveness of
prefetching by using the disk layout knowledge
to find the on-disk data access sequences. In ad-
dition to the conventional file-level prefetching,
the disk-level prefetching provides substantially
higher I/O performance for many patterns of ac-
cesses, especially for access of a large number
of small files. It is noted that the two efforts are
complementary and synergistic.

While statically improvement data layout on
the disk provides the opportunity of long sequence
of data access, leveraging the layout information
in the upper-level software can maximize the
performance potential of sequential access and
minimize the performance penalty incurred by
access random data.

We believe that exposing more detailed
information on the storage system, such as the
configuration of disk array, the data layout on a
disk, and buffer cache size on the storage control-
ler, to the various software layers of the I/O stack,

117

Application of both Temporal and Spatial Localities in the Management of Kernel Buffer Cache

including kernel of OS, would be of great potential
for improving I/O performance and removing the
painful I/O bottleneck. A challenge in the approach
is how to make it reconcile with the virtualization
technologies and effectively deal with portability
issues, which all require isolation from the low-
level details to some extent.

concluSion

In this chapter, we identify a serious weakness of
lacking spatial locality exploitation in I/O caching,
and propose a new and effective memory man-
agement scheme, DULO, which can significantly
improve I/O performance by exploiting both tem-
poral and spatial locality. Our experiment results
show that DULO can effectively reorganize ap-
plication I/O request streams mixed with random
and sequential accesses in order to provide a more
disk-friendly request stream with high sequenti-
ality of block accesses. We present an effective
DULO replacement algorithm to carefully tradeoff
random accesses with sequential accesses and
evaluate it using traces representing representative
access patterns. The results of experiments on a
prototype implementation of DULO in a recent
Linux kernel show that DULO can significantly
improve the I/O performance for many applica-
tions from different areas. As DULO represents
a promising effort in removing the I/O barrier for
many I/O-intensive applications, more research in
this direction is called to reveal its full potential
and address its issues.

referenceS

Arpaci-Dusseau, R. H., Arpaci-Dusseau, N. C.,
Burnett, T. E., Denehy, T. J., Engle, H. S., Gunawi,
J., & Nugent, F. I. Popovici. (2003). Transform-
ing Policies into Mechanisms with Infokernel.
19th ACM Symposium on Operating Systems
Principles.

Black, D., Carter, J., Feinberg, G., MacDonald,
R., Mangalat, S., Sheinbrood, E., et al. (1991).
OSF/1 Virtual Memory Improvements. USENIX
Mac Symposium.

Cao, P., & Irani, S. (1997). Cost-Aware WWW
Proxy Caching Algorithms. USENIX Annual
Technical Conference.

Ding, X., Jiang, S., Chen, F., Davis, K., & Zhang,
X. (2007). DiskSeen: Exploiting Disk Layout and
Access History to Enhance I/O Prefetch. USENIX
Annual Technical Conference.

Ganger, G., & Kaashoek, F. (1997). Embedded
Inodes and Explicit Groups: Exploiting Disk
Bandwidth for Small Files. USENIX Annual
Technical Conference.

Hsu, W. W., Young, H. C., & Smith, A. J. (2003).
The Automatic Improvement of Locality in Stor-
age Systems. Technical Report CSD-03-1264,
UC Berkeley.

Iyer, S., & Druschel, P. (2001). Anticipatory
Scheduling: A Disk Scheduling Framework to
Overcome Deceptive Idleness in Synchronous
I/O. 18th ACM Symposium on Operating Systems
Principles.

Jiang, S., Chen, F., & Zhang, X. (2005). CLOCK-
Pro: An Effective Improvement of the CLOCK
Replacement. USENIX Annual Technical Con-
ference.

Johnson, T., & Shasha, D. (1994). 2Q: A Low
Overhead High Performance Buffer Management
Replacement Algorithm. In International Confer-
ence on Very Large Data Bases, (pp. 439-450).

Mckusick, M. K., Joy, W. N., Leffler, S. J., &
Fabry, R. S. (1884). A Fast File System for UNIX.
Transactions on Computer Systems, 2(3).

Schindler, J., Griffin, J. L., Lumb, C. R., & Ganger,
G. R. (2002). Track-Aligned Extents: Matching
Access Patterns to Disk Drive Characteristics.
USENIX Conference on File and Storage Tech-
nologies.

118

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7

Alleviating the Thrashing
by Adding Medium-

Term Scheduler
Moses Reuven

Bar-Ilan University, Israel

Yair Wiseman
Bar-Ilan University, Israel

introduction

One of the most substantial computer resources is
the RAM. Multitasking operating system executes
several processes simultaneously. Each one of the
processes uses several sections of the memory.
The connection of the memory and the scheduling
strategy is an old subject for research (Zahorjan et

al., 1991), (Wiseman and Feitelson, 2003).
Usually, most of the processes do not make

use of the entire memory that has been allocated
for them. This shows the way to the principle of
virtual memory (Denning, 1970): Many processes
have allocations in the virtual memory, but only
the pages which are currently required will be
physically stored in the memory; therefore, many
more processes can be executed in parallel, while
occupying less physical memory space.

abStract

A technique for minimizing the paging on a system with a very heavy memory usage is proposed. When
there are processes with active memory allocations that should be in the physical memory, but their accu-
mulated size exceeds the physical memory capacity. In such cases, the operating system begins swapping
pages in and out the memory on every context switch. The authors lessen this thrashing by placing the
processes into several bins, using Bin Packing approximation algorithms. They amend the scheduler to
maintain two levels of scheduling - medium-term scheduling and short-term scheduling. The medium-
term scheduler switches the bins in a Round-Robin manner, whereas the short-term scheduler uses the
standard Linux scheduler to schedule the processes in each bin. The authors prove that this feature does
not necessitate adjustments in the shared memory maintenance. In addition, they explain how to modify
the new scheduler to be compatible with some elements of the original scheduler like priority and real-
time privileges. Experimental results show substantial improvement on very loaded memories.

DOI: 10.4018/978-1-60566-850-5.ch007

119

Alleviating the Thrashing by Adding Medium-Term Scheduler

Various operating systems implement the
virtual memory concept using the paging model
i.e. the operating system will load a memory
page into the physical memory only if a process
asks for it. If no free memory frame is available,
the operating system will swap out a page from
the physical memory to the secondary memory
(hard disk). Different techniques for choosing
which pages the operating system will swap out
to the disk have been suggested over the years
(Belady, 1966).

When large memory space is needed, swapping
pages in and out the memory will consume a large
portion of the CPU cycles. This situation is called
Thrashing (Abrossimov et al., 1989). Thrashing
causes a severe overhead time and as a result a
substantial slowdown of the system. Some stud-
ies for alleviating the unwanted consequences of
the thrashing have been carried out over the years
(Galvin and Silberschatz, 1998).

In (Jiang and Zhang, 2001), (Jiang and Zhang,
2002), (Jiang, 2009), the authors propose giving
one of the interactive processes a privilege. The
process’s pages will not be swapped out. As a
result, the privileged process will be executed
faster and therefore will free its memory alloca-
tion earlier. This feature may assist the operating
system freeing enough memory fast and to get
back to a normal behavior. However, this tech-
nique will be advantageous only if the memory
allocations slightly exceed the physical memory.
This technique will work like a First-In-First-
Out scheduler if many processes produce a large
memory excess. In such cases this FIFO continues
and the system will keep on thrashing. Linux 2.6
version has a similar mechanism and its scheduler
is described in section 2.

In (Batat and Feitelson, 2000) the authors
suggest not admitting jobs that do not fit into the
current available memory. The system waits for
several processes to finish their execution and
only when enough memory is freed, a new job
can be admitted. The authors also discuss the
dilemma how a memory size needed by a new

job can be assessed. This technique is essentially
very similar to the VMS technique that uses the
“Balance Sets” method. However, the authors of
this paper have implemented the “Balance Sets”
concept for distributed systems.

In (Nikolopoulos, 2003) the author handles the
thrashing problem by adjusting the memory needs
of a process to the current available memory. This
solution is quite different from the other solu-
tions, because it modifies the processes instead
of modifying the operating system.

Some hardware solutions for trashing are also
have been suggested which are implemented in
the cache (Gonzalez et al., 1997), (Chu and Ito,
2000). Typically LRU is the basic scheme that
both hardware and software victim selection al-
gorithms employ. However, the LRU algorithm is
manipulated differently by hardware and software
implementations. Naturally, hardware solutions
must be much simpler for implementation; but on
the other hand, hardware solutions can use data that
the operating system does not know e.g. the cache
can distinguish between an instructions block and
a data block; while the operating system does not
distinguish. Clearly, this parameter can be very
useful for victim selection algorithms.

This chapter suggests a technique that modi-
fies the traditional process scheduling method by
adding a new a layer of scheduling (Reuven and
Wiseman, 2005), (Reuven and Wiseman, 2006).
By using this modification, the operating system
can swap in and out fewer pages; therefore alle-
viating the slowdown stemming from thrashing.
The technique suggested in this chapter is not
restricted to a specific operating system; therefore,
any multitasking paging system can employ it.
The figures and the results given in this chapter
have been produced by running benchmarks on
the Linux operating system (Card et al., 1998).
However, as has been noted, Linux is just an ex-
ample to show the feasibility of our concept.

The rest of the chapter is organized as fol-
low. Section 1 describes the Linux scheduling
algorithms. Section 2 explains the Bin Packing

120

Alleviating the Thrashing by Adding Medium-Term Scheduler

problem. Section 3 presents the reduced paging
algorithm. Finally, section 4 gives the results and
evaluates them.

thraShing in the linux
operating SyStem

Traditionally, UNIX scheduler is priority based
(Vahalia, 1996). The process scheduling algo-
rithm of Linux is based on the traditional UNIX
scheduler. The Linux scheduler is well-known
and a description of it can be found in many
places e.g. (Beck at el. 1998), (Komarinski and
Collett 1998).

Linux virtual memory mechanism along with
the paging techniques gives Linux the ability
to manage many processes, even when the real
memory requirements are larger than the available
physical memory. However, the virtual memory
mechanism cannot handle some circumstances.
If the memory space required is too much over a
short time, the swapping mechanism cannot sat-
isfy the memory requirements quickly; therefore
pages are swapped in and out time and again and
a little progress is made.

Linux will kill processes if thrashing occurs
and the system is out of swap space. In some sense
there is nothing else that the kernel is able to do
in such situation, because memory is needed but
no more physical or swap memory is available
(Gorman, 2004), (Marti, 2002). If a thrashing
occurs, Linux kernel will kill the most memory
consuming processes. This feature is very harsh;
therefore its implications might be drastic. For
example, if a server runs several applications
with mutual dependencies, killing one of these
applications may yield unexpected results.

Linux 2.6 version has implemented the token-
ordered LRU policy (Jiang and Zhang, 2005). The
key idea of this policy is eliminating page swapping
at some cases called by the developers “false LRU
pages”. Sometimes, a page of a sleeping process
is swapped out, even though it would have not

been swapped out if the process was not sleeping.
The concept of the token-ordered LRU policy is
setting one or multiple tokens in the system. The
token is taken by one process when a page fault
occurs. The system prevents the false LRU pages
for the process holding the token from occurring.
This feature allows the process holding the token
a quick establishing of its working set. By giving
this privilege to a process, the total number of
false LRU pages is reduced and the pool of the
competing pages is getting ordered. However, this
policy can be beneficial only when the memory
needs slightly exceed the physical memory space.
A large memory excess of many processes will be
treated by this method as First-In-First-Out, while
other processes still vie for memory allocations and
thrash; therefore, in (Jiang and Zhang, 2005) the
traditional killing approach is of Linux is kept for
severe situations. In this chapter another technique
is suggested that can also handle the cases that
were handled by the killing methods.

Another problem is that the process selection
algorithm of Linux can mistakenly select a pro-
cess executing an endless loop. Such a selection
will even worsen the thrashing. Also selecting a
very long process that is executed for some hours
will be damaging. The selection algorithm can
just estimate which the shortest process is, but
its estimation might be wrong.

bin pacKing

The suggested technique needs a set of all the
processes that are currently in the virtual memory.
This set is split into several groups, such that the
total memory size of each group is as close as pos-
sible to the size of the available real memory.

These groups of processes can be built as fol-
lowed: There is a set of processes Pi, each with a
memory allocation. Let Mi denote the maximal
working set size that might be needed by process
Pi. We need an algorithm which splits these Mi’s
into as few groups as possible, with the sum of

121

Alleviating the Thrashing by Adding Medium-Term Scheduler

the Mis in each group not exceeding the size of
the real memory. Practically, the kernel and some
other daemons occupy part of the memory, so the
sum should not exceed a smaller memory size.
This splitting problem is well known and called
the Bin Packing problem (Scholl et al., 1997).

The Bin Packing problem is defined as a set
of numbers X1, X2, ..., Xn, with Xi ∈ [0, 1] for
each i. The problem is finding the smallest natural
number m for which:

X• 1, X2, ..., Xn can be partitioned into m
sets.
The sum of the members of each set is not •
higher than one.

The Bin Packing problem is NP-hard (Karp,
1972). However, some polynomial time approxi-
mations have been introduced over the years, such
as (Fekete and Schepers, 2001), (Gent, 1998) and
(Martello and Toth, 1990). The approximation
algorithms use no more than (1+E)*OPT(I) num-
ber of bins, where OPT(I) is the number of bins
in the optimal solution for case I. If E is smaller,
the result will be closer to the optimal solution,
but unfortunately good approximations are usu-
ally time consuming (Coffman et al., 1997). We
would like to choose one of the approximation
algorithms which is not time consuming, but yet
tries minimizing (1+E)*OPT(I).

A simple idea of an approximation algorithm
for the Bin Packing problem is the greedy ap-
proach (Albers and Mitzenmacher, 2000), also
known as the First-Fit approach. This algorithm
is defined as follow:

Sort the vector X• 1, X2, ..., Xn by the allo-
cated memory size.
Open a new bin and put the highest number •
in it.
While there are more numbers•
If adding the current number to one of the •
existing bins exceeds the size of the bin

Open a new bin and put the current ◦
number in it.

Else•
Put the current number in the current ◦
bin.

In our tests, we used a version of this approxi-
mation algorithm with a slight modification. We
usually achieved the minimal number of bins
and the cost of execution time was usually low.
Below we describe the version that has been use
in this chapter..

bin pacKing baSed paging

It is well known that increasing the level of mul-
titasking in any operating system may sometimes
cause thrashing. In order to avoid thrashing, we
would like to suggest a new approach: All the
processes will be split into several groups such
that the sum of physical memory demands within
each group will not be higher than the amount of
physical memory available on the machine. In
(Alverson et al., 1995) the authors give some ideas
to use a Bin Packing approximation (First Fit) to
improve the Backfilling scheduling of a specific
Operating System (Tera). We would like to use
the Bin Packing Algorithms to improve the Linux
scheduling using more approximations.

medium-term Scheduler

A new scheduler procedure will be added to the
Linux operating system. The new scheduler will
operate in the manner of the medium-term sched-
uler, which was part of some operating systems
(Stallings, 1998). The medium-term scheduler
will load the groups into the Ready queue of the
Linux scheduler in a Round-Robin manner. The
traditional Linux scheduler will do the schedul-
ing within the current group in the same way the
scheduling is originally done on Linux machines.
The time slice of each group in the medium-term

122

Alleviating the Thrashing by Adding Medium-Term Scheduler

scheduler will be significantly higher than the
average time allocated to the processes by the
original Linux scheduler. The processes in the
real memory will not be able to cause thrashing
during the execution of the group, because their
total size is not higher than the size of the avail-
able physical memory i.e. the size of each bin.
Only at the beginning of each group execution
there will be an intensive swapping, because the
new group’s pages are swapped into the memory.
This approach can improve the system ability to
support memory-consuming processes in a more
tolerant way than killing them.

There are some methods to calculate the work-
ing set size needed by each process. One of these
methods can be found in (Zhou et al., 2004). In
this paper, the authors suggest a way that adds
7-10% overhead. Obviously, such an overhead is
time consuming and not suitable for the concept
of the bin packing approach. The scheduler needs
to know the working set size on every context
switch and calculating this working set often is
costly. We use another simple approach. The resi-
dent size of each process was taken from /proc/
PROCESS_NO/status file. This size is the process’
last pages total size. This size is not accurate and
if the system is not busy, the resident size may
include large portions of stale pages that are not
currently essential. However, when the system
is not busy, there will be no thrashing and this
overestimation will make no harm.

In our implementation, the group time slice
was half a second or one second, whereas the
Linux scheduler gives time slices of some dozen
milliseconds. When Linux thrashes, any context
switch causes many page faults, whereas with the
medium-term scheduler, intensive swapping will
occur only when switching between groups. This
lets the operating system in our implementation
swapping a significant amount of pages only in a
few percents of the cases, in contrast to conven-
tional Linux during thrashing conditions.

The processes which are not in the current
group should be kept on a different queue, so that

Linux scheduler will not be able to see them. In
order to implement this feature, we added a new
record to Linux kernel code. This record has the
same structure as the “active” and “expired” re-
cords described in (Beck et al., 1998) and it holds
the hidden processes.

When the last group finishes its execution,
the medium-term scheduler is invoked, and re-
builds the process groups, taking into account
any changes to the old processes (e.g. exited or
stopped) and adding any new processes to the
groups.

Sometimes the current group finishes executing
all the processes within the time slice awarded to
it by the medium-term scheduler. Even if there are
still some processes in the group, these processes
might be sleeping. If not all the processes in the
group are ready to be executed, the Linux scheduler
has been modified to invoke the medium-term
scheduler, which promptly switches to the next
waiting group.

The medium-term scheduler takes the sum of
the memory sizes that are currently needed by the
processes and divides this sum by the available
physical memory size. The quotient is taken to be
the number of bins. After that, the medium-term
scheduler scatters the processes between these
bins. The medium-term scheduler uses the greedy
algorithm until the medium-term scheduler is
unable to fit another process into the bins. Next,
the medium-term scheduler tries to find room for
all the remaining processes in the existing bins.
If it fails to find room in one of the existing bins,
it exceeds the size of the smallest bin by add-
ing the unfitting process to it. The original Bin
Packing problem does not allow such an excess,
but in this case it might be preferable to have a
few page faults within a group than adding an
additional bin.

One of our assumptions for a working solu-
tion is that there exist a considerable number
of processes for a good bin packing, and some
small memory demands processes are even better.
However, if one process demand is larger than

123

Alleviating the Thrashing by Adding Medium-Term Scheduler

the available memory size, the solution will not
be effective and the process will thrash within
itself. In fact, most of the thrashing cases are not
caused by one process. However, if such a case
does occur, none of the solutions that have been
presented in section 1 can be useful. In such a case,
only the original Linux solution that kills such a
process will be beneficial, but it can be harmful
if the process is essential.

Swapping management

When the time slice of a group ends, a context
switch of groups will be performed. This context
switch will probably cause many page faults:
The kernel uses its swap management to make
room for the processes of the new group and this
procedure might be long and fatiguing. The previ-
ous group of processes has most probably used
up most of the available physical memory, and
when the swap thread executes the LRU function
to find the best pages to swap out to the disk, it
will probably find pages of the old group. This
procedure is wasteful because the paging function
is performed separately for every new required
page. Linux kernel does not know at the context
switch time that the recently used pages of the
previous group will not be needed for a long time,
and can be swapped out.

In order to overcome this Linux kernel manage-
ment, we modified Linux kernel as follow: when
the medium-term scheduler is invoked, it calls the
Linux swap management functions to swap out
all of the pages that belong to the processes of
the previous group. This gives Linux a significant
amount of empty frames for the new group. This
swapping management approach is much quicker
than incrementally loading the pages of the new
process group, and for each page fault searching
for the oldest page in the physical memory to swap
out. When a round of the medium-term scheduler
is completed, the medium-term scheduler will
rebuild the process groups and some processes
may migrate from one group to another; hence the

medium-term scheduler does not call the Linux
swap management at this point, because it might
swap out pages that may be needed again for the
next group.

Shared memory

Often, two or more processes share some memory.
Shared memory widely exists in most of the
operating systems and Linux has some tools to
handle it too.

When using the medium-term scheduler, it
will be inefficient to put two processes that share
a large piece of memory into two different groups
of processes. For example, consider the follow-
ing scenario:

Suppose processes A and B share a piece of
memory, process A is of group #1 and process B is
of group #3. After group #1 completes its execu-
tion, the pages of group #1 are swapped out and
the pages of group #2 are loaded and placed in
the physical memory instead, as we explained in
the previous section. The same swapping happens
when the operating system replaces group #2 by
groups #3. The pages of process B are loaded by
demand, so the same pages, albeit not all of them,
are loaded and swapped twice, once for process
A and once again for process B.

This situation is illogical and inefficient; hence,
the medium-term scheduler must put processes
with a large shared memory in the same group.

In order to tackle this situation we must know
which processes share pages, and which pages
they share. Each process that uses a page incre-
ments the “count” field of the page (Bovet and
Cesati, 2003), so reading this field can easily let
the Linux know which pages are shared. However,
the medium-term scheduler must still know which
processes use the page. A naive approach would
be searching the page table of all the processes, in
order to extract the addresses of the given pages.
Obviously, this will be very time consuming and
will probably impair the medium-term scheduler
efficiency.

124

Alleviating the Thrashing by Adding Medium-Term Scheduler

It frequently happens that applications which
share a piece of memory will have an almost equal
size of shared memory. If the shared memory stems
from a ‘fork’ system call, the child process will
be created from its parent; hence the size of the
shared memory in the parent process and the child
process will be almost equal, unless the child or
the parents allocate a large piece of new shared
memory. The same will be correct, if processes
share an IPC or a common text segment. If there
is no other shared memory obtained by just one
the processes, the shared memory size will be
almost equal.

Figure 1 shows the shared memory size in
some common cases. The data was obtained from
a running Linux machine that serves the Computer
Science department in Bar-Ilan University. Many
processes do not have shared memory and they
have been omitted from the figure. However,
when processes do share memory, it can be seen
that they usually have the same size of shared
memory.

Linux calculates the shared memory size of
each process. Based on the shared size character-
istic, we would like to suggest a simple solution
for the issue of large shared memory. When the
medium-term scheduler recalculates the bins of

the processes, it will first sort the vector of the
processes by the shared memory size. Then, us-
ing the greedy approximation, the processes with
almost equal shared memory size will usually
be in the same bin or in adjacent bins; hence no
swapping will be needed when replacing the pages
of two processes with shared memory.

We have chosen to use insertion sort for this.
Since we use the old sorted list of processes,
insertion sort is executed in the shortest time
(Manber, 1989).

group time Slice

Sometimes we can be lucky and the sizes of the
total memory needs in all the different groups are
almost equal. This is the best situation, because
a fixed time slice that will be given to the groups
is usually quite fair. However, when the sizes of
the total memory allocations are significantly dif-
ferent, some processes might get an implicit high
priority. When the medium-term scheduler uses
the greedy approximation, such a situation usu-
ally occurs when the last processes are assigned
to a bin. The last bin is sometimes almost empty;
hence the processes in this bin gain precedence,
because in the time slice of this bin, there are less

Figure 1. shared memory size of common processes

125

Alleviating the Thrashing by Adding Medium-Term Scheduler

processes vying for CPU cycles. It should be noted
that when the size of the last bin is not small, this
solution will function efficiently.

One possible solution is breaking up small
groups and scattering processes belong to the
small groups in other groups. This solution can be
good if the size of the small group is not big and
when there is just one small group. If the size of
the small group is big, scattering it might cause
thrashing in the other groups.

A better solution can be a dynamic group time
slices, instead of a constant time slice. E.g. if the
size vector is [1,1,0.5] and the default group time
slice is one second, the medium-term scheduler
should assign each of the first two groups one
second, whereas the last group will get only 0.5
second. (The vector represents the group’s memory
size as the total memory allocations divided by
the total memory available for user application).
This solution gave us the best results; therefore
it has been implemented.

interactive processes

The interactive processes should be dealt with
differently. If we treat them the same way as the
non-interactive processes, they will not be able to
be executed as long as their group is not current.
Interactive processes need fast response time and
a few seconds delay can be a major drawback.

To remedy this drawback, the scheduler allows
an interactive process which can be identified by
directly quantifying the I/O between an applica-
tion and the user (keyboard, mouse and screen
activity) (Etsion et al., 2004), to run in each of
the process groups. So, actually the process will
belong to all the groups, but with a smaller time
slice in each group:

p->time_slice = time_slice(p)/num_of_groups;

This feature can assure us a short response
time for interactive processes while keeping
fairness towards other processes. The resident

pages of interactive processes will be marked
as low priority swappable, so the kernel will not
swap out interactive processes when a group
context switch is done. However, the scheduler
has to calculate the memory needs of interactive
processes in every group.

When a new process is admitted, it will be
handled as an interactive process. The operating
system cannot know whether the new process is
interactive and if the execution of this process is
delayed, it will be irritating for interactive pro-
cesses. After one round of the bins, the scheduler
can assess the nature of the process and treat it
accordingly.

real time processes

The handling of real time processes is somewhat
similar to interactive processes. Real time pro-
cesses must get the CPU as fast as possible. The
management of these processes will be the same
as interactive processes, but with a slight differ-
ence. Real time processes will belong to all the
groups, as the interactive processes do, but they
will not have a shrunken time slice.

The kernel will not swap out Real time pro-
cesses, because they belong to all the groups. In
addition, Real time processes will have the same
privilege Linux traditionally gives them. It should
be noted that the scheduler has to calculate their
memory needs in every group as the scheduler
did for the interactive processes. This handling is
identical for FIFO Real-Time processes and for
RR Real-Time processes. This treatment has also
been applied to the “init” process and the “Idle
and Swapper” process of Linux, which cannot
be suspended.

priority

Another important issue of the bin packing
scheduling discussion is the priority management.
Hypothetically, it might happen that the highest
priority processes belong to one group, whereas

126

Alleviating the Thrashing by Adding Medium-Term Scheduler

the lowest priority processes belong to another.
Then, when Linux switches between the processes
within the groups, the priority is not taken into
account.

One solution can be finding out how many
bins there should be, by calculating the total size
of the memory needs and dividing by the size of
the available physical memory (The size of the
bin), just as the medium-term scheduler always
does. Then, sorting the process list by priority, and
finally, taking the processes from the sorted list
and filling the bins in a Round-Robin manner. This
solution cannot be implemented together with the
shared pages solution, because the shared pages
solution requires sorting by the number of the
shared pages, rather than by the priority.

Another solution is assigning different time
slice to each group, according to the average
priority of the processes inside the group. For
each group the average priority is calculated.
A group having a high average priority will be
awarded a longer time slice. This solution was
chosen based on the results that are shown in
section 5.4.

performance reSultS

Actually, the best way to evaluate the medium
term scheduler is by considering its performance
results. In the following subsections, an extensive
evaluation that has been made to the medium term
scheduler is described.

teStbed

We tested the performance of the kernel with the
new scheduling approach using five different
benchmarks to get the widest view we could:

1. SPEC – cpu2000 (SPEC, 2000). The SPEC
manual explicitly notes that attempting to
run the suite with less than 256Mbytes of
memory will cause a measuring of the paging

system speed instead of the CPU speed. This
suits us well, because our aim is precisely to
measure the paging system speed; hence, we
used a machine with just 128MB of RAM.
Using machine with a larger RAM would
have been forced us not to use SPEC.

2. A synthetic benchmark that forks processes
which demand a constant number of pages
– 8MBytes. The processes use the memory
in a random access; therefore they cause
thrashing. This benchmark was tested within
the range of 16MBytes-136MBytes. The
parent process forks processes whose total
size is the required one, and collects the
information from the children. Let us denote
this test by SYN8.

3. Matlab formal benchmark. This benchmark
executes six different Matlab tasks described
in (MATLAB, 2004).

4. Another synthetic benchmark using mas-
sive shared memory allocations. The test
has two processes that share 16MBytes
and has 2 more Mbytes for each one of the
processes. The processes copy parts of their
private memory into the shared memory and
parts of the shared memory into their private
memory in a random access. The benchmark
consists of a number of such tests according
to the desired size. Let us denote this test as
SYNSHARED.

5. For interactive and real-time processes, we
used the Xine MPEG viewer. It was used to
show a short video clip in a loop.

The benchmarks were executed on a Pentium
2.4GHz with 128MB RAM and a cache of 1MB
running Linux kernel 2.6.9 with Fedora core 2
distribution. The size of the page was 4KBytes.
It should be noted that even though the platform
machine had 128MBytes of physical memory, we
should take into the bin size considerations that a
certain portion of this memory is occupied by the
daemons of Linux/RedHat and the X-windows,
plus the kernel itself along with its threads. After

127

Alleviating the Thrashing by Adding Medium-Term Scheduler

an evaluation of the extra size, we used bins of
96MBytes.

execution time

Figure 2a and Figure 2b show the performance of
the synthetic benchmark SYN8. Figure 2a shows
the number of swaps that were performed in both
the schedulers as a function of the total size of the
processes, whereas Figure 2b shows the execution
time of SYN8 as a function of the same processes’
total size. In these figures, the medium-term
scheduler time slice was one second.

It can be seen that when the size of the pro-
cesses is too large, Linux starts swapping in and
out many more pages. From roughly 64MB Linux
swaps more pages, but there is no noteworthy
influence on the I/O time, because Linux lets
other processes run while the I/O is performed.
Roughly, from 128MB the I/O buffer is incapable

of responding to all the paging requests, and
the thrashing becomes acute. The medium-term
scheduler dramatically reduces the number of the
page faults; thus, fewer swaps are performed and
the execution time remains reasonable. Processes
that require 144MB or more were sustainable for
the medium-term scheduler, but not for the Linux
scheduler.

We also employed Matlab formal benchmark.
Matlab benchmark is a very memory consum-
ing process. It takes about 290MB with Matlab
7.0.0.19901 (R14) running on our Linux 2.6.9
machine, but when memory pressure becomes
high, Matlab will be able to continue working when
just 28MB are resident in the physical memory,
whereas 14MB of them are shared memory with
other possible Matlab processes. When we ex-
ecuted several Matlab processes in parallel, the
results were very similar to the synthetic bench-
mark. However, a significantly larger portion of

Figure 2. a. SYN8’s Number of Swaps; b. SYN8’s Execution Time

128

Alleviating the Thrashing by Adding Medium-Term Scheduler

the swap area was necessary, because just 14MB
out of each Matlab process was physically in the
internal memory and the other memory allocations
(except of the shared allocation) of the Matlab
processes were in the swap area. We preferred no
to reshow the results that are almost the same as
Figure 2a and 2b and instead to show in the next
figures different benchmarks results.

Figure 3a and Figure 3b show the performance
of the medium-term scheduler vs. the Linux kernel
using the tests of SPEC cpu2000 benchmarks. The
prefix 3 (or 2) before the test name indicates that
we iterated the test 3 (or 2) times. Sometimes we
divided the numbers by some constants in order
to fit the data to the scale of the diagram. These

constants are denoted as Test/Constant. When
we used more than one test, we added a ‘+’ sign
between the names of the tests.

When each group contains just a few memory-
consuming processes, the idle task might be
invoked too often, even though there are other
processes in other groups that can be executed.
This can reduce the time saved by eliminating the
thrashing effect. When a test has large memory
allocations and is executed in a different group,
the results will not as good as when executing
several smaller SPEC tests concurrently in one
group. A higher idle time will be emerged when
the content of each group is just one process; thus
the results of Figures 3a and 3b are not as good

Figure 3. a. SPEC’s Number of Swaps; b. SPEC’s Execution Time

129

Alleviating the Thrashing by Adding Medium-Term Scheduler

as the results of Figures 2a and 2b. However,
the elimination of the thrashing saved more time
than was wasted idling, and the medium-term
scheduler still outperforms the traditional Linux
scheduler.

Figure 4a and Figure 4b show the effect of the
medium-term scheduler time slice on the process’
execution time. The tests were conducted using
SPEC. It can be seen that when the time slice
exceeds a certain limit, the execution time might
suffer. This damage is caused by the higher av-
erage idle time. When the number of processes
per group is too small, it may happen that none
of the processes in the current group is on the
Ready queue. Such a case may happen due to
many I/O operations. Clearly, this might turn out

with a lower group time slice as well, but it will
not happen as often as with a higher time slice,
because at the beginning of the time slice all the
processes are usually ready to run and not wait-
ing for an I/O.

When the time slice is higher, the cycle will be
longer. An extremely high time slice will actually
make the medium-term scheduler behave like
a FIFO scheduler. On the other hand, the page
faults rate is lower for the one-second scheduler,
because of the longer time slice. Pages are usually
swapped out when the group context is switched,
so if all the pages are replaced on context switch,
the half-a-second scheduler should have double
number of pages faults comparing to the one-
second scheduler. However, sometimes the bins

Figure 4. a. Time Slice’s Effect on Number of Swaps; b. Time Slice’s Effect on Execution Time

130

Alleviating the Thrashing by Adding Medium-Term Scheduler

are not full, and some shared memory can be
present, so the ratio between the number of page
faults is actually less than two.

Figure 5 shows the same time slices but with
more processes. This test was conducted using the
synthetic benchmark SYN8. It can be clearly seen
that the effect of increasing time slice damages
the execution time when processes for more than
one bin are present.

the bin packing approximations

There are more than a few approximations for
the Bin-Packing optimal solution. Some of them
have been mentioned in section 3. Figure 6a and
Figure 6b compare two of these approximations.
The First-Fit Approximation (Also known as the
greedy approximation) is described in section 4.1.
The Best-Fit Approximation finds for each process
the most unfilled bin and put the process in it.

When there is almost no shared memory, the
performance of both of the methods will be almost
the same. However, when a significant amount
of shared memory is allocated, the First-Fit ap-
proach outperforms the Best-Fit approach. The
benchmark that was used in Figures 6a and 6b is
SYNSHARED. Figure 6a compares the number

of swaps using each of the methods. First Fit sorts
the processes according to their shared size; hence
usually processes that share a portion of memory
will be in the same group. As was explained in
section 4.3 processes that share memory typi-
cally have the same number of shared pages. As
a result, they will be in adjacent positions in the
sorted list and probably will be put in the same
group. Therefore, less page faults will occur.
Best-Fit cannot guarantee this quality; hence, the
performance will not be as good as the First-Fit
performance. The higher number of page faults
causes a longer execution time as can be seen in
Figure 6b.

priority implementation evaluation

The priority can be implemented by another ap-
proximation which first determines how many
bins should be. Next, it sorts the processes by
their priority and finally, it fills the bins in a
Round-Robin manner. This method can scatter
the higher priority processes (and the lower
priority processes) among the bins, more or less
equally. However, the shared memory handling
requires a sorting by the shared size; hence, if
there are many processes with shared memory

Figure 5. Execution Time as a Function of Processes’ Total Size

131

Alleviating the Thrashing by Adding Medium-Term Scheduler

allocations, this approach can lengthen the ex-
ecution time.

Another approach implements the priority by
dynamically changing the time slice according
to the average priority of the processes in the
group. This approach sorts the processes by
their shared memory sizes and builds bins us-
ing a First-Fit version that has been introduced
above. Actually, this approach performs the
same procedure of building the bins, but each
group gets a dynamically different time slice,
according to the average priority of the group.
The medium-term scheduler calculates the global
average priority of all the processes currently
run and the average priority of the processes in
each group. Next, it calculates the difference

between the average of each group and the global
average. Let us denote this vector of differences
as D and the global average priorities of all the
processes as P. Then, the medium-term scheduler
gives each group (D[i]+P)/P*TS where TS is
the default group time slice and i is the index
the group.

Figure 7 shows the differences between the
approaches. We used the SPEC benchmark. We
took in each test one process and we awarded it
the highest priority: -20. We always took another
process and demoted its priority to the lowest
one: 19. The tests are written on the X-axis.
The promoted test is written below. We did not
change any other process’ priority. The default
group slice time was one second.

Figure 6. a. Number of swaps using best fit or first fit; b. Execution time using best fit or first fit

132

Alleviating the Thrashing by Adding Medium-Term Scheduler

The differences between the two strategies can
be clearly shown when using the SYNSHARED
benchmark. Because of the massive use of shared
memory, the sorting by shared memory strategy
will dramatically outperform the sorting by prior-
ity strategy. The results of the SYNSHARED are
shown in Figures 8a and 8b. Figure 8a shows the
influence of the strategies on the number of swaps.
This is quite a dramatic difference. The difference
of the execution time is notable as well.

interactive and real time
implementation evaluation

The interactive and real time processes were
checked using the Xine movie player. It is a well-
known MPEG player on Linux machines. We
configured Xine to play a short video clip in a loop.
The memory needs of Xine are much lower than
the physical RAM we had in our machine. In order
to check that Xine will continue to respond even
when the memory is overloaded, we deliberately
overfilled the memory by executing many copies
of SYN8. The results of this test can be found in
Figure 9. When the movie player process is not
handled as an interactive process, many frames
are lost. When Xine’s bin is not active, no CPU
time is given and no frames can be displayed.
Even when a CPU time is given, if the slice is

reduced because of the overall load, sometimes
the given slice is not enough and just when the
process is handled as a real-time process, a good
result can be achieved. We also reniced Xine by
-20. This yielded interesting results. The results
were better than the interactive mode, because
interactive processes’ time slice is reduced when
there are too many bins, whereas the reductions
of the time slice of bins include a high priority
process is smaller. On the other hand, a high pri-
ority process does not have the privileges Linux
gives to real-time processes, so the results are
worse than real-time mode.

concluSion

The scheduling approach of the new proposed
scheduler is built on the simple concept of adding
another layer of scheduling. The experimental
results are promising. Given a high memory pres-
sure caused by some processes, the medium-term
scheduler will be able to significantly reduce the
thrashing overhead. In addition, no performance
reduction has been generated when the memory
load is low and no swapping is needed. The
medium-term scheduler has been written as a
kernel patch; therefore it can be easily installed
on any Linux machine. If a user decides to install

Figure 7. Different Sorting Strategies of the Medium Term Scheduler

133

Alleviating the Thrashing by Adding Medium-Term Scheduler

Figure 8. a. SYNSHARED’s number of swaps with different sorting methods; b. SYNSHARED’s Execu-
tion time with different sorting methods

Figure 9. Frame loss as function of the number of bins

134

Alleviating the Thrashing by Adding Medium-Term Scheduler

this patch, the patch can help the machine han-
dling a massive paging in a thrashing situation in
a more tolerant means than the traditional way of
Linux that was killing processes. Moreover, the
responsiveness of the machine keeps being reason-
able for heavier memory load. The medium-term
scheduler does not require special resources or
extensive needs; therefore, it can be easily adapted
by almost any Linux machines. Furthermore,
there is no prevention from implementing the
medium-term scheduler on a parallel machine
or a cluster; hence, heavy load projects like the
Human Genome Project can benefit from the new
scheduling strategic.

In the future, we would like to find a pattern
for memory usage reoccurrence. Such a pattern
can improve the efficiency of the scheduling
decisions. Some applications like (Wiseman
et al., 2004), (Wiseman, 2001), (Wiseman and
Klein, 2003) have a pattern of memory usage
reoccurrence and the Operating System can take
an advantage of it.

referenceS

Abrossimov, V., Rozier, M., & Shapiro, M. (1989).
Virtual Memory Management for Operating
System Kernels. In Proceedings of the 12th ACM
Symposium on Operating Systems Principles,
Litchfield Park, AZ, December 3-6, (pp. 123-126).
New-York: ACM SIGOPS.

Albers, S., & Mitzenmacher, M. (2000).
Average-Case Analyses of First Fit and Ran-
dom Fit Bin Packing. Random Structures
Alg., 16, 240–259. doi:10.1002/(SICI)1098-
2418(200005)16:3<240::AID-RSA2>3.0.CO;2-
V

Alverson, G., Kahan, S., Korry, R., McCann,
C., & Smith, B. (1995). Scheduling on the Tera
MTA. In Proceedings of the 1st Workshop on Job
Scheduling Strategies for Parallel Processing,
In Conjunction with IPPS ‘95 Fess Parker’s Red
Lion Resort, Santa Barbara, California, April 25,
(pp. 19-44). Berlin: Springer-Verlag.

Batat, A., & Feitelson, D. G. (2000). Gang schedul-
ing with memory considerations. In Proceedings
of the 14th International Parallel and Distributed
Processing Symposium (IPDPS’2000), Cancun,
Mexico, May 1-5, (pp. 109-114). Los Alamitos,
CA: IEEE.

Beck, M., Bohme, H., Dziadzka, M., Kunitz,
U., Magnus, R., & Verworner, D. (1998). Linux
Kernel Internals (2nd Ed.). Harlow, MA: Addison
Wesley, Longman

Belady, L. A. (1966). A Study of Replacement
Algorithms for Virtual Storage Computers. IBM
Systems Journal, 5(2), 78–101.

Benchmark, B. E. N. C. H.-M. A. T. L. A. B.
(2004). Matlab Performance Tests. Natick, MA:
The MathWorks, Inc. Retrieved from http://www.
mathworks.com/

Bovet, D., & Cesati, M. (2003). Undersatnding
the Linux Kernel, (2nd Ed.). Sebastopol, CA:
O’Reilly Press.

Card, R., Dumas, E., & Mevel, F. (1998). The Linux
Kernel Book. New York: John Wiley & Sons.

Chu, Y., & Ito, M. R. (2000). The 2-way Thrashing-
Avoidance Cache (TAC): An Efficient Instruction
Cache Scheme for Object-Oriented Languages. In
Proceedings of 17th IEEE International Confer-
ence on Computer Design (ICCD2000), Austin,
Texas, September 17-20, (pp. 93-98). Los Alami-
tos, CA: IEEE.

135

Alleviating the Thrashing by Adding Medium-Term Scheduler

Coffman, E. G., Jr., Garey, M. R., & Johnson,
D. S. (1997). Approximation Algorithms for Bin
Packing: A Survey. In D. Hochbaum (ed.), Ap-
proximation Algorithms for NP-Hard Problems,
(pp. 46-93). Boston: PWS Publishing.

Denning, P. (1970). Virtual Memory. [CSUR].
ACM Computing Surveys, 2(3), 153–189.
doi:10.1145/356571.356573

Etsion, Y., Tsafrir, D., & Feitelson, D. G. (2004).
Desktop Scheduling: How Can We Know What
the User Wants? In Proceedings of the 14th ACM
International Workshop on Network & Operat-
ing Systems Support for Digital Audio & Video
(NOSSDAV’2004), Cork, Ireland, June 16-18, (pp.
110-115). New York: ACM.

Fekete, S. P., & Schepers, J. (2001). New Classes
of Fast Lower Bounds for Bin Packing Problems.
Mathematical Programming, 91(1), 11–31.

Galvin, P. B., & Silberschatz, A. (1998). Operating
System Concepts (6th Ed.). Harlow, MA: Addison
Wesley Longman.

Gent, I. (1998). Heuristic Solution of Open Bin
Packing Problems. Journal of Heuristics, 3,
299–304. doi:10.1023/A:1009678411503

Gonzalez, A., Valero, M., Topham, N., & Parcerisa,
J. M. (1997). Eliminating Cache Conflict Misses
through XOR-Based Placement Functions. In
Proceedings of the International Conference on
Supercomputing, Vienna, Austria, July 7-11, (pp.
76-83). New-York: ACM.

Gorman, M. (2004). Understanding The Linux
Virtual Memory Management (Bruce Peren’s
Open Book Series).

Jiang, S., & Zhang, X. (2001). Adaptive Page
Replacement to Protect Thrashing in Linux. In
Proceedings of the 5th USENIX Annual Linux
Showcase and Conference, (ALS’01), Oakland,
California, November 5-10, (pp. 143-151). Berke-
ley, CA: USENIX.

Jiang, S., & Zhang, X. (2002). TPF: a System
Thrashing Protection Facility. Software, Practice
& Experience, 32(3), 295–318. doi:10.1002/
spe.437

Jiang, S., & Zhang, X. (2005). Token-ordered
LRU: An Effective Page Replacement Policy
and Implementation in Linux systems. Perfor-
mance Evaluation, 60(1-4), 5–29. doi:10.1016/j.
peva.2004.10.002

Karp, R. M. (1972). Reducibility Among Combi-
natorial Problems. In R.E. Miller & J.M. Thatcher,
(Eds.) Complexity of Computer Computations,
(pp. 85-103). New York: Plenum Press.

Klein, S. T., & Wiseman, Y. (2003). Parallel
Huffman Decoding with Applications to JPEG
Files. The Computer Journal, 46(5), 487–497.
doi:10.1093/comjnl/46.5.487

Komarinski, M. F., & Collett, C. (1998). Linux
System Administration Handbook. Upper Saddle
River, NJ: Prentice Hall.

Manber, U. (1989). Introduction to Algorithms – A
Creative Approach, (pp.130-131). Harlow, MA:
Addison-Wesley.

Martello, S., & Toth, P. (1990). Lower Bounds and
Reduction Procedures for the Bin Packing Prob-
lem. Discrete Applied Mathematics, 28, 59–70.
doi:10.1016/0166-218X(90)90094-S

Marti, D. (2002). System Development Jump Start
Class. Linux Journal, 7.

Nikolopoulos, D. S. (2003). Malleable Memory
Mapping: User-Level Control of Memory Bounds
for Effective Program Adaptation. In Proceedings
of the 17th International Parallel and Distributed
Processing Symposium (IPDPS’2003), Nice,
France, April 22-26, [CD-ROM]. Los Alamitos,
CA: IEEE.

136

Alleviating the Thrashing by Adding Medium-Term Scheduler

Reuven, M., & Wiseman, Y. (2005). Reducing
the Thrashing Effect Using Bin Packing, Proc.
IASTED Modeling, Simulation, and Optimiza-
tion Conference, MSO-2005, Oranjestad, Aruba,
(pp. 5-10).

Reuven, M., & Wiseman, Y. (2006). Medium-
Term Scheduler as a Solution for the Thrashing
Effect. The Computer Journal, 49(3), 297–309.
doi:10.1093/comjnl/bxl001

Scholl, A., Klein, R., & Jurgens, C. (1997). BI-
SON: A Fast Hybrid Procedure for Exactly Solv-
ing the One-Dimensional Bin Packing Problem.
Computers & Operations Research, 24, 627–645.
doi:10.1016/S0305-0548(96)00082-2

SPEC. (2000). CPU-2000. Standard Perfor-
mance Evaluation Corporation, Warrenton, VA.
Retrieved from http://www.spec.org/

Stallings, W. (1998). Operating Systems Internals
and Design Principles, (3rd Ed., p. 383). Upper
Saddle River, NJ: Prentice-Hall.

Vahalia, U. (1996). UNIX Internals: The New
Frontiers (pp. 112-148). Upper Saddle River,
NJ: Prentice Hall.

Wiseman, Y. (2001). A Pipeline Chip for Quasi
Arithmetic Coding. IEICE Journal - Trans. Fun-
damentals, Tokyo, Japan . E (Norwalk, Conn.),
84-A(4), 1034–1041.

Wiseman, Y., & Feitelson, D. G. (2003). Paired
Gang Scheduling. IEEE Transactions on Paral-
lel and Distributed Systems, 14(6), 581–592.
doi:10.1109/TPDS.2003.1206505

Wiseman, Y., Schwan, K., & Widener, P. (2004).
Efficient End to End Data Exchange Using Con-
figurable Compression. In Proc. The 24th IEEE
Conference on Distributed Computing Systems
(ICDCS 2004), Tokyo, Japan, (pp. 228-235).

Zahorjan, J., Lazowsk, E., & Eager, D. (1991).
The Effect of Scheduling Discipline on Spin
Overhead in Shared Memory Multiprocessors.
IEEE Transactions on Parallel and Distributed
Systems, 2(2), 180–198. doi:10.1109/71.89064

Zhou, P., Pandey, V., Sundaresan, J., Raghura-
man, A., Zhou, Y., & Kumar, S. (2004). Dynami-
cally Tracking Miss-Ratio-Curve for Memory
Management. In Proceedings of the Eleventh
International Conference on Architectural Sup-
port for Programming Languages and Operating
Systems (ASPLOS’04), Boston, MA, October 7-13,
(pp.177-188). New York: ACM.

Section 3
Systems Profiling

138

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 8

The Exokernel Operating
System and Active Networks

Timothy R. Leschke
University of Maryland, Baltimore County, USA

introduction

The traditional operating system (OS) is seen as
providing both management and protection of

resources. As a manager, the OS controls how
resources such as I/O devices, file-storage space,
memory space, and CPU time get allocated. As a
protector, the traditional OS controls how processes
use these resources to avoid errors. Because the
operating system’s role is so important, it is the one

abStract

There are two forces that are demanding a change in the traditional design of operating systems. One
force requires a more flexible operating system that can accommodate the evolving requirements of new
hardware and new user applications. The other force requires an operating system that is fast enough
to keep pace with faster hardware and faster communication speeds. If a radical change in operating
system design is not implemented soon, the traditional operating system will become the performance
bottle-neck for computers in the very near future. The Exokernel Operating System, developed at the
Massachusetts Institute of Technology, is an operating system that meets the needs of increased speed and
increased flexibility. The Exokernel is extensible, which means that it is easily modified. The Exokernel
can be easily modified to meet the requirements of the latest hardware or user applications. Ease in
modification also means the Exokernel’s performance can be optimized to meet the speed requirements
of faster hardware and faster communication. In this chapter, the author explores some details of the
Exokernel Operating System. He also explores Active Networking, which is a technology that exploits the
extensibility of the Exokernel. His investigation reveals the strengths of the Exokernel as well as some
of its design concerns. He concludes his discussion by embracing the Exokernel Operating System and
by encouraging more research into this approach to operating system design.

DOI: 10.4018/978-1-60566-850-5.ch008

139

The Exokernel Operating System and Active Networks

program that is always running on a computer.
The heart of the operating system is called the
kernel.

Within a traditional computer system, the
complexity of the hardware is masked behind the
abstractions provided by the operating system.
Although this abstraction prevents user programs
from interacting with the hardware directly, user
programs benefit by having a single interface
that they can interact with. It is easier for a user
program to interact with one operating system
interface rather than developing software that
must know how to interact with the different
hardware components that could be present within
a computer system at any one time. Because the
operating system is the main interface between
user programs and the raw hardware, the tradi-
tional operating system must be involved in every
software-hardware interaction.

Although the traditional operating system is
desirable because it provides a single interface
for other software to interact with, it is ironic that
this efficient interface should be the root cause
of the modern computer system’s performance
bottleneck. By presenting a single interface to
user applications, the traditional operating system
is the middle-man between all user processes and
the computer hardware. By being the middle-man,
the operating system tries to be all-things to all-
processes. This “all-things to all-processes” ap-
proach is precisely why the design of the traditional
operating system is flawed. So long as the operat-
ing system is designed to meet the minimum of a
broad spectrum of operational requirements, the
optimization of any one process is very unlikely.
Therefore, while every application might run on
a traditional operating system, few applications
run well (reaches it maximum performance level)
on a traditional operating system.

A team of researchers at the Massachusetts
Institute of Technology (MIT) has challenged
the traditional operating system design with their
experimental operating system - the Exokernel Op-
erating System. Their new approach is to separate

management of resources from the protection of
those resources. The Exokernel Operating System
provides only protection and multiplexing of re-
sources while allowing user processes themselves
to provide the management and optimization of
that resource. As Engler, Kaashoek, and O’Toole
say “Applications know better than operating sys-
tems what the goal of their resource management
decisions should be and therefore, they should
be given as much control as possible over those
decisions” (Engler, Kaashoek, & O’Toole, 1995).
By separating management from protection, the
abstraction provided by the traditional operating
system has been eliminated. Likewise, the door to
process optimization has been opened and great
advances in operating system speed and flexibility
have become possible.

As we investigate the Exokernel Operating
System, we will discuss how it is possible to
separate management from protection while still
multiplexing resources within a secure environ-
ment. We will discuss select Exokernel functions
such as downloading code into the kernel, read-
ing and writing to disk memory, exception and
interrupt handling, interprocess communication,
tracking resource ownership, protecting and re-
voking resource usage, and resource management.
Networking with an Exokernel will be discussed
as we look at packet sending, packet receiving,
the naming and routing of packets, and network
error reporting. Lastly, as an example of other
technologies that benefit from the Exokernel, we
will briefly explore the emerging technology of
Active Networking and see how the Exokernel is
the ideal operating system upon which to build
this new technology.

In response to the Exokernel, we will inves-
tigate why the Exokernel has not been widely
accepted as the main-stream approach to Op-
erating System design. We will investigate the
potential issues with providing customer sup-
port to an extensible operating system like the
Exokernel. We will argue against removing all
management from the kernel. We will discuss

140

The Exokernel Operating System and Active Networks

code optimization and who is best suited for this
task. We will concede that some processes - like
multithreaded applications - perform worse in an
Ekokernel environment. We will finally question
if extensibility is even the solution to the grow-
ing problem of operating systems becoming the
bottleneck of computer system performance. We
will conclude that despite some of the issues that
make the Exokernel commercially unacceptable at
this time, the Exokernel’s enhancements outweigh
its shortcomings and therefore we encourage the
reader to embrace its approach.

problem deScription

The need for a new operating system design has
been motivated by two forces - the need for speed
and the need for flexibility. These two forces are
explained next.

the need for flexibility

Trying to define the term “operating system” is an
ongoing debate. Some say the operating system
is simply that software program that sits between
the hardware and the other user programs. It is
that program that provides a simple interface that
allows processes to interact with the hardware.
Others say the operating system is the manager
and protector of computer resources. It manages
how every computer resource gets used and also
protects the resources against improper use.

Some have argued that an operating system is
defined by the manufacturer. As was stated previ-
ously, an operating system is “whatever comes in
the box when it is purchased” (Leschke, 2004).
This means that if a user-manual is included in
the package, then the user-manual is a formal part
of the operating system. Furthermore, whatever
software is bundled-with or integrated-with the
operating system is also a part of the operating
system. For example, if a text editor or an entire
suite of office application software is integrated

into the operating system, then these items must
also be considered to be part of the definition of
an operating system.

Regardless of which definition of an operating
system you agree with, we must all agree that the
traditional operating system is that program that
abstracts the hardware and offers the user a single
interface with which to interact with. It is this
single interface approach that has the traditional
operating system literally caught in the middle
between two different forces. One force is the
need for a more flexible operating system. As 64
bit processors replace 32 bit processors, the need
for an operating system that can interact with this
new hardware has grown. Larger memory de-
vices - such as hard drives that are now measured
in terrabytes - as well as fiber-optic networks,
high-bandwidth networks, and new data storage
devices, have also demanded a more flexible
operating system.

In addition to the flexibility demands being
made by hardware, software applications are also
demanding a more flexible operating system to
meet their needs. For example, realistic gaming
programs are requiring access to hardware in
non-traditional ways. Portable computing and
communication devices are requiring the ability to
up-load and down-load data more easily. Database
systems want to be able to access memory in their
own ways, and real-time systems demand a spe-
cific performance level that can be best achieved
through a flexible operating system. All of these
have combined into one force that is demanding
the traditional operating system become more
flexible to change.

The traditional operating system could be
pulled-apart by these forces if it continues to re-
main rigid in its design. Therefore, the traditional
operating system needs a more flexible design.

the need for Speed

Gene Amdahl has provided us with “Amdahl’s
Law” - one of the fundamental laws of computer

141

The Exokernel Operating System and Active Networks

architecture. His law states that the increased
speed that is gained by using an improved mode
of execution is restricted by how much the new
mode is actually used. For example, if an execu-
tion mode that is used 10% of the time is modi-
fied to be 100% faster, the entire efficiency of the
system will only increase by about 5%. On the
other hand, if a mode of execution that is used
90% of the time is modified to be 50% faster than
it was before, the entire system will experience
a 45% increase in efficiency. This means that a
small improvement in a mode of execution that
is used frequently will have a much larger impact
on performance than a large improvement made
in a mode of execution that is seldom used. If
one wants to have the greatest impact on the ef-
ficiency of a system, one should try to improve
those processes that account for the greatest share
of the execution time. This means designers of
computer systems must pay attention to changes
in technology, identify those technologies that
have had the greatest speed-up, and then make
sure the old technologies that the new technology
has to interact with do not impede the speed-up
gained by the new technology.

As an example, the Central Processing Unit
(CPU) is one of those technologies that enjoyed
some great improvement in the recent past.
Although the speed and capacity of the newest
CPUs - as well as other key hardware compo-
nents - have been increasing, if the rest of the
computer system cannot keep pace with this
increase, then the full benefit of the increase will
not be realized. Just like the CPU, another part of
the computer system that might not be keeping
pace with the ever increasing speeds of hardware
is the Operating System. As Engler, Kaashoek, and
O’Toole explain, “Traditional operating systems
limit the performance, flexibility, and function-
ality of applications by fixing the interface and
implementation of operating system abstractions
such as interprocess communication and virtual
memory” (Engler, Kaashoek, & O’Toole, 1995).
Furthermore, as another example, John Ousterhout

states “Operating systems derived from UNIX
use caches to speed up reads, but they require
synchronous disk I/O of operations that modify
files. If this coupling isn’t eliminated, a large
class of file-intensive programs will receive little
or no benefit form faster hardware” (Ousterhout,
1989). The new era of operating system design
demands that operating systems keep pace with
faster hardware or risk being the cause of computer
system speeds being stagnant.

the approach

As Lee Carver and others state, an operating
system is a necessary evil (Carver, Chen, &
Reyes, 1998). Therefore, computers will have
an operating system of one sort or another. The
growing requirements that operating systems
become faster and more flexible have encouraged
many researchers to consider operating systems
with radical designs. One of the new designs is
an extensible operating system.

An extensible operating system is simply an
operating system that is flexible to change. The
needs of the underlying hardware can be better
met by an operating system that can be easily
modified. The needs of the user applications can
also be better met by an operating system that
can be easily modified. Speed is achieved by an
extensible operating system because the system
can be easily changed and optimized. The speed
and flexibility issue are both addressed by an
extensible operating system. By providing the
hope of increased speed and a more flexible imple-
mentation, the approach offered by an extensible
operating system, at least momentarily, seems
to be one way to prevent the increased speed of
computer systems from becoming stagnant while
also addressing the rapidly changing needs of
user applications.

A group of researchers at the Massachusetts
Institute of Technology have implemented their
version of the extensible operating system in what
they have called the Exokernel Operating System.

142

The Exokernel Operating System and Active Networks

The main approach of the Exokernel is to attempt
a very clear separation between management and
protection of resources. Management is left to the
user processes - because user processes them-
selves know how to better utilize the resources
under their control. Protection of the resources is
provided by the Exokernel, but in a very minimal
amount so as not to interfere with any attempts to
optimize the user processes. The end result is an
operating system that is easily modified to meet
the changing needs of user processes while also
allowing real optimizations to occur - which result
in major speed-ups in process execution times.
We will be taking a closer look at the separation
of management from protection as we investigate
the Exokernel Operating System.

the exoKernel Solution

Previously we stated the Exokernel only provides
protection and proper sharing of resources. Ac-
cording to Dawson Engler, the process of pro-
tecting resources consists of three major tasks;
1) tracking ownership of resources, 2) ensuring
protection by guarding all resource usage or bind-
ing points, and 3) revoking access to resources
(Engler, 1998). Lesser tasks of the Exokernel
include; protecting a processes ability to execute
privileged instructions, protecting the processing
of the central processing unit, and protecting physi-
cal memory - which includes writes to “special”
memory locations that are used by devices, and
protection of network devices. We stress that
while the Exokernel is providing protection of
these activities, it is not getting involved in the
micro-management of these activities. The micro-
management of these activities is provided by
user-processes that are located in user-space rather
than kernel space. In other words, the Exokernel
will grant a user-process access to a resource, and
it might revoke that access if necessary, however,
it does not regulate how the resource is used. This
means that a user-process could use a resource

improperly if it wanted to, but it also means the
user-process has the freedom to optimize how the
resource is utilized. This added freedom means
software engineers need to develop computer
programs that police themselves to ensure that
the shared resources provided by an Exokernel
are used properly.

Dawson Engler provides a better example of
the separation of management from protection
as he explains how the Exokernel protects physi-
cal memory. The accessing of physical memory
through read and write requests are privileged
instructions for a traditional operating system. The
traditional kernel stands guard over the memory
and verifies every read/write request to ensure each
request has the proper access rights. Because the
traditional operating system stands between the
user-processes and the physical hardware, when
a user-process wants to send a message to the
hardware, it passes the message to the traditional
operating system and the operating system then
passes the message to the hardware on behalf of
the user process. When a user-process passes a
message to the operating system in this manner, it
is called a system-call. One of the down-sides of
the traditional system-call is that user-processes
cannot directly execute privileged instructions.
Because the traditional operating system is the
constant middle-man that gets involved in every
system-call, the overall efficiency within the entire
computer system is greatly reduced.

In response to the issue of reduced global ef-
ficiency, Dawson Engler explains that the Exoker-
nel’s solution is “to make traditionally privileged
code unprivileged by limiting the duties of the
kernel to just these required for protection” (En-
gler, 1998). This means that the Exokernel allows
user-processes to have much more direct access to
memory. The Exokernel still gets involved a little,
but only enough to ensure the memory access is
“safe”. Once safety is guaranteed, a user-process
is allowed to directly access the hardware itself.

In the next pages, we continue to illuminate
some of the unique aspects of the Exokernel Oper-

143

The Exokernel Operating System and Active Networks

ating System. The aspects that we have chosen to
look at are by no means a comprehensive list, but
they are intended to leave the reader with a good
understanding of the Exokernel’s approach.

tracking ownership of resources

The allocation of a resource is actually accom-
plished by what the research group calls the Li-
brary Operating System (LibOS). This LibOS is
outside of the kernel; therefore the kernel is only
minimally involved. The kernel gets involved
just enough to record the ownership information
associated with a resource. For example, when
physical memory gets allocated, the kernel keeps
track of which process the resource has been al-
located to and which processes have ‘read’ and
‘write’ permissions (Engler, 1998). As a way to
retain its minimal involvement, the Exokernel
records resource allocations in what the research
group calls an open bookkeeping policy. Through
this open bookkeeping policy, as Engler explains,
resource allocation records are made available to
all user processes in read-only mode. This allows
the user processes to look-up for themselves if the
resource that they want is actually available. This
means the kernel does not need to be interrupted
by a process that keeps requesting a resource that
is currently unavailable.

ensuring protection by guarding all
resource usage or binding points

It is very important for a process to retain use of
a resource until it is done using it. For example, a
process should be able to securely use a block of
memory until the process decides to de-allocate
it. The Exokernel uses what are called “secure-
bindings” when binding a resource to a process.

A secure-binding separates the authorization to
use a resource from the actual use of that resource.
Authorization to use a resource is granted or de-
nied when the resource is first requested. Once
the process has the authority to use a resource, it

retains this authority until it gives it up (Engler,
Kaashoek, & O’Toole, 1995). The Exokernel is
only minimally involved in this process as it only
provides the authorization to use the resource and
it does not get involved in the ongoing manage-
ment of the use of that resource.

Furthermore, the Exokernel can provide
secure-bindings without any special knowledge
of what it is binding. The semantics of binding
a resource to application software can get very
complex. However, the Exokernel does not get
involved in the details of the binding. It only
gets involved to the extent that it can provide the
security associated with that binding. As Engler,
Kaashoek, and O’Toole say, “a secure binding
allows the kernel to protect resources without
understanding them” (Engler, Kaashoek, &
O’Toole, 1995).

revoking access to resources

Although a secure-binding, in theory, allows a
process to use a resource until it is done with
it - in reality, there still must be a way for the
operating system to force a revocation of the
resource binding under certain conditions. Un-
like the Exokernel, when a traditional operating
system brakes a resource binding it does so by
what is known as invisible revocation. With an
invisible revocation, the resource binding is simply
broken and the process has no knowledge of the
circumstances that prompted the revocation. A
disadvantage of using invisible revocation is that
operating systems “cannot guide de-allocation
and have no knowledge that resources are scarce”
(Engler, Kaashoek, & O’Toole, 1995).

When an Exokernel breaks a secure bind-
ing, it uses a technique that the researchers have
named visible revocation. With visible revoca-
tion, communication occurs between the kernel
and the process. Because of this communication,
the process is informed of the need to have the
resource binding broken. By being warned of the
resource revocation before the event, the process

144

The Exokernel Operating System and Active Networks

can prepare for it by saving any data that it needs
and bring itself to a stable state. For example, a
process may be asked to give up a page of memory
and it may not matter which page of memory it
de-allocates. Because the process is kept informed
of the resource de-allocation, the process may be
allowed to simply change a few pointers to reflect
the change, or it may be allowed to choose which
page of memory it gives up. It may also choose to
write that page of memory to disk to free-up the
memory requested by the kernel. In either case,
the process cooperates with the kernel, and by
doing so, the revocation of the resource is less
intrusive for the process.

Just like in a traditional operating system, a
process that is not cooperating with the kernel’s
request to de-allocate a resource must, on occa-
sion, be forced to comply with the kernel’s request.
When a secure-binding has to be broken by force,
it “simply breaks all existing secure bindings to
the resource and informs the Library OS” (Engler,
Kaashoek, & O’Toole, 1995).

management by user level library

Previously we stated, the Exokernel Operating
System’s kernel is responsible for providing
protection of resources while the management of
those resources is left up to another entity. This
other entity is known as the “user level library
operating system”, or “LibOS” for short. This
LibOS lies outside the kernel where it is available
to user processes.

The LibOS can be thought of as being very
similar to a traditional operating system in that the
LibOS is the middle-man between the user pro-
cesses and the actual hardware. Like the traditional
operating system, the LibOS provides the abstrac-
tion that user processes interact with when they
want to communicate with the hardware. However,
unlike a traditional operating system, a LibOS
can be customized to fit the needs of the software
applications. This customization leads directly to
optimization, which in turn leads to a much more

efficient operating system. Furthermore, since a
LibOS is written with a specific user process in
mind, a LibOS does not have to be all-things to
all-processes as we stated was true of a traditional
operating system. A LibOS can be simple and more
specialized, primarily because “library operating
systems need not multiplex a resource among
competing applications with widely different
demands” (Engler, Kaashoek, & O’Toole, 1995).
So far as the LibOSs use standardized interfaces,
these LibOSs allow for applications to be easily
ported to different computing hardware. Because
the LibOSs are so specialized, one may wonder
if this leads to a lot of extra code in user space.
One may also wonder if some of this code is also
redundant. The Exokernel addresses this concern
by what the researchers call “shared libraries”.

Shared libraries

Not all of the user level libraries have to be spe-
cialized code that is written for a specific process.
Different processes can often reuse the same code
that is written for another process. Therefore,
the Exokernel allows processes to share code in
what it calls a shared library. By sharing code, the
amount of disk-space and memory-usage can be
significantly reduced. The disadvantage of sharing
code with a LibOS is what Douglas Wyatt calls
a “bootstrapping problem” (Wyatt, 1997). The
problem is that the code that is needed to load the
LibOS from disk into memory is actually found
in the LibOS itself (which cannot be accessed
until the LibOS is actually loaded into memory).
The solution to the bootstrapping issue will be
explained when we discuss the shared library
server (section 3.7).

Another of the key issues that Douglas Wyatt
has identified with a shared library system is what
he calls “symbol resolution” (Wyatt, 1997). The
issue arises from the fact that when a program is
run for the first time, it needs to know particular
memory addresses in order to run correctly. One
way to address this problem is to load a shared

145

The Exokernel Operating System and Active Networks

library into the same virtual address space so that
the particular memory addresses will be known
prior to program execution. Although this ap-
proach works, it is not the best approach to this
issue.

The symbol resolution issue might be better
solved by what Wyatt calls an “indirection table”
(Wyatt, 1997). Rather than force a shared library
to always be loaded into the same virtual memory
space, the solution requires a table be used to
record the required memory addresses. This table
is then provided to each shared library which uses
the data within the table to calculate the relative
offset of the memory address that it is looking
for. Using an indirection table allows the shared
libraries enough flexibility to load themselves
into any address space.

implementing a Shared library

Before a program loads a shared library, it checks
the indirection table to see if the library is already
loaded somewhere else. If it is loaded somewhere
else, it simply updates its page table to include
the location of the existing library. However, if
a program checks the indirection table and does
not find a reference to the library that it needs, it
loads the library and updates the indirection table
to reflect the change.

Using an indirection table solves the symbol
resolution issue described by Wyatt, but it does
come at a price. The price is the extra time that
is now needed to check the indirection table for
libraries that are already loaded. When one con-
siders the benefits of using an indirection table,
one can see that using an indirection table is an
expense that pays for itself. One of the benefits of
an indirection table is that it requires the system
to use less memory, which translates into having
fewer page faults. Fewer memory page faults mean
programs can run faster. Shared libraries can be
updated and improved, which makes the system
more flexible to change. Furthermore, when a
shared library is changed, it can be compiled

independently of the other programs that interact
with it. This mechanism can be also implemented
in a multi page size environment (Itshak & Wise-
man, 2008).

the Shared library Server

The bootstrapping problem mentioned previously
is an issue that arises from trying to load a library
operating system into memory when the code
needed to do this is actually found within the
library operating system itself. The researchers
have addressed this issue with what they have
called the “shared library server” or SLS.

The shared library server is started as soon
as the Exokernel is booted. The shared library
server is responsible for communicating with
applications that want to communicate with a
shared library. This communication includes the
ability to 1) open, read, and write files, 2) map
files from disk, 3) open and read directories, and
4) perform basic input and output operations. This
basic functionality is just enough to help a shared
library overcome the bootstrapping problem and
load itself into memory.

interprocess communication (ipc)

The passing of messages between processes, or
what is known as interprocess communication
(IPC), is used so frequently within an operating
system that it is a potential performance bottleneck
it if is not accomplished efficiently. The Exokernel
accomplishes interprocess communication by
what Benjie Chen calls “protected control transfer”
(Chen, 2000). The Exokernel implements IPC by
using secure registers to pass data. Passing data
by using secure registers allows the communica-
tion to be immediate, which means the data gets
passed between the processes without any need
for the kernel to get involved. This implementa-
tion allows the Exokernel to provide protection
- in the form of a secure register. The Exokernel
keeps itself out of the management details while

146

The Exokernel Operating System and Active Networks

still retaining the role of the protector of resources.
Because this form of interprocess communication
is immediate, the Exokernel enjoys a processing
speed-up.

exceptions and interrupts

An exception or interrupt requires a traditional
operating system to save register data to a more
secure location in order to protect and preserve
its current state of operation. The kernel also has
to respond to the exception, which requires the
exception to be decoded by the kernel and then
specific code needs to be executed to handle the
issue raised by the exception. Once the exception
has been dealt with, the kernel has to restore the
registers to their pre-exception state and start run-
ning the original program from a point where the
program counter was just prior to the exception.

An Exokernel, on the other hand, handles
exceptions and interrupts by getting less in-
volved. For example, exceptions and interrupts
that arise from hardware are handled directly by
the applications themselves. The Exokernel only
gets involved enough to save important register
information to what Engler calls an agreed upon,
user accessible, “save area” (Engler, 1998). The
Exokernel saves the register data, loads the excep-
tion, then starts to execute at the memory address
of the code that has been written specifically to
handle the exception. This special code is under-
stood to be located in what we have been calling
the user level library.

The kernel’s job is done as soon as the Library
OS takes over the handling of the exception. As
soon as the exception is handled, the original
register data is written back to the registers
from where they were stored in user-accessible
memory. The normal program execution con-
tinues from where it left off just prior to the
exception without any further assistance from
the kernel. Therefore, the kernel gets involved
just enough to provide protection of the current
state of the registers, whereas the actual manage-

ment of the exception is handled in user space,
by the Library OS.

disk i/o

Disk I/O – reading and writing to memory loca-
tions – is accomplished asynchronously in order
to minimize the involvement of the kernel. It is
the Exokernel’s “exodisk” that handles all read
and write requests. When an application needs
access to memory, the exodisk simply passes
the request off to the disk driver. After the read
or write request is made, the calling application
immediately regains control. Since the request
is asynchronous, the calling application has the
option of waiting for the memory request to
complete, or it can continue without waiting for
a completion response from the exodisk.

When the memory read or write request com-
pletes, the Exokernel is notified of this event by
the requesting application. However, very little
more is required of the Exokernel. The Exokernel
retains its minimal involvement by helping pass
the disk I/O request to the exodisk and allowing all
of the details of the disk I/O request to be handled
by user-level code found in the Library OS.

downloading code into the Kernel

Since one of the goals of the Exokernel is to be
optimally efficient, one of the ways the Exokernel
attempts this is by downloading code into the
kernel. Downloading code into the kernel is not
unique to the Exokernel. It is a technique that
other operating systems have used as a way to
minimize the cost of a context switch.

One of the main advantages of downloading
code into the kernel is that it eliminates the need
for code to make what are called “kernel cross-
ings”, which can require an expensive context
switch (Engler, Kaashoek, & O’Toole, 1995).
Context switches are undesirable because they
can severely impede an application’s execution
speed. By eliminating kernel crossings, context

147

The Exokernel Operating System and Active Networks

switches are reduced, and applications experience
faster execution speeds.

A second benefit of downloading code into
the kernel is that “the execution of downloaded
code can be readily bounded” (Engler, Kaashoek,
& O’Toole, 1995). They mean downloaded code
can be executed at times when there are just a few
microseconds of processing time available. This
processing time-slice is too small to allow for a
full context switch, so a traditional approach that
requires a context switch would normally not be
able to take advantage of such a small process-
ing time-slice. Engler has stated that being able
to process code during these small time-slices
makes the Exokernel more powerful (Engler,
1998). The Exokernel is more powerful because
it can optimize its processing of code by taking
advantage of these small time-slices and increase
the throughput of the applications. The freedom
to optimize, as we stated previously, is a key part
of being able to increase the processing speeds of
operating systems.

packet Sending and receiving

Networking with an Exokernel is accomplished by
what Ganger and others have called “application-
level” networking (Ganger, Engler, Kaashoek,
Briceño, Hunt, & Pinckney, 2002). The Exok-
ernel’s application-level networking allows an
application to interact almost directly with the
networking interface. Because the Exokernel
provides much less of an abstraction for the ap-
plication, the application-level code can provide
more of its own management. This means the
Exokernel is in a much better position to optimize
its own operations, which can lead to an over-all
higher performance level for the entire computer.
The research documents are a little vague about
the details of how networking is actually achieved,
but it is clear that a first-in-first-out (FIFO) send
queue is used. The documentation is also clear
that the Exokernel also has a way of receiving
packets and delivering them to the proper re-

ceiving application. Both of these processes are
explained next.

The Exokernel sends a packet on a network
through a system call referenced by “send_packet”.
When this function gets called, the packet gets
added to a first-in-first-out queue and the ker-
nel’s involvement in the transmission ends at this
point. The rest of the transmission gets handled
by a network interface card or a device driver.
The Exokernel gets involved minimally, but
only to the extent that is needed to provide for a
secure networking environment. The networking
transmission management details are provided
by the device driver code, which is located in
user-space.

Packet receiving by the Exokernel is handled a
little differently, but without much more involve-
ment by the Exokernel. According to Ganger and
others, the Exokernel receives packets by using
two major processes; packet demultiplexing and
packet buffering. Packet demultiplexing involves
deciding which application a particular packet
should be associated with. The information that
the Exokernel uses to accomplish this is actually
found within each packet which is located at a
particular memory offset value. The process of
actually delivering a packet to a particular ap-
plication is called packet buffering by Ganger
and others. Similar to the pre-arranged “save-
area” mentioned in section 3.9 (Exceptions and
Interrupts), the Exokernel copies the packet to a
pre-registered memory area. Once the packet is
successfully copied to the appropriate memory
area, the Exokernel’s involvement is complete.
From this point, any further management or
handling of the packet is accomplished by user-
level code.

naming and routing of packets

When a packet’s high-level identifier gets trans-
lated into a low-level identifier, this is called
“naming”. Before a packet can be properly routed
through a network, it must first be identified by a

148

The Exokernel Operating System and Active Networks

name. Therefore, naming of packets is an important
component to routing packets. Naming is also how
the Address Resolution Protocol (ARP) is able to
assign a unique identifier to each computer within a
network. Without a unique name for each computer
on a network, it would be impossible to properly
address packets. The Exokernel supports the nam-
ing and routing of packets by what Ganger and
others call the “sharing model” (Ganger, Engler,
Kaashoek, Briceño, Hunt, & Pinckney, 2002).
The Exokernel implements the sharing model by
publishing all of the Address Resolution Protocol
information in a translation table. Because this
translation table is made available to user code
in a read-only format, an application can look-up
the information that it requires without asking the
kernel for assistance. When a process does not find
the information that it needs in the translation table,
it can then ask the network for the information.
This is called the sharing model because all of the
applications share the translation table.

network error reporting

It is important to notify the sender of a packet
when the addressee of a packet cannot be located.
According to Granger and others, the Exokernel’s
“stray packet” daemon takes care of TCP segment
errors and network packets that cannot be delivered
to the correct location (Ganger, Engler, Kaashoek,
Briceño, Hunt, & Pinckney, 2002). Although the
exact details of how the daemon handles these
issues is unclear, it is interesting to note that the
kernel is very much involved in this service. The
researchers justify the kernel’s heavy involvement
by noting that this service is most closely related
to protection rather than management. Therefore,
the Exokernel can still be thought of as providing
mostly protection of resources and allowing the
actual management to be provided by code found
in user-space.

performance reSultS

Perhaps the best way to evaluate the Exokernel
is by considering its performance results. In the
following paragraphs, we will look at five areas
that show enhanced operating system performance
due to the Exokernel’s approach. These results
suggest the Exokernel’s extensible approach pro-
vides enough of an enhancement as to make this
approach a desirable alternative to the traditional
operating system design.

common applications benefit
from an exokernel

When comparing the results of benchmark tests
that were performed by Xok/ExOS (a version
of the Exokernel) with FreeBSD and OpenBSD
(two other operating systems), we see that Xok/
ExOS was able to complete 11 tests in just 41
seconds - which is about 19 seconds faster than the
operating systems it was compared with. On three
benchmark tests, Xok/ExOS did behave slightly
slower than the competition, but these results were
expected because of how the benchmark test was
weighted. The slightly slower results were also of
such a small degree as to not be really significant.
As an overall score, the researchers state the Xok/
ExOS is about 32% more efficient than the other
operating systems that it was tested against.

exokernel’s flexibility is not costly

Benchmark tests were also used to see if the
Exokernel’s flexibility added too much overhead
and made its execution less efficient. In the test,
Xok/ExOS was compared to OpenBSD/C-FFS.
The Xok/ExOS completed the test in 41 seconds
versus the 51 seconds of the competition. Thus,
Xok/ExOS was about 20% faster than the other op-
erating systems. It is results like this that prompted
Engler to state that “an Exokernel’s flexibility
can be provided for free” (Engler, 1998). Part of
the reason why the Exokernel is a little more ef-

149

The Exokernel Operating System and Active Networks

ficient is because the Exokernel is leaner - largely
because protection mechanisms that usually get
duplicated in a traditional operating system are
not present.

aggressive applications are
Significantly times faster

One of the goals of the extensible approach of the
Exokernel is that its performance can be optimized.
In order to test this theory, researchers attempted
to make optimizations to applications running on
an Exokernel system. As an experiment, XCP and
CP were tested against each other. Although XCP
and CP are both file copy programs, XCP is a file
copy program that is optimized to take advantage
of the flexibility of the Exokernel Operating Sys-
tem. The test results show that the XCP file copy
program can complete its tasks about three times
faster than that of CP. Other experiments were
also conducted to test the speed of a Cheetah web
server. The Cheetah web server, when running
on top of the Exokernel OS (Xok), was found to
be four times faster, for small documents. These
results support the claim that the Exokernel OS
does allow the user to optimize application code
to achieve significant speed-ups in processing
speeds.

local control can lead to
enhanced global performance

The Exokernel researchers wondered if only
specific processes can be optimized, or if the
global performance of an operating system can be
optimized. The researchers tested the Exokernel
as it ran multiple applications concurrently and
compared the results with non-extensible operat-
ing systems. The results show the Exokernel is, at
least, as efficient as the non-extensible operating
systems. Furthermore, after an Exokernel Operat-
ing System is optimized – what the researchers
have called “local optimizations” – the “global
performance” of the Exokernel is also enhance.

Therefore, local optimizations do in fact support
the global optimization of the Exokernel.

exokernel’s file Storage
Scheme enhances run-time

The researchers conducted experiments to test
what Robert Grimm calls the Exokernel’s “fine
grained interleaving of disk storage” (Grimm,
1996). In the experiments, two applications were
compared as they each accessed 1,000 10-KByte
files. The Ekokernel’s “fine grained interleaving”
seems to account for a 45% faster file access time
than that of an operating system that does not use
this “fine grained interleaving” approach. The
Exokernel’s flexibility also seems to be respon-
sible for allowing the Exokernel to conduct “file
insert” operations about 6 times faster. These test
results seem to support the conclusion that the
Exokernel’s file storage scheme does enhance the
over-all run-time of the operating system.

actiVe networKing

One of the technologies that has benefited from
the Exokernel is Active Networking. The concept
of an active network evolved from research being
conducted at the Defense Advanced Research Proj-
ects Agency. This group is known for developing
the “DARPA Internet”, which is the foundation
for our modern day Internet.

In a traditional network like the Internet, data is
passively transported from a start point to an end
point. Along its journey, the data passes through
nodes that route the data packets based on header
information while ignoring the actual data found
in the packet contents. In the words of David L.
Tennenhouse and others, the DARPA research
community identified the following problems
with networks;

1. “The difficulty of integrating new technolo-
gies and standards into the shared network

150

The Exokernel Operating System and Active Networks

infrastructure.”
2. “Poor performance due to redundant opera-

tions at several protocol layers.”
3. “Difficulty accommodating new services in

the existing architectural model.”

(Tennenhouse, & Wetherall, 1996).
Tennenhouse and others state, in contrast to

a passive network, an active network contains
nodes that “can perform computations on, and
modify, the packet contents.” Furthermore, “this
processing can be customized on a per user or per
application basis” (Tennenhouse, & Wetherall,
1996). David Wetherall states well the benefit of
active networks when he states that active networks
“enable a range of new applications that leverage
computation within the network; and it would
accelerate the pace of innovation by decoupling
services from the underlying infrastructure”
(Wetherall, 1999).

A good example of an active network is pro-
vided by Parveen Patel. Patel states that active
packets may encrypt themselves before entering
an un-trusted portion of a network. The code to
conduct the actual encryption could be carried by
the active packets themselves, or the code could
be resident on the node and simply be executed
by the packets when they arrive. In either case,
the data packets are active within the network,
encrypting and decrypting themselves as neces-
sary when passing through un-trusted sections of
a network (Patel, 2002).

Hrishikesh Dandekar and others at NAI
Labs (Network Associates, Inc. of Los Angeles,
California) provide the link in our discussion that
joins Active Networks and the Exokernel Operat-
ing System. Their research is named AMP. They
state AMP is “a secure platform upon which the
mobile code [of an active network] can be safely
executed” (Dandekar, Purtell, & Schwab, 2002).
The interesting part is that “AMP is layered on
top of the MIT ExoPC (Exokernel) operating
System’s Xok kernel” (Dandekar, Purtell, &
Schwab, 2002).

The Exokernel is a good foundation upon which
to build AMP because the Exokernel offers AMP
security, flexibility, and extensibility. Because
the Exokernel’s security mechanism “dovetails”
nicely with the needs of AMP, Dandekar and others
have stated AMPs “development time is reduced,
modularity is enhanced, and security requirements
can be addressed in a straightforward manner”
(Dandekar, Purtell, & Schwab, 2002).

Flexibility with the Exokernel is reflected in
its lack of abstractions. As Dandekar and others
state, “an exokernel provides a minimal set of
abstractions above the raw hardware. Only those
mechanisms required in order to control access
to physical resources and kernel abstractions are
provided” (Dandekar, Purtell, & Schwab, 2002).
As hardware gets abstracted by the operating
system, the use of that hardware becomes less
flexible. AMP’s “NodeOS” provides a set of in-
terfaces through which the code within an active
network can request services of the underlying
operating system. Abstracted by these interfaces
are services such as networking channels, thread
pools, memory pools, and domains. As Dandekar
and others explain, “these abstractions provide the
active application of platform-independent means
for accessing a common set of resources which
will be available across all of the heterogeneous
network” (Dandekar, Purtell, & Schwab, 2002).
It is precisely because the underlying Exokernel
provides a minimal set of abstractions that the
AMP NodeOS can utilize this functionality so
easily.

Lastly, the Exokernel was designed to be
extensible. The library operating system of the
Exokernel matches up nicely with the libraries
found in AMP (libAMP). An application like AMP
can only be as extensible as the operating system
that supports it. Thus, the superior extensibility
of the Exokernel makes possible the superior
flexibility of AMP.

In conclusion of our look at active networking,
we see that the three “problems with networks”
that were identified by DARPA are addressed by

151

The Exokernel Operating System and Active Networks

active networks. Active networks provide a means
to 1) easily integrate new technologies into the
network infrastructure, 2) optimize performance,
and 3) easily accommodate new services. Because
the Exokernel makes our example of active net-
working possible, the Exokernel must share in the
credit of giving rise to a solution to the problems
with networks as identified by DARPA.

analySiS and diScuSSion

In the following paragraphs, we present some of
the criticisms of the Exokernel Operating System
that have been offered by some of her detractors.
We address the criticisms and offer some of our
own. We offer further comments and reactions
as a way to stimulate more discussion about the
Exokernel Operating System.

customer-Support

We begin our commentary with a quote from Jeff
Mogul of Compaq Western Research Laboratory.
Mogul says, “Extensibility has its problems. For
example, it makes the customer-support issues
a lot more complicated, because you no longer
know which OS each of your customers is run-
ning” (Milojicic, 1999).

What Jeff Mogul seems to be pointing out
is that each extensible operating system can be
modified to the point of being unique. If each
extensible operating system is user-modified
and user-configured, then the challenge becomes
how to efficiently provide customer support for a
group of users if each user is essentially using a
different operating system. For example, if both
the file management system and the communica-
tion manager are uniquely modified, then trying
to solve the issues that arise from their interaction
could be very difficult.

Although providing customer support for an
extensible operating system might present new
challenges, it does not mean the extensible ap-

proach has to be eliminated. Previously (section
3.4), we explained that it is not necessary to cus-
tomize an entire operating system. In fact, many
users may not even need to customize any of the
operating system. They may simply rely on the
services provided by the user level library. So, as
long as users are using the standard code found in
the user level library, they are all using the same
version of the operating system and therefore
the customer service issue becomes a non-issue.
It is only those users that decide to modify and
optimize the libraries that pose the problem to
customer service.

Presumably, users that are savvy enough to op-
timize their own code are probably savvy enough
to trouble-shoot the issues that may arise from
working with such a flexible operating system. In
reality, it might not even be individual users that
are optimizing their own code but rather software
manufacturers that customize a user-level library
so their product works faster on the extensible
operating system. If this were the case, then per-
haps there is no additional customer support issue
for users of the standard user level libraries, and
perhaps customer support issues that arise from
optimized user-level libraries should be handled
by the creators of the optimized code. So, if the
customer support issue is even an issue at all, it
becomes and issue for the optimizers of the user-
level libraries and not an issue for the engineers
of the extensible operating system. Thus, perhaps
an extensible operating system should be brought
to market and second-party software manufactur-
ers should accept the responsibility of customer
support if they choose to modify the standard
user libraries.

On the other hand, as was stated previously
“extensibility could actually help the customer
support issue” (Leschke, 2004). In so far as ex-
tensible operating systems are easier to fix, then
it should be easier to eliminate bugs and offer
the community a more solid, error-free operating
system. Since user level libraries can be replaced
independently of the kernel, providing updated and

152

The Exokernel Operating System and Active Networks

corrected libraries to the users of an extensible
operating system should be straight forward. So,
if extensibility means there might be fewer bugs
or issues in the kernel, and also if extensibility
means updated user level libraries might be eas-
ily added to an existing system, then perhaps an
extensible operating system might lead to less of
a customer support issue.

Furthermore, one might even argue that cus-
tomer support will be easier to provide with an
extensible operating system. Consider a customer
support issue that arises from the use of a par-
ticular user level library. In so far as the issue is
contained within that one user level library, then
the customer support provider only needs to be
an expert in that one library. This means customer
support employees can be specialized. In so far
as it is easier to train someone to be an expert
in a limited number of user level libraries rather
than an expert in the entire operating system, it
seems that training customer support personnel
will also be much easier with an extensible op-
erating system.

eliminating management

One may argue that it is not necessary to eliminate
all management from the operating system. Per-
haps there are some operating system management
functions that cannot be further optimized, and
therefore, they should continue to be provided by
the kernel. Or, perhaps the amount of optimization
that is possible is so small as to not be worth the
effort to move them outside the kernel. Perhaps the
better approach is to allow the kernel to manage
those processes that cannot be further optimized
and to move into user-space that code that can
be further optimized. A very logical question is -
how will we know when code cannot be further
optimized? Unfortunately, this is a question that
cannot be answered without some further experi-
ence. On one hand, it seems that all processes will
probably agree upon some common approaches
to management, whereas on the other hand, if one

wants maximum flexibility then one must move
all management out of the kernel and make the
code available in user-space.

The point we are trying to argue is that maybe
eliminating all management from the kernel is
too strong of a position. Maybe some manage-
ment should remain in the kernel while other
management code should be moved to user-space
where it can be modified and optimized. Further
research into this issue may reveal that maximum
optimization can be achieved even if the operating
system kernel retains some of the management
responsibility.

As an illustration of our point, we cite Riech-
mann and Kleinöder as they state “As multithread-
ed applications become common, scheduling
inside applications play a very important role for
efficiency and fairness” (Riechmann, & Kleinöder,
1996). They further state the Exokernel’s design
leads to inefficiency because the Exokernel’s
thread scheduling algorithm requires an additional
thread switch during execution. Their solution is to
separate the management policy from the manage-
ment implementation. Their research demonstrates
that if one places the thread switching mechanism
inside the kernel while allowing user-level code
to handle the scheduling algorithm, some effi-
ciency is gained over the Exokernel’s approach.
The idea of two level scheduling was also used
by (Reuven & Wiseman, 2006) even though they
suggest to implement both of the scheduling level
within the kernel, but their implementation will
be activated only if thrashing occurs (Wiseman,
2009), (Jiang, 2009).

Riechmann and Kleinöder argue our point
for us. Our point is that perhaps a clean division
between implementing protection within the ker-
nel and implementing management within user
code is too extreme. The research conducted by
Riechmann and Kleinöder suggests that a pure
Exokernel approach might not be the best answer.
The Exokernel’s approach needs to be embraced,
but just not tightly. In conclusion, perhaps the best
design for an operating system is one in which

153

The Exokernel Operating System and Active Networks

there is a separation of mechanism from policy.
Although the Exokernel has a policy of only
allowing code in user-space to handle manage-
ment of processes, perhaps on occasion the actual
mechanism of management has to allow for some
code to be executed within the kernel whenever
it is more efficient to do so.

optimizing usage

When we talk about optimizing a computer, we
are really talking about optimizing computer
hardware rather than computer code. Admittedly,
we do optimize computer code, but only as a way
to optimize computer hardware. Thus, optimiz-
ing computer hardware is always the real goal.
As such, who is the most qualified to optimize
computer hardware? Software engineers? One
might argue that hardware engineers – those that
have an intimate understanding of the hardware
components – are best suited for optimizing
computer hardware. If the extensible approach
becomes main-stream, we might see the line that
separates computer engineering from software
engineering becoming less distinct. Perhaps the
engineers of the future will play two roles – one
of hardware engineer and one of software engi-
neer. The engineers of the future will surely need
a strong understanding of computer code - since
that is how we communicate with hardware - but
they will also need an expert understanding of
computer hardware, since that is what is actually
being optimized. So, the extensible approach to
operating system design might lead to a paradigm
shift in how computers are optimized - but the
final result will be a society of fully optimized
computers.

The paradigm shift that will be caused by the
extensible operating system will help put the sci-
ence back into the Computer Science of the Infor-
mation Technology Industry. Computer developers
will be forced to make good Computer Science
decisions from the ground up. Optimization will
become the central focus of the computer industry.

Optimization will eliminate the design approach
seen in the current monolithic operating systems
and give birth to a new breed of operating sys-
tem that can keep pace with advancing computer
technology. The entire computer science industry
will experience a tremendous speed-up once the
extensible operating system design becomes fully
embraced.

is extensibility the answer?

Druschel and others have argued against the Ex-
okernel by saying “it is unclear to what extent the
performance gains are due to extensibility, rather
than merely resulting from optimizations that
could equally be applied to an operating system
that is not extensible” (Druschel, Pai, & Zwae-
nepoel, 1997). Through their research, Druschel
and others have shown that traditional monolithic
operating systems can be optimized just like the
Exokernel. They claim the key to the speed-up is
the optimization, not extensibility.

The Druschel research group tempers their
argument against the Exokernel by saying “the real
value in extensible kernels lies in their ability to
stimulate research by allowing rapid experimenta-
tion using general extensions” (Druschel, Pai, &
Zwaenepoel, 1997). They seem to be saying that
extensible operating systems provide a means to
quickly engineer prototypes of operating systems.
This fast prototyping has caused a speed-up in
the research, which had lead to a quicker way
to discover techniques for optimizing operating
systems. Although the Druschel group would say
extensibility is not the answer, they do support
the extensible approach because it is a tool that
can be used to speed-up research and help bring
a solution to market faster.

The argument provided by the Druschel group
is well founded. However, perhaps they are over-
stating their position. Although we will agree that
any code can be optimized - even monolithic op-
erating systems - we still hold strong to the point
that it is extensibility that really makes optimiza-

154

The Exokernel Operating System and Active Networks

tion possible. In order to optimize an operating
system, the system must first be flexible enough
to be optimized. An operating system that is ex-
tensible is by its very nature open to changes and
therefore easy to optimize. Although traditional
operating systems can be optimized, they lack
the flexibility required to make the changes easy.
Because extensible operating systems are easy to
change, they are perhaps the best design to work
with when trying to optimize an operating system.
Therefore, we still maintain that it is extensibility
that is the foundation of being able to optimize
operating systems.

concluSion

As we bring our discussion to a close, we recall
the two forces that are stretching the capabili-
ties of the modern monolithic operating system.
On one side there is the need for the operating
system to be more flexible to accommodate new
technologies. On the other side is the need for
the operating system to become faster so it can
keep pace with faster hardware and faster com-
munication speeds. Our discussion showed how
an extensible operating system like the Exokernel
might fulfill both needs. Extensibility allows an
operating system to be flexible enough to meet
the changing demands of new technologies, while
also making optimization easier, which translates
into faster operating systems that can keep pace
with faster computing environments.

In conclusion, there is a need for a faster and
more flexible operating system, and the exten-
sible approach of the Exokernel seems to meet
this need. The speed and flexibility offered by
the Exokernel will help operating systems avoid
being the performance bottleneck in computer
systems for years to come. Although extensible
operating system technology is still in its infancy,
the initial findings are encouraging to researchers.
If contemporary operating systems are to keep
pace with the forces that are being placed upon

them, then modern operating system designers
need to embrace the extensible approach found
in the Exokernel.

referenceS

Chen, B. (2000). Multiprocessing with the Exok-
ernel Operating System. Unpublished.

Dandekar, H., Purtell, A., & Schwab, S. (2002).
AMP: Experiences with Building and Exokernel-
based Platform for Active Networking. In Pro-
ceedings: DARPA Active Networks Conference
and Exposition, (pp. 77-91).

Druschel, P., Pai, V., & Zwaenepoel, W. (1997).
Extensible Kernels and Leading the OS Research
Astray. In Operating Systems, (pp. 38-42).

Engler, D. R., Kaashoek, M. F., & O’Toole, J.
(1995). Exokernel: an Operating System Architec-
ture for Application-level Resource Management.
In 15th ACM Symposium on Operating Systems
Principles (pp. 251-266).

Ganger, G., Engler, D., Kaashoek, M. F., Briceño,
H., Hunt, R., & Pinckney, T. (2002). Fast and Flex-
ible Application-level Networking on Exokernel
Systems. ACM Transactions on Computer Science,
20(1), 49–83. doi:10.1145/505452.505455

Grimm, R. (1996). Exodisk: Maximizing Ap-
plication Control Over Storage Management.
Unpublished.

Itshak, M., & Wiseman, Y. (2008). AMSQM:
Adaptive Multiple SuperPage Queue Manage-
ment. In Proc. IEEE Conference on Information
Reuse and Integration (IEEE IRI-2008), Las
Vegas, Nevada, (pp. 52-57).

Leschke, T. R. (2004). Achieving Speed and
Flexibility by Separating Management From
Protection: Embracing the Exokernel Operating
System. Operating Systems Review, 38(4), 5–19.
doi:10.1145/1031154.1031155

155

The Exokernel Operating System and Active Networks

Milojicic, D. (1999). Operating Systems - Now
and in the Future. IEEE Concurrency, 7(1), 12–21.
doi:10.1109/MCC.1999.749132

Ousterhout, J. (1989). Why Aren’t Operating Sys-
tems Getting Faster as Fast as Hardware. Unpub-
lished. Carver, L., Chen, B., & Reyes, B. (1998).
Practice and Technique in Extensible Operating
Systems. Manuscript submitted for publication.
Engler, D. R. (1998). The Exokernel Operating
System Architecture. Unpublished.

Patel, P. (2002). An Introduction to Active Net-
work Node Operating Systems. Crossroads, 9(2),
21–26. doi:10.1145/904067.904072

Reuven, M., & Wiseman, Y. (2006). Medium-
Term Scheduler as a Solution for the Thrashing
Effect. The Computer Journal, 49(3), 297–309.
doi:10.1093/comjnl/bxl001

Riechmann, T., & Kleinöder, J. (1996). User-Level
Scheduling with Kernel Threads. Unpublished.

Tennenhouse, D. L., Smith, J. M., Sincoskie,
W. D., Wetherall, D. J., & Minden, G. J. (1997).
A Survey of Active Network Research. IEEE
Communications Magazine, 35(1), 80–86.
doi:10.1109/35.568214

Tennenhouse, D. L., & Wetherall, D. J. (1996).
Towards an Active Network Architecture. Com-
puter Communications Review, 26 (2).

Wetherall, D. (1999). Active Network Vision
and Reality: Lessons From a Capsule-based Sys-
tem. Operating Systems Review, 34(5), 64–79.
doi:10.1145/319344.319156

Wyatt, D. (1997). Shared Libraries in an Exokernel
Operating System. Unpublished.

156

Copyright © 2010, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 9
Dynamic Analysis and Profiling

of Multithreaded Systems
Daniel G. Waddington
Lockheed Martin, USA

Nilabja Roy
Vanderbilt University, USA

Douglas C. Schmidt
Vanderbilt University, USA

abStract

As software-intensive systems become larger, more parallel, and more unpredictable the ability to analyze
their behavior is increasingly important. There are two basic approaches to behavioral analysis: static
and dynamic. Although static analysis techniques, such as model checking, provide valuable informa-
tion to software developers and testers, they cannot capture and predict a complete, precise, image of
behavior for large-scale systems due to scalability limitations and the inability to model complex ex-
ternal stimuli. This chapter explores four approaches to analyzing the behavior of software systems via
dynamic analysis: compiler-based instrumentation, operating system and middleware profiling, virtual
machine profiling, and hardware-based profiling. We highlight the advantages and disadvantages of
each approach with respect to measuring the performance of multithreaded systems and demonstrate
how these approaches can be applied in practice.

introduction

Microprocessors execute code as a sequential
flow of instructions. Most contemporary operat-
ing systems support multitasking, which allows

more than one program to execute simultane-
ously. Multitasking is achieved by dynamically
scheduling different executions to the available
processors over time (sometimes referred to as
time slicing).

157

Dynamic Analysis and Profiling of Multithreaded Systems

The unit of logical flow within a running pro-
gram is a thread. Although the exact definition of
a thread can vary, threads are typically defined
as a lightweight representation of execution state.
The underlying kernel data structure for a thread
includes the address of the run-time stacks, prior-
ity information, and scheduling status. Each thread
belongs to a single process (a process requires at
least one thread). Processes define initial code
and data, a private virtual address space, and
state relevant to active system resources (e.g.,
files and semaphores). Threads that belong to
the same process share the same virtual address
space and other system resources. There is no
memory protection between threads in the same
process, which makes it easy to exchange data
efficiently between threads. At the same time,
however, threads can write to many parts of the
process’ memory. Data integrity can be quickly
lost, therefore, if access to shared data by indi-
vidual threads is not controlled carefully.

Threads have traditionally been used on single
processor systems to help programmers implement
logically concur rent tasks and manage multiple
activities within the same program (Rinard,
2001). For example, a pro gram that handles both
GUI events and performs network I/O could be
implemented with two separate threads that run
within the same process. Here the use of threads
avoids the need to “poll” for GUI and packet I/O
events. It also avoids the need to adjust priorities
and preempt running tasks, which is instead per-
formed by the operating system’s scheduler.

With the recent advent of multicore and sym-
metric multiprocessor (SMP) systems, threads
represent logically concurrent program functions
that can be mapped to physically parallel process-
ing hardware. For example, a program deployed
on a four-way multicore processor must provide
at least four independent tasks to fully ex ploit
the available resources (of course it may not get
a chance to use all of the processing cores if they
are oc cupied by higher priority tasks). As parallel
processing capabilities in commodity hardware

grow, the need for multithreaded programming has
increased because explicit design of parallelism
in software is now key to ex ploit ing performance
capabilities in next-generation processors (Sutter,
2005).

This chapter reviews key techniques and
methodologies that can be used to collect thread-
behavior information from running systems. We
highlight the strengths and weaknesses of each
technique and lend insight into how they can be
applied from a practical perspective.

understanding multithreaded
System behavior

Building large-scale software systems is both
an art and an en gineering discipline. Software
construction is an inherently iterative process,
where system architects and develop ers iterate
between problem understanding and realiza-
tion of the solution. A superficial understanding
of behavior is often insufficient for production
sys tems, particularly mission-critical systems
where performance is tightly coupled to varia-
tions in the execution environment, such as load
on shared resources and hardware clock speeds.
Such variations are common in multithreaded
systems where execution is affected directly by
resource contention arising from other programs
executing at the same time on the same platform.
To build predictable and optimized large-scale
multithreaded systems, therefore, we need tools
that can help improve understanding of software
subsystems and help avoid potential chaotic ef-
fects that may arise from their broader integration
into systems.

Multithreaded programs are inherently com-
plex for several reasons (Lee, 2006; Sutter &
Larus, 2005), including: (1) the use of nondeter-
ministic thread scheduling and pre-emption; and
(2) control and data dependencies across threads.
Most commercial-off-the-shelf (COTS) operating
systems use priority queue-based, preemptive
thread scheduling. The time and space resources

Dynamic Analysis and Profiling of Multithreaded Systems

158

a thread needs to execute on an operating system
are thus affected by:

•	 Thread priority, which determines the order
in which threads run;

•	 Processor affinity, which defines the proces-
sors that the thread may run on;

•	 Execution state, which defines whether the
thread is ready, waiting, or stopped; and

•	 Starvation time, which is caused by system
delay during peak load periods.

Switching execution context between multiple
threads results in an execution “interleaving” for
each processor in the system. In a single-processor
system, there is only one stage of scheduling:
the choice of deciding which run nable thread to
execute next. Systems that have multiple cores or
SMP processors require an addi tional stage that
maps the threads ready to run on to one of many
possibly available cores, as shown in Figure 1.

Even if we know exactly how long each thread
will have access to the processor (which ignores
any form of pri ority-driven pre-emption and
interthread dependency), the number of feasible
interleavings that can occur in the system are stag-
gering. For example, using the criteria in Figure

1, which has only four independent threads, each
with eight execution quanta, there are 1017 possible
interleavings for just one processor! Server-based
systems with hundreds of threads and tens of pro-
cessors are now common. Over the next decade
we ex pect tera-scale sys tems will have hundreds
of cores (Intel Corporation, 2006b).

approaches to extracting
multithreaded behavioral
characteristics

There are two basic approaches to behavioral anal-
ysis: static and dynamic. Static analysis inspects
the underlying constituents of a system without
executing any program (Jackson & Rinard, 2000).
It therefore requires some “model” of the system
or implementation artifact that is correlated
directly with expected behavior. For example,
analysis of program source code is considered a
form of static analysis. This type of analysis has
the advantage that it can be performed without
running the system. In particular, it can explore
dimensions of behavior that are hard to stimulate
through manipulation of program input.

Static analysis tools typically construct
program execution models, potentially through

Figure 1. Interleavings caused by 1-stage and 2-stage scheduling

159

Dynamic Analysis and Profiling of Multithreaded Systems

reverse engineering. These models can then be
analyzed to derive and ensure behavioral char-
acteristics. Model checking (Clarke, Grumberg,
& Peled, 2000) is a static analysis technique that
is often applied to multithreaded programs to
explore all feasible interleavings ex haustively to
ensure correctness properties, such as absence
of deadlock and livelock (Rinard, 2001). This
approach can check all feasible paths of execution
(and interleavings) and thus avoid leaving any
behavior unchecked.

In practice, model checking is com putationally
expensive and limited in its applicability, due to
the vast number of feasible interleav ings a large
multithreaded system may exhibit. Other forms
of static analysis, such as automated checking of
design intent (Green house, 2003) and program
analysis driven theorem proving (Freund &
Qadeer, 2003), have also been applied to multi-
threaded sys tems to ensure correct behavior. Each
approach trades off analyti cal thoroughness and
computa tional cost. Static-analysis techniques
typically do a good job of modeling rela tive time
and temporal ordering. They do not, however,
model—and thus cannot reason about—absolute
(wall-clock) time.

The only practical approach to behavioral
analysis that can incorporate aspects of absolute
time is dynamic analysis, also known as profiling.
Profiling is inspection of behavior of a running
system. An advantage of this approach is that
it can measure aspects of the system and know
that they are exactly representative of the sys tem.
Approaches to profiling can be classed as either
active or passive. Active profiling requires that the
application or system being measured explicitly
generates information about its execution. An
example of active profiling is the user of compiler-
based probe insertion, where the application makes
callbacks to the trace collection engine to record
execution behavior. Conversely, passive profiling
relies on explicit inspection of control flow and
execution state through an external entity, such
as a probe or modified runtime environ ment.

Passive profiling typically does not require any
modification of the measured system, but is harder
to implement and may require specialized tracing
hardware.

Profiling (whether active or passive) collects
precise and fine-grained behavioral data from a
running multithreaded systems, which can be
coupled with off-line analysis to help summa rize
and reason about observed results. The collected
data is thus accurate and representative of system
execution, as long as the overhead of the mea-
surement has not un duly influenced the results.
Profiling can also only pro vide behavioral data
for control paths that actually exe cute, so success-
fully applying profiling tools depends largely on
analyzing multiple runs of the program that test
all relevant paths in the system. This coverage can
be achieved through careful selection of stimuli
(e.g., input data) to the system, as well as through
artificial fault injection.

Profiling is limited, however, to the inspection
of behavior that can be made to run by appropriate
stimulation of the system, for example, through
selection of input. This limitation means that
profiling is more useful for behavior analysis in
circumstances where a sampling of behavior is
sufficient. For example, profiling is useful for op-
timizations that aim to improve performance on
statistically frequent paths of execution. Profiling
is thus not well suited to ensure correct behavior
in a system when only one execution in a million
can lead to system failure.

Both static analysis and dynamic analysis have
their advantages and disadvantages. Advanced
behavioral analysis solutions (Nimmer & Ernst,
2001; Waddington, Amduka, DaCosta, Foster,
& Sprinkle, 2006) commonly use a combi nation
of static and dynamic analysis to provide a more
complete picture of system behavior. The re-
mainder of this chapter presents and evaluates
general approaches to profiling within the context
of multithreaded systems. We examine the type
and scale of behavioral data that can be collected
dynamically from running systems and review

Dynamic Analysis and Profiling of Multithreaded Systems

160

state-of-the-art profiling tools and methodologies
available today that operate at various levels of
abstraction, including the operating system, vir-
tual machine, and middleware levels.

bacKground

Behavioral analysis is the examination and
understanding of a system’s behavior. Within
the context of com puting systems, behavioral
analysis can be applied throughout the software
lifecycle. The role of behavioral analysis—and
the benefits it brings—vary according to how it
is applied and the point in the life cycle to which
it is applied. At a broad level, behavioral analysis
supports assurance, optimization, diagnosis and
pre diction of software-system execution. Table
1 shows the relationship between these roles and
different stages of software development.

nondeterministic behavior in
multithreaded Systems

Systems that behave according to classical physics,
including electronic computers that are based on
the von Neumann architecture, are deterministic
in a strict sense. Actually predicting the behavior
of a computing sys tem, however, is fundamentally

connected with the ability to gather all necessary
information about the start state of the system. In
most cases this is impractical, primarily due to
very long causal chains (sequences of interrelated
effects) and environmental interactions (i.e., input)
that are hard to model and predict. In this chapter,
we define determinism as the ability to predict the
future state of a system. We therefore consider
computer systems as generally being nondeter-
ministic because we cannot practically predict the
future state of the system. Accurate predictions
would require a complete understanding of the
start state, as well as prediction of environmental
variables, such as user interaction and environ-
mental effects (e.g., temperature sensitivity).

Most enterprise-style computing systems
today demonstrate nondeterministic behavior.
Key sources of nondeterminism in these systems
include distributed communications (e.g., interac-
tion across a network to ma chines with unknown
state), user input (e.g., mouse/keyboard), and
dynamic scheduling (e.g., priority-based with
dynamic priority queues). These activities and
actions typically result in a system whose execu-
tion behavior is hard to predict a priori.

A prominent cause of nondeterminism in
multithreaded systems stems from the operating
system’s scheduler. The choice of which logical
thread to execute on which physical processor is

Role Lifecycle Stage Purpose

Assurance Design, Implementation,
Testing

Ensuring correct functionality
and performance

Optimization Implementation Ensuring optimal use of com-
puting resources

Diagnosis Integration, Testing Determining the condi-
tions that lead to unexpected
behavior

Prediction Maintenance Assessing how program modi-
fications and integration will
affect system behavior

Table 1. Roles of behavioral analysis in software-systems development

161

Dynamic Analysis and Profiling of Multithreaded Systems

derived from a number of factors, including thread
readiness, current system load (e.g., other threads
waiting to be run), priority, and starvation time
(i.e., how long a thread has been waiting to be
run). Many COTS operating systems use complex
scheduling algorithms to maintain appropriate
timeliness for time-sensitive tasks and also to
achieve optimal use of processing resources. From
the perspective of behavior analysis, however,
these types of scheduling algorithms make static
prediction of scheduling outcome infeasible in
practice. Certain properties, such as absence of
deadlock, can be checked effectively using static
analysis because all possibilities can be explored
explicitly. However, other properties, such as the
absolute time taken to execute given functional ity,
can only be assessed practically using runtime
profiling.

behavioral characteristics relevant
to multithreaded programs

Certain elements of behavior result from, and
are thus pertinent to, the use of multithreaded
programming. Table 2 describes some different
characteristics that are commonly specified and
measured in real-time and safety-critical systems.
These are the types of characteristics that can be
analyzed using the profiling tools and technologies
discussed in this chapter.

To provide a sense of the necessary sam-
pling scale (i.e., frequency of events) in today’s
COTS-based systems, we performed a number
of simple experiments to gather some system
measures. Understanding the expected sampling
rates is useful to understanding the viability

Behavioral
Characteristic Description

Synchronization over-
head

The additional processing time incurred by the use of synchronization mechanisms, such as mutexes,
semaphores, and condition variables. Different mechanisms and topologies (e.g., inter- and intra-processor)
typically have different overhead.

Task latency and jitter The time between a thread being released (e.g., by a lock being freed) and regaining access to the processor.
The task jitter is the observed variation in latency.

Task execution quanta The length of time a thread executes for before either yielding access explicitly, or by being pre-empted by
the operating system scheduler.

Unsafe memory access Data that is being shared between threads must be controlled carefully to avoid data corruption due to the
inability to modify data in one atomic action. To ensure the integrity of shared data is maintained, appropriate
synchronization mechanisms must be used.

Priority inversion Priority inversion occurs when a lower priority task is preventing a higher priority task from executing by
being unable to execute and thus release a resource required by the higher priority task. A common solution
to the priority inversion problem is for the lower priority to temporarily inherit the higher (waiting) priority
so that it can release the resource.

Deadlock and livelock Deadlock is a cyclic dependency between two or more threads. For example, thread A is waiting for a
resource R1 from thread B before it will give up R2, and thread B is waiting for resource R2 from thread A
before it will give up R1. In this condition both threads are blocked and cannot progress. Livelock is a similar
condition to deadlock, except that the interdependent threads cause each other to perform an infinite amount
of work before becoming free.

Effective parallelism Effective parallelism is a measure of the ability of threads to perform work over time. For example, threads
that do not have data interdependencies have a very high effective parallelism, whereas threads that are
“lock-stepped” by a single shared resource have a low effective parallelism.

Worst-case execution
time

Worst-case execution time (WCET) relates to task latency and jitter caused by load on the system. WCET is
the maximum time a given thread or set of threads takes to perform some function. This measure is invalu-
able in building real-time systems that must adhere to strict deadlines.

Table 2. Common characteristics of multithreaded systems

Dynamic Analysis and Profiling of Multithreaded Systems

162

and impact of different profiling techniques.
Our experimentation is based on measurements
taken from Microsoft Windows XP, running on
a dual-processor, hyper-threaded (Intel Xeon 2.8
GHz) system, executing a stress-test Web client/
server application. The measurements were taken
using both Windows performance counters and
the on-chip Intel performance counters. Table 3
shows the results.

The data listed in Table 3 is comprised primar-
ily of finer-grained metrics that occur at very high
frequencies in the lower levels of the system. Of
course, less frequent “application-level” events are
also of interest in under standing the behavior of
a system. For example, rare error conditions are
often of impor tance. The data in Table 3 shows
that the frequency (and therefore quantity) of
measurable events can vary signifi cantly by up
to nine orders of magnitude. Because the impact
of measurement is scaled proportionally, analysis
methodologies that work well for low-frequency
events may not do so for higher-frequency
events.

challenges of multithreaded System
Profiling

The remainder of this chapter focuses on the re-
alization and application of runtime profiling on
multithreaded sys tems. Profiling multithreaded
systems involves addressing the following key
challenges:

•	 Measurement of events at high frequen-
cies—Events of interest typically occur at
high frequency. The over head and effect of
measurement on the system being measured
must be controlled carefully. Without careful
control of overhead, results become skewed
as the process of measurement directly alters
the sys tem’s behavior.

•	 Mapping across multilevel concepts—
Threads can be used at multiple levels of a
system. For example, threads can exist in the
operating system, virtual machine, middle-
ware, and in the application (lightweight
threads and fibers). Virtual machine and
application-layer threads can map to under-
lying operating system threads. Ex tracting

Category Metric Range

Processor Clock Rate 2,793,000,000 Hz *

Micro-ops Queued 630,000,000 uops/second *

Instructions Per Second 344,000,000 instructions/second *

L2 Cache Reads 65,000,000 reads/second *

Thread Schedul-
ing

Number of Threads 500 total count

Context Switch Rate 800-170,000 switches/sec

Thread Queue Length 0-15 total count

Scheduling Quanta 20-120 ms

System Resources System Calls 400-240,000 calls/sec

Hardware Interrupts 300-1000 interrupts/sec

Synchronization Objects 400-2200 total count

* per logical processor

Table 3. Example metric ranges

163

Dynamic Analysis and Profiling of Multithreaded Systems

the mapping between thread representations
is inherently hard because in many cases the
mappings are not one-to-one and are even
adjusted dynamically.

•	 Extraction of complex interactions—
Threads represent the fundamental unit
of execution in a software sys tem and are
inherently interdependent. Their interac-
tions are facilitated through the sharing
of system re sources, such as memory, file,
and devices. Determining which resources
are the medium of thread inter action is
inherently hard because measuring events
on all of the resources in the system is not
feasible due to excessive instrumentation
overhead.

•	 Interpolation between raw events and
broader properties—Deriving the behav-
ior of a system requires more than simple
collection of event data. Raw event data
(i.e., data collected directly from low-level
execution activities) must be used to build

a composition of behavior that can be more
readily analyzed by engineers. Abstraction
and collation of data is a key requirement in
deriving properties of synchronization that
exist in multithreaded systems.

Research in the area of multithreaded software
profiling and analysis has made some inroads into
these chal lenges. In this chapter, we review the
state-of-the-art in tools and techniques, some of
which are commercial products and others that
are research prototypes, and discuss how they
try to address some of the challenges described
above.

compiler-baSed
inStrumentation techniqueS

The most common approach to runtime profil-
ing is to modify the code that executes so it
explicitly gener ates trace information. A wide

Figure 2. Different points of code modification

Dynamic Analysis and Profiling of Multithreaded Systems

164

array of techniques can be used to generate this
information, applied at different stages of the
program code lifecycle, as shown in call-outs A
to D in Figure 2.

Source-code instrumentation

Instrumenting source code manually is imprac-
tical in large systems. Instrumentation can be
automated, however, through source-to-source
transformation. Metapro gramming frameworks,
such as Proteus (Waddington & Yao, 2005), TXL
(Cordy, Halpern, & Promislow, 1991), Stratego
(Visser, 2001) and DMS (Baxter, 2004), enable
modifications to source code before it is com-
piled or preprocessed (Figure 2, label A). These
metaprogramming frameworks provide a pro-
gramming lan guage that can be used to define
context-sensitive modifications to source code.
Transformation programs are compiled into ap-
plications that perform rewriting and instrumen-
tation of source, which is given as input. Source
code can also be instrumented just before it is
compiled in a form of preprocessing (Figure 2,
label B). Aspect-oriented programming (Spinc-
zyk, Lohmann, & Urban, 2005; Kiczale, Hilsdale,
Hugunin, Kersten, Palm, & Griswold, 2001) is an
example of preprocessed code modification.

Applying instrumentation to source code—as
opposed to applying it to binary code—makes it
easier to align trace functionality with higher-
level, domain-specific abstractions, which mini-
mizes instrumentation because the place ment of
additional code is limited to only what is necessary.

For example, to measure the wait times of threads
that are processing HTTP packets received from a
network in a given application, developers could
instrument only those wait calls that exist in a
particular function, as opposed to all wait calls
across the complete program. Definition of the
context (function and condition) is straightforward
in a metaprogramming or aspect-pro gramming
language. The following excerpt illustrates an
AspectC++ (Spinczyk et al., 2005) rule for such
an example.

Given the original code:

#include <stdio.h>
#include <pthread.h>

pthread_mutex_t * mute;
int count = 0;

int main() {
 pthread_mutex_init(mute, NULL);
 pthread_mutex_lock(mute);
 count = 1;
 pthread_mutex_unlock(mute);

 ReadPacket();
 return 0;
}

void ReadPacket() {
 /* code that we wish to instrument */
 pthread_mutex_lock(mute);
 pthread_mutex_unlock(mute);
}

The following AspectC++ aspect defines a
rule that inserts calls to function TraceEvent()
after each call to pthread_mutex_lock that exists
within function ReadPacket (expressed through
a join-point filter). (Box 1)

aspect TraceAspect {
 advice call(“% pthread_mutex_lock(...)”) && within(“% ReadPacket(...)”) : after()
 {
 TraceEvent();
 }
};

Box 1.

165

Dynamic Analysis and Profiling of Multithreaded Systems

The result of “weaving” (i.e., performing
source-to-source transformation) the above source
code is the following. The weaving process has
defined additional classes and inline functions to
support the specified trace functionality. It has
also redirected control flow according to the trace
requirement (after call to function). (Box 2)

Aspect-oriented programming and other forms
of source-to-source transformation are useful for
selective and precise instrumentation of source
code. Modification of source code is portable with
respect to different proc essor architectures. The
performance impact of the measurement is often
minimal because instrumen ta tion is customized

Box 2.

#ifndef __ac_fwd_TraceAspect__
#define __ac_fwd_TraceAspect__
class TraceAspect;
namespace AC {
 inline void invoke_TraceAspect_TraceAspect_a0_after();
}
#endif

…

#line 1 “main.cc”
#include <stdio.h>
#include <pthread.h>

pthread_mutex_t * mute;

int main()
{
 pthread_mutex_init(mute, NULL);
 pthread_mutex_lock(mute);
 pthread_mutex_unlock(mute);

 return 0;
}

/* Function generated by aspect weaver to call the “trace” aspect
 after calls to pthread_mutex_lock */

inline int __call__ZN10ReadPacketEv_0_0 (::pthread_mutex_t * arg0) {
 AC::ResultBuffer< int > result;
 ::new (&result) int (::pthread_mutex_lock(arg0));
 AC::invoke_TraceAspect_TraceAspect_a0_after ();
 return (int)result;
 }

void ReadPacket()
{
 __call__ZN10ReadPacketEv_0_0 (mute);
 pthread_mutex_unlock(mute);

}
…

continued on following page

Dynamic Analysis and Profiling of Multithreaded Systems

166

and only inserted where absolutely necessary.
Instrumentation can be performed in the same
order of time that is needed to compile the code.
Source-code instrumentation is ideal for coarse-
grained event tracing, particularly where the
trace criteria must be related to application-level
abstract events that are hard, if not impossible,
to detect at the instruction level. Nevertheless,
source-code instrumentation is target language
dependent and can also be problematic when deal-
ing with language idiosyncrasies, such as language
preprocessing and syntactic variations.

Static binary-code instrumentation

An alternative approach to adding event-tracing
functionality to source code is to modify compiled
binary code directly. Many compilers, such as
GNU GCC, and profiling tools, such as Rational
Purify and Quantify (IBM Corporation, 2003),

can compile code with additional profiling instru-
mentation and also to link with pre-instrumented
runtime libraries. For ex ample, applying the com-
mand line options –pg, -ftrace-arcs, and
-ftest-coverage, to the GNU GCC com piler
produces binary code that is instrumented with
additional functionality that traces the count of
function calls and basic blocks executed in the
program. The following excerpts show the basic
profiling instrumenta tion produced by the GNU
GCC compiler for this example C source code:

void foo(){
 if(i<10)
 i++;
 else
 i=0;
 return;
}

The generated assembly code (x86) without
instrumentation is shown in Box 3.

class TraceAspect {

 public:
 static TraceAspect *aspectof () {
 static TraceAspect __instance;
 return &__instance;
 }
 static TraceAspect *aspectOf () {
 return aspectof ();
 }

 public:
 void __a0_after()
 {
 printf(“TRACE”);
 }
};

namespace AC {
 inline void invoke_TraceAspect_TraceAspect_
a0_after () {
 ::TraceAspect::aspectof()->__a0_after ();
 }
}

Box 2. continued

167

Dynamic Analysis and Profiling of Multithreaded Systems

The generated assembly code (x86) with in-
strumentation is shown in Box 4.

The first highlighted (80488dd) block repre-
sents a call to the profiling library’s mcount()
function. The mcount() function is called by
every function and records in an in-memory call
graph table a mapping between the current func-
tion (given by the current program counter) and
the function’s parent (given by return address).
This mapping is typically derived by inspect-
ing the stack. The second highlighted block
(80488f1) contains instructions that increment
counters for each of the basic blocks (triggered
by the -ftrace-arcs option).

Profiling data that is collected through the
profiling counters is written to a data file (gmon.
out). This data can be inspected later using the
GNU gprof tool. Summarized data includes
basic control flow graph information and timing
information between measure points in code. The
overhead incurred through this type of pro filing
can be significant (over 60%) primarily because the
instrumentation works on an “all or nothing” basis.
Table 4 shows experimental results measuring the
performance impact of the GNU GCC profiling
features. Tests were performed by running the
BYTEmark benchmark program (Grehan, 1995)
on a 3.00 GHz Intel Pentium-D running Redhat
Enterprise Linux v4.0. It is possible, however, to

08048373 <foo>:
 8048373: 55 push %ebp
 8048374: 89 e5 mov %esp,%ebp
 8048376: 83 3d 78 95 04 08 09 cmpl $0x9,0x8049578
 804837d: 7f 08 jg 8048387 <foo+0x14>
 804837f: ff 05 78 95 04 08 incl 0x8049578
 8048385: eb 0a jmp 8048391 <foo+0x1e>
 8048387: c7 05 78 95 04 08 00 movl $0x0,0x8049578
 804838e: 00 00 00
 8048391: c9 leave
 8048392: c3 ret
 8048393: 90 nop

Box 3.

080488da <foo>:
 80488da: 55 push %ebp
 80488db: 89 e5 mov %esp,%ebp
 80488dd: e8 62 fd ff ff call 8048644 <mcount@plt>
 80488e2: 83 3d 00 a2 04 08 09 cmpl $0x9,0x804a200
 80488e9: 7f 16 jg 8048901 <foo+0x27>
 80488eb: ff 05 00 a2 04 08 incl 0x804a200
 80488f1: 83 05 38 a2 04 08 01 addl $0x1,0x804a238
 80488f8: 83 15 3c a2 04 08 00 adcl $0x0,0x804a23c
 80488ff: eb 18 jmp 8048919 <foo+0x3f>
 8048901: c7 05 00 a2 04 08 00 movl $0x0,0x804a200
 8048908: 00 00 00
 804890b: 83 05 40 a2 04 08 01 addl $0x1,0x804a240
 8048912: 83 15 44 a2 04 08 00 adcl $0x0,0x804a244
 8048919: c9 leave
 804891a: c3 ret

Box 4.

Dynamic Analysis and Profiling of Multithreaded Systems

168

enable profiling on selected compilation units,
thereby minimizing instrumentation costs.

This type of code instrumentation is termed
static because the code is modified before execu-
tion of the program (Figure 2, label C). COTS
compiler-based instrumentation for profiling is
generally limited to function calls and iteration
counts. Another more powerful form of static
binary instrumentation involves the use of a set
of libraries and APIs that enable users to quickly
write applications that perform binary rewriting
(Hunt & Brubacher, 1999; Larus & Schnarr,
1995; Srivastava & Eustace, 1994; Romer, et al.,
1997; Hollingsworth, Miller, & Cargille, 1994).
The following capabilities are typical of binary
rewriting libraries:

•	 Redirection of function calls and insertion
of trampoline functions that execute the
originally called function;

•	 Insertion of additional code and data; and
•	 Control and data-flow analysis to guide

instrumentation.

The following code illustrates the use of con-
trol-flow analysis and insertion of additional code
through the Ed iting Executable Library (EEL)
(Larus & Schnarr, 1995), machine-independent,
executable editing API: (Box 5)

EEL code “snippets” encapsulate of pieces
of code that can be inserted into existing binary
code. They are ei ther written directly in assembly
language (which makes the instrumentation ma-
chine dependent) or written using a higher-level
language that is compiled into assembly. To graft
snippet code into existing code, each snippet
identifies registers used in the snippet that must
be assigned to unused registers.

dynamic binary-code instrumentation

An alternative to static binary instrumentation
is dynamic instrumentation. Dynamic instru-
mentation, implemented as Just-in Time (JIT)
compilation, is performed after a program has
been loaded into memory and immediately
prior to execution (Figure 2, label D). Dynamic
instrumentation has the advantage that profiling
functionality can be selectively added or removed
from the program without the need to recompile:
Trace functionality is only present when needed.
Moreover, dynamic instrumentation can be ap-
plied reactively, for example, in response to some
event in the system, such as processor slow down.
Dynamic instrumentation is particularly useful for
facilitating conditional breakpoints in code, for
example, Buck and Hollingsworth (2000) show
that this approach is 600 times more ef ficient than
conventional trap-based debug breakpoints.

Test No profiling With profiling % Slow Down

Numeric Sort 812.32 498.2 38.67

String Sort 103.24 76.499 25.90

Bitfield 4.35E+08 1.65E+08 62.11

FP Emulation 73.76 52.96 28.20

Fourier 15366 15245 0.79

Assignment 24.292 9.77 59.78

Huffman 1412.7 1088.7 22.93

Neural Net 18.091 12.734 29.61

LU Decomp 909.76 421.48 53.67

Table 4. Slow-down incurred by GNU GCC profiling

169

Dynamic Analysis and Profiling of Multithreaded Systems

nt main(int argc, char* argv[])
{
 executable* exec = new executable(argv[1]);
 exec->read_contents();
 routine* r;

 foreach_routine (r, exec->routines())
 {
 instrument(r);
 while(!exec->hidden_routines()->is_empty())
 {
 r = exec->hidden_routines()->first();
 exec->hidden_routines()->remove(r);
 instrument(r);
 exec->routines()->add(r);
 }
 }

 addr x = exec->edited_addr(exec->start_address());
 exec->write_edited_executable(st_cat(argv[1], “.count”), x);
 return (0);
}

void instrument(routine* r)
{
 static long num = 0;
 cfg* g = r->control_flow_graph();
 bb* b;

 foreach_bb(b, g->blocks())
 {
 if (1 < b->succ()->size())
 {
 edge* e;

 foreach_edge (e, b->succ())
 {
 // incr_count is the user-defined code snippet
 e->add_code_along(incr_count(num));
 num += 1;
 }
 }
 }
 r->produce_edited_routine();
 r->delete_control_flow_graph();
}

Box 5.

The Paradyn work from the University of
Wisconsin, Madison (Miller, Callaghan, Car-
gille, Hollingsworth, Irvin, & Karavanic, 1995)
was designed specifically for measuring the
performance of parallel programs. Para dyn uses

dynamic instrumentation to apply trace function-
ality according to a set of resource hierarchies,
as shown in Figure 3 (shaded nodes represent an
example focus, all spin locks in CPU#1, in any
procedure). Enti ties within the resource hierar-

Dynamic Analysis and Profiling of Multithreaded Systems

170

chies effectively represent the scope of the current
tracing functionality.

Buck and Hollingsworth expanded the dy-
namic instrumentation element of Paradyn in
their Dyninst work (Buck & Hollingsworth,
2000). Dyninst provides a C++ API and a set of
run-time libraries that allow users to build tools
for modifying dynamic binary code. It attaches
to loaded binaries that are either already run-
ning or that are explicitly loaded by the Dyninst
run-time. Once attached to an executable, tools
written using the Dyninst API (termed mutators)
can be used to modify the binary image directly
in memory.

Dyninst works by adding “trampolines” into
the target binary at selected positions, shown in
D. Branch instructions are inserted into the target
program, at user-defined positions, to redirect
control flow into the base trampoline. Base tram-
polines are instantiated for each instrumentation
point in the target code. Each contains pre- and
post- branching to global primitives (called for
all processes) and local instrumentation primi-
tives (called only for the specific instrumentation
point). Base trampolines also include the original
code that was displaced from the target, which
is also executed.

Dyninst’s thread abstraction allows developers
to associate instrumentation with specific threads
that are running in the system, which is a neces-
sary part of their selective profiling scheme. With
this approach the overhead of instrumentation is
incurred up-front in modifying the binary im-

age. After the image has been modified, the only
overhead is the cost of trampolining and the ad-
ditional instructions imposed by the instrumented
primitives.

Snippet code (the code which is being added to
the target image) is created using the DyninstAPI
to dynamically assemble variable declarations,
expressions, and so forth. The following excerpt
illustrates how the Dyninst API can be used to
create a global counter variable and an expression
that increments it. (Box 6)

Dyninst is designed to target the native pro-
cessor; the modified instructions target the actual
un derlying hardware. Other work, such as Pin
(Luk et al., 2005), Dixie (Fernandez, Ramirez,
Cernuda, & Espasa, 1999), DynamoRIO (Bru-
ening, 2004), and Valgrind (Nethercote, 2004),
have pursued the use of JIT cross-compilation so
that the modified binary code can be executed on
an emulated (i.e., virtual) machine architecture.
Targeting a virtual machine provides more con-
trol and the ability to inspect low-level details of
behavior, such as register and cache activity. It
also does not nec essarily imply translation across
different instruction set architectures (ISA). In
most instances, the virtual ma chine uses the
same ISA as the underlying host, so that while
hooks and interceptors can be put in place, the
bulk of the code can simply be passed through
and executed by the host.

The Pin program analysis system (Luk et al.
2005) is an example of dynamic compilation
targeting a virtual machine architecture using

Box 6.

// create a global int variable in the address space of the application
//
BPatch_variableExpr * intCounter = appThread->malloc(*appImage->findType(“int”));

// create an expression that increments counter variable
//
BPatch_arithExpr addOne(BPatch_assign, *intCounter, BPatch_constExpr(1));

171

Dynamic Analysis and Profiling of Multithreaded Systems

the same ISA as the underlying host. As shown
in Figure 5, the Pin system consists of:

•	 Instrumentation API, which is used to write
programs that perform dynamic interception
and replacement;

•	 JIT Compiler, which compiles and instru-
ments the bytecode immediately before
execution;

•	 Code cache, which caches translations be-
tween the target binary and the JIT compiled
code;

•	 Emulation unit, which interprets instructions
that cannot be executed directly; and

•	 Dispatcher, which retrieves and executes
code from the code cache.

To analyze a program’s behavior (multithread-
ed or not), Pin users must write a program that
performs dynamic in strumentation. Pin provides
an API based on the ATOM API (Srivastava &
Eustace, 1994) that shields programmers from

idiosyncrasies of the underlying instruction set
and allows passing of context information, such
as regis ter contents, to the injected code as param-
eters. Pin programs typically consist of analysis
and instrumentation elements. The basic building
blocks for defining instrumentation points are
machine instructions, basic blocks, procedures,
images, and applications. For example, the C++
code below shows the use of the Pin API to in-
strument the target code with trace functions each
time sleep() is invoked.

First, a replacement function is defined with
the same signature as the function that is being
replaced (in this example sleep()). (Box 7)

A callback function ImageLoad() is used to
intercept binary-image loads that are executed by
the target appli cation. The Pin API can then be used
to obtain the function that will be replaced with
the new trac ing/trampoline function. (Box 8)

The instrumentation function is “hooked” onto
image loads through IMG _ AddInstrument-
Function() as follows:

Figure 5. The Pin software architecture

Dynamic Analysis and Profiling of Multithreaded Systems

172

typedef VOID * (*FP_SLEEP)(unsigned int);

// This is the replacement routine.
VOID * NewSleep(FP_SLEEP orgFuncptr, UINT32 arg0, ADDRINT returnIp) {
 // Normally one would do something more interesting with this data.
 //
 cout << “NewSleep (“
 << hex << ADDRINT (orgFuncptr) << “, “
 << dec << arg0 << “, “
 << hex << returnIp << “)”
 << endl << flush;

 // Call the relocated entry point of the original (replaced) routine.
 //
 VOID * v = orgFuncptr(arg0);
 return v;
}

Box 7.

// Pin calls this function every time a new image is loaded. It is best to do probe
// replacement when the image is loaded,because only one thread knows about the image at
// this time.
VOID ImageLoad(IMG image, VOID *v)
{
 // See if sleep() is present in the image. If so, replace it.
 //
 RTN rtn = RTN_FindByName(image, “sleep”);

 if (RTN_Valid(rtn))
 {
 cout << “Replacing sleep in “ << IMG_Name(image) << endl;

 // Define a function prototype that describes the application routine
 // that will be replaced.
 //
 PROTO proto_sleep = PROTO_Allocate(PIN_PARG(void *), CALLINGSTD_DEFAULT,
 “sleep”, PIN_PARG(int), PIN_PARG_END());

 // Replace the application routine with the replacement function.
 // Additional arguments have been added to the replacement routine.
 // The return value and the argument passed into the replacement
 // function with IARG_ORIG_FUNCPTR are the same.
 //
 AFUNPTR origptr = RTN_ReplaceSignatureProbed(rtn, AFUNPTR(NewSleep),
 IARG_PROTOTYPE, proto_sleep,
 IARG_ORIG_FUNCPTR,
 IARG_FUNCARG_ENTRYPOINT_VALUE, 0,
 IARG_RETURN_IP,
 IARG_END);

 cout << “The original entry point to the replaced function has been moved to 0x”;
 cout << hex << (ADDRINT) origptr << dec << endl;

Box 8.

continued on following page

173

Dynamic Analysis and Profiling of Multithreaded Systems

int main(INT32 argc, CHAR *argv[]) {
 // Initialize symbol processing
 //
 PIN_InitSymbols();

 // Initialize pin
 //
 PIN_Init(argc, argv);

 // Register ImageLoad to be called when an image is
loaded
 //
 IMG_AddInstrumentFunction(ImageLoad, 0);

 // Start the program in probe mode, never returns
 //
 PIN_StartProgramProbed();

 return 0;
}

The target program is run until completion
through PIN _ StartProgramProbed(). Pin
also supports the ability to dynamically attach and
detach from a long-running process if transient
tracing is needed.

Dynamic compilation and virtual machine
execution incur overhead. With respect to Pin,
overhead primarily stems from performing
JIT-compilation, helped by the use of a code-
translation cache.

Figure 6 shows Pin perform ance data taken
from Luk et al. (2005). These results show that
the slowdown incurred by Pin is approximately
four times slower than the original code without
instrumentation. Even though this slowdown is
significant, the Pin approach is one of the fastest
JIT-based profiling solutions available today.

Summary of compiler-based
instrumentation techniques

Instrumenting program code with tracing func-
tionality is a powerful means of understanding
system behavior. Modifying source code provides
a straightforward means to collect trace informa-
tion that must relate to appli cation-level program
functionality. It therefore enables the customiza-
tion of trace insertion according to the program
“features” of interest.

Alternatively, binary instrumentation is well
equipped to handle complex software where the
executed code cannot be identified until runtime.
Binary-level modifications and execution on vir-
tual machine architectures allow straightforward
inspection of machine-level registers and data,
such as the stack and caches. Conversely, because
binary modification operates at such a low level,
it is sometimes hard to specify what to instru-
ment when semantics cannot be easily linked to
program-level functions and basic blocks. Binary
instrumentation is primarily supportive of active
profiling, although the use of a virtual machine
to execute code also provides a means to profile
passively.

From the perspective of profiling multithreaded
programs specifically, binary-code instrumenta-
tion can provide an effective means to intercept
and instrument synchronization functions where
source code is not available or when there is a need
for very fine-grained information, such as access
to cache state. Binary-code instrumentation also

Box 8. continued

 // Free the function prototype.
 PROTO_Free(proto_sleep);
 }
 else {
 cout << “Could not find routine in image\n”;
 }
}

Dynamic Analysis and Profiling of Multithreaded Systems

174

provides detailed access to memory and thus ac-
cess to thread and process-control blocks useful
in profiling multithreaded applications.

operating SyStem and
middleware profiling
techniqueS

All applications rely upon services provided by
the underlying operating system. These services
are primarily used to coordi nate access to shared
resources within the system. To measure service
“requests” probes can be placed directly within the
operating system code that can record individual
application access to provided services. Many
COTS operating systems also provide a number
of performance counters that explicitly track
usage of shared re sources. Data generated from
these counters—along with data from embedded
probes—can be combined to form a more complete
picture of application behavior.

Another common form of shared processing
infrastructure is distributed computing middle-
ware, such as OMG’s CORBA and Microsoft’s

.NET, which provide common services, such as
location transparency and concur rency manage-
ment. Distributed computing middleware often
provides a number of “hook points,” such as
interceptors and smart proxies that are ac cessi ble
to users. These hooks provide placeholders for
adding probe functionality that can be used to
measure events typically hidden deeper within
the middleware.

This section first discusses techniques that can
be used to place probes into operating system ser-
vices and how this information can be combined
with data generated from operating system-level
performance counters. We then discuss two ap-
proaches to profiling distribute middleware ap-
plications deployed on the CORBA platform.

Profiling System Call Interception

A typical process contains one or more threads
and a shared memory space. Application code
that is exe cuted by threads within a process is
free to access various operating system resources
and services, such as virtual memory, files, and
network devices. Access to these resources and
services is facilitated through APIs that are

Figure 6. Pin performance test results (Luk et al., 2005)

175

Dynamic Analysis and Profiling of Multithreaded Systems

provided by system libraries. Each thread in the
system executes in either user space or kernel
space, depending upon the work it is doing at
that given time.

Whenever a thread makes a system call, it
transitions (e.g., via a trap) from user space to
kernel space (Soloman, 1998; Beck et al., 1999).
Invoking system calls for thread management
(e.g., thread creation, suspension, or termination)
and synchronization (e.g., mutex or semaphore
acquisition) often require such a transition. System
call transitioning code therefore provides a useful
interception point at which process activity can
be monitored and a profile of system resource use
can be extracted on a per-thread basis.

Figure 7 shows the use of the interpositioning
technique, where libraries are built to mimic the
system API. These libraries contain code that
record a call event and then forward the call to
the underlying system library.

The threadmon (Cantrill & Doeppner, 1997)
tool uses interpositioning to insert trace code
between the user-level threads library and the
application by redefining many of the functions
that the library uses internally to change thread
state. This technique is also used by Broberg’s Vi-
sualization of Parallel Program Behavior (VPPB)
tool (Broberg, Lundberg, & Grahn, 1999) to gather
user-level thread information. In both approaches,

data obtained by user library interpositioning is
integrated with data collected from other operat-
ing system services, such as the UNIX /proc
file system or kstat utility. The threadmon
and VPPB tools both tar get the Solaris operating
system and therefore rely upon Solaris-specific
system utilities, such as memory mapping of /
dev/kmem to access the kernel.

Cantrill and Doeppner (1997) and Broberg et
al. (1999) have also used another tool known as
Trace Normal Form (TNF) (Mura yama, 2001).
This tool generates execution event traces from
the Solaris kernel and user processes. So laris
provides an API for inserting TNF probes into the
source code of any C/C++ program. A TNF probe
is a parameterized macro that records argument
values. The code excerpt below shows how C
macroprobes can be inserted at the beginning and
end of critical code to record the absolute (wall-
clock) time required for the code to execute.

#include <tnf/probe.h>
.
.
extern mutex_t list_mutex;
.
.
TNF_PROBE_1(critical_start, “critical section start”,
“mutex acquire”, tnf_opaque, list_lock, &list_mutex)

mutex_lock(&list_mutex);
.

Figure 7. Systems calls intercepted by system trap profiling library

Dynamic Analysis and Profiling of Multithreaded Systems

176

.
/* critical section code */
.
.
mutex_unlock(&list_mutex);

TNF_PROBE_1(critical_end, «critical section end»,
«mutex release»,
tnf_opaque, list_lock, &list_mutex)

These probes can be selectively activated dy-
namically at run time. Events are recorded each
time a probe is executed. Each probe automatically
records thread-specific information, such as the
thread identifier, but it may also record other data
related to the state of the application at the time
the event was triggered. Event records are written
to a binary file that is subsequently parsed and
analyzed by an offline process. The Solaris kernel
also contains a number of TNF probes that can
record kernel activity, such as system calls, I/O
operations, and thread state change. These probes
can be enabled/disabled using a command-line
utility known as prex (Mura yama, 2001). Data
records from the probes are accumulated within a
contiguous portion of the kernel’s virtual address
space and cannot be viewed directly. Another
utility that runs with administrator privileges can
be used to extract the data and write it to a user
file. This data can then be correlated with other
user-level data to pro vide a clear understanding
of the behavior of the application run.

The probe-based technique described above
provides a detailed view of the running state of
the application. Behavioral data details call counts,
timing information, and resource use (thread and

system state). There are some drawbacks to this
approach, however, including:

•	 The solution is not portable because it
depends on Solaris features that are not
available on other operating sys tems.

•	 It requires a considerable amount of devel-
opment effort because thread libraries must
be modified.

•	 Applications must be separately built and
linked for profiling.

•	 Tools that are used to collect the data like
TNF or kstat may require lengthy setup
and configuration.

microsoft windows performance
counters

•	 Other operating systems have comparable
probe-based features that can be used to
get comparable data-defining application
behavior. For example, Microsoft Windows
provides performance counters (Microsoft,
2007a) that contain data associated to the
running system. Windows provides a con-
sole that can be used to select certain spe-
cific counters related to specific processes.
Once selected, the values of these counters
will be displayed on the console at regular
intervals. Table 5 shows example counters
that are available.

Windows stores the collected values in the
registry, which is refreshed periodically. Develop-
ers typically re trieve the data from the registry

Category Description Sample Counters

Process Provides data related to each process % Processor Time, % User Time, IO activity, Page Faults etc.

Processor Provides information about the overall machine % Processor time, % User Time, %Idle Time etc.

Memory Provide data related to the memory of the system Available Bytes, #Page Faults/sec, #Page Reads/sec etc.

Threads Provides data on the threads in the system # of Context Switches/sec, Thread State, Thread Wait Reason etc.

Table 5. Performance counters provided by the Windows Operating System

177

Dynamic Analysis and Profiling of Multithreaded Systems

directly or use an API known as Performance Data
Helper (Microsoft, 2007c; Pietrik, 1998). Alter-
natively, the Microsoft .NET framework provides
the System.Diagnostics namespace that
facilitates access to all the counters from within
a .NET application.

Windows performance counters can be used to
acquire data related to the running system, which
can be corre lated with a particular application
run. These counters give an external view of the
application, however, and there is no straightfor-
ward method of mapping counter values to logi-
cal application events. To more closely inspect a
running application, therefore, instrumentation
is needed within the application itself to record
logical events and combine them with data gener-
ated through performance counters.

Distributed System Profiling

A distributed system consists of applications
whose components are spread over a network of
hosts that work together to provide the overarch-
ing functionality. The complexity of distributed
applications is often considerably greater than a
stand-alone application. In particular, distributed

applications must address inherent complexities,
such as latency, causal ordering, reliability, load
balancing, and optimal component placement,
that are either absent from (or less complicated in)
stand-alone applications (Schmidt, Stal, Rohnert,
& Buschmann, 2000). The analysis and profiling
of distributed applica tions involves monitoring
key interactions and their characteristics along
with localized functionality occurring within each
component. Below we examine two approaches
to profiling distributed system behavior. One ap-
proach modifies generated stubs and skeletons,
whereas the other uses profiling extensibility
features available in the middleware.

Monitoring of Component-Based
Systems (MCBS)

MCBS (Li, 2002) is a CORBA middleware-based
monitoring framework that can be used to capture
application semantics, timing latency, and shared
resource usage. Although the MCBS prototype is
CORBA-based the solution can be extended to any
distributed object architecture that generates stubs
and skeletons. The MCBS approach recreates call
sequences across remote interfaces. Probes are

Figure 8. MCBS probe instrumentation

Dynamic Analysis and Profiling of Multithreaded Systems

178

instrumented automatically through a specialized
Interface Description Language (IDL) compiler,
which directly modifies the generated stubs and
skeletons with code that records call entry and
return events, as shown in Figure 8.

Along with calls and returns, the MCBS-
modified stubs and skeletons can also profile
higher-level transactions (as aggregated calls),
as well as parameters and return values. Event
data is recorded to a log and a unique identifier
assigned so that the scenario/call chain can be
identified later. This identifier is generated at the
start probe and is propagated through the calling
sequence via thread-local storage (Schmidt et al.,
2000), which is global data that is only available
to the owning thread. When each new interface
is invoked, the stub receives the identifier from
the thread-specific storage, creates a record with
it, and stores a number identifying its position in
the call chain. After control returns to the caller
stub, the last record is generated and the call chain
record completed.

Whenever a new thread is created by the ap-
plication, the parent thread identifier is stored
along with the new thread identifier to help identify
the logical call chain in cases where threads are
spawned by user-application code. Event data

is stored in a memory buffer during application
execution and is dumped to a file regularly as
the buffer becomes full. An off-line data collec-
tor picks up the different files for the different
processes and loads them into a database. The
analyzer component processes the data and con-
structs entire call graphs. The end-to-end timing
latency of call scenarios is calculated from the
timestamps and latencies calculated from their
deltas.

MCBS also allows the comparison of mea-
surement overhead against normal (uninstru-
mented) operation. This comparison measures
the instrumented execution timing with timings
collected from the original application that has
been manually instrumented. The manual in-
strumentation is restricted to a single function
at a time to minimize overhead. Table 6 shows
performance data for a sample application. The
sample scenarios are known to have deterministic
functionality, that is, they perform the same set
of actions every time.

MCBS can reduce measurement overhead
by profiling only specific components of the ap-
plication. Component selection can be achieved
in two ways:

Function Average
(msec)

Standard
Deviation

(msec)

Average
(msec)

Standard
Deviation

(msec)

Interference

EngineController::print 1.535 0.158 1.484 1.288 3.4%

DeviceChannel::is_supplier_set 1.865 0.054 1.236 0.025 50.9%

IO::retrieve_from_queue 10.155 0.094 9.636 0.094 5.4%

GDI::draw_circle 95.066 10.206 85.866 11.342 10.7%

RIP::notify_downstream 13.831 2.377 11.557 0.381 19.7%

RIP::Insert_Obj_To_DL 2.502 0.141 1.879 0.127 33.2%

IO::push_to_queue 13.626 0.298 13.580 2.887 0.3%

UserApplication::notified 0.418 0.04 0.282 0.099 48.3%

Render::deposit_to_queue 0.529 0.097 0.358 0.010 47.8%

Render::render_object 7.138 2.104 6.280 0.074 13.6%

Render::retrieve_from_queue 0.501 0.040 0.318 0.010 57.6%

Table 6. Overhead of instrumentation due to probes inserted in stubs and skeletons

179

Dynamic Analysis and Profiling of Multithreaded Systems

•	 Statically prior to executing, where moni-
tored components are selected and the ap-
plication is then run. The application must
be stopped and restarted if the selected set
of components changes.

•	 Dynamically while the application is run-
ning, where the monitored components can
be selected at runtime. Dynamic selection
helps developers focus on problem area and
analyze it without incurring overhead due
to measurement of other components.

Li (2002) has implemented both approaches
and suggests that static selection is more straight-
forward (in terms of instrumentation effort) than
dynamic selec tion. Dynamic selection is more
complicated because it must avoid data incon-
sistency that can arise if a component proc ess
receives an off event, where monitoring is forced
to stop during a run. Modifying instrumentation
dynamically thus relies on the system reaching
a steady state.

The current MCBS prototype is restricted
to synchronous remote procedure calls. It does
not support dynamic function invocations (e.g.,
through CORBA DII) nor does it support stub-
less colocated objects.

OVATION

OVATION (Object Computing Incorporated,
2006; Gontla, Drury, & Stanley, 2003) is a dis-
tributed monitoring framework that uses similar
concepts as the MCBS framework. It is, however,
specifically targeted to CORBA middleware and
has been tested on both TAO (Schmidt, Natara-
jan, Gokhale, Wang, & Gill, 2002) and JacORB
(Brose, 1997).

The OVATION tool uses CORBA Portable
Interceptors (OMG, 2002) to insert probes. Por-
table Interceptors are based on the Interceptor
pattern (Schmidt et al., 2000), which allows
transparent addition of services to a framework
and automatic triggering of these services when

certain events occur. Whenever a CORBA client
calls a server component client stub and server
skeleton interceptors are invoked. Each intercep-
tor can perform any arbitrary function, such as
timestamping an event or recording information
about a call to a log file.

OVATION provides a number of predefined
probes, including:

•	 Snooper Probe, which captures CORBA
operation information, such as request name,
arguments, request start time, end time and
the threads and the processes to which an
operation belongs;

•	 Milestone Probe, which permits the manual
demarcation of specific events in the applica-
tion code; and

•	 Trace Probe, which is used to capture
information about the other non-CORBA,
C++ or Java object method calls.

OVATION also allows users to add their own
custom probes to the monitoring framework. This
feature allows develop ers to profile application-
specific characteristic without changing their
source code. Moreover, custom probes can be
dynamically enabled and disabled at run time.

Call graphs among components, along with
latency measurements, are reconstructed for each
scenario. OVATION generates log files during
program execution that contain information detail-
ing proc esses, threads, and objects involved in the
interaction. The OVATION visualizer transforms
the log file into a graphi cal representation of the
recorded remote object interactions. An example
screenshot from the visualizer showing measured
call sequences is illustrated in Figure 9.

Summary of operating System and
Middleware Profiling Techniques

All applications interact with the operating sys-
tem and many interact with middleware services
for distributed communication, fault tolerance,

Dynamic Analysis and Profiling of Multithreaded Systems

180

security, resource management, and so forth.
Measuring behavior in the layers that supports
application execution is crucial to gaining a com-
plete understanding of the broader system because
applications share resources (e.g., memory, files
and devices) via these layers. Complex interac-
tions and dependencies are often hidden and not
obviously understood by the systems engineer. As
large-scale systems are integrated together, these
hidden dependencies result in resource conflicts
and “causal chains” that lead to unexpected, and
often undesirable, behavior. The tools described in
this section allow profiling of execution that passes
through the operating system and middleware lay-
ers. One challenge faced by these tools and their
users is mapping these behaviors to higher-level
application and distributed events.

Virtual machine profiling
techniqueS

The use of virtual machine, such as the Java
Virtual Machine and the Microsoft Common

Run time Language (CLR), is becoming increas-
ingly common in enterprise applications where
portability and security are key requirements.
Figure 10 illustrates a typical VM-based applica-
tion architecture where each user application is
independently layered above the VM.

The use of VMs to run “managed programs”
lends itself to more portable profiling. For example,
dynamic instrumentation of complete binaries for
VM platforms is more straightforward because
the bytecode represents a hardware agnostic, and
more abstract representation, of the binary code
(Gosling, 1995).

In general, profiling strategies for VMs, such
as sampling and instrumentation, are comparable
to their native counterparts; the main factors that
determine effectiveness of a given approach in-
clude (1) implementation complexity, (2) incurred
time/space overhead, and (3) level of detail in the
output. This section describes different methods
used for VM profiling and evaluates the advan-
tages and disadvantages of each.

Figure 9. Screenshot of the OVATION visualization tool

181

Dynamic Analysis and Profiling of Multithreaded Systems

Sampling-Based VM Profiling

One approach to profiling applications that execute
in a VM environment is to sample the execu-
tion state (i.e., program counter value and call
stack) at periodic timer-driven intervals. Whaley
(2000) demonstrates the use of such timer-driven
sampling via a “samping profiler” that examines
threads within the JVM process corresponding to
the Java application being profiled. The profiler
then periodic traverses the operating system’s
thread queues, and for each active Java thread,
retrieves the register state (program counter and
stack pointer) as well as the current time. In effect,
this is a combination of operating system level
profiling with the restriction on VM processes
(i.e., crossing the OS-VM boundary).

Although sampling-based profiling meth-
ods are relatively lightweight, they are sus-
ceptible to certain prob lems (Subramaniam &
Thazhuthaveetil, 1994), including:

•	 Straddling effect of counters: the initial
analysis to segregate the bytecode for dif-
ferent methods will be approximate, causing
inconsistent results;

•	 Short submethods: short-lived calls that
take less time than the sampling frequency
may not be re corded at all; and

•	 Resonance effects: the time to complete a
single iteration of a loop can coincide with
the sampling period, which may sample the
same point each time, while other sections
are never measured.

These problems can be avoided by using
techniques described in Subramaniam and
Thazhuthaveetil (1994). To obtain a consistent pic-
ture of application behavior, however, a significant
number of runs must be performed. This number
will vary from application to application, so the
sampling period may also require configuration
for each application.

Bytecode Counting

Another instance of VM sampling-based profiling
is Komorium (Binder, 2005). Komorium does not
check the program counter at regular intervals.
Instead, a snapshot of the call stack is recorded by
each thread after a certain number of bytecodes
are executed. The motivation for this approach is
that bytecode counting is a platform-independent
metric that does not depend upon VM-specific
profiling services. Bytecode counting can also be
done without on the need for low-level platform-
dependent utilities to acquire resource usage
data, thus making it more port able and easier to
maintain.

Komorium relies on the periodic activation of
a user-defined profiling agent to process samples
of the call stack. Bytecode rewriting is used to
pass the current call stack of the caller into the
profiling function. To schedule regular activation
of the custom profiling function, each thread
maintains an activation counter (ac) that represents
the upper bound of the number of executed byte-
codes since the last invocation. The active count
is decremented at given points in the code. The

Figure 10. Applications running on virtual machine

Dynamic Analysis and Profiling of Multithreaded Systems

182

default behavior is to update the active count at the
beginning of each basic block, which is defined
as a sequence of bytecode that end with a control
flow instruction. At each decrement, a consump-
tion check is made to determine whether the
custom agent (processSample) should be called.
The following excerpt illustrates in pseudo-code
the Komorium binary rewriting: (Box 7)

Binder, Hulaas, and Villaz (2001) evaluated
the Komorium approach through experimentation.
They showed that their approach could sample
at an accuracy of 91% using an overlapping per-
centage metric (Arnold & Ryder, 2001). The best
results were obtained from a profiling granularity
of 5,000-10,000 bytecodes per sample, resulting
in an average overhead of 47-56% for a 10,000
bytecode granularity.

VM sampling-based profiling provides an ef-
fective method of collecting temporal information
relating to program control. These techniques are

can be used to determine task latency, jitter, and
execution quanta, as well as to identify patterns
of processor migration.

Profiling via VM Hooks

A VM hook represents an access point to a previ-
ously defined event, such as method entry/exit or
thread start/stop, that can occur within the context
of a running application. The profiling agent
implements callback methods on the profiling
interface and regis ters them with the appropriate
VM hooks. The VM then detects the events and
invokes the corresponding callback method when
these events occur in the application. It is straight-
forward to develop profilers based on VM hooks
because profiler developers need only implement
an interface provided by the VM, without worry-
ing about the com plications that can arise from
modifying the application directly.

// Pseudo Java code illustrating Komorium re-writing. bold represents additional
// code added by Komorium.
//
// ac = per-thread activation counter representing the upper bound of the
// number of executed bytecodes
//
// mids, sp = represents reifed method ids, stack pointer pair
//
class Foo {
 private static final MID mid_sum;
 static {
 String cl = Class.forName(“Foo”).getName();
 mid_sum = createMID(c1, “sum”, “(II)I”);
 }

 static int sum(int from, int to, ac ac, mid[] mids, int sp) {

 mids[sp++] = mid_sum;
 decrementAC(2);
 if(getValue(ac) <= 0)
 setValue(ac, processSample(mids, sp));

 int result = 0;

 while(true) {

Box 7.

continued on following page

183

Dynamic Analysis and Profiling of Multithreaded Systems

Although the VM and profiling agent provide
the monitoring infrastructure, profiler develop-
ers are responsible for certain tasks, such as
synchronization. For example, multithreaded
applications can spawn multiple instances of the
same event simultaneously, which will invoke the
same callback method on the same instance of
the profiling agent. Callbacks must therefore be
made reentrant via synchronization mechanisms,
such as mutexes, to avoid compromising profiler
internal state.

The Microsoft Common Language Runtime
(CLR) profiler and the Java Virtual Machine
Tool Interface (JVMTI) are two examples of
VM profilers that that support VM hooks, as
described below.

CLR Profiler

The CLR Profiler (Hilyard, 2005) interface allows
the integration of custom profiling functionality

provided in the form of a pluggable dynamic
link library, written in a native language like C
or C++. The plug-in module, termed the agent,
accesses profiling services of the CLR via the
ICorProfilerInfo2 interface. The agent must
also implement the ICorProfilerCallback2
interface so the CLR can call the agent back to
indicate the occurrence of events in the context
of the profiled application.

At startup, the CLR initializes the agent and
sets the events of in terest. When an event occurs,
the CLR calls the corresponding method on the
ICorProfilerCallback2 interface. The
agent can then inspect the execution state of the
application by calling methods back on the CLR
(ICorProfilerInfo2).

Figure 11 shows the series of communications
triggered by each function entered in the CLR
execution. In this example, in between processing
function enter/exit call-backs, the profiling agent
requests a stack snapshot so it can identify the

Box 7. continued

 decrementAC(3);
 if(getValue(ac) <= 0)
 setValue(ac, processSample(mids, sp));
 if(from > to) {
 decrementAC(2);
 if(getValue(ac) <= 0)
 setValue(ac, processSample(mids, sp));
 return result;
 }
 decrementAC(7);
 if(getValue(ac) <= 0)
 setValue(ac, processSample(mids, sp));

 result += f(from, ac, mids, sp);
 ++from;
 }
 }

 static int sum(int from, int to) {
 Thread t = Thread.currentThread();
 return sum(from, to, ac, new MID[STACKSIZE], 0);
 }
}

Dynamic Analysis and Profiling of Multithreaded Systems

184

fully qualified method name and also the call’s
parent, that is, the method from which the method
being traced was called.

Inspecting the stack to determine parental
methods (and ultimately the call-chain) is a useful
technique for disambiguating system calls. For ex-
ample, this approach can be used to disambiguate
different lock calls so that per-lock information
(e.g., hold and wait times) can be correlated with
different call sites in the source code.

JVMTI Profiler

The JVMTI (Sun Microsystems Corporation,
2004) is similar to the CLR Profiler Interface in
that it requires a plug-in, which is im ple mented
as a dynamic link library using a native language
that supports C. The JVM interacts with the agent

through JVMTI functions, such as Agent _ On-
Load() and Agent _ OnUnload(), which
are exported by the agent. The JVM sup plies a
pointer, via the Agent _ Onload() call, that
the agent can use to get an instance of the JVMTI
environment. The agent can then use this pointer
to access JVMTI features, such as reading the
state of a thread, stopping/interrupting threads,
obtaining a stack trace of a thread, or reading
local variable information. The agent uses the
SetEventCallbacks() method to pass a
set of function pointers for different events it is
interested. When events oc cur, the corre sponding
function is called by the JVM, which allows the
agent to record the state of the application.

Although the CLR and JVMTI profilers share
many common features, such as events related to
methods or threads and stack tracing ability, there

Figure 11. Messaging sequence of CLR profiling

185

Dynamic Analysis and Profiling of Multithreaded Systems

are differences. For example, the JVMTI provides
application-specific details, such as the method
name, object name, class name, and parameters,
from the calls, whereas the CLR interface pro-
vides them in a metadata format and details can
only be extracted using the metadata API, which
is tedious. The JVMTI also provides additional
features compared to the CLR, including monitor
wait and monitor waited, which provide informa-
tion related to thread blocking on critical sections
of code.

Research (Reiss, 2003, 2005) has shown that
the JVMTI interface incurs significant runtime
overhead because the profiling agent is written in
a native language, so JNI calls (Sun Microsystems
Corporation, 2002) are needed to call this agent.
JNI calls can incur significant overhead because
they perform actions such as saving registers,
marshaling argu ments, and wrapping objects
in JNI handles (Dmitriev, 2002). This overhead
may not be acceptable for some applications, so
the explicit bytecode instrumentation approach
described in the next section may be a less costly
solution because it does not use JNI.

application code instrumentation

Although sampling- and hook-based instrumenta-
tion can be performed with relatively little over-
head, the breadth of the information collected is
limited and often insufficient to build application-
level detail. An alternative is to instrument the
application’s bytecode directly. Bytecode instru-
mentation inserts functionality (in the form of
additional bytecodes) that performs application
profiling within compiled code. The Komorium
work discussed previously is a form of byte code
instrumentation. However, we differentiate the
discussion in this section by instrumentation that
is driven directly by the application logic.

As a general approach, bytecode instrumen-
tation involves redefining classes that are going
to be profiled by re placing the original bytecode
with instrumented code that contains logging ac-

tions triggered by specific events. This approach
en ables the use of application-specific events for
profiling, such as transac tion completion or data
regarding critical sec tions of the application.
Bytecode instrumenta tion has in most instances
less overhead and greater flexibility than using
VM-provided profiling interfaces. Nevertheless,
the responsibility of implementing measurement
functionality lies with the profiler user.

There are several approaches to bytecode
instrumentation, including:

•	 Static instrumentation, which involves
changing the compiled code off-line be-
fore execution that is, creating a copy of
the instrumented intermediate code. Many
commercial profilers, such as OptimizeIt
(Borland Software Corporation, 2006),
work this way. Static instrumentation has
also been implemented by Reiss (2003) and
later ex tended in Reiss (2005).

•	 Load-time instrumentation, which calls the
agent before loading each class, and passes it
the bytecode for the class that can be changed
by the agent and returned. The JVMTI/CLR
profiler interfaces are examples of load-time
instrumentation.

•	 Dynamic instrumentation, which works
when the application is already running
and also uses a profiler interface (Dmitriev,
2002). The agent makes a call to the VM
passing it the new definitions of the classes
that are installed by the VM at runtime.

Like other forms of code modification, dynam-
ic instrumentation supports “fix and continue”
debugging, which avoids lengthy exit, recompile,
and restart cycles. It also helps reduce application
overhead by enabling developers to (1) pinpoint
specific regions of code that are experiencing per-
formance problems at runtime and (2) instrument
the classes’ involved, rather than instrumenting
the entire application. Instrumented classes can
be replaced with the original ones after sufficient
data is collected.

Dynamic Analysis and Profiling of Multithreaded Systems

186

Dynamic instrumentation of bytecode is
typically more straightforward than dynamic
instrumentation of low-level machine instructions
because of the higher level of abstraction. More-
over, modifying bytecode provides a more portable
solution that is largely agnostic to the underlying
operating system and hardware platform.

Within the context of Java, the JVMTI provides
a method known as RedefineClasses() that a
profiler agent can use to insert “new” bytecode into
an existing class. When this method is invoked,
the JVM performs all the steps needed to load a
class, parse the class code, create objects of the
class, and initializes them. After these steps are
complete, the JVM performs hot-swapping by
sus pending all threads and replacing the class,
while ensuring that all pointers are updated to
point to the new object (Dmitriev, 2001).

These dynamic instrumentation activities can
incur significant overhead in production environ-
ments and thus must be accounted for accord-
ingly. Some research is investigating techniques
to minimize the overhead incurred by dynamic
instrumentation. For example, work by Dmitriev
(2002) is investigating the use of “method swap-
ping” so that bytecode replacement can be done
at a finer granularity than class-level replacement.
Similar techniques are also being explored within
the context of the .NET platform (Vaswani &
Srikant, 2003).

A number of tools have been developed to
help instrument bytecode, much like the Pin API
described earlier. Examples include BIT (Lee,
1997) and IBM’s Jikes Bytecode Toolkit (IBM
Corporation, 2000). These tools shield application
developers from the complexity of bytecode by
providing an API that can be used to parse and
modify it.

•	 The three bytecode instrument techniques
(i.e., static, load-time, and dynamic) incur
similar overhead. Dy namic bytecode instru-
mentation is more powerful, but is generally
more complex and error-prone than static

and load time instrumentation. Dynamic in-
strumentation also requires creating “new”
objects of the “new” classes correspond-
ing to all “old” objects in the application,
initializing their state to the state of the old
object, suspend the running threads, and
switching all pointers to the “old” objects to
the “new” objects. This replacement process
is compli cated, so application state may be
in consistent after the operation, which can
cause incorrect behavior.

•	 Static and load-time instrumentation are
generally easier to implement than dynamic
instrumentation because they need not
worry about the consistency of a running
application. Dynamic instrumentation has
a broader range of applicability, however, if
done efficiently. Current research (Dmitriev,
2002, 2004) is focusing on how to make
dynamic instrumentation more efficient and
less complicated.

aspect-oriented techniques used
for instrumentation

Although explicit bytecode instrumentation is
more flexible and incurs less overhead than VM
hooks, the im plementation complexity is higher
because developers must be highly skilled in
bytecode syntax to instrument it effectively with-
out corrupting application code. Aspect-oriented
Programming (AOP) helps remove this com plexity
and enables bytecode instrumenting at a higher
level of abstraction. Developers can therefore
focus on the logic of the code snippets and the
appropriate insertion points, rather than wrestling
with low-level imple mentation details (Davies,
Huismans, Slaney, Whiting, & Webster, 2003).
Relevant AOP concepts include (1) join-points,
which define placeholders for instru mentation
within application code, (2) point-cuts, which
identify a selection of join-points to instrument,
and (3) advice, which specifies the code to insert
at the corresponding join-point.

187

Dynamic Analysis and Profiling of Multithreaded Systems

AspectWerkz (Boner, 2004) is a framework
that uses AOP to support static, load-time, and
dynamic (runtime) instrumentation of bytecode.
The advantages and disadvantages of the various
techniques are largely similar to those discussed
earlier. There are also aspects to consider when
using an AOP-based approach, however, which
we discuss below.

The AOP paradigm makes it easier for develop-
ers to insert profiling to an existing application by
defining a profiler aspect consisting of point-cuts
and advice. The following excerpt illustrates the
use of AspectWerkz to define join-points before,
after, and around the execution of the method
HelloWorld.greet(). The annotations in
the comments section of the Aspect class express
the semantics, for example, “@Before execu-
tion (* <package _ name>.<class _
name>.<method _ name>)” means the
method will be called before the execution of the
<method _ name> mentioned.

//
//
package testAOP;

import org.codehaus.aspectwerkz.joinpoint.JoinPoint;

public class HelloWorldAspect {
 /**
 * @Before execution(* testAOP.HelloWorld.greet(..))
 */
 public void beforeGreeting(JoinPoint joinPoint) {
 System.out.println(“before greeting...”);
 }

 /**
 * @After execution(* testAOP.HelloWorld.greet(..))
 */
 public void afterGreeting(JoinPoint joinPoint) {
 System.out.println(“after greeting...”);
 }

 /**
 * @Around execution(* testAOP.HelloWorld2.greet(..))
 */
 public Object around_greet (JoinPoint joinPoint) {
 Object greeting = joinPoint.proceed();
 return “<yell>” + greeting + “</yell>”;
 }
}

Advice code can be written in the managed
language, so there is no need to learn the low-level
syntax of bytecode because the AOP framework
can handle these details. The bulk of the effort
therefore shifts to learning the framework rather
than bytecode/IL syntax, which is advanta geous
because these frameworks are similar even if
the target application language changes, for
example, from Java to C#. Another advantage is
the increased reliability and stability provided by
a proven framework with dedicated support. For
example, developers need not worry about prob-
lems arising with hot-swap or multiple threads
being profiled because these are handled by the
framework.

Some problems encountered by AOP ap-
proaches are the design and deployment over-
head of using the frame work. AOP frameworks
are generally extensive and contain a gamut of
configuration and deployment options, which
may take time to master. Moreover, developers
must also master another framework on top of
the actual application, which may make it hard
to use profiling extensively. Another potential
drawback is that pro filing can only occur at the
join-points provided by the framework, which is
often restricted to the methods of each class, that
is, before a method is called or after a method
returns. Application-specific events occurring
within a method call therefore cannot be profiled,
which means that nondeterministic events cannot
be captured by AOP profilers.

Summary of Virtual machine
Profiling Techniques

Java and C# are two prominent VM-based lan-
guages that are becoming increasingly dominant
in the development of enterprise-style systems.
The advantage of ease-of-use, security and porta-
bility is driving their success. Nevertheless, from
a run-time analysis and profiling perspective,
they do pose additional challenges by executing
programs in a “hidden” VM. The tools in this

Dynamic Analysis and Profiling of Multithreaded Systems

188

section can be used to extend profiling capabili-
ties into a VM environment.

The decision to choose a particular profiling
technique depends upon application requirements.
The following criteria are useful to decide which
approach is appropriate for a given applica tion.

•	 Sampling is most effective when there is a
need to minimize runtime overhead and use
profiling in produc tion deployments, though
application-specific logical events may not
be tracked properly.

•	 The simplest way to implement profiling is
by using the JVMTI/CLR profiling inter-
face, which has the short est development
time and is easy to master. Detailed logical
events may not be captured, however, and
the overhead incurred may be heavier than
bytecode/IL instrumentation.

•	 Bytecode/IL instrumentation is harder to
implement, but gives unlimited freedom to
the profiler to record any event in the ap-
plication. Implementing a profiler is harder
than using the JVMTI/CLR profiling inter-
face, however, and a detailed knowledge of
bytecode/IL is required. Among the different
bytecode/IL instru mentation ways, com-
plexity of implementation increases from
static-time instrumentation to load-time to
dynamic instrumentation. Dynamic instru-
mentation provides powerful features, such
as “fix and continue” and runtime problem
tracking.

•	 The use of an AOP framework can reduce
the development complexity and increase
reliability because byte code/IL need not be
manipulated directly. Conversely, AOP can
increase design and deployment overhead,
which may make it unsuitable for profiling.
Moreover, application-level events may be
hard to capture us ing AOP if join-points
locations are limited.

hardware-baSed profiling
techniqueS

Previous sections have concentrated on modifica-
tions to program code (e.g., via instrumentation) or
code that implements the execution environment
(e.g., VM profiling). This section describes hard-
ware profiling tech niques that collect behavioral
information in multithreaded systems, focusing on
two main categories of hardware-based profiling
solutions: on-chip performance count ers and on-
chip debugging/in-circuit emulation interfaces.

on-chip performance counters

On-chip debugging/profiling interfaces are spe-
cialized circuitries that are added to a microproces-
sor to collect events and measure time. Modern
COTS processors provide on-chip perform ance
monitoring and debugging support. On-chip,
performance-monitoring support includes select-
able counting registers and time stamping clocks.
The In tel Pentium/Xeon family of processors and
the IBM PowerPC family of processors both pro-
vide these perform ance monitoring features (Intel
Corporation, 2006a; IBM Corporation, 1998).

For example, the Intel Xeon processor pro-
vides one 64-bit timestamp counter and eighteen
40-bit-wide Model Spe cific Registers (MSR) as
counters (different processor models have a dif-
ferent number of performance counters available).
Each core (in a multicore configuration) has its
own timestamp counter and counter registers.
The timestamp counter is incremented at the
processor’s clock speed and is constant (at least
in later versions of the processors) across multiple
cores and processors in an SMP environment.
Time stamp counters are initially synchronized
because each is started on the processor RESET
signal. Timestamp counters can be written to
later, however, potentially get them out of sync.
Counters must be carefully synchro nized when
accessing them from different threads that po-
tentially execute on different cores.

189

Dynamic Analysis and Profiling of Multithreaded Systems

The performance counters and timestamp
MSRs are accessed through specialized machine
instructions (i.e., RDMSR, WRMSR, and RDTSC)
or through higher-level APIs such as the Perfor-
mance Application Programming Interface (PAPI)
(London, Moore, Mucci, Seymour, & Luczak,
2001). A set of control regis ters are also provided
to select which of the available performance
monitoring events should be maintained in the
available counter set. The advantages of using
on-chip performance counters are: (1) they do
not cost any thing in addition to the off-the-shelf
processor and (2) they can be used with a very
low overhead. For instance, copying the current
64-bit timestamp counter into memory (user or
kernel) through the Intel RDTSC instruction costs
less than 100 cycles.

Countable events on the Intel Xeon processor
include branch predictions, prediction misses,
misaligned mem ory references, cache misses
and transfers, I/O bus transactions, memory bus
transactions, instruction decoding, micro-op
execution, and floating-point assistance. These
events are counted on a per-logical core basis, that
is, the Intel performance counter features do not
provide any means of differentiating event counts
across different threads or processes. Certain ar-
chitectures, however, such as the IBM PowerPC
604e (IBM Corporation, 1998), do provide the
ability to trigger an interrupt when performance
counters negate or wrap-around. This interrupt
can be fil tered on a per processor basis and used
to support a crude means of thread-association
for infrequent events.

On-chip performance counters have limited
use in profiling characteristics specific to multi-
threaded programming. Nevertheless, on-chip
timestamp collection can be useful for measur-
ing execution time intervals (Wolf, 2003). For
example, measurement of context switch times of
the operating sys tems can be easily done through
the insertion of RDTSC into the operating system-
kernel switching code. Coupling time stamp
features with compiler-based instrumentation

can be an effective way to meas ure lock wait
and hold times.

on-chip debugging interfaces and
in-circuit emulators (ice)

Performance counters are only useful for counting
global events in the system. Additional functional-
ity is therefore needed to perform more powerful
inspection of execution and register/memory
state. One way to provide this functionality is by
augmenting the “normal” target processor with ad-
ditional functionality. The term in-circuit emulator
(ICE) refers to the use of a substitute processor
module that “emulates” the target micro processor
and provides additional debugging functionality
(Collins 1997).

ICE modules are usually plugged directly into
the microprocessor socket using a specialized
adapter, as shown in Figure 12. Many modern
microprocessors, however, provide explicit sup-
port for ICE, including most x86 and PowerPC-
based CPUs. A special debug connector on the
motherboard normally provides access to the
on-chip ICE features.

Two key standards define debugging function-
ality adopted by most ICE solutions: JTAG (IEEE,
2001) and the more recent Nexus (IEEE-ISTO,
2003). The Nexus debugging interface is a super-
set of JTAG and consists of between 25 and 100
auxiliary message-based channels that connect
directly to the target processor. The Nexus speci-
fication defines a number of different “classes”
of support that represent different capability sets
composed from the following sets:

•	 Ownership trace messaging (OTM), which
facilitates ownership tracing by providing
visibility of which process identity (ID)
or operating system task is activated. An
OTM is transmitted to indicate when a new
process/task is activated, thereby allowing
development tools to trace ownership flow.
 For embedded processors that implement

Dynamic Analysis and Profiling of Multithreaded Systems

190

virtual addressing or address translation,
moreover, an OTM is also transmitted
periodically during runtime at a minimum
frequency of every 256 Pro gram/Trace mes-
sages.

•	 Program trace via branch trace messaging
(BTM), where messages are triggered for
each change in pro gram flow discontinuity
as a result of either a branch decision or an
exception. Control flow can be corre lated to
program code, where the code is static. BTM
messages include timestamp information
and the full target-branch address. Thread/
task ownership can be correlated from the
last received OTM message.

•	 Data trace messaging (DTM), where a mini-
mum of two trace windows define the start
and end memory addresses that should be
monitored. DTM messages are dispatched

on each read and write of memory in the
defined range. Depending on the type of
DTM message, a timestamp, the data value
read/written, the address of memory access,
the current mapped page, and a control flow
association are included.

•	 Runtime system memory substitution via
memory substitution messaging (MSM),
which has the ability to substitute portions
of memory with new code passed from the
debugging host via the Nexus interface.
Triggers for substitution are exit, reset, and
watchpoints.

•	 Signal watchpoint and breakpoint events,
which are used to indicate that specific
instruction addresses or data addresses (con-
ditional) have been accessed. Watchpoints
are a variation of breakpoints that do not halt
the target processor. Both watchpoints and
breakpoints can be set to operating system
and runtime library functions of interest,
such as thread control and synchroniza-
tion.

Nexus and JTAG-compatible devices can
be chained together and read from the same
debugging host, which is particularly useful for
SMP and multi-core environments, where the
profiling needs to collate events from dif ferent
processors.

On-chip debugging interfaces and ICE solu-
tions provide a primitive means for extracting low-
level behavior of a program. They are particularly
useful at collecting “raw” low-level details of ex-
ecution, such as control flow and memory activity,
that in turn can be used to assure absence of race
conditions, deadlock, and so forth. For example,
the following approach might be used to ensure
that a program is free of race-conditions:

•	 Identify address ranges for memory that are
shared across one or more threads.

•	 Identify addresses for synchronization locks
and/or functions.

Figure 12. Example ICE adapter and ICE module

191

Dynamic Analysis and Profiling of Multithreaded Systems

•	 Establish data-write triggers for identified
memory addresses and record triggered
events over the execution of the program
in a test run.

•	 Ensure that the appropriate sequence of take
lock, access memory (N times), release lock,
is followed.

Of course, because this type of profiling is
dynamic, the properties can only be ensured for
the states the pro gram entered during the test.

Summary of hardware-based
Profiling Techniques

Hardware profiling is typically reserved for
embedded and safety-critical system where un-
derstanding and ensuring system behav ior is of
utmost im portance. Although hardware profiling
can be relatively costly, it offers the following ad-
vantages over software profiling solutions:

•	 Nonintrusive data collection. Behavioral
data can be collected with little or no impact
on normal execu tion of the target system.

•	 Support for fine-grained data collection.
High frequency data can be precisely col-
lected at speeds commensurate with proces-
sor/bus clock speeds.

•	 Off-chip inspection capability. Elements of
behavior, such as bus and cache interconnect
activity, that do not propagate directly into
a general-purpose CPU, can be inspected.

Hardware profiling is particularly advanta-
geous for analyzing certain types of system
behavior (such as memory cache hits/misses) that
are not easily inspected through software means.
Nevertheless, while hardware profiling excels at
inspec tion of fine-grained system events, deriving
higher-level measures can be harder. For example,
using a hard ware pro filer to determine the level
of concurrency in a system would be hard.

future trendS

This section discusses emerging and future
technological trends in the behavioral analysis
of systems.

increased focus on Synergies
between Static and dynamic
analysis techniques and tools

Since there is no single approach to system pro-
filing that addresses every need, we believe that
the most effective approach is to use a combina-
tion of static and dynamic analysis to provide a
more complete picture of system behavior. Static
analysis can be used to explore all possible paths
of execution and statistically proportion their
execution likelihood. Likewise, dynamic analysis
can be used to collect more precise information
for concrete instances of a program execution.

New tools and techniques are needed, however,
that strategically combine static and dynamic
analysis, and that partition the system into well-
defined “behavioral containers.” As an example
of such tools, work by Artho and Biere (2005)
has developed generic analysis algorithms that
can be applied in either a static or dynamic
context. This solution has been demonstrated
within the context of software fault detection,
whereby faults identified through static analysis
are subsequently verified by actual execution and
dynamic analysis.

greater emphasis on probabilistic
assurance of dynamic System
behavior

Even when static and dynamic analysis techniques
are combined, certain behavioral properties of
large-scale dynamic soft ware systems are still
hard to measure and assure precisely, including
absence of deadlock and live lock conditions,
effec tive parallelism, and worst-case execution
time. These properties can often be assured to a

Dynamic Analysis and Profiling of Multithreaded Systems

192

given statistical probability, though both dynamic
and static analyses are unable to provide abso-
lute assurance in all cases. Even techniques like
explicit-state model checking can only provide
assurance in very small systems, where interaction
with the external environment is well understood
and con trolled.

A key reason these properties are hard to mea-
sure accurately stems from sources of (apparent)
nondeterminism in today’s software systems.
Deep causal chains, multiple levels of caching,
and unpredictable interactions between threads
and their environment lead to an incomprehensible
number of behavior patterns. The openness of
operating systems in their external interactions,
such as networks, devices, and other processors,
and the use of throughput-efficient-scheduling
strategies, such as dynamic priority queues and
task preemption, are the principal cause of such
behavioral uncertainty. Although real-time and
safety-critical operating systems try to ensure
higher levels of determinism by applying con-
straints on execution, such as off-line scheduling,
resource reser vation, and cache disabling, these
solutions are often not applicable for general-
purpose systems.

New tools and techniques are needed, there-
fore, that can assure behaviors of dynamic systems
with greater probability. Examples include system
execution modeling (SEM) tools (Hill, Schmidt,
& Slaby, 2007) that enable software architects,
developers, and systems engineers to explore
design alternatives from multiple computational
and valuation perspectives at multiple lifecycle
phases using multiple quality criteria with multiple
stakeholders and suppliers. In addition to validat-
ing design rules and checking for design confor-
mance, SEM tools facilitate “what if” analysis of
alternative designs to quantify the costs of certain
design choices on end-to-end system performance.
For example, SEM tools can help empirically
determine the maximum number of components
a host can handle before performance degrades,
the average and worse response time for various

workloads, and the ability of alternative system
configurations and deployments to meet end-to-
end QoS requirements for a particular workload.
Although the results of SEM tool analysis are
probabilistic—rather than absolute—they still
provide valuable information to users.

implicit Support for measurement of
infrastructure Software and
processors

Infrastructure software (such as operating sys-
tems, virtual machines, and middleware) and
processors increasingly provide measurement
logic that collects behavioral information during
multithreaded system execution. Although these
capabilities are useful, they are often provided as
add-ons, rather than being integrated seamlessly
into the infrastructure software and processors.
As a result, the measurement hooks are often not
available when needed or undue effort is required
to configure and optimize them.

New tools and techniques are needed, there-
fore, to provide implicit support for measuring of
infrastructure software and processors. In particu-
lar, the ability to measure and monitor behavior
of the system should be a first class concern.

total-System measurement that
relates and combines microscopic
measurements together to give a
Unified View of System Behavior

The nondeterministic nature of today’s large-scale
systems is exacerbated by the lack of integration
between various microscopic measurement tech-
niques—both in hardware and in software—and
the need for a broader perspective in reasoning
about and analyzing end-to-end system behavior.
This problem is particularly acute in distributed
real-time and embedded (DRE) systems that must
combine hardware and software components to
meet the following challenging requirements:

193

Dynamic Analysis and Profiling of Multithreaded Systems

As distributed systems, DRE systems require
capabilities to measure the quantity/quality of con-
nections and message transfer between separate
machines,

As real-time systems, DRE systems require
predictable and efficient control over end-to-end
system resources, such as memory, networks, and
processors, and

As embedded systems, DRE systems have
weight, cost, and power constraints that limit their
computing and memory resources.

Microscopic measurements of such DRE
systems often fail to provide a unified view of
system behavior, which makes it hard to assure
that the systems meet their functional and QoS
requirements.

New tools and techniques are needed, therefore,
to provide total-system measurement that provides
a unified view of system behavior. An example of
such a tool is Intel’s VTune Performance Analyzer
(REF). This tool combines behavioral informa-
tion from the microprocessor (measuring on-chip
counters), the operating system (OS-level context
switching etc.) and the application (application-

level function profiling) to provide an effective
approach to application tuning.

concluding remarKS

This chapter reviewed four approaches to analyz-
ing the behavior of software systems via dynamic
analysis: compiler-based instrumentation, oper-
ating system and middleware profiling, virtual
machine profiling and hardware-based profiling.
We highlighted the advantages and disadvantages
of each approach with respect to measuring the
performance of multithreaded and SMP systems,
and demonstrated how these approaches can be
applied in practice.

Table 7 summarizes our assessment of the util-
ity of each approach with respect to key problems
that arise in developing large-scale, multithreaded
systems. The number of dots in each category
indicates how effective the approach is for mea-
suring the corresponding characteristics (defined
previously in Table 2).

The results in Table 7 show that dynamic profil-

Compiler-based
Instrumentation

Operating System
& Middleware
Profiling

Virtual Machine
Profiling

Hardware-based
Profiling

Synchronization overhead

Task latency & jitter

Task execution quanta

Unsafe memory access

Processor migration

Priority inversion

Deadlock and livelock

Effective parallelism

Worst-case execution time

: Well suited to analysis of property
: Able to partially analyze property or is typically difficult to engineer
: Approach can be used to collect relevant data, but requires additional processing/analysis capability
No dots: Unable to analyze property effectively

Table 7. Summary of dynamic profiling capabilities

Dynamic Analysis and Profiling of Multithreaded Systems

194

ing is particularly useful where fine-grained event
data can be collected and used to derive charac-
teristics of a running system. Dynamic analysis
is weaker and less capable, when the be havioral
characteristic depends on system-wide analysis,
such as the global thread state. It is therefore
clear that runtime profiling alone is insufficient
to capture and predict a complete image of system
behavior due to the “as observed” syn drome, that
is, dynamic analysis can only assure statistical
certainty of behavior because it just collects be-
havioral data for a given execution trace.

The alternative to dynamic analysis is static
analysis, such as program analysis and model
checking. The benefits of static analysis are its
ability to (1) perform analysis without running
the system (useful for pre-integration testing),
and (2) allow the inspection of all theoretically
possible (albeit less frequent) conditions. Although
static analysis is promising in some areas, it also
cannot capture and predict a complete image of
be havior for large-scale systems. In particular,
static-analysis techniques are limited in their
practical applicability (e.g., scalability) and in
their ability to relate to wall-clock time.

Behavioral analysis technology will be increas-
ingly important as the systems we build become
larger, more parallel, and more unpredictable.
New tools and techniques that strategically
combine static and dynamic analysis—and that
partition the system into well-defined “behavioral
containers”—will be critical to the progression
along this path.

referenceS

Arnold, M., & Ryder, B. G. (2001). A framework
for reducing the cost of instrumented code. In
Proceedings of the SIGPLAN Conference on
Programming Language Design and Implementa-
tion, (pp. 168-179).

Artho, C., & Biere, A. (2005). Combined static
and dynamic analysis. In Proceedings of the 1st
International Workshop on Abstract Interpreta-
tion of Object-oriented Language (AIOOL 2005),
ENTCS, Paris. Elsevier Science Publishing.

Baxter, I. (2004). DMS: Program transformations
for practical scalable software evolution. In Pro-
ceedings of the 26th International Conference on
Software Engineering, (pp. 625-634).

Beck, M., Bohme, H., Dziadzka, M., Kunitz, U.,
Magnus, R., & Verworner, D. (1999). Linux Kernel
internals (2nd ed.). Addison Wesley Longman.

Binder, W. (2005). A portable and customizable
profiling framework for Java based on bytecode
instruction counting. In Proceedings of the Third
Asian Symposium on Programming Languages
and Systems (APLAS 2005), (LNCS 3780, pp.
178-194).

Binder, W., & Hulaas, J. (2004, October). A
portable CPU-management framework for Java.
IEEE Internet Computing, 8(5), 74-83.

Binder, W., Hulaas J., &Villaz A. (2001). Por-
table resource control in Java. In Proceedings of
the 2001 ACM SIGPLAN Conference on Object
Oriented Programming, Systems, Languages and
Applications, (Vol. 36, No. 11, pp. 139-155).

Boner, J. (2004, March). AspectWerkz—Dynamic
AOP for Java. In Proceedings of the 3rd Interna-
tional Conference on As pect-oriented develop-
ment (AOSD 2004). Lancaster, UK.

Borland Software Corporation. (2006). Borland
Optimize-it Enterprise Suite (Computer software).
Retrieved March 11, 2008, from http://www.bor-
land.com/us/products/optimizeit/index.html

Broberg, M., Lundberg, L., & Grahn, H. (1999,
April). Visualization and performance predic-
tion of multithreaded so laris programs by trac-
ing kernel threads. In Proceedings of the 13th
International Parallel Processing Symposium,
(pp. 407-413).

195

Dynamic Analysis and Profiling of Multithreaded Systems

Brose, G. (1997, September). JacORB: Implemen-
tation and design of a Java ORB. In Proceedings
of IFIP DAIS’97, (pp. 143-154).

Bruening, D. L. (2004). Efficient, transparent,
and comprehensive runtime code manipulation.
Unpublished doctoral dissertation, Massachusetts
Institute of Technology.

Buck, B., & Hollingsworth, J. K. (2000). An API
for runtime code patching. International Journal
of High Per formance Computing Applications,
317-329.

Cantrill, B., & Doeppner, T. W. (1997, January).
Threadmon: A tool for monitoring multithreaded
program perform ance. In Proceedings of the 30th
Hawaii International Conference on Systems Sci-
ences, (pp. 253-265).

Clarke, E. M., Grumberg, O., & Peled, D. A.
(2000). Model checking. Massachusetts Institute of
Technology. Cambridge, MA: The MIT Press.

Clauss, P., Kenmei, B., & Beyler, J.C. (2005, Sep-
tember). The periodic-linear model of program
behavior capture. In Proceedings of Euro-Par
2005 (LNCS 3648, pp. 325-335).

Collins, R. (1997, September). In-circuit emula-
tion: How the microprocessor evolved over time.
Dr. Dobbs Journal. Retrieved March 11, 2008,
from http://www.rcollins.org/ddj/Sep97

Cordy, R., Halpern C., & Promislow, E. (1991).
TXL: A rapid prototyping system for program-
ming language dialects. In Proceedings of the In-
ternational Conference on Computer Languages
(Vol. 16, No. 1, pp. 97-107).

Davies, J., Huismans, N., Slaney, R., Whiting,
S., & Webster, M. (2003). An aspect-oriented
performance analysis environment. AOSD’03
Practitioner Re port, 2003.

Dmitriev, M. (2001a). Safe evolution of large
and long-lived Java applications. Unpublished
doctoral disser tation, Department of Computing

Science, University of Glasgow, Glasgow G12
8QQ, Scotland.

Dmitriev, M. (2001b). Towards flexible and safe
technology for runtime evolution of Java language
applica tions. In Proceedings of the Workshop on
Engineering Complex Object-Oriented Systems
for Evolution (pp. 14-18). In As sociation with
OOPSLA 2001 International Conference, Tampa
Bay, FL, USA.

Dmitriev, M. (2002). Application of the HotSwap
technology to advanced profiling. In Proceedings
of the First Workshop on Unanticipated Software
Evolution, held at ECOOP 2002 International
Conference, Malaga, Spain.

Dmitriev, M. (2004). Profiling Java applications
using code hotswapping and dynamic call graph
revelation. In Proceedings of the 4th International
Workshop on Software and Performance, Red-
wood Shores, CA, (pp. 139-150).

Fernandez, M., & Espasa, R. (1999). Dixie: A
retargetable binary instrumentation tool. In Pro-
ceedings of the Workshop on Binary Translation,
held in conjunction with the International Confer-
ence on Parallel Architectures and Compilation
Techniques.

Freund, S. N., & Qadeer, S. (2003). Checking
concise specifications of multithreaded software.
Technical Note 01-2002, Williams College.

Gontla, P., Drury, H., & Stanley, K. (2003, May
2003). An introduction to OVATION—Object
viewing and analysis tool for integrated object
networks. CORBA News Brief, Object Computing
Inc. [Electronic media]. Retrieved March 11, 2008,
from http://www.ociweb.com/cnb/CORBANews-
Brief-200305.html

Gosling J. (1995, January 23). Java intermediate
bytecodes. In Proceedings of the ACM SIGPLAN
Workshop on Intermediate Representations
(IR’95). (pp. 111-118), San Francisco, CA, USA.

Dynamic Analysis and Profiling of Multithreaded Systems

196

Greenhouse, A. (2003). A programmer-oriented
approach to safe concurrency. Unpublished doc-
toral disser tation, Carnegie Mellon University
School of Computer Science.

Grehan, R. (1995). BYTEmark Native Mode
Benchmark, Release 2.0, [Computer software].
BYTE Magazine.

Hollingsworth, J. K., Miller, B. P., & Cargille,
J. (1994). Dynamic program instrumentation for
scalable performance tools. In Proceedings of the
Scalable High-Performance Computing Confer-
ence, Knoxville, TN, (pp. 841-850).

Hill, J., Schmidt, D.C., & Slaby, J. (2007). Sys-
tem execution modeling tools for evaluating the
quality of service of enterprise distributed real-
time and embedded systems. In P. F. Tiako (Ed.).
Designing software-intensive systems: Methods
and principles. Langston University, OK.

Hilyard, J. (2005, January). No code can hide from
the profiling API in the .NET framework 2.0. MSDN
Magazine. Retrieved March 11, 2008, from http://
msdn.microsoft.com/msdnmag/issues/05/01/
CLRProfiler/

Hunt, G., & Brubacher, D. (1999). Detours: Binary
interception of Win32 functions. In Proceedings
of the 3rd USENIX Windows NT Symposium, (pp.
135-144).

IBM Corporation. (1998). PowerPC 604e RISC
microprocessor user’s manual with supplement
for PowerPC 604 micro processor (Publication
No. G522-0330-00) [Electronic media]. Retrieved
March 11, 2008, from http://www-3.ibm.com/
chips/techlib/

IBM Corporation. (2000). Jikes Bytecode toolkit
[Computer Software]. Retrieved March 11, 2008,
from http://www-128.ibm.com/developerworks/
opensource/

IBM Corporation. (2003). Develop fast, reliable
code with IBM rational PurifyPlus. Whitepaper.
Retrieved March 11, 2008, from ftp://ftp.soft-

ware.ibm.com/software/rational/web/whitepa-
pers/2003/PurifyPlusPDF.pdf

IEEE. (2001). IEEE standard test access port
and boundary-scan architecture. IEEE Std.
1149.1-2001.

IEEE-ISTO. (2003). The Nexus 5001 forum stan-
dard for global embedded processor debug inter-
face, version 2.0 [Electronic media]. Retrieved
March 11, 2008, from http://www.ieee-isto.org

Intel Corporation. (2006a). Intel 64 and IA-32 ar-
chitectures software developer’s manual (Vol. 3B,
System Programming Guide, Part 2). Retrieved
March 11, 2008, from www.intel.com/design/
processor/manuals/253669.pdf

Intel Corporation. (2006b). Intel’s tera-scale
research prepares for tens, hundreds of cores.
Technology@Intel Magazine. Retrieved March
11, 2008, from http://www.intel.com/technology/
magazine/computing/tera-scale-0606.htm

Jackson, D., & Rinard, M. (2000). Software
analysis: A roadmap. In Proceedings of the IEEE
International Conference on Software Engineer-
ing, (pp. 133-145).

Kiczale, G., Hilsdale, E., Hugunin, J., Kersten, M.,
Palm, J., & Griswold, W. G. (2001). An overview
of As pectJ. (LNCS, 2072, pp. 327-355).

Larus, J., & Schnarr, E. (1995). EEL: Machine-
independent executable editing. In Proceedings
of the ACM SIG PLAN Conference on Program-
ming Language Designes and Implementation,
(pp. 291-300).

Lee, H. B. (1997, July). BIT: Bytecode instrument-
ing tool. Unpublished master’s thesis, University
of Colorado, Boulder, CO.

Lee, E. A. (2006). The problem with threads.
IEEE Computer, 39(11), 33-42.

Li, J. (2002). Monitoring of component-based
systems (Tech. Rep. No. HPL-2002-25R1. HP).
Laboratories, Palo Alto, CA, USA.

197

Dynamic Analysis and Profiling of Multithreaded Systems

London, K., Moore, S., Mucci, P., Seymour,
K., & Luczak, R. (2001, June 18-21). The PAPI
cross-platform interface to hardware performance
counters. In Proceedings of the Department of
Defense Users’ Group Conference.

Luk, C., Cohn, R., Muth, R., Patil, H., Klauser, A.,
Lowney, G., et al. (2005). Pin: Building custom-
ized program analysis tools with dynamic instru-
mentation. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design
and Implementation, (pp. 190-200).

Microsoft Corporation. (2007a). Windows server
2003 performance counters reference. Microsoft
Tech Net [Electronic media]. Retrieved March
11, 2008, from http://technet2.microsoft.com/
WindowsServer/en/library/3fb01419-b1ab-4f52-
a9f8-09d5ebeb9ef21033.mspx?mfr=true

Microsoft Corporation. (2007b). Using the registry
functions to consume counter data. Microsoft
Developer Network [Electronic media]. Retrieved
March 11, 2008, from http://msdn2.microsoft.
com/en-us/library/aa373219.aspx

Microsoft Corporation. (2007c). Using the PDH
functions to consume counter data. Microsoft
Developer Net work [Electronic media]. Retrieved
March 11, 2008, from http://msdn2.microsoft.
com/en-us/library/aa373214.aspx

Miller, B.P., Callaghan, M.D., Cargille, J.M.,
Hollingsworth, J.K., Irvin, R.B., & Karavanic,
K.L. (1995, De cember). The Paradyn parallel
performance measurement tool. IEEE Computer,
28(11), 37-46.

Mock, M. (2003). Dynamic analysis from the bot-
tom up. In Proceedings of the ICSE 2003 Workshop
on Dynamic Analysis (WODA 2003).

Murayama, J. (2001, July). Performance profiling
using TNF. Sun Developer Network. Retrieved
March 11, 2008, from http://developers.sun.com/
solaris/articles/tnf.html

Nethercote, N. (2004). Dynamic binary analysis
and instrumentation. Unpublished doctoral dis-
sertation, Uni versity of Cambridge, UK.

Nimmer, J., & Ernst, M. D. (2001). Static verifica-
tion of dynamically detected program invariants:
Integrating Daikon and ESC/Java. In Proceedings
of the 1st International Workshop on Runtime
Verification.

Object Computing Incorporated. (2006). A window
into your systems [Electronic media]. Retrieved
March 11, 2008, from http://www.ociweb.com/
products/OVATION

OMG. (2002). Object Management Group: the
common object request broker: Architecture and
specification, revision 3.0. OMG Technical Docu-
ments, 02-06-33 [Electronic media]. Retrieved
March 11, 2008, from http://www.omg.org/cgi-
bin/doc?formal/04-03-01

Pietrik, M. (1998, May). Under the hood. Mi-
crosoft Systems Journal. Retrieved March 11,
2008, from http://www.microsoft.com/msj/0598/
hood0598.aspx

Reiss, S. P. (2003). Visualizing Java in action.
In Proceedings of the 2003 ACM Symposium on
Software Visualization, (p. 57).

Reiss, S. P. (2005). Efficient monitoring and
display of thread state in java. In Proceedings of
the IEEE International Workshop on Pro gram
Comprehension (pp. 247-256). St. Louis, MO.

Rinard, M. (2001). Analysis of multithreaded
programs. (LNCS 2126, pp. 1-19).

Romer, T., Voelker, G., Lee, D., Wolman, A.,
Wong, W., Levy, H., et al. (1997). Instru mentation
and optimization of Win32/Intel executables using
Etch. In Proceedings of the USENIX Windows
NT Workshop.

Schmidt, D. C., Natarajan, B., Gokhale, G., Wang,
N., & Gill, C. (2002, February). TAO: A pattern-
oriented object request broker for distributed real-

Dynamic Analysis and Profiling of Multithreaded Systems

198

time and embedded systems. IEEE Distributed
Systems Online, 3(2).

Schmidt, D. C., Stal, M., Rohnert, H., &
Buschmann, F. (2000). Pattern-oriented soft-
ware architecture patterns for concurrent and
networked objects. John Wiley & Sons.

Soloman, D. A. (1998). Inside Windows NT (2nd
ed). Redmond: Microsoft Press.

Spinczyk, O., Lohmann, D., & Urban, M. (2005).
Aspect C++: An AOP extension for C++. Software
Devel oper’s Journal, 68-76.

Srivastava, A., & Eustace A. (1994). ATOM: A
system for building customized program analysis
tools (Tech. Rep. No. 94/2). Western Research
Lab, Compaq Corporation.

Subramaniam, K., & Thazhuthaveetil, M. (1994).
Effectiveness of sampling based software pro-
filers. In Proceedings of the 1st Interna tional
Conference on Reliability and Quality Assurance,
(pp. 1-5).

Sun Microsystems Corporation. (2002). The Java
native interface programmer’s guide and speci-
fication [Electronic media]. Retrieved March 11,
2008, from http://java.sun.com/docs/books/jni/
html/jniTOC.html

Sun Microsystems Corporation. (2004). JVM tool
interface [Computer software]. Retrieved March
11, 2008, from http://java.sun.com/j2se/1.5.0/docs/
guide/jvmti/

Sutter, H. (2005). The free lunch is over: A fun-
damental turn towards concurrency in software.
Dr. Dobb’s Journal, 30(3).

Sutter, H., & Larus J. (2005). Software and the
concurrency revolution. ACM Queue Magazine,
3(7).

Vaswani, K., & Srikant, Y. N. (2003), Dynamic
recompilation and profile-guided optimizations
for a .NET JIT compiler. In Proceedings of the

IEEE Software Special on Rotor .NET, (Vol. 150,
pp. 296-302). IEEE Publishing.

Visser, E. (2001). Stratego: A language for pro-
gram transformation based on rewriting strate-
gies. (LNCS 2051, pp. 357).

Waddington, D. G., Amduka, M., DaCosta, D.,
Foster, P., & Sprinkle, J. (2006, February). EASEL:
Model centric design tools for effective design
and implementation of multi-threaded concurrent
applications (Technical Docu ment). Lockheed
Martin ATL.

Waddington, D. G., & Yao, B. (2005). High fidelity
C++ code transformation. In Proceedings of the
5th Workshop on Language Descriptions, Tools
and Applications.

Whaley, J. (2000). A portable sampling-based
profiler for Java virtual machines. In Proceedings
of ACM Java Grand (pp. 78-87).

Wolf, F., & Mohr, B. (2003). Hardware-counter
based automatic performance analysis of parallel
programs. In Proceedings of the Mini-symposium
on Performance Analysis, Conference on Parallel
Computing (PARCO). Dreseden, Germany.

additional reading

In addition to the references made in this chapter,
we recommend the following particular reading
on this subject.

“Dynamic Analysis from the bottom up”
(Mock, 2003) stresses the increasing importance
of dynamic analysis in view of modern software
development and deployment. It discusses three
main directions of research: (i) exploiting run-time
information to optimize programs, (ii) applying
dynamic analysis to understand, maintain and
evolve software and (iii) efficient collection of
run-time information.

“Static and Dynamic Analysis: synergy and
duality” (Ernst, 2003) discusses the synergy

199

Dynamic Analysis and Profiling of Multithreaded Systems

between static and dynamic analysis techniques.
The paper describes ways to use both these tech-
niques in a complementary manner. It proposes
the development of a hybrid analysis method and
argues that static and dynamic analyses are not
as different as they seem and in fact have much
in common.

“The Periodic-Linear Model of Program
Behavior Capture” (Clauss, Kenmei, & Beyler,
2005) presents an analysis and modeling strategy
of program behavior characteristics. The approach
focuses on the use of traces that are generated
from instrumented code.

“Aspect C++: An AOP Extension for C++”
(Spinczyk, Lohmann, & Urban, 2005) discusses
the fundamental concepts of aspect-oriented
programming. It specifically provides details
of AOP within the context of C++ source code
instrumentation.

“An Overview of AspectJ” (Kiczale, Hilsdale,
Hugunin, Kersten, Palm, & Griswold, 2001)
examines aspect-oriented programming for the
Java programming language.

“An API for Runtime Code Patching” (Buck
& Hollingsworth, 2000) presents the concepts
behind the DynInst tool, which is a technique
for dynamic binary-code instrumentation. This
paper discusses the basic architecture and the use
of trampoline functions to implant modifications
to existing code.

“Windows Server 2003 Performance Counters
Reference” (Microsoft, 2007a) contains a detailed
description of the Windows Performance counters
that can be used to profile applications. This refer-
ence includes a listing of available performance
counters and a description of the APIs used to
access them.

“JVM Tool Interface (JVM TI)” (Sun Micro-
systems Corporation, 2004) is an online resource
describing the API provided by the JVM. It first
explains the basic concept and architecture of
the JVMTI before going into the details on the
interface. In each section, there are small examples
to help implement a profiler.

This work was previously published in Designing Software-Intensive Systems: Methods and Principles, edited by P. Tiako, pp.
290-334, copyright 2009 by Information Science Reference (an imprint of IGI Global).

Section 4
I/O Prefetching

201

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 10

Exploiting Disk Layout
and Block Access History

for I/O Prefetch
Feng Chen

The Ohio State University, USA

Xiaoning Ding
The Ohio State University, USA

Song Jiang
Wayne State University, USA

abStract

As the major secondary storage device, the hard disk plays a critical role in modern computer system. In
order to improve disk performance, most operating systems conduct data prefetch policies by tracking
I/O access pattern, mostly at the level of file abstractions. Though such a solution is useful to exploit
application-level access patterns, file-level prefetching has many constraints that limit the capability
of fully exploiting disk performance. The reasons are twofold. First, certain prefetch opportunities can
only be detected by knowing the data layout on the hard disk, such as metadata blocks. Second, due to
the non-uniform access cost on the hard disk, the penalty of mis-prefetching a random block is much
more costly than mis-prefetching a sequential block. In order to address the intrinsic limitations of file-
level prefetching, we propose to prefetch data blocks directly at the disk level in a portable way. Our
proposed scheme, called DiskSeen, is designed to supplement file-level prefetching. DiskSeen observes
the workload access pattern by tracking the locations and access times of disk blocks. Based on analy-
sis of the temporal and spatial relationships of disk data blocks, DiskSeen can significantly increase
the sequentiality of disk accesses and improve disk performance in turn. We implemented the DiskSeen
scheme in the Linux 2.6 kernel and we show that it can significantly improve the effectiveness of file-
level prefetching and reduce execution times by 20-53% for various types of applications, including
grep, CVS, and TPC-H.

DOI: 10.4018/978-1-60566-850-5.ch010

202

Exploiting Disk Layout and Block Access History for I/O Prefetch

introduction

As the Moore’s law states, over the last three
decades the processor speed doubles every 18
months, which brings a steady performance im-
provement at an exponential rate. In contrast, the
access time of the hard disk, an electro-mechanical
device, has been improved at a much slower
pace, only around 8% per year (Gray & Shenoy,
2000). As a result, the performance gap between
processors and hard disks is increasingly widen-
ing and this trend will continue in the future. As
shown in Figure 1, in 1980 each disk access costs
around 87,000 CPU cycles only, while this number
grows to 5,000,000 cycles in 2000 (Bryant and
O’Hallaron 2003). In other words, relative to the
processor speed, the hard disk is becoming 57
times slower during the twenty years. Such an ever-
growing performance gap between the processor
and the hard disk strongly indicates that, the disk
performance is becoming the key bottleneck of
overall system performance.

The excessively high access latency of the
hard disk essentially stems from its mechanic
nature. Hard disk drives store data on the surface

of rotating disk platters. These data can be read
or written through the disk head attached on the
moving disk arms. In general, accessing one
data block involves three major operations, each
of which causes a delay accordingly. When the
hard disk receives a request (read/write) to data
on a certain location, the disk arm must first po-
sition to the correct disk track where the data is
located. This operation results in a seek latency.
Then the disk head has to wait until the disk
platters rotate to the correct position where the
target data block is right beneath the disk head,
which causes a rotational latency. Finally, data
transfer can be started from or to the disk platter
surface, depending on the operation type (read/
write), which leads to a transfer latency. These
three types of latency together form the aggregate
latency of servicing a disk request. Since seek and
rotational latencies are essentially determined
by the speed of mechanic parts, the first two
operations usually account for a large portion of
the aggregate service latency to complete a disk
access and should be minimized.

The performance of the hard disk is highly
dependent on the workload access pattern, i.e.

Figure 1. Performance gap between processors and disks.

203

Exploiting Disk Layout and Block Access History for I/O Prefetch

the order of incoming requests to the hard disk.
In specific, sequential disk accesses are much
more efficient than random disk accesses, often
in orders of magnitude. The reason is that, when
sequentially accessing disk data that are continu-
ously located on the disk track, only one disk head
movement (seek and rotation) is needed to read
a large amount of data. In contrast, randomly ac-
cessing disk data that are dispersed over the disk
platters, each data access requires a costly disk
seek and/or rotation, which is extremely ineffi-
cient. In order to optimize disk performance, many
research works have been done to organize large
and sequential disk accesses, and prefetching is
an important technique to achieve this objective.
In this chapter, we will present an efficient disk-
level prefetch scheme, called DiskSeen, which
can effectively improve the disk performance by
creating large and sequential disk accesses.

bacKground

prefetching

Prefetching, speculatively reading data from the
hard disk by predicting future requests, is an
effective technique to improve overall system
performance. This is due to two reasons. First,
since the execution of an application is usually
interleaved by computation and data access, by
performing disk accesses in parallel with computa-
tion, the high disk access latency can be effectively
hidden behind computations. Second, prefetch-
ing usually attempts to organize large sequential
data accesses on the hard disk, thus each time a
large number of data blocks can be read into the
memory with only one disk access. As a result,
the long disk head seek and rotation latency can
be amortized over a large amount of data blocks,
and the average access cost per block is reduced.
As a critical optimization technique, prefetching is
widely adopted in most existing operating systems
as a standard component.

The effectiveness of prefetch policies is de-
termined by two factors, accurate prediction on
future data accesses and actual time cost of indi-
vidual accesses. Many previous research works
are focused on improving the accuracy of predic-
tion on data accesses (e.g. Li, Chen, Srinivasan,
& Zhou, 2004). However, two factors make the
later factor increasingly more important. First,
the hard disk is a non-uniform-access device,
as described previously. Since sequential data
accesses without disk head movement is at least
one order of magnitude faster than random data
accesses, prefetching data blocks in a random pat-
tern would be much less efficient than prefetching
data blocks in a sequential pattern. Accordingly,
the penalty of mis-prefetching for sequential data
accesses is much lower than that for random ac-
cesses. Second, as the processors are becoming
increasingly more powerful, computation during
an application’s execution would account for a
decreasing percentage. In other words, applica-
tions are becoming increasingly I/O bound, and
less opportunity would be left to hide long disk
access latency behind computations. As a result,
the importance of efficient sequential prefetching
is more pronouncing relative to that of prefetching
randomly located data blocks.

It’s also worth pointing out here, although
many sophisticated prefetching algorithms have
been proposed (e.g. Griffioen & Appleton, 1994;
Kroeger & Long, 2001), general-purpose operat-
ing systems only provide sequential prefetch-
ing, which predicts and prefetches sequentially
accessed data blocks, or similar variants. This
design is a rational choice in practical systems,
due to two reasons. First, extra overhead may be
introduced in these complicated prefetch policies,
and potential implementation difficulty has to be
avoided in practice. Imposing excessive overhead
in a general system is undesirable. Second, the
relative penalties for incorrectly prefetching a
sequential block are much lower, compared to
prefetching a random block, which involves more
disk I/O. In this chapter, the prefetch policies are

204

Exploiting Disk Layout and Block Access History for I/O Prefetch

specific to that used in general-purpose operat-
ing systems.

prefetching at logic file level

Most practical prefetch policies usually detect
access patterns and issue prefetch requests at the
logical file level (Pai, Pulavarty, & Cao, 2004).
Such a design is based on the fact that applica-
tions usually make I/O requests through logic
files, such as reading a file via system call read
(), so their discernable access patterns can be
identified in terms of logic files. For example, in
the Linux kernel, when a file is opened, the logic
offset in the file of each access is tracked. If the
application sequentially accesses data in the file,
prefetching (called readahead mechanism in the
Linux kernel) is activated to speculatively read
data in advance. If the sequential access pattern
changes, prefetching is slowed down or stopped
to avoid loading useless data blocks into memory.
Such a file-level prefetching is widely adopted in
most general-purpose operating systems, such as
FreeBSD and Linux.

Prefetching at logic file level is simple and
portable. For example, the same prefetch policy
can be applied to different file systems and benefit
most applications transparently. However, because
disk data layout information cannot be exploited
at the logic file level, the disk-specific knowl-
edge, such as where the next prefetched block
would be relative to the currently fetched block,
is unknown, which makes estimating prefetching
cost infeasible. Thus, in file-level prefetching, the
effectiveness of prefetching, which is needed as
a feedback to adjust prefetching aggressiveness,
has to be presented in terms of the number of
mis-prefetched blocks rather than a more relevant
metric, the penalty of mis-prefetching. Here we
summarize the limitations of file-level prefetch-
ing as follows.

• Blocks continuously located in a file may
not be continuous on disk – Though file

systems generally attempt to map data
blocks that are logically continuous in one
file also physically continuous on the hard
disk, as the file system ages or becomes
full, this correspondence may deteriorate
inevitably. This further worsens the pen-
alty for mis-prediction.

• Small files cannot benefit from prefetch-
ing – Since prefetching detects sequential
data accesses within each individual file,
prefetching for a small file barely has a
chance to be activated before reaching the
end of the file. Thus, data blocks in small
files cannot be prefetched.

• Inter-file sequentiality cannot not be ex-
ploited – As prefetching cannot across the
boundary of files, sequential data accesses
in multiple files cannot be detected, even
if the data blocks of these files are actually
located on the hard disk continuously.

• File system metadata blocks cannot be
prefetched – File system metadata blocks,
such as inode blocks, are usually placed
separately from the file content data
blocks and transparent for applications.
Prefetching at file level is only effective for
the file content data blocks.

prefetching in disk firmware

Modern hard disks are usually equipped with
a large RAM buffer (e.g. 16MB), and the disk
firmware can also apply some simple prefetching
policies to preload data into the disk buffer. For
example, when waiting for disk platters to rotate
to the target position, disk firmware would read
the data blocks beneath the disk head into the disk
buffer with no extra cost. In some cases, as many
as a full track of data blocks can be prefetched.
Such a firmware-level prefetching has many
limitations. First, since this readahead is usually
carried out on each individual track, it cannot
take into consideration the relatively long-term
temporal and spatial locality of blocks across the

205

Exploiting Disk Layout and Block Access History for I/O Prefetch

entire disk working set. Second, the performance
potential of firmware-level readahead is further
constrained by the thin disk interface, which sig-
nificantly limits the communication between the
disk and operating systems. For example, since
the disk firmware is unaware of the status of the
buffer cache (main memory), data blocks would
be unnecessarily prefetched into the disk buffer
even when they are already resident in buffer cache
(main memory). Without sophisticated policies,
prefetching at disk firmware is far from sufficient
to exploit the disk performance potential.

a disk-level prefetch
policy – diskSeen

In this chapter, we present a disk-level prefetch-
ing scheme, called DiskSeen, to address the
aforesaid limitations of existing prefetch policies.
In DiskSeen, current and historical information
of disk data blocks is used to achieve efficient
and effective prefetching. Working in OS kernel,
DiskSeen monitors the accesses to disk blocks
and observes the access pattern directly on the
disk level. By analyzing the disk blocks’ access
history, DiskSeen is able to quickly identify the
relationship between data blocks being accessed
and accurately predicts the disk blocks to be ac-
cessed in the future.

Compared to the file-level prefetching, Disk-
Seen can effectively exploit prefetching oppor-
tunities that cannot be leveraged by the file-level
prefetching. For example, DiskSeen can prefetch
data blocks across boundaries of files, if these
data blocks are continuously located on the hard
disk. Moreover, the file system metadata blocks,
which are transparent to file-level prefetchers,
can be prefetched as well. Compared to prefetch-
ing in disk firmware, DiskSeen has much richer
knowledge about the status and history of data
blocks being accessed during a long history, thus
more sophisticated prefetch policy can be con-
ducted with a long-term view. It is worth pointing
out here that, the purpose of DiskSeen is not to

replace the existing prefetching policies, at file
level or firmware level. Instead, DiskSeen can
be well complementary to the existing prefetch-
ing schemes and correct some inappropriate
prefetching decisions. In our experiments, the
prototype of DiskSeen shows that substantial
performance improvement can be achieved by
applying such a disk-level prefetching in existing
storage systems.

tracKing diSK acceSSeS

In order to conduct prefetching at disk level, two
questions must be answered first, (1) what infor-
mation about disk accesses is needed by the disk-
level prefetch policy, and (2) how to efficiently
manage the huge amount of history information
with small overhead.

disk layout information

Effective disk-level prefetching relies on detailed
information about disk layout. Generally speaking,
the more specific the information available for a
particular disk, the more accurate an estimate a
disk-aware policy can make about access costs.
For example, if we know that the requested blocks
span a track boundary, we would predict that
the request would incur a track crossing penalty
(Schindler, Griffin, Lumb, & Ganger, 2002).
Unfortunately, such detailed knowledge about
physical disk geometry is often not disclosed by
disk manufacturers. Extracting such information
about disk is challenging (Schindler and Ganger,
2000) and often works with certain types of disk
drives (such as SCSI disks) only.

In practice, hard disk firmware usually ex-
poses the logical disk geometry as an array of
logic blocks, which are labeled by logical block
numbers (LBNs). This is a generic interface to
communicate between disk drives and operating
systems. Although the LBN does not disclose
precise disk-specific information, it can be used

206

Exploiting Disk Layout and Block Access History for I/O Prefetch

to represent disk layout sufficiently well. This is
because disk manufacturers usually attempt to
carefully map logical blocks to physical blocks
with minimal disk head positioning cost, so that
accessing blocks with consecutive LBNs has per-
formance close to that of accessing blocks physi-
cally contiguous on disk (Schlosser, Schindler,
Papadomanolakis, Shao, Ailamaki, Faloutsos, &
Ganger, 2005). Such a standard logic interface is
used by operating systems and upper-level com-
ponents to access disk data, thus it is available and
portable across various computing platforms. In
practice, we find that using this logical disk layout
is sufficient to exploit disk-side information in
prefetch policies.

In DiskSeen, the LBNs are used to track the
access times of recently accessed disk blocks for
analyzing the associations of access times among
adjacent blocks. In other words, we use LBNs as
abstraction of physical disk blocks and analyze
the access pattern of blocks.

the block table

In order to analyze workload access pattern, the ac-
cess history of all data blocks in the storage space,
which is often as large as multiple Terabytes, has
to be maintained. It is challenging to efficiently
manage such a huge amount of information with
low overhead. First, the data structure holding
this information must support efficient access of
block entries and their neighboring blocks via
LBNs. Second, addition, removal, and lookup
of block entries must be efficient to avoid high
runtime overhead. Finally, maintaining the history
information should require low memory space.
In DiskSeen, we use a data structure called block
table to achieve these requirements.

The block table is inspired by the multi-level
page table used for a process’s memory address
translation, which is widely used in nearly all
operating systems. Different from the page table,
the block table is used to manage the storage
space, instead of memory space. As shown in

Figure 2, the block table has three levels, Block
Global Directory (BGD), Block Middle Direc-
tory (BMD), and Block Table Entry (BTE). Each
level consists of multiple 4KB pages, each of
which is further divided into multiple entries. A
block’s LBN is correspondingly broken into three
segments, each of which is used as an offset to
locate an entry in the page of the corresponding
level. The BTE entries in the block table are used
to maintain data access information (e.g. block
access times). Different from BTE entries, BGD
and BMD entries also maintain a pointer field,
which is the address of a memory page in the next
level. In this way, the block table is organized
as a tree structure with three levels. For a given
LBN, at most three memory accesses are needed
to reach the BTE entry. As an example shown in
Figure 2, suppose one page can hold 512 entries,
the access times of a block with LBN 2,631,710
(10 × 5122 + 20 × 512 + 30) can be efficiently
reached via BGD entry (10), BMD entry (20),
and BTE entry (30).

In DiskSeen, block access times are needed
to identify the relationship between data blocks.
However, knowing the physical wall clock time
is unnecessary. Instead, we use the logic block
access time. Suppose the entire sequence of ac-
cessed disk blocks is referred to as a block access
stream. The nth block in the stream has access index
n. We maintain a global access counter, which
is incremented with each block reference. Upon
a data access, the value of the access counter is
read as the access index for the accessed block.
The access index is recorded in the corresponding
BTE entry to represent its logic access time. In
our prototype, each BTE entry can record up to
four access indices as its access history.

As time elapses, the block table may grow and
occupy an excessively large amount of memory
space, thus we need to remove the out-of-date
history information to reduce spatial overhead. To
facilitate an efficient removal of old BTEs, each
directory entry (BGD and BMD entry) records
the largest access index of all of the blocks under

207

Exploiting Disk Layout and Block Access History for I/O Prefetch

that entry. Purging the table of old blocks involves
removing all blocks with access indices smaller
than some given index. This operation entails tra-
versing the table, top level first, identifying access
indices smaller than the given index, removing
the corresponding sub-trees, and reclaiming the
memory. Since such an operation is only needed to
be performed occasionally, the incurred overhead
is very small.

the deSign of diSKSeen

As a disk-level prefetch policy, DiskSeen sits
between the file system and the disk drive. Disk-
Seen intercepts the requests issued from upper-
level components, tracks the disk access history,
and maintains the information in the block table.
By analyzing the history access information,
DiskSeen identifies the relationship between data
blocks and predicts the blocks to be accessed
in the future. Finally, DiskSeen prefetches data
blocks into memory to achieve performance
improvement.

overview

In DiskSeen, the buffer cache (main memory)
is divided into two areas, prefetching and cach-
ing areas. The caching area corresponds to the
traditional buffer cache and it is managed by
the existing OS kernel policies (e.g. the 2Q al-
gorithm in Linux). The prefetching area is used
to maintain prefetched data blocks in DiskSeen.
A block could be prefetched into the prefetching
area based on access information recorded in the
block table, or as directed by file-level prefetch-
ing. If a block resident in the prefetching area is
accessed by an on-demand request, it is moved
into the caching area. DiskSeen distinguishes on-
demand requests from file-level prefetch requests
and makes prefetch decision based on on-demand
accesses, because only on-demand requests reflect
applications’ actual access patterns.

In DiskSeen, file-level prefetching is still en-
abled. However, the low level prefetching is con-
ducted concurrently to mitigate the inadequacies of
file-level prefetching. DiskSeen generally respects
the decisions made by a file-level prefetcher, but
it also attempts to identify and correct inaccurate

Figure 2. The structure of block bable with three levels (BGD, BMD, and BTE)

208

Exploiting Disk Layout and Block Access History for I/O Prefetch

predictions made by the file-level prefetcher based
on its knowledge of the deep access history. To
this end, the requests from file-level prefetchers
are dispatched to DiskSeen, instead of directly
to the disk drive, and DiskSeen decides how to
handle these requests. On-demand requests are
forwarded directly to disk driver by DiskSeen. We
refer to disk requests from ̀ above’ DiskSeen (e.g.,
application or file-level prefetchers) as high-level
requests and the data blocks requested by file-level
prefetcher as prefetch candidates.

recording access indices

As mentioned previously, DiskSeen uses the
block access indices as virtual access times. Block
access indices are read from a counter that incre-
ments whenever a block is read into the caching
area on demand. When a request is completed,
either via a hit in the prefetching area or via the
completion of a disk I/O operation, the current
reading of the counter, the access index, is used
as the access time of the block to be recorded in
the corresponding BTE in the block table. Each
BTE holds the most recent access indices, to a
maximum of four. In our prototype, the size of a
BTE is 128 bits. Each access index takes 31 bits
and the other 4 bits are used to indicate block

status, such as resident bit. With a block size of
4K Bytes, the 31-bit access index can distinguish
accesses to 8 TBytes of disk data.

As time elapses, the counter approaches to
its maximum value. To handle this situation,
when the range for used access index exceeds
7/8 of the maximum index range, we remove the
indices whose values are in the first half of the
used range in the block table, such that the values
can be gradually updated. This progressive index
clearing takes place very infrequently and incurs
minimal overhead in practice.

coordinating with file-
level prefetching

As mentioned previously, traditional file-level
prefetching may perform ineffectively due to lack
of low-level knowledge. By tracking the actual
use of blocks prefetched by file-level prefetcher,
DiskSeen can measure the effectiveness of high-
level prefetchers and correct inaccurate prefetch-
ing decisions.

When a prefetch candidate block is read into
the prefetching area, we set the status of the block
as prefetched in its BTE. This status bit is unset
only when an on-demand access of the block
occurs. When the file-level prefetcher requests

Figure 3. Architecture of DiskSeen.

209

Exploiting Disk Layout and Block Access History for I/O Prefetch

a prefetch candidate that is not yet resident in
memory, DiskSeen checks its prefetched status
bit, if it is set, DiskSeen would drop the prefetch
request, because this block has been previously
prefetched by the file-level prefetcher but not
been accessed by any on-demand request, which
suggests an inaccurate prefetch decision. In this
way, DiskSeen can identify and correct some of
the mis-prefetchings made by file-level prefetch
policies.

In order to coordinate multiple requests for the
same block, we designate a resident bit and a busy
bit in each BTE. When a block enters buffer cache,
the resident bit is set to 1, and it is reset to 0 when
it leaves the cache. Before a request is sent to the
disk scheduler, we check the blocks demanded
in the request against the corresponding BTEs to
determine whether the blocks are already in the
prefetching area. If true, which means the blocks
are hit in the prefetching area, we move them to
the caching area. The busy bit in each BTE serves
as a lock to coordinate simultaneous requests for
a particular block. A set busy bit indicates that a
disk service on the corresponding block is under
way, and succeeding requests for the block must
wait on the lock. In this way, we can avoid the
consistence problem caused by the situation that
multiple I/O requests are issued to the disk drive
for the same data block.

Sequence-based prefetching

Based on the data access history recorded in the
block table, DiskSeen identifies sequential data
accesses at disk level and prefetches data blocks
by predicting the data blocks to be accessed in
advance. The sequence detection and prefetching
in DiskSeen is similar in principle to that used by
the file-level prefetchers in Linux.

Sequence Detection

In DiskSeen, prefetching is activated when
accesses of K contiguous blocks are detected,

where K is set 8. The sequence detection is con-
ducted based on the current access information
maintained in the block table. For a block in a
high-level request, we examine the most recent
access indices of blocks physically preceding
the block to see whether it is the Kth block in a
sequence. For example, for a block with LBN N,
we will examine the blocks with LBNs of N-1,
N-2, …, etc. Compared to disk service time, this
back-tracking operation in the block table is an ef-
ficient operation. Since accesses of a sequence can
be interleaved with accesses in other sequences,
the most recent access indices of the blocks in
the sequence are not necessarily consecutive. We
only require that access indices of the blocks be
monotonically decreasing during back-tracking.
However, if a very large gap of the access indices
exists between two contiguous blocks, it indicates
that one of the two blocks might not be accessed
before being evicted from the prefetching area,
if they were prefetched together as a sequence.
Thus these two blocks should not belong to the
same sequence. The access index gap threshold,
T, is set as 1/64 of the size of the system memory,
measured in blocks.

Sequence-Based Prefetching

Once we detect a sequence, we create two win-
dows, called the current window and the reada-
head window, whose initial sizes are set 8 blocks.
We prefetch 8 blocks immediately ahead of the
sequence into the current window, and the fol-
lowing 8 blocks into the readahead window. We
then track the number f of blocks that are hit in
the current window by high-level requests, and f
serves as a feedback to determine the prefetching
aggressiveness. When the blocks in the readahead
window start to be requested, a new readahead
window is created with size of 2f, and the exist-
ing readahead window becomes the new current
window. We set minimal and maximum window
sizes, min and max, respectively. If 2f < min, the
prefetching is stopped, because requesting a small

210

Exploiting Disk Layout and Block Access History for I/O Prefetch

number of blocks cannot effectively amortize a
disk head repositioning cost and so is inefficient.
If 2f > max, the prefetching window size is set
as max. This is because too aggressive prefetch-
ing imposes a high risk of mis-prefetching and
increases memory pressure on the prefetching
area. In our prototype, min is 8 blocks and max
is 32 blocks, which is also the default maximum
prefetch window size in Linux. In this way, we
can gradually increase the aggressiveness of
prefetching, if previously prefetched data blocks
are being accessed by on-demand requests, and
quickly reduce the aggressiveness of prefetching,
if otherwise.

Also note that the actual number of blocks
that are read into memory can be less than the
specified prefetch size, because blocks that are
already resident in memory are excluded from
prefetching. If many blocks in the prefetch scope
are already resident in memory, the window size
turns small, which in turn slows down or even
stops the prefetching.

Managing Prefetched Blocks

For file-level prefetch policies, the data structure
for managing prefetched blocks is naturally affili-
ated to logic files. In the DiskSeen scheme, which
views the whole storage space as a single sequence
of blocks, each on-going prefetch is represented us-
ing a data structure called the prefetch stream. The
prefetch stream is a pseudo-FIFO queue, and the
prefetched blocks in the two windows are placed
in the order of their LBNs. In DiskSeen, multiple
prefetch streams may exist concurrently.

In order to manage blocks in the prefetching
area, we also maintain a global FIFO queue called
the reclamation queue. The length of reclamation
queue is determined by the size of prefetching
area. All prefetched blocks, which may belong to
various prefetch streams, are placed at the queue
tail in the order of their arrival. Thus, blocks in the
prefetch windows stay in both prefetch streams

and the reclamation queue. When a block reaches
the head of the reclamation queue, it is evicted
from memory. When a block is requested by an
on-demand request, it is moved to the caching
area.

history-aware prefetching

Sequence-based prefetching is based on currently
observed disk accesses and only works for se-
quential disk accesses. By exploiting deep history
information of disk accesses in the block table, we
can further conduct more comprehensive prefetch-
ing for disk accesses. In this section, we present
a history-aware prefetching for non-sequential
disk accesses.

Disk Access Trails

The basic idea of history-aware prefetching is to
match the current disk access sequence with the
history access sequence, if a match is found, we
can use the history accesses to predict the data
blocks to be accessed in the future. To this end,
we first present a data structure to describe the
access history.

We use trail to describe a sequence of blocks
that have been accessed with a small time gap
between each pair of adjacent blocks in the se-
quence and are located in a small region on disk.
Suppose blocks (B1, B2, …, Bn) are a trail, where
0 < access_index(Bi) – access_index(Bi-1) < T,
and |LBN(Bi) - LBN(B1) |< S, (i = 2, 3, …, n),
where T is the access index gap threshold. T is
the same as the one used in the sequence detec-
tion for the sequence-based prefetching. Each
data block maintains up to four access indices in
the corresponding BTE entry. Any access index
can be used to satisfy the given condition. This
means that, in a trail (B1, B2, …, Bn) and B1 is the
start block, all of the following blocks must be
on either side of B1 within distance S, and any
two consecutive blocks must have an access in-

211

Exploiting Disk Layout and Block Access History for I/O Prefetch

dex gap smaller than T. We refer to the window
of 2S blocks, centered at the start block, as the
trail extent. Actually the sequence detected in the
sequence-based prefetching can be viewed as a
special trail in which all blocks are on the same
side of start block and have contiguous LBNs.

The limited window size, S, enforces to search
for a trail in a small area on disk, so that prefetch-
ing such a trail is efficient and the penalty for a
mis-prefetching would be small. In our prototype,
S is set 128. If a program accesses data over a
large area, multiple trails would be formed to
track each set of proximate accesses, rather than
forming an extended trail, to avoid expensive disk
head movements. Also note that the trail detection
brings low cost because, for a given access index
of one block in a trail, at most one access index of
its following block is likely to be within T. This
is because, due to the existence of buffer cache,
a block would not need to be reloaded from disk
until it is evicted from memory, which only hap-
pens after a large amount of other data blocks are
read from disk into memory. Thus, two consecutive
disk accesses to the same block would normally
have a large gap, in terms of access indices.

Figure 4 illustrates an example of access trails.
Access index threshold T is assumed to be 256.
There are four trails starting from block B1, one
current trail and three history trails. Trail 1 (B1,
B3, B4, B5) corresponds to the on-going continuous
block accesses. Sequence-based prefetch would
not be activated because B2 is skipped over. Trail 1

is overlapped with two history trails, Trails 2 and 3.
Note that Trail 4 runs in the reverse direction.

Matching Trails

Unlike sequence-based prefetching, which pre-
dicts sequential disk access based on current
on-going tail, history-aware prefetching predicts
disk accesses based on access history, which is
unnecessary to be strictly sequential. In DiskSeen,
when the sequence-based prefetching cannot de-
tect a pure sequence for activating prefetching,
history-aware prefetching can take advantage of
history information, if available, and prefetch
more accurately. The general idea is to use the
current trail to match history trails, so that we can
identify blocks for prefetching by following the
matched history trails.

When there is an on-demand access of a disk
block that is not in any current trail extent, we
start tracking a new trail from that block. In the
meantime, we examine the history trails consisting
of blocks visited by the current trail in the same
order. As shown in Figure 4, when the current
trail extends from B1(80000) to B3(80001), two
history trails are identified: Trail 2 (B1(60000),
B3(60200)) and Trail 3 (B1(40000), B3(40001)).
However, when Trail 1 extends to B5, only Trail
3 can match the current trail. In this way, we can
identify the repeated disk accesses by matching
the current trail with the history trails.

Figure 4. An Example of Access Trails

212

Exploiting Disk Layout and Block Access History for I/O Prefetch

History-Aware Prefetching

After we identify a history trail that matches the
current trail for a small number (e.g. 4 blocks
in our prototype) of blocks, the history-aware
prefetching is initiated. In order to identify the
data blocks for prefetching, we set up a trail extent
centered at the last matched block, say block B.
Then we follow the history trails from B in the
extent to obtain a set of blocks that are accessed
in the matched history trails. Suppose t is an ac-
cess index of block B that is used in forming a
matched history trail, and T is access index gap
threshold. We then search the extent for the blocks
with an access index between t and t+T, and we
can get a set of blocks for prefetch. We prefetch
the non-resident blocks in the order of their LBNs
to minimize the disk positioning overhead.

Similar to the sequence-based prefetching,
we also adopt two windows for history-aware
prefetching. These prefetched blocks are placed
in the current window first. Starting from the
last prefetched block, we further prefetch blocks
into a readahead window. The initial sizes of two
windows are 8 blocks. The prefetching is stopped,
if the window size is less than min (8 blocks).
When the window size is larger than max (64
blocks), only the first max blocks are prefetched
into memory. There must be at least one matched
history trail; otherwise, history-aware prefetch-
ing is aborted. Sometimes multiple matched
history trails may be found, we only prefetch
the intersection of these trails. The two history-
aware windows are shifted forward in the same
way as in the sequence-based prefetching. If the
history-aware prefetching aborts, sequence-based
prefetching is attempted.

balancing memory allocation

The memory allocation between the prefetching
and caching area can affect system performance.
Obviously, the larger the prefetching area is, the
more prefetched data block can be held, but mean-

while, the more likely the blocks in the caching
area could be evicted due to less available space.
Essentially, we attempt to balance the performance
gain of reduced memory misses through aggres-
sive prefetching and the loss of increased memory
misses due to less memory space for caching.

DiskSeen adaptively allocate memory for the
prefetching area and caching area to maximize
system performance, as follows. We extend the
reclamation queue in the prefetching area with a
segment of 2048 blocks to hold the metadata of
blocks evicted from the queue. We also set up a
FIFO queue, of the same size as the segment for
the caching area to hold the metadata of blocks
evicted from the caching area. The runtime is
divided into epochs, during which Np-area disk
blocks are requested, where Np-area is a sample of
current sizes of the prefetching area in blocks.
In each epoch we monitor the numbers of hits to
these two segments, suppose they are Hprefetch and
Hcache, respectively. If |(Hprefetch - Hcache)|/ Np-area is
larger than 10%, we move 128 blocks of memory
from the area with fewer hits to the other area to
balance the misses between the two. The intuition
behind this design is that, by tracking the hits to
the blocks evicted from both areas, we can know
increasing the size for which area can remove
more memory misses. So we always attempt to
allocate more memory space to the area that can
save more memory misses.

implementation iSSueS

In order to evaluate the performance of DiskSeen in
a mainstream operating system, we implemented a
prototype of DiskSeen in the Linux 2.6.11 kernel.
The current Linux kernel conducts a file-level
prefetching at generic file system level. Similar
to the sequence-based prefetching in DiskSeen,
two windows are maintained to track the access
pattern for each opened file. When a sequential
access pattern is detected, the logic data blocks
in the file are prefetched.

213

Exploiting Disk Layout and Block Access History for I/O Prefetch

Unlike the existing file-level prefetch policies,
DiskSeen directly accesses disk blocks via LBNs,
including both file content data blocks and meta-
data blocks, such as inode and indirect blocks. The
challenge is that, being prefetched at disk level,
these blocks’ semantic information is unknown,
except their LBNs. In other words, we would not
know which file a block belongs to, or what type
a block is. Meanwhile, back-translating LBNs to
files/offset is cumbersome too. In order to make
the LBN-based prefetched blocks usable by high-
level I/O routines, we treat a disk partition as a
raw device file to read blocks and place them in
the prefetching area. Only when a high-level I/O
request is issued, we check the LBNs of requested
blocks against those of prefetched blocks resident
in the prefetching area. If a match is found, the
prefetched block is moved into the caching area
to satisfy the I/O request. This design significantly
simplifies the implementation complexity.

performance eValuation

Our experimental system is a machine with
a 3.0GHz Intel Pentium 4 processor, 512MB
memory, and a Western Digital WD1600JB
160GB 7200RPM hard drive. The hard drive has
an 8MB cache. The OS is Redhat Linux WS4
with the Linux 2.6.11 kernel using the Ext3 file
system. For configuration in DiskSeen, T, the
access index gap threshold, is set as 2048, and S,
which is used to determine the trail extent, is set
as 128. The other system configurations are set
using default values.

workloads

In order to analyze the performance of DiskSeen
in different scenarios, we carefully select six
representative data intensive benchmarks with
different access patterns to measure their execution
times. The six benchmarks include two synthetic
workloads, strided and reversed, and another four

real-life applications. We briefly introduce the six
workloads as follows.

• strided – a synthetic program reading a
1GB file in a strided fashion by reading
every other 4KB of data from the begin-
ning to the end of the file. There is a small
amount of compute time after each read.

• reversed – a synthetic program sequential-
ly reading one 1GB file from its end to its
beginning.

• CVS – a version control utility widely used
in software development environment. We
use command (cvs –q diff) to compare a
user working directory to the CVS reposi-
tory. Two identical set of data are stored on
disk with 50GB space in between.

• diff – a Linux tool that compares files char-
acter by character. Similar to CVS, it ac-
cesses two data sets.

• grep – a textual search tool that scans a col-
lection of files for lines containing a match
for a keyword in given expression.

• TPC-H – a widely used decision support
benchmark that handles business-oriented
queries against a database system. We use
PostgreSQL 7.3.18 as the database server,
and the data set is generated using scale fac-
tor 1. Query 4 is used in the experiments.

For analysis of experimental results across
different benchmarks, we use the source code
tree of Linux kernel 2.6.11 as the data set, whose
size is about 236MB, in benchmarks CVS, diff,
and grep.

experimental results

In order to examine the performance of sequence-
based prefetching and history-aware prefetching
in DiskSeen, we show the execution times of the
benchmarks on the stock Linux kernel, and the
times for their first and second runs on the kernel
with the DiskSeen scheme in Table 1. Note that,

214

Exploiting Disk Layout and Block Access History for I/O Prefetch

since there is no history information stored in the
block table, only sequence-based prefetching is
available for the first run with DiskSeen. Between
any two consecutive runs, the buffer cache is emp-
tied by un-mounting the file system to ensure all
blocks are accessed from disk in the next run.

Strided and Reversed

As synthetic workloads, strided and reversed rep-
resent two different I/O access patterns to examine
the effectiveness of DiskSeen in extreme cases.
Obviously, with a non-sequential access pattern,
strided and reversed cannot benefit from sequence-
based prefetching either at the file level or at disk
level. As shown in Table 1, the execution times
of their first runs with DiskSeen are not reduced.
However, the execution times are not increased
either, which indicates that DiskSeen introduces
negligible overhead.

When the history information is available,
the history-aware prefetching is activated dur-
ing the second runs of the two benchmarks. As a
result, DiskSeen shows significant reductions of
execution times, in specific, 27% for stride and
51% for reversed. This is because history trails
lead us to identify the prefetchable blocks. In the
stock Linux kernel, reversed accesses can cause
a full disk rotation to service each request, and
disk scheduler has little chance to improve such
synchronous disk accesses. In contrast, DiskSeen
can identifies the prefetchable blocks and requests
a large amount of blocks in ascending order of

their LBNs, such that these data blocks can be
prefetched in one disk rotation. This also explains
performance improvement observed for strided.

It is worth pointing out here that, reverse se-
quential and forward/backward strided accesses are
not rare in real-life systems, especially in high-per-
formance computing environment. For example,
both the GPFS file system from IBM (Schmuck
& Haskin, 2002) and the MPI-IO standards (MPI
forum, 1997) provide special mechanism for
identifying and handling these cases. In DiskSeen,
such access patterns can be well handled without
extra efforts to change file systems.

CVS and Diff

CVS and diff have a similar data access pattern. In
both workloads, two sets of the Linux source code
tree are compared file by file. Such a disk access
pattern represents a very inefficient pattern – a
long seek distance exists between two consecutive
disk accesses, thus each disk access would raise a
long disk head seek and rotation latency.

As shown in Table 1, DiskSeen significantly
improves the performance of both CVS and diff
on the first runs and further on the second runs.
This is because the Linux source code tree ac-
cessed in both workloads mostly consists of small
files, which are laid out on the disk sequentially.
However, the file-level prefetching in the stock
Linux kernel cannot detect sequential disk ac-
cesses across files and most of these files are of
small size, so prefetching is only occasionally

Table 1.Execution Times (seconds) of workloads on the stock Linux kernel and kernel with DiskSeen

Workload name Linux 2.6.11 DiskSeeen – 1st Run DiskSeen – 2nd Run

strided 33.99 33.69 24.93

reversed 99.98 100.26 49.17

CVS 81.57 68.22 55.50

diff 98.36 81.14 46.12

grep 17.24 14.02 13.83

TPC-H (Q4) 93.85 88.22 69.43

215

Exploiting Disk Layout and Block Access History for I/O Prefetch

activated. In contrast, with DiskSeen, sequential
disk accesses across file boundary can be detected
at the disk level by the sequence-based prefetch-
ing during the first runs. As a result, CVS and diff
have a reduction of execution times by 16% and
18%, respectively. The second runs of them can
further reduce the times by another 19% and 43%,
because accesses to non-continuous data blocks
are identified and prefetched as well.

Grep

Different from CVS and diff, which gains signifi-
cant performance improvement due to alternate
accesses of two remote disk regions, grep only
searches a local directory but also exhibits substan-
tial performance improvement, a 20% reduction
in its execution time.

In EXT2/EXT2, disk is segmented into mul-
tiple 128MB cylinder groups. In each cylinder
group, inode blocks are grouped at the beginning
and followed by file data blocks. Before a file is
accessed, its inode must be inspected first, so ac-
cessing a large number of small files causes the
disk head to wildly move between disk regions
containing file content blocks and regions con-
taining metadata blocks. Since the inode blocks
in one cylinder group are laid out continuously
at the beginning, sequence-based prefetching in
DiskSeen can effectively prefetch these inode
blocks into memory, thus most of the disk head
movements are removed, which explains the 20%
performance improvement.

TPC-H

In TPC-H workloads, Query 4 performs a merge-
join against table orders and table lineitem. It se-
quentially searches table orders for orders placed
in a specific time frame. For each record, the query
searches for the matched records in table lineitem
by referring to an index file.

During the first run, DiskSeen can identify
sequences for accesses to table lineitem, which
is created by appending records in the order time.
In the second run, history-aware prefetching can
further exploit history trails for disk accesses to
the index file, and DiskSeen achieve a 26% re-
duction of execution time compared to the stock
Linux kernel.

Disk Request Size

The hard disk performance is directly affected by
the size of requests received on the disk. Generally
speaking, the larger disk requests are, the more
efficient disk performance is. Thus, we also exam-
ined the size of disk requests for each workload.
To obtain the request sizes, we modify the Linux
kernel to monitor READ/WRITE commands is-
sued to the disk driver and trace the sizes of disk
requests. Table 2 shows the average size of all the
requests during the executions of benchmarks.

As shown in the table, DiskSeen significantly
increases the average request sizes in most cases,
which explains their respective execution reduc-
tions shown in Table 1. For example, the first

Table 2. Request Size (blocks) of workloads on the stock Linux kernel and kernel with DiskSeen

Workload name Linux 2.6.11 DiskSeeen – 1st Run DiskSeen – 2nd Run

strided 2 2 59.54

reversed 1 1 29.79

CVS 2.73 5.98 8.42

diff 2.88 3.94 5.4

grep 2.86 82.26 97.41

TPC-H (Q4) 6.49 6.89 10.37

216

Exploiting Disk Layout and Block Access History for I/O Prefetch

run of grep with DiskSeen increases the request
size by 28 times, compared to the stock Linux
kernel. We can also see that, with more aggressive
prefetching in the second run, the request size is
also effectively increased further. Also note that,
the increases of request size are not proportional
to their respective reductions in execution time.
This is due to many factors, such as the percentage
of computation and data accesses in a program.
However, this figure clearly shows that DiskSeen
effectively improves the efficiency of disk accesses
by increasing request sizes, as expected.

concluSion

For improving disk performance, prefetching plays
an important role in operating systems. Unfortu-
nately, the widely adopted file-level prefetching
has many intrinsic limitations, which cannot be
addressed at the logic file level. In this chapter,
we present a disk-level prefetching scheme, called
DiskSeen, to exploit the disk-specific information
and complement the traditional file-level prefetch
policies. By directly observing data accesses at
disk level, DiskSeen can identify sequential disk
accesses and perform more accurate sequence-
based prefetching. By exploiting block access
history, DiskSeen can effectively identify non-
sequential disk accesses that are repeated in
history and perform efficient block prefetching
with low overhead. Working at disk level, Disk-
Seen overcomes barriers imposed by file-level
prefetching such as prefetching data blocks across
file boundaries or across lifetimes of open files.
At the same time, DiskSeen complements rather
than replaces high-level prefetching schemes,
which help preserve the effectiveness of existing
file-level prefetching and correct its inaccurate
prefetch decision. The DiskSeen prototype imple-
mented in the Linux 2.6 kernel shows that such a
disk-level prefetching can significantly improve
the effectiveness of file-level prefetching, by
reducing execution times by 20%-53% for both

synthetic workloads and real applications such as
grep, CVS, TPC-H.

referenceS

Bryant, R. E., & O’Hallaron, D. R. (2003). Com-
puter Systems: A Programmer’s Perspective.
Prentice Hall, pp.294.

Forum, M. P. I. (1997). MPI-2: Extensions to the
Message-Passing Interface, URL: http://www.
mpi-forum.org/docs/mpi-20-html/mpi2-report.
html

Gray, J., & Shenoy, P. J. (2000). Rules of Thumb
in Data Engineering. Proceedings of International
Conference on Data Engineering, 2000, 3–12.

Griffioen, J., & Appleton, R. (1994). Reducing
file system latency using a predictive approach.
Proceedings of the USENIX Summer Conference,
June 1994, pp. 197-208.

Kroeger, T. M., & Long, D. D. E. (2001). Design
and implementation of a predictive file prefetch-
ing algorithm. Proceedings of the 2001 USENIX
Annual Technical Conference, January 2001.

Li, Z., Chen, Z., Srinivasan, S., & Zhou, Y. (2004).
C-Miner: Mining Block Correlations in Storage
Systems. Proceedings of 3rd USENIX Confer-
ence on File and Storage Technologies (FAST04),
March 2004.

Pai, R., Pulavarty, B., & Cao, M. (2004). Linux
2.6 Performance Improvement through Readahead
Optimization. Proceedings of the Linux Sympo-
sium, July 2004.

Papathanasiou, A. E., & Scott, M. L. (2005). Ag-
gressive Prefetching: An Idea Whose Time Has
Come. Proceedings of the Tenth Workshop on Hot
Topics in Operating Systems, June 2005.

Schindler, J., & Ganger, G. R. (2000). Automated
Disk Drive Characterization. Proceeding of 2000
ACM SIGMETRICS Conference, June 2000.

217

Exploiting Disk Layout and Block Access History for I/O Prefetch

Schindler, J., Griffin, J. L., Lumb, C. R., & Ganger,
G. R. (2002). Track-Aligned Extents: Matching
Access Patterns to Disk Drive Characteristics.
Proceedings of USENIX Conference on File and
Storage Technologies, January 2002.

Schlosser, S. W., Schindler, J., Papadomanola-
kis, S., Shao, M., Ailamaki, A., Faloutsos, C.,
& Ganger, G. R. (2005). On Multidimensional
Data and Modern Disks. Proceedings of the 4th
USENIX Conference on File and Storage Tech-
nology, December 2005.

Schmuck, F., & Haskin, R. (2002). GPFS: A
Shared-Disk File System for Large Computing
Clusters. Proceedings of USENIX Conference on
File and Storage Technologies, January 2002.

218

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 11

Sequential File
Prefetching in Linux

Fengguang Wu
Intel Corporation, China

introduction

Sequential prefetching, also known as readahead
in Linux, is a widely deployed technique to bridge
the huge gap between the characteristics of storage
devices and their inefficient ways of usage by ap-
plications. At one end, disk drives and disk arrays
are better utilized by large accesses. At the other,
applications tend to do lots of tiny sequential reads.
To make the two ends meet, operating systems do

prefetching: to bring in data blocks for the upcom-
ing requests, and do so in large chunks.

The Linux kernel does sequential file prefetching
in a generic readahead framework that dates back
to 2002. It actively intercepts file read requests in
the VFS layer and transforms the sequential ones
into large and asynchronous readahead requests.
This seemingly simple task turns out to be rather
tricky in practice (Pai, Pulavarty, and Cao, 2004;
Wu, Xi, Li, and Zou, 2007). The wide deployment
of Linux --- from embedded devices to supercom-

abStract

Sequential prefetching is a well established technique for improving I/O performance. As Linux runs
an increasing variety of workloads, its in-kernel prefetching algorithm has been challenged by many
unexpected and subtle problems; As computer hardware evolves, the design goals should also be
adapted. To meet the new challenges and demands, a prefetching algorithm that is aggressive yet safe,
flexible yet simple, scalable yet efficient is desired. In this chapter, the author explores the principles of
I/O prefetching and present a demand readahead algorithm for Linux. He demonstrates how it handles
common readahead issues by a host of case studies. Both static, logic and dynamic behaviors of the
readahead algorithm are covered, so as to help readers building both theoretical and practical views
of sequential prefetching.

DOI: 10.4018/978-1-60566-850-5.ch011

219

Sequential File Prefetching in Linux

puters --- confronts its readahead algorithm with
an incredible variety of workloads.

In the mean while, there are two trends that
bring new demands and challenges to prefetching.
Firstly, the relative cost of disk seeks has been
growing steadily. In the past 15 years, the disk
bandwidth improved by 90 times, while the disk ac-
cess latency only saw 3-4 times speedup(Schmid,
2006). As an effective technique for reducing
seeks, prefetching is thus growing more and more
important. However the traditional readahead
algorithm was designed in a day when memory
and bandwidth resources are scare and precious.
It was optimized for high readahead hit ratio and
may be too conservative for today’s hardware
configuration. We need a readahead algorithm that
put more emphasis on “avoiding seeks”.

Secondly, I/O parallelism keeps growing.
As it becomes more and more hard to increase
single-thread performance, the parallel execution
of a pool of threads raises to be a new focus. The
deserialize of hardware and software means the
parallelization of I/O. Prefetching helps parallel
I/O performance. In turn it is also challenged by
the forms and degree of I/O concurrency: How
to detect and keep track of states for multiple I/O
streams that are interleaved together? How to
maintain good readahead behavior for a sequential
stream that is concurrently served by a pool of
cooperative threads? How to achieve low time
and space overheads in the cases of single thread
I/O as well as highly concurrent I/O?

The questions will be answered in the follow-
ing sections. We will start by the introduction to
prefetching with its values for storage devices and
roles in I/O optimization. We will give a reference
to basic forms of prefetching, discuss the design
tradeoffs and argue for more aggressive prefetch-
ing policies. We then proceed to introduce the
demand readahead algorithm in Linux and explain
the differences to the legacy one. At last we dem-
onstrate its dynamic behaviors and advantages by
a host of case studies and benchmarks.

principleS of i/o prefetching

Bandwidth and latency are the two major aspects of
I/O performance. For both metrics, there have been
huge and growing performance gaps between disk,
memory and processor. For example, the Intel(R)
QuickPath(TM) Interconnect (QPI) can provide
12.8GB/s bandwidth per direction for processor-
to-processor and processor-to-io data transfers.
Today’s DDR3-1333 memory has a theoretical
bandwidth of 10666MB/s and response time of
12 nanoseconds, while a Seagate(R) 7200.11 SATA
disk has a maximum sustained transfer rate of
105MB/s and average seek time of 8.5ms. Hence
the performance gap as of 2009 is about 10 times
for bandwidth and 7e5 times for latency. In this
section, we demonstrate how I/O prefetching can
help fill the performance gaps.

Storage devices

The I/O latency is such a dominant factor in disk
I/O operations that it can be approximated by a
simple I/O model. A typical disk I/O takes two
steps: Firstly, the disk head moves to the data
track and waits for the data sector to rotate under
it; Secondly, data read and transfer start. Corre-
spondingly there are two operational times: the
average access time, whose typical value is 8ms;
the data transfer time, which roughly equals to the
multiplication of I/O size and the disk’s sustained
transfer rate, which averages to 80MB/s for com-
modity disks today.

In a full I/O period, only the data transfer time
makes real utilization of the disk data channel. The
larger I/O size, the more time will be spent in data
transfer and less time wasted in seeking, hence
the more we can harvest disk utilization ratio and
I/O bandwidth. Figure 1 reflects this correlation
given the above disk I/O model and representa-
tive parameter values. One major function of I/O
prefetching is to shift a disk’s working point from
left to right in the graph, so as to achieve better
disk utilization and I/O bandwidth.

220

Sequential File Prefetching in Linux

Two exciting advances about cache media are
the great abundance of dynamic memory and the
general availability of flash memory. One might
expect them to bring negative impacts to the rel-
evance of prefetching techniques. When more data
can be cached in the two types of memories, there
would be less disk I/Os and readahead invocations.
However, in this era of information explosion,
data set and disk size grow rapidly at the same
time. There are increasing I/O intensive applica-
tions and I/O parallelism that demand more flex-
ible, robust and aggressive prefetching. Another
consequence of the larger memory is, aggressive
prefetching becomes a practical consideration for
modern desktop systems. A well known example
is boot time prefetching for fast system boot and
application startup(Esfahbod, 2006).

Flash memory and its caching algorithms fit
nicely in one big arena where magnetic disk and
its prefetching algorithms are not good at: small
random accesses. The Intel(R) turbo memory and
hybrid hard drive are two widely recognized ways
to utilize the flash memory as a complementary
cache for magnetic disks. And apparently the solid-
state disk(SSD) is the future for mobile computing.
However, the huge capacity gap isn’t closing any
time soon. Hard disks and storage networks are
still the main choice in the foreseeable future to
meet the unprecedented storage demand created

by the explosion of digital information, where
readahead algorithms will continue to play an
important role.

The solid-state disks greatly reduced the costly
seek time, however there are still non-trivial
access delays. In particular, SSD storage is basi-
cally comprised of a number of chips operating
in parallel, and the larger prefetching I/O will be
able to take advantage of the parallel chips. The
optimal I/O size required to get full performance
from the SSD storage will be different from spin-
ning media, and vary from device to device. So
I/O prefetching with larger and tunable size is
key even on SSD.

In summary, where there is sequential access
patterns, there’s arena for I/O prefetching. Whether
it be platter-based disk or solid state disk.

2.2 I/O Optimization and Prefetching

According to (Russel, 1997), there are four basic
I/O optimization strategies:

Avoidance. The best option is to avoid the
costly disk accesses totally or to reduce disk ac-
cess frequency. This can achieved by file caching.
Prefetching is also good at converting small read
requests into large ones, which effectively reduces
the number of disk accesses and therefore the costly
seeks. Another concrete example is the well known

Figure 1. Disks can be better utilized with larger I/O sizes

221

Sequential File Prefetching in Linux

Linux VFS (Virtual File System) mount options
noatime and relatime for eliminating undesirable
writes triggered by mtime updates.

Sequentiality. Sequential accesses enable se-
quential prefetching and maximize disk utilization.
For concurrent sequential accesses, prefetching
plays an essential role in aggregating interleaved
tiny I/Os into larger ones. For non-sequential
accesses, it still benefits to minimize seek and
rotational delays by employing techniques such as
smart disk layout management, informed prefetch-
ing, I/O queuing and scheduling. To name a few
real world examples: the deadline, anticipatory and
CFQ (Complete Fairness Queuing) I/O elevators
in Linux; the TCQ (Tagged Command Queuing)
for SCSI disks and NCQ (Native Command Queu-
ing) for SATA disks; the delayed allocation and
pre-allocation features of ext4/xfs; the writeback
clustering in xfs; etc.

Asynchrony. Asynchronous accesses improve
I/O computing efficiency by pipelining processor
and disk activities, and hiding I/O latencies to the
application. AIO, non-blocking I/O, writeback
and readahead are common facilities for asyn-
chronous I/O.

Parallelism. Disk arrays have been a standard
practice for aggregating multiple disks’ capacity as
well as bandwidth. Beyond the traditional RAID
layer, the emerging file systems exemplified by
zfs and btrfs target to manage large pool of disks
on their own. For large scale cloud computing and

high performance computing, large pools of stor-
age servers can be organized with the Google file
system, Lustre, pNFS or other cluster file systems.
On the other hand, device level parallelism are
being employed inside SSD. For example, Intel(R)
pioneered 10 parallel NAND flash channels in its
SATA solid-state drives to deliver up to 250MB/s
read bandwidth and 35,000 IOPS. Concurrent I/O
requesting and parallel data transfer are the keys
to I/O throughput of the above parallel systems.
Aggressive prefetching plays a vital role in this
arena: they typically need large and asynchronous
prefetching I/O to fill the parallel data channels.

It is obvious that prefetching plays an important
role in each of the four I/O optimization strate-
gies. Prefetching brings benefits to applications,
storage devices and storage pools, and even
processing resources(Shriver, Small, and Smith,
1999). Applications can run smoother and faster
by masking the low level I/O delays. Disks can
be better utilized by large I/O size. Storage pools
can be better parallelized. The larger I/O unit
also helps amortize processing overheads in the
whole I/O path.

basic approaches to prefetching

Prefetching algorithms can be either heuristic or
informed. The heuristic algorithms try to predict
I/O blocks to be accessed in the near future
based on the past ones. The most successful one

Figure 2. Prefetching helps achieve I/O asynchrony and parallelism

222

Sequential File Prefetching in Linux

is sequential readahead, which has long been
a standard practice among operating systems
(Feiertag and Organick, 1971; McKusick, Joy,
Leffler, and Fabry, 1984). There are also more
comprehensive works to mine correlations
between files (Kroeger and Long, 2001; Paris,
Amer, and Long, 2003; Whittle, Paris, Amer,
Long, and Burns, 2003) or data blocks (Li, Chen,
and Zhou, 2005).

On the other hand, informed prefetching works
with hints from individual applications about their
future I/O operations. The hints could either be
explicitly controlled by application (Cao, Felten,
Karlin, and Li, 1996; Patterson, Gibson, Ginting,
Stodolsky, and Zelenka, 1995; Patterson, Gibson,
and Satyanarayanan, 1993) or be automatically
generated (Brown, Mowry, and Krieger, 2001).

Caching is another ubiquitous performance
optimization technique. It is a common practice to
share prefetching memory with cache memory, this
opens the door to interactions between prefetching
and caching. Besides the basic defensive support
for readahead thrashing discussed in this chapter,
there are also comprehensive works dealing with
integrated prefetching and caching (Butt, Gniady,
and Hu, 2005; Cao, Felten, Karlin, and Li, 1995;
Cao, Felten, Karlin, and Li, 1996; Dini, Lettieri,
and Lopriore, 2006; Gill and Modha, 2005; Pat-
terson, Gibson, Ginting, Stodolsky, and Zelenka,
1995; Itshak and Wiseman, 2008) and schemes to
dynamically adapt the prefetching memory (Li and
Shen, 2005) or prefetch depth (Gill and Bathen,
2007; Li, Shen, and Papathanasiou, 2007; Liang,
Jiang, and Zhang, 2007).

design tradeoffs of prefetching

The prefetching size can greatly impact I/O
performance and is considered as the main I/O
parameter. One must tradeoff between throughput
and latency on determining its value. The general
guideline is: prefetching size should be large
enough to deliver good I/O throughput and small
enough to prevent undesirable long I/O latencies.

Different storage devices, disk array configura-
tions and workloads have different optimal I/O
size. Some applications (e.g. FTP) are not sensi-
tive to I/O latency and therefore can safely use
a large readahead size; Some others (e.g. VOD)
may be sensitive to I/O latency and should use a
more conservative I/O size.

Besides the tradeoff between throughput and
latency, prefetching hit ratio is another common
design consideration. It is defined as: for all the
data pages faulted in by the prefetching algorithm,
how much of them are actually accessed before
being reclaimed. To keep prefetching hit ratio high,
adaptive readahead size shall be employed. This
is because even we are sure that an application
is doing sequential reads, we have no idea how
long the read sequence will last. For example, it
is possible that an application scans one file from
beginning to end, while only accesses the first two
pages in another file.

Fortunately, the common I/O behaviors are
somehow inferable. Firstly, the number of pages
to be read(not considering the end-of-file case) and
the number of pages have been accessed are nor-
mally positively correlated. Secondly, the larger
read size, the more possibility it will be repeated.
Because the large read size implies an optimiza-
tion made by the developer for an expected long
run of reads. Based on the above two empirical
rules, the possibility of the current access pattern
being repeated can be estimated, upon which an
adaptive prefetching size can be calculated.

The prefetching hit ratio has served as one
major goal in the design of prefetching algorithms.
A low hit ratio means waste of memory and disk
I/O resources. The cost was high and unacceptable
in a day when these resources are scare and pre-
cious. So traditional prefetching algorithms tend
to do prefetching for only strictly sequential reads.
They employ conservative policies on prefetching
size as well as sequential detection, seeking for a
high prefetching hit ratio. For example, Linux 2.6
has been using a conservative 128KB readahead
size since its infancy.

223

Sequential File Prefetching in Linux

However, with the rapid evolvement of com-
puter hardware, we are now facing new constraints
and demands. The bandwidth and capacity of
memory and disk both improved greatly, while the
disk access times remain slow and become more
and more an I/O bottleneck. As a consequence,
the benefit of readahead hits goes up. It not only
adds importance to prefetching, but also favors
aggressive prefetching.

The cost of prefetching misses has been much
lowered, reducing the performance relevance of
prefetching hit ratio. There are two major costs of
prefetching miss: Firstly, wasted memory cache.
When more memory is taken by prefetching, less
is available for caching. This may lower the cache
hit ratio and increase number of I/O. However, in
the context of memory abundance, the impact of
cache size on cache hit ratio should be limited.
Secondly, wasted disk bandwidth. It is relatively
easy to estimate the impact of prefetching misses
on I/O bandwidth. For an I/O intensive applica-
tion, if a page being asynchronously prefetched
is accessed later, it typically means one less I/O
operation, assume that the saved disk seek time is
5ms; on the other hand, a prefetching miss page
costs about 4KB/80MBps=0.05ms extra disk
transfer time. From these two numbers alone, we
could say that a prefetching hit ratio larger than
1% would be beneficial if not optimal.

So it deserves to use more aggressive prefetch-
ing polices. It can improve overall I/O performance
even when sacrificing the hit ratio. The prefetching
hit ratio of a workload depends on its accuracy of
pattern recognition and pattern run length estima-
tion. For sequential workloads, loosing the pattern
recognition accuracy means that the strict page-
after-page pattern matching for read requests is no
longer necessary, which will allow the detection
of more interleaved and semi-sequential patterns;
loosing the run length estimation accuracy means
larger prefetching size.

It is argued in (Papathanasiou and Scott, 2005)
that more aggressive prefetching policies be em-
ployed to take advantage of new hardware and

fulfill increasing I/O demands. Our experiences
are backing it: there are risks of regression in
extending the sequential detection logic to cover
more semi-sequential access patterns, however
we received no single negative feedback since
the wide deployment of the new policies in Li-
nux 2.6.23. It’s all about performance gains in
practice, including the tricky retry based AIO
reads(Bhattacharya, Tran, Sullivan, and Mason,
2004) and locally disordered NFS reads(Ellard,
Ledlie, Malkani, and Seltzer, 2003; Ellard and
Seltzer, 2003), which will be discussed in this
chapter.

readahead in linux

Linux 2.6 does autonomous file level prefetching
in two ways: read-around for memory mapped
file accesses, and read-ahead for general buffered
reads. The read-around logic is mainly designed
for executables and libraries, which are perhaps the
most prevalent mmap file users. They typically do
a lot of random reads that exhibit strong locality
of reference. So a simple read-around policy is
employed for mmap files: on every mmap cache
miss, try to pre-fault some more pages around the
faulting page. This policy also does a reasonable
good job for sequential accesses in either forward
or backward directions.

The readahead logic for buffered reads, includ-
ing read(), pread(), readv(), sendfile(), aio_read()
and the Linux specific splice() system calls, is
designed to be a general purpose one and hence
is more comprehensive. It watches those read
requests and tries to discover predictable patterns
in them, so that it can prefetch data in a more I/O
efficient way. Due to the highly diversity of access
patterns and wide range of system dynamics, it
has been hard to get right, and only the sequential
access patterns are supported for now.

The read-around and read-ahead algorithms are
either dumb or heuristic, in various cases these in-
kernel logics can be aided with some kind of user/

224

Sequential File Prefetching in Linux

application provided I/O hints. Linux provides
a per-device tunable max_readahead parameter
that can be queried and modified with command
blockdev. As for now it defaults to 128KB for
hard disks and may be increased in the future. To
better parallelize I/O for disk arrays, it defaults to
2*stripe_width for software RAID.

Linux also provides madvise(), posix_fadvise()
and the non-portable readahead() system calls. The
first two calls allow applications to indicate their
future access patterns as normal, random or sequen-
tial, which correspondingly set the read-around and
read-ahead policies to be default, disabled or ag-
gressive. The APIs also make application controlled
prefetching possible by allowing the application to
specify the exact time and location to do readahead.
Mysql is a good example to make use of this facility
in carrying out its random queries.

the page cache

Figure 3 shows how Linux transforms a regular
read() system call into an internal readahead re-
quest. Here the page cache plays a central role:
user space data consumers do read()s which
transfer data from page cache, while the in-kernel
readahead routine populates page cache with data
from the storage device. The read requests are
thus decoupled from real disk I/Os.

This layer of indirection enables the kernel to
reshape “silly” I/O requests from applications:
a huge sendfile(1GB) request will be served in
smaller max_readahead sized I/O chunks; while
a sequence of tiny 1KB reads will be aggregated
into up to max_readahead sized readahead I/Os.

The readahead algorithm does not manage a
standalone readahead buffer. Prefetched pages are
put into page cache together with cached pages. It
also does not take care of the in-LRU-queue life
time of the prefetched pages in general. Every
prefetched page will be inserted not only into
the per-file radix tree based page cache for ease
of reference, but also to one of the system wide
LRU queues managed by the page replacement
algorithm.

This design is simple and elegant in general;
however when memory pressure goes high, the
memory will thrash (Wiseman, 2009), (Jiang,
2009) and the interactions between prefetching
and caching algorithms will become visible. On
the one hand, readahead blurs the correlation be-
tween a page’s position in the LRU queue with its
first reference time. Such correlation is relied on
by the page replacement algorithm to do proper
page aging and eviction. On the other hand, in a
memory hungry system, the page replacement
algorithm may evict readahead pages before they
are accessed by the application, leading to reada-

Figure 3. Page cache oriented read and readahead: when an empty page cache file is asked for the first
4KB data, a 16KB readahead I/O will be triggered

225

Sequential File Prefetching in Linux

head thrashings. The latter issue will be revisited
in section 5.3.

readahead windows and pipelining

Each time a readahead I/O decision is made, it is
recorded as a “readahead window”. A readahead
window takes the form of (start, size), where start
is the first page index and size is the number of
pages. The readahead window produced from
this run of readahead will be saved for reference
in the next run.

Pipelining is an old technique to enhance the
utilization of the computer components (Wiseman,
2001). Readahead pipelining is a technique to par-
allelize CPU and disk activities for better resource
utilization and I/O computing performance. The
legacy readahead algorithm adopts dual windows
to do pipelining: while the application is walking
in the current_window, I/O is underway asynchro-
nously in the ahead_window. Whenever the read
request is crossing into ahead_window, it becomes
current_window, and a readahead I/O will be trig-
gered to make the new ahead_window.

Readahead pipelining is all about doing
asynchronous readahead. The key question is
how early should the next readahead be started
asynchronously? The dual window scheme cannot
provide an exact answer, since both read request
and ahead_window are wide ranges. As a result it is
not able to control the “degree of asynchrony”.

Our solution is to introduce it as an explicit
parameter async_size: as soon as the number of
not-yet-consumed readahead pages falls under
this threshold, it is time to start next readahead.
async_size can be freely tuned in the range [0,
size]: async_size = 0 disables pipelining, whereas
async_size = size opens full pipelining. It avoids
maintaining two readahead windows and de-
couples async_size from size.

Figure 4 shows the data structures. Note that
we also tag the page at start + size - async_size
with PG_readahead. This newly introduced page
flag is one fundamental facility in our proposed
readahead framework. It was originally intended

to help support the interleaved reads: It is more
stable than the per-file-descriptor readahead states,
and can tell if the readahead states are still valid
and dependable in the case of multiple readers in
one file descriptor. Then we quickly find it a handy
tool for handling other cases, as an integral part of
the following readahead call convention.

call convention

The traditional practice is to feed every read
request to the readahead algorithm, and let it
handle all possible system states in the process
of sorting out the access patterns and making
readahead decisions. The handling everything
in one interception routine approach leads to
unnecessary invocations of readahead logic and
makes it unnecessarily complex.

There are also fundamental issues with read
requests. They may be too small(less than 1 page)
or too large(more than max_readahead pages) that
require special handling. What’s more, they are
unreliable and confusing: the same pages may be
requested more than one times in the case of reada-
head thrashing and retried sequential reads.

The above observations lead us to two new
principles: Firstly, trap into the readahead heuris-
tics only when it is the right time to do readahead;
Secondly, judge by the page status instead of the
read requests and readahead windows when-
ever feasible. These principles yield a modular
readahead framework that separates the follow-
ing readahead trigger conditions with the main
readahead logic. When these two types of pages
are read, it is time to do readahead:

1. cache miss page: it’s time for synchronous
readahead. An I/O is required to fault in the
current page. The I/O size could be inflated
to piggy back more pages.

2. PG_readaheadpage: it’s time for asynchro-
nous readahead. The PG_readahead tag is
set by a previous readahead to indicate the
time to do next readahead.

226

Sequential File Prefetching in Linux

Sequentiality

Table 1 shows the common sequentiality criteria.
The most fundamental one among them is the
“consecutive criterion” in the last line, where page
access offsets are incremented one by one. The
legacy readahead algorithm enforces the sequen-
tiality criteria on each and every read request, so
one single seek will immediately shutdown the
readahead windows. Such rigid policy guarantees
high readahead hit ratio. However it was found to
be too conservative to be useful for many important
real life workloads.

Instead of demanding a rigorous sequentiality,
we propose to do readahead for reads that have
good probability to be sequential. In particular,
the following rules are adopted:

1. Check sequentiality only for synchronous
readahead triggered by a missing page. This

ensures that random reads will be recognized
as the random pattern, while a random read
in between a sequential stream wont inter-
rupt the stream’s readahead sequence.

2. Assume sequentiality for the asynchronous
readahead triggered by a PG_readahead
page. Even if the page was hit by a true
random read, it indicates two random reads
that are close enough both spatially and
temporally. Hence it may well be a hot ac-
cessed area that deserves to be readahead.

concurrent Streams

The consecutive criterion in table 1 demands both
time and space continuity. However when multiple
threads do sequential reads on the same file in par-
allel, the read requests may appear interleaved in
time but still continuous in their respective access
spaces. Such kind of interleaved pattern used to

Figure 4. The readahead windows

Table. 1. Common sequentiality criterions

criterion case

read_size > max_readahead oversize read, common in sendfile() calls

offset == 0 && prev_offset == -1 first read on start of file

offset == prev_offset unaligned consecutive reads

offset == prev_offset + 1 trivial consecutive reads

227

Sequential File Prefetching in Linux

be a great challenge to the readahead algorithm.
The interleaving of several sequential streams
may be perceived as random reads.

In theory, it is possible to track the state of
each and every stream. However the cost would
be unacceptable: since each read request may start
a new stream, we will end up remembering every
read in the case of random reads. ZFS takes this
approach but limits the number of streams it can
track to a small value. The implementation also
has to deal with the complexity to dynamically al-
locate, lookup, age and free the stream objects.

Linux takes a simple and stupid approach: to
statically allocate one readahead data structure
for each file descriptor. This is handy in serving
the common case of one stream per file descrip-
tor, however it leaves the support for multiple
interleaved streams an open question.

When there are multiple streams per file de-
scriptor, the streams will contend the single space
slot for read offset and readahead window, and
end up overwriting each other’s state. This gives
rise to two problems. Firstly, given an unreliable
prev_offset, how do we know the current read
request is a sequential one and therefore should
be prefetched? Secondly, given an unreliable
readahead window, how do we know it is valid for
the current stream and if not, how can we recover
it? The first problem has in fact been addressed in
the previous subsection. It is also straightforward
to validate the ownership of a readahead window:
if it contains the current PG_readahead page, then

it is the readhead window for the current stream.
Otherwise we have to seek alternative ways for
finding out the lost information about readahead
window.

Fortunately, we found that the lost readahead
window information can be inferred from the page
cache. Figure 5 shows the typical status of a page
cache. The application hits the PG_readahead
page and is triggering an interleaved readahead.
To recover the readahead window information,
we scan forward in the page cache from the cur-
rent page to the first missing page. The number
of pages in between is exactly async_size. As we
know that async_size equals to size for all subse-
quent readaheads and at least size/2 for the initial
readahead, we can safely take async_size as size,
and calculate the next readahead size from it.

readahead Sequence

Assume the sequence of readahead for a sequen-
tial read stream to be A0, A1, A2, … We call
A0 the “initial readahead” and A1, A2, … the
“subsequent readaheads”. The initial readahead is
typically synchronous in that it contains the cur-
rently requested page and the reader have to stop
and wait for the readahead I/O. The subsequent
readaheads can normally be asynchronous in that
the readahead pages are not immediately needed
by the application.

A typical readahead sequence starts with a
small initial readahead size, which is inferred

Figure 5. For a typical readahead window, async_size equals to size, and PG_readahead lies in the
first page

228

Sequential File Prefetching in Linux

from the read size, and then ramps up exponen-
tially to max_readahead. However in the case of
a large sendfile() call, the readahead window can
immediately expand to its full size. The resulting
readahead size is adaptive to the current read size as
well as the accumulated sequential read sizes.

We conclude this section with the block dia-
gram of the demand readahead in Linux 2.6.24.

caSe Study

a typical readahead Stream

Take the “cp” command as an example, it does
4KB page sized sequential reads covering the
whole file. Table 2 and figure 7 demonstrates the
first three readahead invocations. The initial read
triggers a readahead that is four times the read size,

whose initial async_size is such that the second
sequential read request will immediately trigger
the next readahead asynchronously. The goal of
the rules is to start asynchronous readahead as
soon as possible, while trying to avoid useless
readahead for applications that only examine the
file head.

readahead cache hits

Linux manages kernel level “page cache” to keep
frequently accessed file pages in memory. A read
request for an already cached page is called a
“cache hit”, otherwise it is a “cache miss”. If a
readahead request is made for an already cached
page, it makes a “readahead cache hit”. Cache
hits are good whereas readahead cache hits are
evil: they are undesirable and normally avoidable
overheads. Since cache hits can far outweigh

Figure 6. The readahead framework in Linux 2.6.24

229

Sequential File Prefetching in Linux

cache misses in a typical system, it is important
to shutdown readahead on large ranges of cached
pages to avoid excessive readahead cache hits.

The classical way to disable readahead for
cached page ranges is to set a RA_FLAG_IN-
CACHE flag after 256 back-to-back readahead
cache hits and to clear it after the first cache
miss. Although this scheme works, it is not ideal.
Firstly, the threshold does not apply to cached files
that are smaller than 1MB, which is a common
case; Secondly, during the in-cache-no-readahead
mode, the readahead algorithm will be invoked
for every page instead of every read request or
max_readahead pages, to ensure on time resume
of readahead(yet it still misses readahead for the
first cache miss page), so it’s converting one type
of overhead into another hopefully smaller one.

Our proposed readahead trigger scheme can
handle readahead cache hits automatically. This
is achieved by taking care that PG_readahead be
only set on a newly allocated readahead page and
get cleared on the first read hit. So when the new
readahead window lies inside a range of cached
pages, PG_readahead won’t be set, disabling
further readaheads. As soon as the reader steps
out of the cached range, there will be a cache
miss which immediately restarts readahead. If
the whole file is cached, there will be no miss-
ing or PG_readahead pages at all to trigger an

undesired readahead. Another merit is that the
in-kernel readahead will automatically stop when
the user space is carrying out accurate application
controlled readahead.

readahead thrashing

We call a page the “readahead page” if it was
populated by the readahead algorithm and is
waiting to be accessed by some reader. Once be-
ing referenced, it is turned into a “cached page”.
Linux manages readahead pages in inactive_list
together with cached pages. For the readahead
pages, inactive_list can be viewed as a simple
FIFO queue. It may be rotated quickly in a loaded
and memory tight server. Readahead thrashing
happens when some readahead pages are shifted
out of inactive_list and reclaimed, before a slow
reader is able to access them in time.

Readahead thrashing can be easily detected.
If a cache miss occurs inside the readahead
windows, a thrashing happened. In this case, the
legacy readahead algorithm will decrease the
next readahead size by 2. By doing so it hopes to
adapt readahead size to the “thrashing threshold”,
which is defined as the largest possible thrashing
safe readahead size. As the readahead size steps
slowly off to the thrashing threshold, the thrash-
ings will fade away.

Figure 7. Readahead I/O triggered by “cp”

Table. 2. Readahead invocations triggered by “cp”

offset trigger condition readahead type size async_size

0 missing page initial/sync readahead 4*read_size = 4 size-read_size = 3

1 PG_readahead
page

subsequent/async
readahead

2*prev_size = 8 size = 8

4 2*prev_size = 16 size = 16

230

Sequential File Prefetching in Linux

However, once the thrashings stop, the reada-
head algorithm immediately reverts back to the
normal behavior of ramping up the window size
by 2 or 4, leading to a new round of thrashings.
On average, about half of the readahead pages
will be lost and re-read from disk.

Besides the wastage of memory and bandwidth
resources, there are much more destructive disk
seeks. When thrashing is detected, the legacy
readahead takes no action to recover the lost
pages inside the readahead windows. The VFS
read routine then has to fault them in one by one,
generating a lot of tiny 4KB I/Os and hence disk
seeks. Overall, up to half pages will be faulted in
this destructive way.

Our proposed framework has basic safeguards
against readahead thrashing. Firstly, the first read
after thrashing makes a cache miss, which will
automatically restart readahead from the current
position. Therefore it avoids the catastrophic
1-page tiny I/Os suffered by the legacy readahead.
Secondly, the size ramp up process may be starting
from a small initial value and keep growing expo-
nentially until thrashing again, which effectively
keeps the average readahead size above half of the
thrashing threshold. If necessary, more fine grained
control can be practiced after thrashing.

non-trivial Sequential reads

Interestingly, sequential reads may not look like
sequential. Figure 8 shows three different forms of
sequential reads that have been discovered in the
Linux readahead practices. For the following two

cases, the consecutive test offset == prev_offset
+ 1 can fail even when an application is visiting
data consecutively.

Unaligned Reads. File reads work on byte
ranges, while readahead algorithm works on
pages. When a read request does not start or stop
at page boundaries, it becomes an “unaligned
read”. Sequential unaligned reads can access the
same page more than once. For example, 1KB
sized unaligned reads will present the readahead
algorithm with a page series of {0, 0, 0, 0, 1, 1,
1, 1, …} To cover such cases, this sequentiality
criterion has been added: offset == prev_offset.

Retried Reads. In many cases --- such as non-
blocking I/O, the retry based Linux AIO, or an
interrupted system call --- the kernel may interrupt
a read that has only transferred partial amounts
of data. A typical application will issue “retried
read” requests for the remaining data. The possible
requested page ranges could be: {[0, 1000], [4,
1000], [8, 1000], …}. Such pattern confuses the
legacy readahead totally. They will be taken as
oversize reads and trigger the following readahead
requests: {(0, 64), (4, 64), (8, 64), …}. Which
are overlapped with each other, leading to a lot
of readahead cache hits and tiny 4-page I/Os.
The new call convention can mask off the retried
parts perfectly, in which readahead is triggered by
the real accessed pages instead of spurious read
requests. So the readahead heuristics won’t even
be aware of the existence of retried reads.

Figure 8. The trivial, unaligned, and retried sequential reads

231

Sequential File Prefetching in Linux

locally disordered reads

Access patterns in real world workloads can de-
viate from the sequential model in many ways.
One common case is the reordered NFS reads.
The pages may not be served at NFS server in
the same order they are requested by a client
side application. They may get reordered in the
process of being sent out, arriving at the server,
and finally hitting the readahead logic. Figure
9 shows a trace of NFS reads observed by the
readahead logic.

The in-depth discussion for such complex kind
of workload is beyond the scope of this book.
However the readahead framework does offer
clean and basic support for semi-sequential reads.

Its call convention and sequential detection logics
can help a readahead sequence to start and go on
in the face of random disturbances:

Startup. It’s easy to start an initial readahead
window. It will be opened as soon as two consecu-
tive cache misses occur. Since semi-sequential
reads are mostly consecutive, it happens very
quickly.

Continuation. It’s guaranteed that one reada-
head window will lead to another in the absence
of cache hits. So a readahead sequence won’t be
interrupted by some wild random reads. A PG_
readahead tag will be set for each new readahead
window. It will be hit by a subsequent read and
unconditionally trigger the next readahead. It does
not matter if that read is a non-consecutive one.

Figure 9. Sequential accesses over NFS can be out of order when reaching the readahead routine

Figure 10. Comparison of the readahead performances under random disturbs

232

Sequential File Prefetching in Linux

performance eValuation

In this section we explore the readahead perfor-
mances of Linux 2.6.24 and 2.6.22 side by side,
which implements the new and legacy readahead
algorithms respectively. The max readahead size
is set to 1MB for better I/O performance. The
testing platform is a single Hitachi(R) Deskstar(TM)
T7K250 160GB 7200RPM 8MB hard disk and
Intel(R) Core(TM)2 E6800 2.93GHz CPU. The
selected comparison experiments illustrate how
much impact readahead algorithms can have on
single disk I/O performance. One can expect much
larger differences for disk arrays.

intermixed random and
Sequential reads

We created a 200MB file to carry out the intermixed
4KB random and sequential reads. The sequential
stream begins at start of file and stops at middle
of file, while the random reads land randomly in
the second half of the file. We created ten access
patterns where the amount of sequential reads
are fixed at 100MB and the amount of random
reads increase from 1MB to 10MB. Figure 10(a)
describes the first access pattern. Figure 10(b)
shows the I/O throughputs for each of the 10 ac-

cess patterns. The in-disk readahead function is
disabled to highlight the performance impact of
OS readahead.

Not surprisingly the I/O throughput decreases
with more and more random reads. Also notably,
the new readahead algorithm maintains a stable
lead over the legacy one. In the case of 1:100
random:sequential bytes ratio, the throughputs are
17.18MB/s and 22.15MB/s respectively, with the
new readahead showing an edge of 28.9% over the
legacy one. When the ratio goes up to 10:100, the
throughputs decrease to 5.10MB/s and 6.39MB/s,
but still keeps a performance edge of 25.4%.

The performance edges originate from the
different readahead behaviors under random
disturbs. Figure 11 demonstrates the readahead
sequences submitted for the first 1600 pages
by the two readahead algorithms. Figure 11(a)
shows vividly how the legacy readahead se-
quences are interrupted by random reads. On
each and every random read, the readahead
window will be shutdown. And then followed
by a new readahead size ramp up process. Due
to the existence of async readahead pages, the
new readahead sequence will be overlapping
with the old one, leading to series of readahead
cache hits. In contrast, the demand readahead
algorithm ramps up and pushes forward the

Figure 11. Comparison of readahead sequences under random disturbs

233

Sequential File Prefetching in Linux

readahead window steadily and is not disturbed
by the random reads.

interleaved Sequential Streams

To validate readahead performance on concur-
rent streams, we created 10 sequential streams
Si, i=1,2,…,10, where Si is a sequence of 4KB
reads that start from byte (i-1)*100MB and stop
at i*100MB. By interleaving the first n streams,
we get Cn=interleave(S1,S2,…,Sn), n=1,2,…,10.
Where C1=S1 is a time and space consecutive read
stream, and Cn, n=2,3,…,10 is an interleaved ac-
cess pattern that has n sequential streams. Figure
12 shows a segment of C5.

Figure 13 plots the I/O throughputs for C1-C10.
The single stream throughputs are close, with

24.95MB/s for legacy readahead and 28.32MB/s
for demand readahead. When there are 2 and 3
interleaved streams, the legacy readahead quickly
slows down to 7.05MB/s and 3.15MB/s, while
the new one is not affected. When there are 10
interleaved streams, the legacy readahead through-
put crawls along at 0.81MB/s, while the demand
readahead still maintains a high throughput of
21.78MB/s, which is 26.9 times the former one.

We also measured performance with disk
readahead enabled. As showed in figure 13(b),
the in-disk readahead have very positive effects
on the performance. However due to limited disk
cache and capability, it can only support a limited
number of streams. As the number of streams
increase, the influence of the in-disk readahead
decreases. When there are 10 streams, the through-

Figure 12. Five interleaved sequential streams

Figure 13 Comparison of readahead performances on interleaved reads

234

Sequential File Prefetching in Linux

puts decrease to 12.29MB/s and 35.30MB/s, in
which the demand readahead is 2.87 times fast.
When it comes to hundreds of concurrent clients,
which is commonplace for production file serv-
ers, it effectively renders the in-disk readahead
useless. So figure 13(a) may be a more realistic
measurement of the readahead performance at
high concurrency.

Figure 14 plots the total application visible I/O
delays in each benchmark. When the number of
streams increases, the legacy readahead delays
increase rapidly from 3.36s for single stream
to 122.35s for 10 streams, while the demand
readahead delays increase slowly from 2.89s to
3.44s. There is a huge gap of 35.56 times for the
10 streams case. This stems from the fact that the

legacy readahead windows can hardly ramp up
to the ideal size, leading to smaller I/O and more
seeks, increasing the total disk I/O latencies. Be-
cause the async readahead size will also be reset
and limited to small values, it can hardly hide I/O
latencies to the upper layer.

readahead thrashing

We boot the kernel with mem=128m single, and
start one new 100KB/s stream on every second.
Various statistics are collected and showed in
figure 15. The thrashing begins at 20 second. The
legacy readahead starts to overload the disk at 50
second, and eventually achieved 5MB/s maximum
network throughput. With the new framework,

Figure 14. Application visible I/O delays on 100MB interleaved reads

Figure 15. I/O performance on readahead thrashing

235

Sequential File Prefetching in Linux

throughput keeps growing and the trend is going
up to 15MB/s. That’s three times better. The aver-
age I/O size also improves a lot. It used to drop
sharply to about 5KB, while the new behavior
is to slowly go down to 40KB under increasing
loads. Correspondingly, the disk quickly goes
100% utilization for legacy readahead. It is actu-
ally overloaded by the storm of seeks as a result
of the tiny 1-page I/Os.

concluSion

Sequential prefetching is a standard function of
modern operating systems. It tries to discover
application I/O access pattern and prefetch data
pages for them. Its two major ways of improv-
ing I/O performance are: increasing I/O size for
better throughput; facilitating async I/O to mask
I/O latency.

The diversity of application behaviors and
system dynamics sets high standards to the adapt-
ability of prefetching algorithms. Concurrent and
interleaved streams are also big challenges for
their capabilities. These challenges became more
imminent by two trends: the increasing relative
cost of disk seeks and the prevalence of multi-core
processors and parallel computing.

Based upon experiences and lessons gained in
the Linux readahead practices, we designed a de-
mand readahead algorithm with flexible heuristics
that can cover varied sequential access patterns and
support interleaved streams. It also enjoys great
simplicity by handling most abnormal cases in
an implicit way. Its power stems from the relaxed
criteria on sequential pattern recognition and the
exploitation of page and page cache states. The new
design guidelines seem to work well in practice.
Since its wide deployment with Linux 2.6.23, we
have not received any regression reports.

referenceS

Bhattacharya, S., Tran, J., Sullivan, M., & Mason,
C. (2004). Linux AIO Performance and Robust-
ness for Enterprise Workloads. In . Proceedings
of the Linux Symposium, 1, 63–78.

Brown, A. D., Mowry, T. C., & Krieger, O. (2001).
Compiler-based i/o prefetching for out-of-core
applications. ACM Transactions on Computer Sys-
tems, 19, 111–170. doi:10.1145/377769.377774

Butt, A. R., Gniady, C., & Hu, Y. C. (2007). The
Performance Impact of Kernel Prefetching on
Buffer Cache Replacement Algorithms. IEEE
Transactions on Computers, 56(7), 889–908.
doi:10.1109/TC.2007.1029

Cao, P., Felten, E. W., Karlin, A. R., & Li, K.
(1995). A study of integrated prefetching and
caching strategies. In Proceedings of the 1995
ACM SIGMETRICS joint international confer-
ence on Measurement and modeling of computer
systems, (pp. 188-197).

Cao, P., Felten, E. W., Karlin, A. R., & Li, K.
(1996). Implementation and performance of
integrated application-controlled file caching,
prefetching, and disk scheduling. ACM Trans-
actions on Computer Systems, 14, 311–343.
doi:10.1145/235543.235544

Dini, G., Lettieri, G., & Lopriore, L. (2006). Cach-
ing and prefetching algorithms for programs with
looping reference patterns. The Computer Journal,
49, 42–61. doi:10.1093/comjnl/bxh140

Ellard, D., Ledlie, J., Malkani, P., & Seltzer, M.
(2003). Passive NFS Tracing of Email and Re-
search Workloads. In Proceedings of the Second
USENIX Conference on File and Storage Tech-
nologies (FAST’03), (pp. 203-216).

Ellard, D., & Seltzer, M. (2003). NFS Tricks
and Benchmarking Traps. In Proceedings of
the FREENIX 2003 Technical Conference, (pp.
101-114).

236

Sequential File Prefetching in Linux

Esfahbod, B. (2006). Preload - An Adaptive
Prefetching Daemon. PhD thesis. Graduate
Department of Computer Science, University of
Toronto, Canada.

Feiertag, R. J., & Organick, E. I. (1971). The
multics input/output system. In Proceedings of
the third ACM symposium on Operating systems
principles, (pp. 35-41).

Gill, B. S., & Bathen, L. A. D. (2007). Optimal
multistream sequential prefetching in a shared
cache. ACM Transactions on Storage, 3(3), 10.
doi:10.1145/1288783.1288789

Gill, B. S., & Modha, D. S. (2005). Sarc: sequen-
tial prefetching in adaptive replacement cache.
Proceedings of the USENIX Annual Technical
Conference 2005 on USENIX Annual Technical
Conference, (pp. 33-33).

Itshak, M., & Wiseman, Y. (2008). AMSQM:
Adaptive Multiple SuperPage Queue Manage-
ment. In Proc. IEEE Conference on Information
Reuse and Integration (IEEE IRI-2008), Las
Vegas, NV, (pp. 52-57).

Kroeger, T. M., & Long, D. D. E. (2001). Design
and implementation of a predictive file prefetching
algorithm. In Proceedings of the General Track:
2002 USENIX Annual Technical Conference,
(pp. 105-118).

Li, C., & Shen, K. (2005). Managing prefetch
memory for data-intensive online servers. In
Proceedings of the 4th conference on USENIX
Conference on File and Storage Technologies,
(pp. 19).

Li, C., Shen, K., & Papathanasiou, A. E. (2007).
Competitive prefetching for concurrent sequential
i/o. In Proceedings of the ACM SIGOPS/EuroSys
European Conference on Computer Systems 2007,
(pp. 189-202).

Li, Z., Chen, Z., & Zhou, Y. (2005). Mining block
correlations to improve storage performance.
ACM Transactions on Storage, 1, 213–245.
doi:10.1145/1063786.1063790

Liang, S., Jiang, S., & Zhang, X. (2007). STEP:
Sequentiality and Thrashing Detection Based
Prefetching to Improve Performance of Networked
Storage Servers. 27th International Conference
on Distributed Computing Systems (ICDCS’07),
(p. 64).

McKusick, M. K., Joy, W. N., Leffler, S. J., &
Fabry, R. S. (1984). A fast file system for unix.
ACM Transactions on Computer Systems, 2(3),
181–197. doi:10.1145/989.990

Pai, R., Pulavarty, B., & Cao, M. (2004). Linux
2.6 performance improvement through readahead
optimization. In . Proceedings of the Linux Sym-
posium, 2, 391–402.

Papathanasiou, A. E., & Scott, M. L. (2005).
Aggressive prefetching: An idea whose time has
come. In Proceedings of the 10th Workshop on
Hot Topics in Operating Systems (HotOS).

Paris, J.-F. Amer, A. & Long, D. D. E. (2003). A
stochastic approach to file access prediction. In
Proceedings of the international workshop on
Storage network architecture and parallel I/Os,
(pp. 36-40).

Patterson, R. H., Gibson, G. A., Ginting, E.,
Stodolsky, D., & Zelenka, J. (1995). Informed
prefetching and caching. In Proceedings of the
fifteenth ACM symposium on Operating systems
principles, (pp. 79-95).

Patterson, R. H., Gibson, G. A., & Satyanarayan-
an, M. (1993). A status report on research in
transparent informed prefetching. SIGOPS
Operating Systems Review, 27(2), 21–34.
doi:10.1145/155848.155855

237

Sequential File Prefetching in Linux

Patterson III Russel. H. (1997). Informed Prefetch-
ing and Caching. PhD thesis, School of Computer
Science, Carnegie Mellon University, Pittsburgh,
PA.

Schmid, P. (2006). 15 years of hard drive his-
tory: Capacities outran performance. Retrieved
from http://www.tomshardware.com/reviews/15-
years-of-hard-drive-history,1368.html

Shriver, E., Small, C., & Smith, K. A. (1999).
Why does file system prefetching work? In Pro-
ceedings of the Annual Technical Conference on
1999 USENIX Annual Technical Conference,
(pp. 71-84).

Whittle, G. A. S., Paris, J.-F., Amer, A., Long, D. D.
E., & Burns, R. (2003). Using multiple predictors
to improve the accuracy of file access predictions.
In Proceedings of the 20th IEEE/11th NASA God-
dard Conference on Mass Storage Systems and
Technologies (MSS’03), (pp. 230).

Wu, F., Xi, H., Li, J., & Zou, N. (2007). Linux
readahead: less tricks for more. In . Proceedings
of the Linux Symposium, 2, 273–284.

Wu, F., Xi, H., & Xu, C. (2008). On the design
of a new linux readahead framework. ACM
SIGOPS Operating Systems Review, 42(5), 75–84.
doi:10.1145/1400097.1400106

238

Copyright © 2010, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 12
Peer-Based Collaborative

Caching and Prefetching in
Mobile Broadcast

Wei Wu
Singapore-MIT Alliance, and School of Computing, National University of Singapore, Singapore

Kian-Lee Tan
Singapore-MIT Alliance, and School of Computing, National University of Singapore, Singapore

abStract

Caching and prefetching are two effective ways for mobile peers to improve access latency in mobile
environments. With short-range communication such as IEEE 802.11 and Bluetooth, a mobile peer
can communicate with neighboring peers and share cached or prefetched data objects. This kind of
cooperation improves data availability and access latency. In this chapter the authors review several
cooperative caching and prefetching schemes in a mobile environment that supports broadcasting. They
present two schemes in detail: CPIX (Cooperative PIX) and ACP (Announcement-based Cooperative
Prefetching). CPIX is suitable for mobile peers that have limited power and access the broadcast channel
in a demand-driven fashion. ACP is designed for mobile peers that have sufficient power and prefetch
from the broadcast channel. They both consider the data availability in local cache, neighbors’ cache,
and on the broadcast channel. Moreover, these schemes are simple enough so that they do not incur
much information exchange among peers and each peer can make autonomous caching and prefetch-
ing decisions.

introduction

Mobile broadcast is a scalable data dissemination
model for mobile computing (Acharya & Alonso,
1995; Imielinski, 1997; Tan, 2000). In mobile

broadcast, a server broadcasts data objects on a
wireless channel and (a large number of) mobile
peers get their required data objects by tuning
into the broadcast channel and retrieving the data
objects when they appear. Data broadcast differs

239

Peer-Based Collaborative Caching and Prefetching in Mobile Broadcast

from traditional point-to-point access in that the
broadcast channel is open to all mobile clients and
one transmission of a data object on the broadcast
channel can satisfy the needs of potentially many
clients. Mobile broadcast is especially suitable for
data dissemination in asymmetric communication
environments where the client to server ratio is
large and there is a high degree of commonality
among client interests. Information interesting
to the majority of the clients is more suitable for
broadcast. Many projects and systems are based
on the data broadcast technology (Acharya &
Franklin, 1995; Acharya, 1997; Acharya, 1998;
Altinel, 1999; Hughes, 2008; Gifford, 1990;
Imielinski, 1997; Microsoft, 2008; Zheng, 2005).
They are sometimes referred to in the literature
as Dissemination-Based Information Systems
(DBIS) (Franklin, 1996).

Mobile peers in broadcast environments some-
times suffer from long access latency (the time
elapsed from the moment a client has a query for
a data object to the point when the client gets the
data object), especially when the broadcast cycle
is long due to large volume of data or limited
broadcast channel. When the broadcast cycle
is long, a mobile peer has to wait a long time
before their required data objects appear on the
broadcast channel.

Caching and prefetching are two effective
ways to improve response time. They both store
copies of data objects locally for future use. The
difference is that caching happens after data ac-
cess while prefetching stores data objects that
are not currently under demand but believed to
be useful in the future. In other words, caching
is driven by data accesses, and prefetching is
driven by anticipation of future accesses. In the
environments of mobile broadcast, caching is
the mechanism used to store a data object after
it is taken from the broadcast channel to fulfill
a pending request, and prefetching is to actively
listen to the broadcast channel to grab objects that
are anticipated to be useful. Thus in prefetching
the mobile peer listens to the broadcast channel

even when there is no pending request and stores
interesting objects locally. A carefully designed
prefetching scheme results in better access latency
than a caching scheme does, while consuming
more energy (Acharya, 1996).

The fact that the mobile peers have small local
storage space limits the effectiveness of caching
and prefetching. Local storage constraint makes
it impossible to hold all interesting data objects
that may be accessed.

With short-range wireless communication
technologies, such as IEEE802.11 and Bluetooth,
a mobile peer is able to communicate with other
mobile peers in its communication range. Figure
1 is an illustration of cooperative mobile peers in
a mobile broadcast environment. A line between
two mobile peers means they can communicate
directly and share contents in a simple peer-to-peer
fashion. This enables the mobile peers to share
cached or prefetched data objects: when a mobile
peer needs a data object, it can request it from its
neighbors (we define a mobile peer’s neighbors as
the mobile peers within its communication range,
i.e. one hop away). Such cooperation improves
applications’ response time, because a mobile
peer now can probably get its required data ob-
ject from its neighbors before getting it on the
broadcast channel. This may even reduce energy
consumption because getting a data object from

Figure 1. Cooperation among mobile peers. A line
between two peers means they can communicate
directly and share contents in a simple peer-to-
peer fashion

Peer-Based Collaborative Caching and Prefetching in Mobile Broadcast

240

a neighbor may be cheaper than getting from the
broadcast channel if the mobile peer has to moni-
tor the broadcast channel for a long time before
the data object appears.

A cooperative caching (or prefetching) strategy
that takes the sharing between peers into account
is more effective than an individual caching
(or prefetching) scheme. For example, a simple
cooperative strategy could be: a peer caches lo-
cally only the data objects that its neighbors do
not have. In this way, the overall data availability
among the neighborhood is improved, and then
the response time is improved.

We believe that a good cooperative cache
(or prefetching) management scheme for mobile
peers in a broadcast environment should meet
two requirements.

• First, mobile peers should retain their au-
tonomy. By autonomy we mean that a mobile
peer can make a caching (or prefetching)
decision based on its own knowledge (about
itself, its neighborhood, and the broadcast
channel) and does not require a leader (or
super-peer) to make central decisions. Be-
cause the peers are moving and their cache
contents change with time, to have accurate
and real-time knowledge of neighbors’ cache
content is very expensive. In such a highly
dynamic environment leader selection and
information synchronization will incur
a very high communication (and battery
energy) cost.

• Second, it should consider not only the data
availability from the neighbors, but also
the data availability on the broadcast chan-
nel. A data object can be available in three
places: local cache, neighbor’s cache, and the
broadcast channel. In a non-uniform mobile
broadcast, popular data objects are broadcast
more frequently and they have a high avail-
ability on the broadcast channel. A mobile
peer should consider both the availability
from neighbors and from broadcast channels

when making local caching decisions.

In this chapter, we discuss both cooperative
caching and cooperative prefetching in a broad-
cast environment. For cooperative caching, we
discuss in detail a scheme called CPIX (Coopera-
tive PIX). CPIX is a modified version of GCM
(Wu, 2006). CPIX extends the well-known PIX
caching scheme (designed for broadcast environ-
ment) (Acharya, 1995) to the cooperative scenario.
CPIX considers two important factors: local
access frequency and the global availability of
data objects. Access frequency helps to identify
critical objects that should be locally cached to
improve local cache hits (and hence reduce wait-
ing time and energy consumption). Global data
availability is used to identify the data objects
that are neither widely cached by other mobile
peers nor are frequently broadcast by the server.
Note that here data availability not only means
whether the data is available globally, but also
means how long it takes for a mobile peer to get
the data. For cooperative prefetching, we discuss in
detail a scheme called ACP (Announcement-based
Cooperative Prefetching) (Wu, 2005). The basic
idea of ACP is to let a mobile peer make prefetch-
ing decisions based on its neighbors’ prefetching
decisions while keeping them autonomous. The
objective is to help peers avoid prefetching the
same data objects, and to improve data availability.
Both CPIX and ACP are designed for push-based
broadcast environments where the mobile peers
can move freely. The schemes consider not only
a mobile peer’s local access pattern, but also the
data availability from other mobile peers and from
the broadcast channel.

In the remainder of the chapter, we give the
background knowledge on mobile broadcast and
individual caching and prefetching schemes,
review briefly some cooperative caching and
prefetching schemes, and present in detail CPIX
and ACP and a performance study of their ef-
fectiveness.

241

Peer-Based Collaborative Caching and Prefetching in Mobile Broadcast

bacKground

mobile broadcast

According to the mechanism used for schedul-
ing data objects on the broadcast channel, data
broadcast can be classified into three categories:
push-based, pull-based, and hybrid. In push-based
broadcast (Acharya, 1995), the clients do not in-
teract with the server: the server broadcasts data
objects based on its knowledge of the mobile peers’
overall data access requirements, and the mobile
peers get their required data objects when they
appear on the broadcast channel. In pull-based
broadcast (Aksoy, 1998), which is also called on-
demand broadcast, the mobile peers submit their
requests through an uplink channel to the server,
then the server broadcasts data objects based on
the received requests (pull-based broadcast is dif-
ferent from point-to-point access in that the object
requested by a query is delivered on a broadcast
channel such that all the pending queries for that
data object are answered with one transmission).
Hybrid broadcast (Acharya, 1997) combines push-
based broadcast and pull-based broadcast (or even
point-to-point access) to complement each other:
popular data objects are pushed, and infrequently
accessed data objects are retrieved on demand (by
pulling or point-to-point access).

Data objects are typically scheduled for broad-
casting according to the overall access interests of
the mobile peers in the system. The basic idea is
to broadcast hot data objects more frequently than
the others. Many algorithms have been proposed
for scheduling the broadcast in different environ-
ments (Acharya, 1998; Guo, 2001; Hameed, 1997;
Liu, 2003; Zheng, 2005).

To facilitate mobile peers saving energy, index
of data objects is introduced into the broadcast.
Basically, a broadcast index tells the mobile peers
what data objects will be available when. The
broadcast index itself is also broadcast intermit-
tently on the broadcast channel. Once a mobile
peer knows when its interested data object will
be broadcast, it can operate in sleep mode and

wake up before that time. Many researches on
mobile broadcast focus on designing broadcast
index (Hu, 1999; Imielinski, 1994; Lee, 2003; Lo,
2000; Shivakumar, 1996; Tan, 2000).

System model

In this chapter, we assume a broadcast environ-
ment where:

• The mobile broadcast is push-based. A server
broadcasts data objects repeatedly to many
mobile peers through a broadcast channel
and there is no uplink for the mobile peers
to send requests to the server.

• The broadcast is non-uniform. Data objects
are broadcast with different frequencies.
Popular data objects are broadcast more
frequently than the others.

• Broadcast index is available so that mobile
peers know the broadcast frequencies of
data objects.

• All mobile peers are in the broadcast server’s
transmission range. They get their required
data objects by tuning into the broadcast
channel.

• All data objects are of the same size and
they are not updated. This assumption lets
us ignore the factor of object size and the
problem of cache invalidation so that we
focus on the cooperative strategies for cache
management.

• The mobile peers are equipped with short
range communication devices. A mobile
peer can communicate with the mobile peers
within its communication range.

• There is no super peer in the mobile peers.
Peers have the same levels of computational
ability and battery power.

Sample applications

Many interesting applications follow the system
model that we described before. In such applica-

Peer-Based Collaborative Caching and Prefetching in Mobile Broadcast

242

tions, multimedia information needs to be dissemi-
nated to (potentially) a large number of audiences.
Here we list two sample applications.

In an academic conference, people are often
interested in paper abstracts, presenters’ profiles,
and short introduction (such as name, a small
photo, university, and research interests) of each
researcher who is attending the conference. Each
piece of these introduction (in the form of a web
page) information can be seen as a data object.
These data objects can be broadcast at the confer-
ence site. Notice that paper abstracts and present-
ers’ profiles should be broadcast more frequently
than the attendees’ information. Also notice that
a paper abstract, a presenter’s profile, and an
attendee’s profile are of similar sizes and they
normally do not change during the conference.

In museums, short video clips about the items
on display can be broadcast to the visitors. Each
video clip is a data object. The clips are of about
the same size and available throughout the exhibi-
tion. People are more interested in masterpieces;
therefore clips about the masterpieces should be
broadcast more frequently than the clips about
other art works. Each visitor to the museum gets
a mobile device that retrieves the information he/
she wants (the device obtains introduction clips
from the broadcast channel or a nearby device if
the neighboring device happens to have cached
the required clip locally).

data access process

When a mobile peer wants to access a data object,
it first looks for it in its own local cache. If the data
object is not found in the local cache, the mobile
peer requests for it from its neighbors. If none of
its neighbors has the data object, the mobile peer
tunes into the broadcast channel and waits for the
data object to appear.

To facilitate the discussion, we define a few
terms to describe the situations of cache miss and
cache hit. Let Mq be a mobile peer and Dk be the
data object that Mq wants to access.

Local Cache Hit: Mq’s local cache has Dk.
Local Cache Miss: Mq’s local cache does not

contain Dk.
Neighbor Cache Hit: at least one of Mq’s neigh-

bors has Dk in its local cache.
Neighbor Cache Miss: none of Mq’s neighbors

has Dk in its local cache.
Broadcast Hit: Mq gets Dk from the broadcast

channel.

When Mq asks for Dk from its neighbors, several
types of messages are exchanged. The mobile
peer first sends a Request message for Dk to its
neighbors. Mq’s neighbors having Dk in their cache
send back a Reply message to Mq. Upon receiving
the reply message(s), Mq sends a Retrieve message
to the neighbor who replied first, then the target
mobile peer transmits Dk to Mq.

Kr: Keep requesting

In some cooperative cache management schemes
for mobile peers in broadcast systems, when a
neighbor cache miss happens, the mobile peer
simply tunes into the broadcast channel and waits
for the required data object to appear. In these
schemes, a neighbor cache miss always results in
a broadcast hit. However, a neighbor cache miss
only means that the current neighbors do not have
the required data object, but not necessarily the
future neighbors. Since a mobile peer’s neighbors
may be changing all the time (especially in a
highly dynamic environment), a neighbor having
the required data object may come by before the
object appears on the broadcast channel.

In the schemes that we will discuss in detail,
an enhancement called Keep Request (KR) (Wu,
2006) is used. In the KR mode, a mobile peer
continues to send out request messages repeat-
edly to its neighborhood even though a neighbor
cache miss has happened. There are two situations
in which the query may be answered before the
required data object is broadcast by the server.
The first is after certain time the mobile peer has a

243

Peer-Based Collaborative Caching and Prefetching in Mobile Broadcast

new neighbor who caches the data object, because
the mobile peers are moving. The second is after
certain time an existing neighbor has the required
data object, because it has, during the time, re-
quested and obtained the object from its neighbors.
By repeatedly sending out request messages, the
response time will improve as some queries may
be answered before broadcast hits. A mobile
peer should control the frequency of sending out
request message and avoid sending the request
message too frequently, because broadcasting
message consumes energy and increases chances
of wireless signal collision. KR is independent
of the cooperative cache management scheme;
therefore it can be applied on any cooperative
cache management scheme.

With Keep Requesting, the process of data ac-
cess becomes the one shown in Figure 2. Notice
that the states of local cache miss and neighbor
cache miss are omitted in the figure.

caching and prefetching

In a broadcast system, a mobile peer’s data access
from broadcast channel can be demand-driven or
proactive. The data access is demand-driven if the
mobile peer retrieves data objects from broadcast
channel only when it has local cache miss. On the
contrary, if a mobile peer continuously monitors
broadcast channel and stores locally the data

objects that are potentially useful to it, the mobile
peer is prefetching data from the broadcast chan-
nel and its data access is proactive. Prefetching
from broadcast channel improves response time,
but incurs more energy consumption (Acharya,
1996; Grassi, 2000; Hu, 2003). Generally speak-
ing, mobile peers with limited energy tend to
access the broadcast channel only when there are
pending requests, and mobile peers with enough
energy (such as devices on vehicles) may access
the broadcast channel proactively.

We assume that the mobile peers in a system
are with the same type and they have the same
data access fashion, i.e. they are either all demand-
driven or all proactive.

In both demand-driven access and proactive
access, when a mobile peer gets a data object, it
faces the problem of deciding whether to store
the data object locally. A caching scheme helps a
mobile peer to make such decision under demand-
driven access, and a prefetching scheme helps
it to make such decision under proactive access.

Caching and prefetching schemes for indi-
vidual mobile peer in broadcast environments
have been studied extensively. Here “individual”
means that the caching (or prefetching) scheme
does not take the possible collaboration among
the mobile peers into account. With the advance
of short-range communication and mobile peer-
to-peer networks, researchers have begun to study

To Access Dk
In local
cache?

Local Cache Hit

Broadcast a
request to
neighbors

Any
reply?

Retrieve from a
neighbor

Neighbor Cache Hit

Monitor
Broadcast

Channel for
some time

Broadcast HitNo

Yes Yes

No Gotten
Dk? Yes

No

Figure 2. Data access process

Peer-Based Collaborative Caching and Prefetching in Mobile Broadcast

244

cooperative caching and cooperative prefetching
for mobile peers.

Individual Caching

We refer to the caching schemes that do not
consider the collaboration among mobile peers
as individual caching schemes.

Classic caching algorithms (like LRU) de-
signed for client-server environments may result
in poor performance in a broadcast system. In
a client-server environment, accessing differ-
ent data objects from the server takes similar
amount of time. That being the case, caching the
hottest data objects is a good idea. However, in a
non-uniform broadcast environment where data
objects are broadcast with different frequencies,
the latencies for accessing different objects from
the broadcast channel may vary greatly. This
difference makes the idea of caching the most
accessed data object not the best choice.

Caching strategies for mobile broadcast envi-
ronments were proposed in (Acharya, 1995; Su,
1998; Xu, 2000; Xu, 2004). Here we briefly review
the main idea of a scheme called PIX (Acharya,
1995). Knowing PIX will be helpful for under-
standing CPIX, which is the cooperative caching
scheme that we will discuss in detail later.

PIX. PIX is specifically designed for non-
uniform broadcast environments. The basic idea
is for mobile peers to store those data objects
for which the local probability of access is sig-
nificantly greater than the object’s frequency of
broadcast. PIX (P Inverse X) uses the ratio Pi /
Xi, where Pi is the probability of access to a data
object Di and Xi is the broadcast frequency of Di,
to decide whether Di should be cached in local
memory. A mobile client estimates the value of
Pi using its data access history, and derives the
value of Xi from broadcast index. A data object
with a higher PIX score will replace a data object
with a lower PIX score. For example, let object
Da’s access probability be 5% and its broadcast
frequency be 1%, and let object Db’s access prob-

ability be 3% and its broadcast frequency be 0.5%.
The PIX score of Da is 5, and the PIX score of Db
is 6. Object Db may cause longer access latency,
so Db will be cached if only one object can be
cached. PIX is an optimal individual caching
scheme for non-uniform broadcast because an
object’s PIX score is the expectation of the object’s
access latency.

Individual Prefetching

As in individual caching, we refer to the prefetch-
ing schemes that do not consider the collaboration
among mobile peers as individual prefetching
schemes.

Prefetching from broadcast channel is very
different from prefetching from a server in tra-
ditional client-server systems or prefetching from
hard disk to main memory. The most important
characteristic of prefetching from broadcast
channel is that the prefetching (and the related
cache management scheme) is driven by broad-
cast program: each time a data object appears
on the broadcast channel, the mobile peer needs
to decide whether to prefetch the data object
locally. This is also the fundamental difference
between prefetching and demand-driven caching
in broadcast environments. Recall that in demand-
driven caching, the caching scheme is triggered
only when there is an access and the needed data
object is received.

The advantage of prefetching from broadcast
channel is that it improves response time and
does not add any extra workload and overhead to
the broadcast server—the mobile peers prefetch
by just listening to the broadcast channel. The
disadvantage is that it incurs additional energy
consumption at the mobile peer, as the mobile
peer needs to be in active mode and listens to
the broadcast channel when prefetching. Thus
in applications where response time is the major
concern and where mobile peer has enough en-
ergy supply (e.g., computing device on vehicles),
prefetching will be preferable.

245

Peer-Based Collaborative Caching and Prefetching in Mobile Broadcast

Prefetching schemes in broadcast environ-
ments were studied in (Acharya, 1996; Cao,
2002; Grassi, 2000; Hu, 2003). Prefetching data
from broadcast channel improves response time
by avoiding costly cache misses. Let us take the
well-known PT prefetching heuristic (Acharya,
1996) as an example to show how prefetching
from broadcast channel works. PT is used in ACP,
the cooperative prefetching scheme that we will
discuss in detail, to make an individual decision
before negotiating with peers.

PT. In PT, PT values are used to make cache
admission and replacement decisions. The PT
value of a data object Di at time t is defined as Pi*Ti,
where Pi is the mobile peer’s access probability to
Di, and Ti is the time that will elapse from t until Di
appears on the broadcast channel. As in PIX, the
value of Pi is estimated from local access history,
and Ti is derived from the broadcast index. The
PT prefetching scheme works like this: each time
when a data object is broadcast, the mobile peer
finds the data object in cache with the lowest PT
value and replaces it with the currently broadcast
data object if the latter has a higher PT value. The
rationale behind the PT heuristic is to prefetch data
objects whose expectation of waiting time (Pi*Ti)
is long. As a result, using PT, data objects that
were just broadcast are more likely to be kept in
cache and the data object that are closer to being
re-broadcast, are more likely to be replaced.

Note that PT score (Pi*Ti) is not the same as
the PIX score (Pi /Xi) which is used in the PIX
demand-driven caching scheme, because Ti is not
the same as 1/Xi. For a data object with a fixed
broadcast frequency, 1/Xi is fixed, but the value Ti
changes with time. Remember that Ti is the time
remaining from the current time to the nearest
moment when the object will be broadcast. For
example, if object Da is going to be broadcast
every 100 time units, Ti of Da changes in the range
from 100 to 0 when time goes on, and Ti becomes
100 after 0. If Da’s next broadcast time is t500, and
current time is t450, then at this time Ti =50.

Cooperative Caching

In recent years, cooperative data management in
mobile environments are gaining more attention
(Papadopouli, 2001; Xu, 2004) and people begin
to study the cooperative cache management prob-
lem for mobile peers (Chow, 2004; Chow, 2005;
Hara, 2002; Lau, 2002; Shen, 2005; Wu, 2005;
Wu, 2006; Yin, 2004).

(Chow et. al., 2004) proposed a cooperative
caching scheme called GroCoca (GROup-based
COoperative CAching) for mobile peers in a pull-
based mobile environment. In GroCoca, mobile
peers report their locations to a central server and
access data objects from the server by sending
requests to it. The central server uses a clustering
algorithm to find tightly-coupled groups of mobile
peers. A set of peers are said to be tightly-coupled
if they have similar movement pattern and data
access interest. The server informs mobile peers
about the groups they are in, and then peers in
the same tightly-coupled group manage data
objects cooperatively. GroCoca is a centralized
solution, because a central server collects mobile
peers’ location information and access interests
and clusters the peers into groups.

(Chow et. al., 2005) further proposed a dis-
tributed solution called DGCoca (Distributed
Group-based Cooperative caching) for mobile
peers in push-based broadcast environments. In
the DGCoca scheme, a mobile peer exchanges
summary of its cached objects with its stable
neighbors (a stable neighbor is defined as a neigh-
bor who has been nearby for certain amount of
time) and makes cache replacement decisions with
respect to its own access frequency to the data
objects and whether the data objects are available
at its stable neighbors.

Cooperative Prefetching

(Hara, 2002; Wu et al., 2005) study the problem
of cooperative caching management in the sce-
nario where mobile peers prefetch from broadcast

Peer-Based Collaborative Caching and Prefetching in Mobile Broadcast

246

channel. As in (Wu, 2005), we call this kind of
schemes cooperative prefetching schemes.

In (Hara, 2002), the author proposed two co-
operative schemes for mobile peers in push-based
broadcast systems, namely GOP (Global OPtimal)
and SOP (Stable group OPtimal). The author calls
them cooperative caching schemes. They are
classified as cooperative prefetching schemes in
this chapter because their behaviors of caching
are triggered by the broadcast rather than data
accesses. In GOP, the mobile peers construct an
ad-hoc network and cooperate through multi-hop
communication. The idea is to exchange informa-
tion of access interests and cached objects among
all connected mobile peers each time when a data
object is broadcast, and then one of the mobile
peers collects this information and decides glob-
ally which mobile peer(s) should cache the data
object according to the network topology. Finally
the decision is flooded to all mobile peers and
every one conducts a behavior according to the
decision. GOP is not practical when the number
of mobile peers is large, because large amount
of control information and long computational
time are needed for every caching decision. In
SOP (Stable group OPtimal), data objects are
cooperatively cached in stable groups of mobile
peers. SOP works better than GOP because limit-
ing the cooperation in a stable group guarantees
data availability and reduces communication
overhead.

iSSueS, controVerSieS,
problemS

The aforementioned cooperative schemes have
several common drawbacks. First, they all try to
find stable groups of mobile peers (i.e. group of
peers that are within each other’s communication
range for certain amount of time). Because of this,
they are only suitable for environments where
groups of mobile peers do exist, and cannot be
applied to scenarios where the mobile peers are

highly dynamic. Second, they consider the data
availability from neighbors but fail to consider the
data availability on the broadcast channel. Third,
they require synchronization of a lot of information
in a group, such as cache summary and access
interests. This will incur high communication
cost (and power consumption), because the cache
summary of neighbors need to be updated quite
frequently.

We identify two challenges for the mobile peers
to manage caching cooperatively in a broadcast
environment. The first is to handle the dynamics
of the neighborhoods (topology). The second is
to consider data objects’ multiple availabilities
in the system.

The dynamics of peer’s neighborhood is due
to the movement of the peers. The changes of
neighborhoods make it infeasible to take the cache
spaces of the mobile peers in a neighborhood as
a whole and manage it for the benefit of all the
involved mobile peers. Managing cache space in a
neighborhood as a whole imposes several require-
ments: 1) a clear division of peers to neighborhoods
(or groups); 2) synchronization of access interests
in a neighborhood; 3) agreement on which peer
should cache what data objects. The movement
of peers makes these requirements very difficult
and expensive to achieve, because

• There is no agreement on which
neighborhood(s) a mobile peer belongs to--
a mobile peer has one neighborhood but
belongs to many neighborhoods at the same
time. Take the mobile peers in Figure-1 as an
example. Ma belongs to the neighborhoods of
Mb, Mc, and Md. Which neighborhood shall
it participate in? And who shall coordinate
the neighborhood?

• Even though methods are used to divide
the mobile peers into neighborhoods and
to select a leader, the neighborhoods are
changing frequently. This may incur a lot
of information exchange, because each
time a neighbor leaves or a new neighbor

247

Peer-Based Collaborative Caching and Prefetching in Mobile Broadcast

is encountered, the overall access pattern
of the neighborhood may change.

For a mobile peer that can request for data
object from its neighbors and can access data
from a broadcast channel, data objects can be
available in three ways: local cache, neighbors’
cache, and broadcast channel. A data object’s
availabilities in local cache and neighbors’ cache
are not guaranteed, while its availability on the
broadcast channel is assured. The cooperative
cache management scheme in fact determines
which peer to cache what data objects, and as a
result it determines where to access a data object.
Getting data object from different places have
different costs in terms of both access latency and
power consumption. In this situation, when doing
caching management, a mobile peer not only needs
to consider its own access interest, but also needs
to take into account what its neighbors have in
cache and the data objects’ broadcast frequencies
on the broadcast channel.

We believe that an effective cooperative cache
management scheme should deal with both the
aforementioned challenges. In the remainder of
this chapter, we discuss two such schemes. One
is a cooperative caching scheme called CPIX
designed for mobile peers whose access to the
broadcast channel is demand-driven. The other
is a cooperative prefetching scheme called ACP
designed for mobile peers whose access to the
broadcast channel is proactive. CPIX could be
used on mobile peers with limited power, while
ACP could be applied on mobile peers for whom
battery is not a problem.

CPIX and ACP share several common desir-
able properties that distinguish them from other
schemes: 1) the mobile peers using the schemes
are autonomous; 2) they consider the data avail-
ability from both the neighbors and the broadcast
channel; 3) they are adaptable to the broadcast
program; 4) they require very few message ex-
changes between mobile peers.

effectiVe collaboratiVe
caching and prefetching
SchemeS

cpix: cooperative caching

PIX (Acharya, 1995) is a well-known individual
caching scheme for mobile peers in broadcast
environment (refer to the Background section for
a brief review of PIX). CPIX (Cooperative PIX)
is an extension of the PIX scheme for the mobile
peers where they can communicate with each
other in a Peer-to-Peer fashion.

The approach CPIX takes is to view the data
availability at other mobile peers (not only the
current neighbors) together with the data avail-
ability on the broadcast channel as the global
data availability, and every mobile peer manages
its own cache space according to its own access
interest and its estimate of global data availabil-
ity. The following observation leads to this idea.
When a local cache miss happens, a mobile peer
can request the data object from its neighbors
and tune into the broadcast channel to wait for
the data object. These two can be done in paral-
lel. The mobile peer is happy as long as it can
get the data object in a short period of time, and
there is no need to distinguish whether the data
object is from a neighboring peer or it is from the
broadcast channel.

It is important to point out that here data
availability does not mean whether the data is
available, since (in the worst case) the data object
is always available from the broadcast channel. It
rather means how long it takes for a mobile peer
to get the data.

Intuitively (as in PIX), data objects that are
frequently accessed and are not readily available
should get the highest priority to be cached locally,
otherwise, many local cache misses will happen
due to its high access frequency and these local
cache misses will result in long waiting time since
it is not easy to get them from the neighbors or
broadcast channel.

Peer-Based Collaborative Caching and Prefetching in Mobile Broadcast

248

CPIX considers two important factors: local
access frequency and the global availability of
data objects. Access frequency helps to identify
critical objects that should be locally cached to
improve local cache hits (and hence reduce wait-
ing time and energy consumption). Global data
availability is used to identify the data objects
that are difficult to get from outside, i.e. they are
neither widely cached by other mobile peers nor
frequently broadcast by the server.

Although CPIX considers local access interest
rather than neighborhood’s access interest, in fact
it benefits the whole peer community when every
mobile peer is doing this. When every mobile peer
is caching the data objects that are hard to get
from external sources (including neighbors and
broadcast channel), the global data availability
is improved.

Both the information of access frequency and
the information of global data availability are es-
timated from local statistics. A mobile peer may
estimate its access frequency to the data objects
by counting historical accesses. The global data
availability of its interested data objects can be
estimated from the waiting time it experienced
for the local cache misses. To do so, each mobile
peer keeps the following statistics for every data
object Di it has accessed:

• NumAccessi: number of access.
• NumLCMi: number of local cache miss.
• SumWaitingTimei: the sum of waiting time

the mobile peer experienced due to the local
cache misses of Di.

Notice that the idea of global data availability
(viewing the data availability at other mobile peers
and the data availability on the broadcast channel
as a whole) simplifies the caching scheme. In CPIX
a mobile peer does not need to get the knowledge
of data objects’ global availability by exchanging
summary of cache content with neighbors and by
analyzing the broadcast index.

The CPIX scheme works as follows. Each time
when a query for data object Di arise:

1. The mobile peer increases NumAccessi by
one.

2. If the query results in a local cache miss,
the mobile peer increases NumLCMi by one,
records the time point when the local cache
miss happens, and broadcasts a request mes-
sage to neighbors. If KR (Keep Requesting,
see the Background section) is enabled, in
this step the mobile peer will keep sending
out request message every certain time in-
terval if neighbor cache miss for Di happens,
until the mobile peer gets Di.

3. When the mobile peer gets Di from either a
neighbor or the broadcast channel,
a. The mobile peer records the time point

and calculates the waiting time for this
local cache miss of Di, and add the
waiting time to SumWaitingTimei.

b. The mobile peer decides whether to
cache the data locally. If there is free
cache space available, the mobile peer
caches Di using the free space. If its
cache space is full, a score for Di is
calculated. If Di ‘s score is not the
smallest among the scores of cached
data objects, the mobile peer caches
Di by replacing the data object with
the smallest score. The score of a data
object Di is calculated using the formula
as follows.

* i
i i

i

SumWaitingTimeScore NumAccess
NumLCM

=

The rationale behind the score formula is
that Scorei tells the expectation of waiting time
caused by a local cache miss of data object Di.

We use iNumAccess
NumAccess∑

 as the estimation of the

access probability to data object Di. Since every

249

Peer-Based Collaborative Caching and Prefetching in Mobile Broadcast

score has the same component ∑NumAccess	and
we use the scores for comparison purpose only,
we use NumAccessi to represent iNumAccess

NumAccess∑
.

i

i

SumWaitingTime
NumLCM

 denotes the length of time it

takes on average for the mobile peer to wait for
each local cache miss of Di, and gives a hint of
the global data availability of Di.

If we consider iNumAccess
NumAccess∑

 as Pi and

i

i

SumWaitingTime
NumLCM

 as 1/Xi, CPIX can be seen as

a cooperative version of the PIX scheme where
Pi / Xi is used to make caching decisions. The

important idea here is to use i

i

SumWaitingTime
NumLCM

to encapsulate the non-local availability, which
includes both neighbors’ cache and the broadcast
channel.

With CPIX, the data objects that are frequently
accessed (with high NumAccessi values) and dif-

ficult to get (with high i

i

SumWaitingTime
NumLCM

 values)

will be cached locally. Essentially, CPIX tries to
reduce the number of local cache misses and to
avoid costly local cache misses.

Note that in CPIX, NumAccessi, NumLCMi
and SumWaitingTimei are all cumulative. The side
effect is that the estimation will be less accurate
when access pattern or broadcast program changes
at certain time. This problem can be resolved by
using only the recent statistics.

acp: cooperative prefetching

A mobile peer prefetches data objects from
broadcast channel by continuously monitoring
the broadcast channel and putting the data objects
that are potentially useful to local cache. (Acharya,
1996) has shown that the PT prefetching scheme

performs better (in terms of response time) than
demand-driven caching schemes such as PIX. If
the mobile peers collaborate when prefetching,
then the resultant cooperative prefetching can
further improve the performance. In this section,
we discuss a solution called ACP, which stands
for Announcement-based Cooperative Prefetch-
ing. ACP enables the mobile peers to prefetch
cooperatively to improve data availability, while
keeping the mobile peers autonomous.

Prefetching imposes a special challenge to
cooperative caching management. The important
property of prefetching is that it is driven by
broadcast ticks. A consequence is that in prefetch-
ing mobile peers tend to cache the data objects
that were just broadcast. For example, if the PT
(refer to Background section for an introduction of
PT) prefetching scheme is used, the PT values of
objects that were just broadcast are high because
their T values are high at this moment. As a (bad)
result, the mobile peers may be caching the same
set of data objects, especially when their access
probabilities to the data objects are similar. In this
situation, sharing cache contents with neighbors
does not improve data availability much, and few
queries can be answered with neighbors’ cache.

The objective of ACP is to overcome the prob-
lem by avoiding prefetching multiple copies of the
same data objects in a neighborhood.

The basic idea of the ACP strategy is: in decid-
ing whether to prefetch an object D, if a mobile
peer knows whether its neighbors will prefetch
D, it can make a wiser prefetching decision for
D. For example, if a mobile peer Ma knows that
its neighbors Mb and Mc are prefetching D, then
Ma may choose not to prefetch D if D is not very
important to it, since it has a chance to get D from
its neighbors. The benefits of this are: 1) Ma saves
its cache space for another valuable data object;
2) it avoids the problem that Ma and its neighbors
are prefetching the same data objects; and thus
3) the overall data availability is improved, and
the mobile peer can have more queries answered
by neighbors.

Peer-Based Collaborative Caching and Prefetching in Mobile Broadcast

250

A simple application of this idea can be
dangerous. First, a prefetched data object may
be replaced by a more valuable data object soon
after it was prefetched. Telling neighbors that it
will prefetch data object D does not tell how long
D will be kept in its cache. Accordingly, simply
knowing that some neighbors will prefetch D, a
mobile peer does not know the extent of reliance
it can put on its neighbors. Second, if all mobile
peers choose not to prefetch a data object because
they think that their neighbors are prefetching it,
no one prefetches the data object. They both result
in a situation where some neighbors claimed to
prefetch a data object but it is not available when
someone wants to access the data object.

These problems are solved by enforcing the
following two rules in the cooperation scheme:
1) a mobile peer informs its neighbors that it will
prefetch a data object only when it will keep the
data object in cache for certain time; 2) random-
ization is applied to let at least one of the mobile
peers (that showed intention to prefetch the data
object) prefetch the data object.

Considering these factors, ACP strategy is
designed as follows:

• Before a data object D is broadcast (we
assume broadcast index is available so that
the mobile peers know when each data ob-
jects will be broadcast), every mobile peer
decides whether to prefetch D based on the
PT heuristic, and we call this the first deci-
sion.

○ If the first decision is “yes” then the
mobile peer further predicts how long
D will be in cache.
	 If it predicts that D will be in its

cache for a long time, then the mo-
bile peer broadcasts an announce-
ment message to its neighbors.

• Each mobile peer whose first decision is
“yes” counts the number of announcement
messages for D it receives.

• When D appears on the channel, every mo-

bile peer makes its final decision on whether
to prefetch D according to the importance of
D to it, the number of announcement mes-
sages it received, and some random factor.
If the final decision is still “yes”, the mobile
peer prefetches D; otherwise, the mobile
peer does not prefetch it.

That is, when a mobile peer decides to prefetch
D and believes it will cache D for a quite long
time, it sends out an announcement message to
its neighbors; a mobile peer’s final prefetching
decision for D is based on both the importance of
D and the number of neighbors who will prefetch
D. The objective of the announcement is to affect
the neighbors’ prefetching decisions. Note that
the announcement should be made before the
broadcast of D, but the mobile peers need not
make announcement at the same time. To reduce
the chance that a peer makes an announcement
but moves away from its neighbors, a peer should
send out the announcement close to the time the
associated object will be broadcast.

There are two details of ACP to be addressed:
1) How to predict the time D will be in cache
and whether it deserves an announcement? 2)
How should the neighbors’ announcements for
D, if any, affect a mobile peer’s final prefetching
decision for D?

Deciding Whether to Send Out
Announcement

Each mobile peer makes its first decision for D
with the PT individual prefetching scheme. If
there is empty cache space, the first decision is
“yes”; if the cache space is full, the mobile peer
checks the cached objects and see whether there
is a cached object whose PT value is lower than
the PT value of D, if so, the first decision is “yes”,
otherwise, the first decision is “no”.

In ACP, every mobile peer records how long
a data object was kept in its cache the last time:
when a data object is prefetched, the mobile peer

251

Peer-Based Collaborative Caching and Prefetching in Mobile Broadcast

records the timestamp, and when the data object
is replaced, it calculates the time the object is
in cache and records it. The recorded keeping
time of D is used to predict how long D will be
in cache this time.

If the first decision is “yes”, the mobile peer
decides whether to send out an announcement by
checking the following inequality.

keeping time
Tinterval

δ≥

Here δ is a threshold parameter greater than
zero, and Tinterval is the time between two
consecutive broadcasts of the data object. If the
inequality is satisfied, the mobile peer sends out
an announcement, otherwise it does not. The in-
tuition is: when an announcement for D is made,
the neighbors know that the mobile peer may
keep D longer than Tinterval*δ, so they may have
confidence to rely on the mobile peer for D.

Note that δ is a parameter that can be tuned.
Also note that a mobile peer whose first decision
for D is “yes” should count the number of the
announcement messages for D it receives.

Making Final Decision

In ACP, a mobile peer’s final prefetching decision
for D is determined by the following factors:

1. PTd, the PT value of D;
2. PTc, the PT value of the replace candidate (the

cached object with the lowest PT value);
3.	 g, the reliance parameter;
4. n, the number of announcement messages

for D the mobile peer received.

Here g(0 < g	 ≤	1) is a parameter modeling
the extent of reliance a mobile peer can put on a
neighbor who sent out an announcement for D. In
other words, g models the probability that when
the mobile peer has a query for D the neighbor
still has D and is within the mobile peer’s com-
munication range.

A mobile peer that receives more announce-
ment messages for D means it can rely more on
its neighbors for D, since the chance that all of
them move beyond the mobile peer’s communica-
tion range is lower and it is more possible for the
mobile peer to get D from its neighbors. Thus in
our scheme, the total reliance the mobile peer can
put on its neighbors for D is g*n.

When D is broadcast, each mobile peer makes
its final prefetching decision for D as follows.

• If the first decision is “no”, the final decision
is “no”.

• If the first decision is “yes” and the mobile
peer did not send out announcement for D,
then check whether the following inequality
is satisfied.

PTd(1 – g*n) > PTc

• If the inequality is satisfied, the final deci-
sion is “yes”, otherwise it is “no”.

• If the first decision is “yes” and the mobile
peer has sent out an announcement for D,
then if g*n is smaller than 1, the final deci-
sion is “no”, else (g*n is greater than 1) the
mobile peer generates a random number p
between 0 and 1, if p is bigger than 1/(g*n),
the final decision is “no”, else the final deci-
sion is “yes”.

The intuition of the final decision process is:
a) If the first decision is “no”, D is not important
for the mobile peer, so the mobile peer should not
prefetch D. b) If the first decision is “yes” but the
mobile peer did not send out an announcement, D
is not very important to the mobile peer, and the
mobile peer’s neighbors will not rely on the mobile
peer for D, so the mobile peer is free to decide
whether to prefetch D based on the total reliance
it can put on its neighbors. It checks whether it is
still beneficial to prefetch D after considering the
possibility that it can get D from its neighbors. c)

Peer-Based Collaborative Caching and Prefetching in Mobile Broadcast

252

If the mobile peer sent an announcement for D,
D is very important for the mobile peer, and its
neighbors may rely on it for D, thus the mobile
peer is not free to put reliance on its neighbors
and give up prefetching D. However, if it received
enough announcements from neighbors (g*n > 1),
which means it is possible that the mobile peers
share common access interests for D and too many
mobile peers will prefetch D and the neighborhood
is wasting cache space, then it is good that one
or several (but not all) of them finally choose not
to prefetch D. This decision is made by tossing
a coin. Even though some mobile peers having
made announcement may choose not to prefetch
D after the coin flip, the overall availability of D
is guaranteed by the process of coin flips, with a
high probability.

discussion on relying on neighbors

ACP and CPIX are quite different on the problem
of whether to rely on current neighbors for caching
some data objects. In CPIX, a peer’s neighborhood
does not directly participate when the peer makes
a caching decision. In ACP, a peer’s prefetching
decision is partially based on neighbors’ inten-
sions on prefetching.

ACP’s approach of relying on current neighbors
may seem to be inconsistent with the analysis and
arguments we made in the background section
that a mobile peer should not make caching deci-
sions based on the cache contents of its current
neighbors, but in fact this is not a conflict because
prefetching is very different from demand-driven
caching. Let’s use an example to show the dif-
ference.

Suppose the current time is t and data object
D1 appears on the broadcast channel, and D1 will
be broadcast again at time t+t’ (D1 is broadcast
every t’ time units). Mobile peer Ma gets D1 at
time t. Ma has neighbors Mb, Mc and Md. Mb and
Mc will move out of Ma ‘s communication range
at time t+t’/2.

Suppose the mobile peers are doing demand-
driven caching, and Mb and Mc have data object
D1 at time t; Ma decides not to cache D1 because
its neighbors Mb and Mc have it; Ma has a query for
D1 at time t + t'/2 + Dt. Notice that when Ma wants
to access D1, its neighbors with D1 have moved
away. The latency of the access is the time dura-
tion from time t + t'/2 + Dt to the time when D1 is
broadcast. The latency can be represented as:

' ',
2 2

' '' (()%(')),
2 2

t tt if t

t tt t t if t

 −D D ≤

 − D − D >

In the expression, “%” is the remainder op-
eration.

However, if the mobile peers are prefetching,
and Mb and Mc will prefetch D1, and Ma decides
not to prefetch D1 because its neighbors Mb and Mc
will prefetch it, then when Ma has a query for D1
at time t + t'/2 + Dt, its access latency will be:

' ',
2 2

'0,
2

t tt if t

tif t

 −D D ≤

 D >

The difference is in the second case where
'

2
ttD > . In prefetching, the access latency could

be 0 because at time t+t’ (which is before t +
t'/2 + Dt), Ma will make prefetching decision for
D1 again and may cache it locally if this time
no neighbors will prefetch it. Recall that D1 is
broadcast every t’ and prefetching is driven by
broadcast program.

The point is that in ACP, a peer will notice the
move-away of neighbors (who prefetched an in-
teresting object) when the data object is broadcast
again. In the example, when D1 is broadcast again,
Ma will make a new prefetching decision on D1.
If at this time Mb and Mc are not around, then Ma

253

Peer-Based Collaborative Caching and Prefetching in Mobile Broadcast

will not receive any announcement on prefetching
of D1 so it will decide to prefetch D1.

From this example, we see that in cooperative
prefetching a mobile peer may rely on its neigh-
bors for a data object, because the mobile peer is
monitoring the broadcast channel continuously
and once the data object is not available at its
neighbors the mobile peer may prefetch it when
it appears again, so that costly cache misses are
avoided.

Nevertheless, CPIX and ACP share one im-
portant point in common: they keep the mobile
peers autonomous even though each peer takes
the data availability at its neighbors’ into account
when making caching and prefetching decisions.
This ensures that small change in neighborhood
will not affect CPIX and ACP. This is achieved
by not relying on specific neighbors when making
caching and prefetching decisions. Rather, a peer
makes a decision based on its whole impression
of its neighbors. In CPIX, a mobile peer makes
caching decision totally based on local statistics,
and it tolerates the changes of neighbors. In ACP,
a mobile peer makes prefetching decision based
on the number of announcements it receives. If a
peer Ma makes a prefetching announcement for a
data object but moves away soon, it will not have
a significant effect on its neighbors because they
do not rely on Ma specifically.

eValuation of
collaboratiVe caching
and prefetching SchemeS

To study the performance of CPIX and ACP, we
conducted detailed simulation experiments. We
report representative results here. The reader may
find more details of the experiments and results
in (Wu, 2005; Wu, 2006).

In the experiments, we compare CPIX, ACP
with DGCoca (Chow, 2005), a cooperative cach-
ing scheme designed for push-based broadcast
environment. We did not study the performance

of GOP and SOP because they are designed for
mobile peers that form stable groups while we are
interested in scenarios where each mobile peer
follows its own trajectory.

Simulation model

The simulated mobile environment is an X*Y
(m2) area where there are a broadcast server
and n mobile peers. The server broadcasts data
objects to the mobile peers through a wireless
channel. The bandwidth of the broadcast chan-
nel is bb Mbps. All mobile peers can receive
data objects that the server broadcasts. A mobile
peer can communicate with another peer if they
are in each other’s communication range. Their
transmission range is TransRange meters. The
bandwidth of the short-range communication is
sb Mbps. At the beginning, the mobile peers are
randomly scattered in the area. The mobile peers
then move in the area following a variant of the
“random waypoint” mobility model.

In the model (and experimental results), we
use a time unit called broadcast unit. A broadcast
unit is the time the server takes to broadcast one
data object.

Broadcast Server

We adopt broadcast disks (Acharya & Alonso,
1995) to model the server’s non-uniform broad-
cast. The server has m broadcast disks, and they
are Diski where 1≤i≤m. Diski stores DiskSizei data
objects and spins at a speed of DiskSpeedi. All
data objects are read-only and of the same size
which is DataSize KB. As in (Acharya & Alonso,
1995), we use a parameter Δ to capture the rela-
tive speeds of the disks: DiskSpeedi = ((m-i)*Δ)
+1). For example, if the server has 3 broadcast
disks and Δ is 2, then the rotation speed of the
disks will be 5, 3 and 1. Δ is used to model the
nonuniformity of the broadcast. When Δ is 0,
the broadcast is uniform. The bigger the Δ is, the
more non-uniform the broadcast is.

Peer-Based Collaborative Caching and Prefetching in Mobile Broadcast

254

Mobile Peers

A variant of the “random waypoint” is used as
the mobile peers’ movement pattern. A mobile
peer first randomly chooses a destination in
the modeled area and a speed which is around
MoveSpeed m/s. Then the mobile peer moves to
the destination with that speed. After arriving
at the destination, the mobile peer pauses for
PauseTime seconds. The mobile peer repeats the
aforementioned steps.

We call the set of data objects that a mobile
peer is interested in as its access range. Access
range consists of access regions (an access region
is used to model a cluster of data objects related
to one interest topic) that the mobile peer is in-
terested in. The size of a mobile peer’s access
range is AccessRange, and the size of an access
region is RegionSize, thus the number of access
regions for each mobile peer is AccessRange/
RegionSize. We assign a Zipf distribution with a
skewness parameter θ to each mobile peer’s ac-
cess regions. The data objects within an access
region have the same probability to be accessed.
When assigning access distributions to the access
regions, the access regions from faster disks get
higher access probabilities.

A mobile peer’s queries are generated accord-
ing to its access distributions. A query is simply
an access request for a data object. The time
interval between a mobile peer’s two consecu-
tive queries is ThinkTime broadcast units. Each
mobile peer generates NumQuery queries during
the simulation.

The size of each mobile peer’s cache space is
CacheSize, which is a fraction of the size of the
peer’s AccessRange. For example, if the size of
AccessRange is 1000 and the CacheSize is 20%,
then the peer’s cache space can hold 200 data
objects.

List of Parameters

The parameters for the simulation model and their
values are summarized in Table 1.

Among the parameters, δ and γ are parameters
for ACP. To find the optimal values for δ and γ,
we conducted detailed experiments to learn the
effects of them on ACP’s performance. We find
that ACP performs best when δ and γ are set to
values between 0.3 and 0.6. In the experiments
presented as follows, we use 0.3 and 0.5 as optimal
values of δ and γ. The parameters of DGCoca are
not listed here. We follow (Chow, 2005) to assign
values to DGCoca’s parameters.

Parameter Default Value Range Unit

System
Parameters

Area (X*Y) 1500*1500 m2

bb (broadcast
bandwidth)

10 Mbps

sb (short-range
bandwidth)

2 Mbps

n (num of clients) 100

Server

m (num of disks) 3

DiskSizes [500,1500,3000] Data
objects

Δ 3 [0-4]

DataSize 10 [10-100] KB

Mobile Peer

TransRange 250 [0-250] m

AccessRange 1000 Data
objects

RegionSize 50 Data
objects

CacheSize 20% [1%-50%]

MoveSpeed 2 [0-20] m/s

PauseTime 30 s

NumQuery 3000

θ (Zipf) 0.5 [0-1.0]

ThinkTime 10 Broadcast
Unit

ACP specific

δ 0.3 [0-1.0]

γ 0.5 [0-1.0]

Table 1. Simulation model parameters

255

Peer-Based Collaborative Caching and Prefetching in Mobile Broadcast

experimental results

The performance metric used in the experimental
study is the average response time (access latency)
measured in broadcast unit. We first study the
performance of the schemes under the default
parameter setting. Then we investigate the effects
of some system parameters on the schemes.

Basic Performance Study

Here we investigate the performance of the
schemes under the default parameter settings.
The objectives are twofold: one is to compare
individual schemes with cooperative schemes; the
other is to study the performance differences of
the cooperative schemes and to find the reasons
behind the differences.

Figure 3(a) compares the response times of
the five caching management schemes, namely
PIX, DGCoca, CPIX, PT, and ACP. Recall that
PIX is an individual caching scheme, PT is an
individual prefetching scheme, DGCoca and
CPIX are two cooperative caching schemes,
and ACP is a cooperative prefetching scheme.
From the figure, we first confirm that prefetch-
ing schemes perform better than demand-driven
caching schemes: PT performs better than PIX,
and ACP performs better than both DGCoca and
CPIX. We also confirm that cooperative schemes
perform better than individual schemes: DGCoca
and CPIX perform better than PIX, and ACP
performs better than PT.

Among the cooperative schemes, CPIX per-
forms better than DGCoca, and ACP has the best
performance. Figure 3(b) and Figure 3(c) reveal
the underlying reasons.

Figure 3(b) shows the breakdown of query hits
in each scheme. We observe that among the three
cooperative cache management schemes DGCoca
has the largest number of local cache hits and
neighbor cache hits, and the smallest number of
broadcast hits. This shows that DGCoca utilizes
the local cache and neighbors’ cache very well.

ACP has the largest number of broadcast hits: most
of the queries are answered using the broadcast
channel rather than local cache or neighbors’
cache. CPIX is between them.

The interesting finding here is that the num-
ber (or the ratio) of local cache hits and neighbor
cache hits is not the key factor that determines
the schemes’ performance (average response
time). Figure 3(c) shows the key factor, the aver-
age response time of broadcast hits. We see that
DGCoca experiences the longest average waiting
time for the broadcast hits (neighbor cache misses),
and ACP experiences the shortest average waiting
time for the broadcast hits. This is why DGCoca
has the longest average response time although
it has the largest number of local cache hits and
neighbor cache hits, whereas ACP has the best
response time although it has the largest number
of broadcast hits.

Since the response times for local cache hits
and neighbor cache hits are really short, the ac-
cess latency caused by neighbor cache misses
(i.e. the requested data object is in neither local
cache nor neighbors’ cache) -- the product of the
number of broadcast hits and the average waiting
time for a broadcast hit -- determines the average
waiting time of a scheme. Although DGCoca has
fewer broadcast hits, it takes a longer time to get
a broadcast hit if a query is not answered by local
cache or neighbors’ cache. On the contrary, in
ACP, although more queries are answered after
broadcast hits, a mobile peer waits a shorter time
before the required data object appears on the
broadcast channel.

Recall that DGCoca does not consider the data
availability on broadcast channel, CPIX consid-
ers the data availability on broadcast channel,
and ACP further exploits the dynamics of data
availability on broadcast channel. The key idea
we have in CPIX and ACP is that both the data
availability from neighborhood and the data
availability on broadcast channel are important
for making caching or prefetching decisions. For
data objects with similar access probability, the

Peer-Based Collaborative Caching and Prefetching in Mobile Broadcast

256

ones that are difficult to get from both neighbors
and broadcast channel should be cached locally,
thus long time waiting is avoided. In prefetching,
the peers’ cache space is refreshed with the most
valuable objects at each broadcast tick.

The performance of individual cache manage-
ment schemes PIX and PT are depicted in this set
of experiments to show that cooperative cache
management do help improve access latency. In
the remainder of this section, we only compare
the cooperative cache management schemes.

Adaptability to Non-Uniform Broadcast

In this set of experiments, we study their adapt-
ability to non-uniform broadcast by varying Δ

to see the performance of the schemes under
different extent of non-uniform broadcast. In
the experiments the access pattern of the mobile
peers does not change.

The results are depicted in Figure 4. It shows
that CPIX and ACP adapt to the non-uniform
broadcast better than DGCoca does: with the in-
crease of Δ, the response times of the schemes all
increase, but CPIX and ACP degrade slower than
DGCoca does. The length of the broadcast cycle is
∑(DiskSizei*DiskSpeedi) where DiskSpeedi=((m-
i)* Δ)+1, m is the number of broadcast disks, and
1≤ i≤m. During a broadcast circle the data objects
on Diski are broadcast DiskSpeedi times. When
Δ increases, data objects on the faster disk are
broadcast more frequently, and it becomes harder

(a) Average Response Time (b) Breakdown of Query Hits

(c) Average Response Time for Broadcast Hits

Figure 3. Performance under default setting

257

Peer-Based Collaborative Caching and Prefetching in Mobile Broadcast

to get the data objects that are on the slower disks.
CPIX and ACP adapt to the change of broadcast
better because they both consider the data avail-
ability on the broadcast channel. DGCoca makes
cache decision based on access distribution thus
it is not adaptive to the broadcast program.

Effect of Moving Speed

The effect of the mobile peers’ move speed on
the schemes’ performance is studied by varying
the mobile peers’ speed from 1 to 20m/s. Figure
5 shows the results.

We observe that when the mobile peers move
with a faster speed: (1) the response time of
DGCoca increases dramatically, (2) the response
times of CPIX and ACP increase very slowly. The
reason for (1) is that the mobile peer groups that
DGCoca tries to form are not stable when mobile
peers move fast; a mobile peer may not even be
able to find stable neighbors. Recall that in DG-
Coca, information about current neighbors’ cache
contents is used to make local caching decisions.
When the mobile peers move fast, the reliance
on current neighbors have negative effect. The
reason for (2) is that in CPIX and ACP a mobile
peer does not rely on a specific set of neighbors,
but rather consider the overall availability from
the external sources (include neighbors and the
broadcast channel).

Effect of Transmission Range

The aim of this set of experiments is to study the
effect of mobile peers’ transmission range on the
schemes’ performance. As shown in Figure 6,
all schemes’ performance improves with longer
transmission range. This is due to the fact that
a mobile peer may contact with more neighbors
with longer transmission range.

One interesting observation here is that the
performance gap between the schemes decreases
with the increase of transmission range. When a
mobile peer can communicate with more peers,
the data availability in its neighborhood improves
significantly. In this case, sharing of cache contents
leads to performance improvement, and gain from
clever cooperative cache management will be less
obvious. Increasing the density of mobile peers or
introducing multi-hop communication will have
a similar effect.

Effect of Cache Size

The effect of cache size is studied by varying a
mobile peer’s cache size from 1 data object to
half of its access range. Figure 7 shows that with
the increase of cache size, the schemes all have
better response time. This is as expected because
increasing the cache size effectively improves the
data availability. With larger cache space more

Figure 4. Effect of non-uniform broadcast Figure 5. Effect of move Speed

Peer-Based Collaborative Caching and Prefetching in Mobile Broadcast

258

data objects are cached locally and shared in the
neighborhood. The figure also shows that even
when the mobile peers have large cache size (e.g.
more than 40% of its access range), CPIX and ACP
still outperform DGCoca and the performance
difference is fairly stable.

concluSion

In this chapter, we have reviewed the problem
of cooperative cache management in mobile
environments that support data broadcast. We
discussed the difference between access-driven
caching and proactive prefetching (from the
broadcast channel), and presented our view of
the challenges for cooperative caching and coop-
erative prefetching in such environments. After
reviewing some solutions based on group-based
cooperative cache management, we presented
two schemes in detail, namely CPIX and ACP.
CPIX is a cooperative caching scheme and ACP
is a cooperative prefetching scheme. They differ
from other schemes mainly in two ways. First,
they do not require a mobile peer to have stable
neighbors. This enables a mobile peer to make
caching (or prefetching) decision autonomously,
and does not impose high information synchro-
nization overhead. Second, they consider both

the data availability on other peers and the data
availability on the broadcast channel. While ACP
is superior to CPIX in most cases, it consumes
more energy. We believe that CPIX and ACP are
two representative cooperative cache management
schemes designed for highly dynamic mobile
peers in broadcast environments.

Recently, many routing protocols have been
designed to facilitate the multi-hop communica-
tion among mobile peers in the form of a MANET
(Mobile Ad-Hoc Networks). Researchers are also
working on P2P overlays for mobile peers. It will be
interesting to investigate whether it is feasible and
how to use multi-hop communication to further
improve the performance of collaborative caching
and prefetching in a highly dynamic environment.
We believe the challenges are keeping the mobile
peers autonomous and limiting the overhead (traf-
fic) of information synchronization.

referenceS

Acharya, S., Alonso, R., et al. (1995). Broadcast
disks: Data management for asymmetric com-
munication environments. In Proceedings of
the ACM SIGMOD International Conference on
Management of Data.

Figure 6. Effect of communication range Figure 7. Effect of cache size

259

Peer-Based Collaborative Caching and Prefetching in Mobile Broadcast

Acharya, S., Franklin, M. J., et al. (1995). Dissem-
ination-based data delivery using broadcast disks.
IEEE Personal Communications, 2(6), 50-60.

Acharya, S., Franklin, M. J., et al. (1996). Prefetch-
ing from broadcast disks. In Proceedings of the
International Conference on Data Engineering.

Acharya, S., Franklin, M. J., et al. (1997).
Balancing push and pull for data broadcast. In
Proceedings of the ACM SIGMOD International
Conference on Management of Data.

Acharya, S., & Muthukrishnan, S. (1998). Sched-
uling on-demand broadcasts: New metrics and
algorithms. In Proceedings of the International
Conference on Mobile Computing and Network-
ing, Dallas, Texas, USA.

Aksoy, D., & Franklin, M. J. (1998). Scheduling
for large-scale on-demand data broadcasting. In
Proceedings of the IEEE Conference on Computer
Communications.

Altinel, M., Aksoy, D., et al. (1999). DBIS-toolkit:
Adaptable middleware for large scale data deliv-
ery. In Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data,
Philadelphia, Pennsylvania, USA.

Cao, G. (2002). Proactive power-aware cache
management for mobile computing systems. IEEE
Transactions on Computers, 51(6), 608-621.

Chow, C.-Y., Leong, H. V., et al. (2004). Group-
based cooperative cache management for mobile
clients in a mobile environment. In Proceedings
of the International Conference on Parallel Pro-
cessing (ICPP).

Chow, C.-Y., Leong, H. V., et al. (2005). Dis-
tributed group-based cooperative caching in a
mobile broadcast environment. In Proceedings
of the International Conference on Mobile Data
Management.

Hughes Network Systems, LLC. (2008). DI-
RECWAY. Retrieved May 25, 2008, from http://
www.direcway.com/

Franklin, M., & Zdonik, S. (1996). Dissemination-
based information systems. IEEE Data Engineer-
ing Bulletin, 19(3), 20-30.

Gifford, D. K. (1990). Polychannel systems for
mass digital communications. Communications
of ACM, 33(2), 141-151.

Grassi, V. (2000). Prefetching policies for energy
saving and latency reduction in a wireless broad-
cast data delivery system. In Proceedings of the
International Workshop on Modeling Analysis and
Simulation of Wireless and Mobile Systems.

Guo, Y., Pinotti, M. C., et al. (2001). A new hybrid
broadcast scheduling algorithm for asymmetric
communication systems. SIGMOBILE Mobile
Computing and Communications Review, 5(3),
39-54.

Hameed, S. & Vaidya, N. H. (1997). Log-time
algorithms for scheduling single and multiple
channel data broadcast. In Proceedings of the
International Conference on Mobile Computing
and Networking.

Hara, T. (2002). Cooperative caching by mobile
clients in push-based information systems. In
Proceedings of the Conference on Information
and Knowledge Management.

Hu, Q., Lee, W. C., et al. (1999). Indexing tech-
niques for wireless data broadcast under data
clustering and scheduling. In Proceedings of the
Eighth International Conference on Information
and Knowledge Management, Kansas City, Mis-
souri, USA.

Hu, H., Xu, J., et al. (2003). Adaptive power-
aware prefetching schemes for mobile broadcast
environments. In Proceedings of the International
Conference on Mobile Data Management.

Peer-Based Collaborative Caching and Prefetching in Mobile Broadcast

260

Imielinski, T., Viswanathan, S., et al. (1994).
Energy efficient indexing on air. In Proceedings
of the ACM SIGMOD International Conference
on Management of Data.

Imielinski, T., Viswanathan, S., et al. (1997). Data
on air: Organization and access. IEEE Transac-
tions on Knowledge and Data Engineering, 9(3),
353-372.

Lau, W. H. O., Kumar, M., et al. (2002). A coop-
erative cache architecture in support of caching
multimedia objects in MANETs. In Proceedings
of the International Symposium on a World of
Wireless, Mobile and Multimedia Networks.

Lee, S., Carney, D., et al. (2003). Index hint for
on-demand broadcasting. In Proceedings of the
International Conference on Data Engineering.

Liu, Y., & Knightly, E. (2003). Opportunistic fair
scheduling over multiple wireless channels. In
Proceedings of the IEEE Conference on Computer
Communications.

Lo, S.-C., & Chen, A. L. P. (2000). Optimal index
and data allocation in multiple broadcast channels.
In Proceedings of the 16th International Confer-
ence on Data Engineering.

Microsoft. (2008). MSN Direct. Retrieved May
25, 2008, from http://www.msndirect.com/

Papadopouli, M., & Schulzrinne, H. (2001). Ef-
fects of power conservation, wireless coverage
and cooperation on data dissemination among
mobile devices. In Proceedings of the Interna-
tional Symposium on Mobile Ad Hoc Networking
and Computing.

Shen, H., Joseph, M. S., et al. (2005). PReCinCt:
A scheme for cooperative caching in mobile
peer-to-peer systems. In Proceedings of the In-
ternational Parallel and Distributed Processing
Symposium.

Shivakumar, N., & Venkatasubramanian, S.
(1996). Efficient indexing for broadcast based
wireless systems. Mobile Networks and Applica-
tions, 1(4), 433-446.

Su, C.-J., & Tassiulas, L. (1998). Joint broadcast
scheduling and user’s cache management for ef-
ficient information delivery. In Proceedings of the
International Conference on Mobile Computing
and Networking.

Tan, K.-L., & Ooi, B. C. (2000). Data dissemina-
tion in wireless computing environments. Norwell,
MA. USA: Kluwer Academic Publishers.

Wu, W., & Tan, K.-L. (2005). Cooperative
prefetching strategies for mobile peers in a
broadcast wnvironment. In Proceedings of the
International Workshop on Databases, Informa-
tion Systems and Peer-to-Peer Computing.

Wu, W., & Tan, K.-L. (2006). Global cache man-
agement in non-uniform mobile broadcast. In
Proceedings of the International Conference on
Mobile Data Management, Nara, Japan.

Xu, J., Hu, Q., et al. (2000). SAIU: An efficient
cache replacement policy for wireless on-demand
broadcasts. In Proceedings of the Conference on
Information and Knowledge Management.

Xu, J., Hu, Q., et al. (2004). Performance evalu-
ation of an optimal cache replacement policy for
wireless data dissemination. IEEE Transactions
on Knowledge and Data Engineering, 16(1),
125-139.

Xu, B., & Wolfson, O. (2004). Data management
in mobile peer-to-peer networks. In Proceedings of
the International Workshop on Databases, Infor-
mation Systems and Peer-to-Peer Computing.

Yin, L., & Cao, G. (2004). Supporting coopera-
tive caching in ad hoc networks. In Proceedings
of the IEEE Conference on Computer Commu-
nications.

261

Peer-Based Collaborative Caching and Prefetching in Mobile Broadcast

Zheng, B., & Lee, D. L. (2005). Information dis-
semination via wireless broadcast. Communica-
tions of ACM, 48(5), 105-110.

Zheng, B., Wu, X., et al. (2005). TOSA: A near-
optimal scheduling algorithm for multi-channel
data broadcast. In Proceedings of the 6th Interna-
tional Conference on Mobile Data Management,
Ayia Napa, Cyprus.

This work was previously published in Mobile Peer-to-Peer Computing for Next Generation Distributed Environments: Ad-
vancing Conceptual and Algorithmic Applications, edited by B. Seet, pp. 166-188, copyright 2009 by Information Science
Reference (an imprint of IGI Global).

Section 5
Page Replacement Algorithms

263

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 13

Adaptive Replacement
Algorithm Templates and EELRU

Yannis Smaragdakis
University of Massachusetts, Amherst, USA

Scott Kaplan
Amherst College, USA

abStract

Replacement algorithms are a major component of operating system design. Every replacement algo-
rithm, however, is pathologically bad for some scenarios, and often these scenarios correspond to com-
mon program patterns. This has prompted the design of adaptive replacement algorithms: algorithms
that emulate two (or more) basic algorithms and pick the decision of the best one based on recent past
behavior. The authors are interested in a special case of adaptive replacement algorithms, which are
instances of adaptive replacement templates (ARTs). An ART is a template that can be applied to any
two algorithms and yield a combination with some guarantees on the properties of the combination,
relative to the properties of the component algorithm. For instance, they show ARTs that for any two
algorithms A and B produce a combined algorithm AB that is guaranteed to emulate within a factor
of 2 the better of A and B on the current input. They call this guarantee a robustness property. This
performance guarantee of ARTs makes them effective but a naïve implementation may not be practi-
cally efficient—e.g., because it requires significant space to emulate both component algorithms at the
same time. In practice, instantiations of an ART can be specialized to be highly efficient. The authors
demonstrate this through a case study. They present the EELRU adaptive replacement algorithm, which
pre-dates ARTs but is truly a highly optimized multiple ART instantiation. EELRU is well-known in the
research literature and outperforms the well-known LRU algorithm when there is benefit to be gained,
while emulating LRU otherwise.

DOI: 10.4018/978-1-60566-850-5.ch013

264

Adaptive Replacement Algorithm Templates and EELRU

introduction

An Operating System is an arbiter of hardware
resources: it decides how to allocate low-level
resources to user-level entities. One of the most
important resources in a modern system is main
memory. The OS typically uses main memory as
a cache for the data of all OS processes. The ques-
tion that arises is how to decide which data stay in
main memory vs. which data get placed on disk,
for maximum execution efficiency. This decision is
equivalent to picking a replacement algorithm: an
algorithm to compute which data get evicted (i.e.,
“replaced” with other data), when main memory is
full and room needs to be made. Most traditional
replacement algorithms are approximations of an
LRU (Least Recently Used) policy, where the data
not used the longest get evicted.

It is a well-known theoretical result, however,
that all replacement algorithms can be lured into
performing highly sub-optimally. Even worse,
most replacement algorithms have failure sce-
narios that correspond to common program
behavior. For instance, a recency-based policy,
like LRU, fails badly for loops slightly larger than
main memory and can cause Thrashing (Wiseman,
2009), (Jiang, 2009). A frequency-based policy,
like LFU, can be fooled when different data have
different usage patterns. This has given rise to
the idea of adaptively combining replacement
algorithms and emulating the better algorithm
for the workload at hand.

Many past adaptive replacement algorithms
have been ad hoc: they are designed as combina-
tions of two (or more) specific algorithms. (E.g.,
see ARC (Megiddo & Modha, 2003), LRFU (Lee
et al., 2001), LIRS (Jiang & Zhang, 2002).) We
next describe a more general approach, which is
based on adaptive replacement templates (ARTs).
An ART is a template that can be applied to any
two algorithms and yield a combination with
some guarantees, relative to the properties of the
component algorithms. In this way, an ART can
be used to fix the failure mode of any particular

replacement algorithm, by combining it with
a different algorithm and adaptively switching
between the two.

Specifically, given two replacement algorithms
A and B, we show that we can produce an adap-
tive algorithm AB that will never incur more than
a small multiplicative constant (e.g., 2 times) as
many faults as either A or B. (The term “faults”
refers to the number of replacements that need
to take place overall and is the standard quality
measure for replacement algorithms: A good al-
gorithm prevents future replacements, and thus
suffers fewer faults, by keeping in memory the
data that are likely to be needed in the future.)
Application of an ART can be generalized to more
than 2 algorithms by adapting between the result
of a previous ART instantiation, AB, and a third
algorithm C, etc. The bound of 2x in the number
of faults is usefully low because it is a worst-case
guarantee. Therefore, even if algorithm A incurs
many times (e.g., tens or hundreds) as many faults
as B for some inputs, while B incurs many times
as many faults as A for others, the combined algo-
rithm AB will never be much worse than either A
or B, drawing the best of both worlds. In practice,
we find that good adaptive algorithms emulate the
better of their two component algorithms very
closely (within a few percent of total faults).

ARTs give the designer of a replacement al-
gorithm significant ammunition. Even when the
behavior of a workload is known (e.g., the work-
load has many small loops and one large one) it is
hard to combine all the information and design a
near-optimal replacement algorithm. For example,
it is hard to design a good replacement policy
that a) behaves comparably to LRU in replacing
data that were not recently accessed; b) eagerly
replaces data that are accessed only once, similarly
to LFU; and c) behaves optimally for large linear
loops. In contrast, ARTs make it easy to combine
simple policies (LRU, LFU, loop detection) that
do well for a single behavioral pattern each. The
result has guaranteed effectiveness relative to the
original algorithms.

265

Adaptive Replacement Algorithm Templates and EELRU

An ART instantiation may be effective, yet it
may not be a good candidate for straightforward
applied implementation. For instance, the ART
may be specifying that the combined algorithm
needs to maintain the memory contents of its
component algorithms. This is inefficient and
wasteful when the memory contents of the two
algorithms have few differences. The problem is
exacerbated when more than two algorithms are
being adapted over. For instance, when adapting
over 8 algorithms, as has been the case in past
experiments (Smaragdakis, 2004), a straightfor-
ward application of an ART will require over 8
times the memory space kept for the data struc-
tures of a single replacement algorithm. (This is
not to be confused with the memory space used
to store the actual data. The data structures used
by the replacement algorithm are typically much
smaller—asymptotically logarithmic—than the
overall main memory that the algorithm manages.)
Furthermore, the ART performance guarantees
(i.e., the 2x bound in the number of faults) are
significantly weakened when more algorithms are
being adapted over. If, for instance, we combine 3
algorithms with an ART guaranteeing a 2x bound
per combination, then the naïve application of the
theory just yields a 4x bound. If we adapt over 4
algorithms, we get an 8x bound, etc.

These drawbacks are largely artifacts of the
simplistic realization of the combinations, how-
ever. In practice, for specific algorithms being
adapted over we can specialize the ART instantia-
tion so that the overheads are nearly eliminated.
We demonstrate this with a case study. We analyze
EELRU: a well-known adaptive replacement algo-
rithm that pre-dates (and to some extent inspired)
the ART idea. EELRU can be seen as a specific
instantiation of an ART. The configuration of EE-
LRU in past experiments (Smaragdakis, Kaplan,
& Wilson, 2003) is adapting over several hundred
component algorithms! Nevertheless, we show
that, with appropriate specialization, the space
overhead of EELRU is a small (2.5x) increment
over the space required for LRU—EELRU’s main

component algorithm. Furthermore, EELRU can
be proven to always perform within a small bound
(3x) of LRU. This reveals the potential of special-
izing ARTs to get practical algorithms instead of
just good policies.

adaptiVe replacement
templateS

Consider an adaptive replacement algorithm that
dynamically (i.e., during execution) switches
between algorithms A and B so that it uses A
(resp. B) whenever recent behavior indicates that
A (resp. B) outperforms B (resp. A). How can we
define a general adaptive replacement template
that is independent of A and B, yet has bounded
worst-case behavior with respect to either A or
B? We first discuss a very simple ART, which is
not expected to work well in practice. Neverthe-
less, the simple template is very useful because
it makes it trivial to prove desirable worst-case
behavior properties.

We first introduce some terminology.
DEFINITION 1. Robustness: A replacement

algorithm R1 is c-robust with respect to replace-
ment algorithm R2 if R1 can never incur more than
c times (plus possibly a constant, independent of
the number of references) as many faults as R2
for any input and memory size.

All the ARTs we define have a common
structure. They produce an adaptive replacement
algorithm, AB, that simulates both component
algorithms A and B in memory. AB has full knowl-
edge of the memory contents under algorithms A
and B in the given point of the execution. Thus,
AB can tell whether a given reference to a memory
page (the unit of data storage in virtual memory)
would be a hit (i.e., would be in main memory)
or a miss (i.e., a fault) for algorithms A and B, as
well as what each algorithm would do in that point
in the execution. Based on past behavior, memory
contents, and what A and B would do, the adaptive
algorithm decides on its own action.

266

Adaptive Replacement Algorithm Templates and EELRU

Let us see this pattern in action, by defin-
ing a simple ART, which will produce adaptive
algorithms that are 2-robust with respect to their
component algorithms. The ART will adapt based
on the behavior of A and B during the current
reference, with no memory of how well A and B
did in the past.

DEFINITION 2. ART0(A,B). On every
reference to a page that is not in memory (i.e.,
on every miss) algorithm ART0(A,B) uses the
following logic:

if the reference is a miss for A but not for •
B, then evict one of the memory pages that
are not in B’s memory. (I.e., imitate B.)

(There have to be such pages, since the memo-
ries of ART0(A,B) and B have the same size,
otherwise the contents of the real memory and
those of the memory of B would be the same and
the current reference would have been a miss for
B, since it is a miss for ART0(A,B).)

otherwise imitate A:•
if the memory contains pages that are ◦
not in A’s memory, then evict one of
those pages.
otherwise evict whichever page A ◦
evicts.

To prove the 2-robustness of ART0(A,B) with
respect to A and B, we need a simple lemma:

LEMMA 1. Consider the same reference se-
quence processed by replacement policies A, B
and ART0(A,B). If at a certain point a page is both
in the memory managed by A and in the memory
managed by B then it is also in the memory man-
aged by ART0(A,B).

Proof: The property holds initially and if it
holds up to a point in the reference sequence, then
consider the next fault for either algorithm A or B.
If it is not a fault for ART0(A,B), then the property
will hold after the replacement (because the new
page is already in ART0(A,B)’s memory). If it is

also a fault for algorithm ART0(A,B), then there
are 3 cases in the ART0(A,B) eviction logic:

ART• 0(A,B) evicts a page not in B’s
memory.
ART• 0(A,B) evicts a page not in A’s
memory.
ART• 0(A,B) evicts the same page as A.

In each of the above cases, the page evicted by
ART0(A,B) could not have been present in both
A’s and B’s memory before the eviction or will be
evicted from one of them at the same time. Thus,
if the property held before the current fault, it will
hold after the eviction. □

The lemma means that the set of pages held in
ART0(A,B)’s memory is a superset of the intersec-
tion of the sets of pages in A’s and B’s memories
at all points in time.

We can now prove our robustness result.
THEOREM 1. The adaptive replacement

algorithm ART0(A,B) is 2-robust with respect
to both A and B. That is, ART0(A,B), as defined
above, never incurs more than twice as many
faults as either A or B.

Proof: We define two “potential” quantities
and examine how their values change on every
fault for either algorithm A or B.

Let dA be the number of pages currently in
ART0(A,B)’s memory that are not in A’s memory
at the same point in the execution.

Let dB be the number of pages currently in
ART0(A,B)’s memory that are not in B’s memory at
the same point in the execution. The above values
of dA, and dB change as follows on every fault (we
denote the new values d’A and d’B):

(Note that according to Lemma 1 a hit for both
A and B implies a hit for ART0(A,B) and none of
the potentials changes.)

 1 fault for B, hit for A, hit for ART0(A,B):
d’A = dA, d’B ≤ dB

 2 fault for B, hit for A, fault for ART0(A,B):
d’A < dA, d’B ≤ dB + 1

267

Adaptive Replacement Algorithm Templates and EELRU

 3 fault for B, fault for A, fault for
ART0(A,B): d’A ≤ dA, d’B ≤ dB + 1

 4 fault for B, fault for A, hit for ART0(A,B):
d’A ≤ dA, d’B ≤ dB

 5 hit for B, fault for A, hit for ART0(A,B):
d’A ≤ dA, d’B = dB

 6 hit for B, fault for A, fault for ART0(A,B):
d’A ≤ dA + 1, d’B < dB

We do not show all the case-by-case reason-
ing needed to derive the above values since the
derivation is tedious but straightforward. As a
single example, consider case 2. In this case, there
is a fault for B and ART0(A,B) but a hit for A.
Thus ART0(A,B) is imitating A and furthermore
ART0(A,B)’s memory contains pages not in A’s
memory (otherwise A would have suffered a fault
as well). Then, the newly referenced page is al-
ready in A’s memory and ART0(A,B) will replace
a page not in A’s memory. Thus, the difference of
the two memories will strictly decrease: d’A < dA.
At the same time, ART0(A,B) and B will fault-in
the same page, but they may pick two different
pages to evict and these pages could have been
common to both their memories before. Thus dB
(the number of pages in ART0(A,B)’s memory
that are not in B’s memory) may increase but at
most by one (hence the d’B ≤ dB + 1).

Now we can show that ART0(A,B) is 2-robust
relative to A. To see this, consider that for each
fault of ART0(A,B) that is not a fault of A (case 2)
dA is strictly decreasing (by 1). But dA is originally
0, has to stay nonnegative, and increases only in
the case where both A and ART0(A,B) incur a
fault (case 6). Thus, for every fault of ART0(A,B)
that is not a fault of A, A and ART0(A,B) must
have suffered a common fault earlier. That is,
ART0(A,B) can only incur up to twice as many
faults as A.

Similarly, we can show that ART0(A,B) is
2-robust with respect to B. If ART0(A,B) suffers
a fault that is not a fault of B (case 6) then dB is
strictly decreasing. But dB is originally 0, has to
stay non-negative, and increases only in cases 2

and 3, where both B and ART0(A,B) incur faults.
Thus, for every fault of ART0(A,B) that is not a
fault of B, B and ART0(A,B) must have suffered
a common fault earlier. That is, ART0(A,B) can
only incur up to twice as many faults as B. □

ART0 produces algorithms that are not too re-
alistic because they only check the performance of
algorithms A and B for the very last memory refer-
ence. A more realistic algorithm would remember
what A and B have done over a longer timeframe
and imitate the better algorithm. Indeed, a simple
but powerful ART would be one that remembers
how well A and B have done in the current ex-
ecution, i.e., it uses two counters misses(A) and
misses(B) that reflect the total number of misses
so far. We call this template ART∞.

DEFINITION 3. ART∞(A,B). On every
reference to a page that is not in memory (i.e.,
on every miss) algorithm ART∞(A,B) uses the
following logic:

if (misses(A) > misses(B)) then imitate B:•
if B missed AND the page B would ◦
evict is in memory, evict that page
otherwise evict one of the memory ◦
pages that are not in B’s memory. (By
same reasoning as in Def. 2, there
have to be such pages.)

otherwise imitate A (same as above with B •
replaced by A).

It is easy to show, with similar reasoning as in
Lemma 1, that the set of pages held in ART∞(A,B)’s
memory is a superset of the intersection of the
sets of pages in A’s and B’s memories at all points
in time.

We can prove relatively easily a robustness
result for ART∞(A,B).

THEOREM 2. The adaptive replacement
algorithm ART∞(A,B) is 2-robust with respect
to both A and B. That is, ART∞(A,B), as defined
above, never incurs more than 2x + m faults, where
x is the minimum number of faults of algorithms
A and B, and m is the memory size.

268

Adaptive Replacement Algorithm Templates and EELRU

Proof: Let CA and CB be the counts of total
faults so far for algorithms A and B, respectively.
We again define two “potential” quantities and
examine how their values change on every fault
for either algorithm A or B.

Let dA be the number of pages currently in
ART∞(A,B)’s memory that are not in A’s memory
at the same point in the execution. Let dB be
the number of pages currently in ART∞(A,B)’s
memory that are not in B’s memory at the same
point in the execution. The values of CA, CB, dA,
and dB change as follows on every fault (we denote
the new values C’A, C’B, d’A and d’B):

(As discussed above, there is no possibility of
a hit for A and B, but a miss for ART∞(A,B).)

1. if CA > CB (in which case ART∞(A,B) imi-
tates algorithm B)
a. fault for B, hit for A, hit for ART∞(A,B):

C’A = CA, C’B = CB + 1, d’A = dA, d’B ≤
dB

b. fault for B, hit for A, fault for
ART∞(A,B): C’A = CA, C’B = CB + 1,
d’A ≤ dA, d’B ≤ dB

c. fault for B, fault for A, fault for
ART∞(A,B): C’A = CA + 1, C’B = CB +
1, d’A ≤ dA + 1, d’B ≤ dB

d. fault for B, fault for A, hit for
ART∞(A,B): C’A = CA + 1, C’B = CB +
1, d’A ≤ dA, d’B ≤ dB

e. hit for B, fault for A, hit for ART∞(A,B):
C’A = CA + 1, C’B = CB, d’A ≤ dA, d’B =
dB

f. hit for B, fault for A, fault for
ART∞(A,B): C’A = CA + 1, C’B = CB,
d’A ≤ dA + 1, d’B < dB

2. if CA ≤ CB (in which case ART∞(A,B) imi-
tates algorithm A)
a. fault for B, hit for A, hit for ART∞(A,B):

C’A = CA, C’B = CB + 1, d’A = dA, d’B ≤
dB

b. fault for B, hit for A, fault for
ART∞(A,B): C’A = CA, C’B = CB + 1,
d’A < dA, d’B ≤ dB + 1

c. fault for B, fault for A, fault for
ART∞(A,B): C’A = CA + 1, C’B = CB +
1, d’A ≤ dA, d’B ≤ dB + 1

d. fault for B, fault for A, hit for
ART∞(A,B): C’A = CA + 1, C’B = CB +
1, d’A ≤ dA, d’B ≤ dB

e. hit for B, fault for A, hit for ART∞(A,B):
C’A = CA + 1, C’B = CB, d’A ≤ dA, d’B =
dB

f. hit for B, fault for A, fault for
ART∞(A,B): C’A = CA + 1, C’B = CB,
d’A ≤ dA, d’B ≤ dB

To see how the inequalities are derived, con-
sider, for instance, case 1.e. In this case, there is
a miss for A but not for B, which is reflected in
the update of miss counts. Since the reference is
a hit for ART∞(A,B), one extra common page will
exist in both memories (for A and for adaptive)
after this reference is processed. At the same time,
however, A can evict a page that is in the current
system memory, so dA (the number of pages kept
in memory by ART∞ that would not be in A’s
memory) may decrease or stay the same (hence
the d’A ≤ dA). dB stays the same since the reference
was a hit both for ART∞(A,B) and for B.

Using the information on the potential quan-
tities we can show our result. Assume, without
loss of generality, that the algorithm with the
fewest total faults is B. (The case of A is virtually
identical.) Consider the point in the execution
when CA was last equal to CB—we will call this
the “turning point”. This was the last time ART∞
emulated algorithm A. (This point, of course, could
be the very beginning of the execution.) The main
theorem will be broken up in two parts: first we
show that ART∞(A,B) cannot have suffered more
than twice as many misses as B until the turning
point, and then we show that ART∞(A,B) cannot
have suffered more than m more misses than B
after the turning point. The two bounds have a
total of 2x + m.

We can establish that ART∞(A,B) never suf-
fered more than twice as many misses as B until

269

Adaptive Replacement Algorithm Templates and EELRU

the turning point: ART∞(A,B) suffers a miss that
is not a miss for B only in cases 1.f and 2.f, above.
But each of these cases increases the metric CA –
CB. Since CA – CB is zero initially and also zero
at the turning point (by definition), the number
of times cases 1.f and 2.f could have occurred
is at most as many as the number of times the
difference CA – CB has decreased. But this only
occurs in cases 1.a, 1.b, 2.a, and 2.b, and in all of
those algorithm B suffers a miss. In other words,
the number of misses for ART∞(A,B) that are
not misses for algorithm B are at most as many
as the misses of B. That is, ART∞(A,B) can only
suffer up to twice the misses of B up until the
turning point.

At the turning point (and, actually, any other
point as well) the value of quantity dB is at most
equal to the memory size, m—since dB reflects
how many pages in the set are different between
the memories of ART∞(A,B) and B. After the
turning point, ART∞(A,B) imitates algorithm B.
Thus, the only case where ART∞(A,B) suffers a
miss that is not a miss for B is case 1.f. But in this
case, dB gets decremented and it can never drop
below zero. Thus, ART∞ suffers at most dB misses
over those of B after the turning point, which is
at most equal to m.

Hence, overall, ART∞(A,B) never incurs more
than 2x + m faults, where x is the number of faults
of the better of the two algorithms A and B and
m is the memory size. □

The above results demonstrate the general-
ity and value of ARTs. Without any knowledge
concerning algorithms A and B, and with no as-
sumptions on the behavior of the workload, we
can prove worst-case bounds on the performance
of an adaptive algorithm relative to the perfor-
mance of the better of A and B. The generality of
the results for these ARTs means that they can be
applied to various caching domains, even beyond
operating systems (e.g., processor level-2 cach-
ing (Subramanian, Smaragdakis, & Loh, 2006)).
Following similar reasoning as above, other
robustness results for adaptive algorithms can

be proven (Smaragdakis, 2004). Most notably,
an adaptive algorithm can base its decisions on
a window of k recent misses, as opposed to just
the last miss (as in ART0) or all the misses that
occurred in the past (as in ART∞). This would
produce a template ARTk, which has interesting
practical instantiations, as seen next.

implementing adaptiVe
replacement algorithmS—
the eelru algorithm

An adaptive replacement template can be used to
produce effective policies, but it does not directly
result in efficient algorithms. For instance, it is not
clear how to combine a large number of existing
algorithms without needing to keep a record of
the memory contents of each one. For a single
algorithm, keeping a record of the pages it would
hold in memory is typically a small storage cost
in a modern OS. For instance, keeping a record
of which 8KB pages are resident in memory can
typically be done with a data structure storing
a few tens of bytes per page—an overhead of
less than 0.5%. Nevertheless, when an adaptive
algorithm wants to adapt over N distinct other
algorithms, the overhead would be multiplied
by N and would soon end up being prohibitive.
Furthermore, it is not clear what is a tight bound
for the robustness of an adaptive algorithm when
it adapts over more than two basic algorithms.
A simplistic application of our earlier theorems
suggests that when N policies are being com-
posed pair-wise, the resulting adaptive algorithm
is only 2N-1-robust with respect to two of them
(the first in the composition). This bound can be
likely tightened with further theoretical work, but
the worst-case behavior of the general case (for
arbitrary algorithms being adapted over) is not
likely to be the worst-case behavior for specific
algorithms that are useful in practice.

The space constraints and worst-case bounds
of adaptive algorithms can be significantly allevi-

270

Adaptive Replacement Algorithm Templates and EELRU

ated in practice with a bit of work when creating
specialized algorithms. A prime example of this
approach is the EELRU algorithm, which we dis-
cuss next. EELRU (for “Early-Eviction LRU”) is
a well-known adaptive algorithm in the research
literature, with performance that matches LRU for
LRU-friendly workloads and significantly beats
LRU in several other instances.

A high-level version of the EELRU logic is:

Perform • LRU replacement unless many
references are to pages that were only re-
cently evicted.
If many references are to pages recently •
evicted, enable “early evictions”: Pick an
optimal point e in the recency space and
evict the e-th most recently accessed page.

This informal strategy is clearly adaptive,
in the intuitive sense. EELRU is effectively
checking whether LRU performs well, and, if
not, it emulates an MRU-like algorithm. To be
more precise, the MRU-like algorithms belong
in a family of algorithms developed for a model
of program behavior called the “LRU stack
model”. The LRU stack model assumes that
programs behave as random processes with no
memory, but the random variable is not which
page address they access, but which page they
access in the recency (also called reuse-distance)
space. In this way, a program is modeled by a
histogram of probabilities, h(i), indicating how
likely it is for the program to next reference the
i-th most recently accessed page. That is, the
program’s memory accesses are assumed to be
independent random actions, where on each
step of the execution the program randomly
decides on a number i, with probability h(i), and
then accesses the i-th most recently accessed
page (at the current moment). If we assume
that program locality is primarily determined
by loops, the LRU stack model is an excellent
model of program behavior, since a histogram
with a high probability for a certain i reflects

well the behavior of a program that has a loop
touching i distinct pages.

If we know the histogram that best describes
the probabilities of program accesses, then we can
compute an optimal replacement algorithm for
this program (Wood, Fernandez, & Lang, 1983).
Specifically, if we pick two points e and l (for
“early” and “late” eviction point, respectively)
in the recency axis, with e less than and l greater
than the memory size, m, then the Wood et al.
technique yields a replacement algorithm that has
a hit ratio (i.e., proportion of accesses that are in
memory) of H(0,e) + (m – e)/(l – e) ∙ H(e,l), where
H(x,y), for x < y, is the probability that the page
accessed is among the y most recently accessed
but not among the x most recently accessed—i.e.,
H(x,y) is the sum of h(x+1), h(x+2), …, h(y).

EELRU is now simple to understand as an
algorithm adapting over a large number of com-
ponent algorithms that each pick a specific e and l
position. EELRU keeps a histogram of all program
accesses in the recent past, ordered by recency. For
each position i, the histogram records how many
recent hits were to the i-th most recently accessed
page. In this way, this past-behavior-histogram
can be used as the probability histogram h(i) of
future references. Based on the assumption that
the future will look like the past, recency-wise,
EELRU tries all its available combinations of e
and l points in the histogram and picks the one
that maximizes the sum H(0,e) + (m – e)/(l – e)
∙ H(e,l). In the case that the maximum value is
H(0,m), LRU is the best algorithm.

To reword this in terms of an ART, EELRU
keeps a window of k past misses and it checks (for
the program accesses during that time) whether the
algorithm that would have performed best is plain
LRU or any “early eviction” algorithm for a given
e and l value. (We slightly simplify the EELRU
logic, but not in important ways.) This is akin to
a (multiple) instantiation of an adaptive replace-
ment template ARTk, which is much like ART∞,
but with only the last k misses taken into account.
If we view EELRU as a multiple instantiation of

271

Adaptive Replacement Algorithm Templates and EELRU

ARTk, the number of instantiations is staggering:
the published EELRU experiments are derived by
using a total of 40 points in the recency histogram
(Smaragdakis, Kaplan, & Wilson, 2003). 15 of
those points are below the memory size m, and
are thus candidates for the early eviction position
e, while another 24 points are above m, and are
candidates for the late eviction position l. Hence,
there are over 300 possible combinations of e
and l points (plus the plain LRU algorithm) that
EELRU examines to pick the optimal, based on
the program’s past behavior. A naïve implementa-
tion of EELRU, as consecutive instantiations of
ARTk would be catastrophic. The memory needs
alone, in order to record the memory contents for
all 300+ component algorithms, would be clearly
unrealistic.

Nevertheless, the actual implementation
of EELRU has modest space requirements.
The memory contents of all 300+ component
algorithms have very high overlap and can be
computed approximately from a single recency
queue, holding the 2.5∙m most recently accessed
pages. (The 2.5 factor applies to the setup in the
EELRU publication, but any other factor could be
used.) That is, while plain LRU maintains a data
structure of the m most recently accessed pages,
which also happen to be resident in memory,
EELRU does the same for 2.5 times more pages,
many of which are not resident in memory, but
have been evicted to disk. From this data structure,
the memory contents of any component algorithm
(for any combination of e and l points) can be
approximated: the probability that the i-th most
recently accessed page is resident in memory is
known, even without knowing which exact pages
would be in memory. (It is possible to compute
the exact memory contents for any component
algorithm, but only by knowing the initial con-
tents, right before the least-recently-accessed page
was last touched.) This approximation is used in
all adaptivity reasoning and EELRU can imitate
effectively any of the component algorithms it
chooses to adapt into.

The approximate nature of the EELRU adap-
tivity means that it would be hard to apply to it
robustness results, such as those in the previous
section. Yet the robustness property of interest for
EELRU is not with respect to all its 300+ com-
ponent algorithms, but with respect to a specific
one: LRU itself. Since LRU is the best known
replacement algorithm in practice, it is reason-
able to give LRU special status in the EELRU
adaptivity. That is, EELRU can be seen as an
algorithm that first decides whether to stay with
LRU or perform some early evictions, and then
chooses which early evictions to perform. In this
way, the cumulative performance of past early
eviction decisions is taken into account, relative
to that of LRU. Effectively, if we see EELRU as
an algorithm that applies a sequence of ARTk in-
stantiations then its structure is ARTk(LRU, ARTk
(early1, ARTk(early2, ARTk(…))): LRU is always
at the top of the composition. This guarantees that
EELRU has its tightest robustness result with re-
spect to LRU. Interestingly, LRU is easy to reason
about in the context of EELRU, because there
is no ambiguity with respect to LRU’s memory
contents: the EELRU data structure can always
tell us precisely whether a certain page would be
in memory under the LRU algorithm, since LRU
just keeps the m most recently accessed pages in
memory. Overall, EELRU can be proven 3-robust
with respect to LRU using techniques similar to
those presented earlier. (Smaragdakis, Kaplan, &
Wilson, 2003 demonstrate a proof for a much sim-
plified version of EELRU, but a proof for a more
realistic EELRU is effectively the same as that for
algorithm AB(K) by Smaragdakis, 2004.)

In short, EELRU is best understood as a spe-
cialized application of an adaptive replacement
template. Just like the ARTs examined earlier,
EELRU keeps track of recent misses for each of
its component algorithms and chooses to imitate
the algorithm that has the fewest past misses.
For actual implementation, EELRU exploits a
mathematical understanding of how its component
algorithms behave and approximates their memory

272

Adaptive Replacement Algorithm Templates and EELRU

contents using a single data structure with little
space overhead. At the same time, EELRU can be
shown to be robust with respect to LRU by just
treating it preferentially.

empirical performance
of eelru

It is interesting to see how the theoretical prop-
erties of an adaptive replacement template (e.g.,
robustness) translate to practice. In particular, is
it the case that an adaptive algorithm like EELRU
can achieve benefit without hurting performance
much in the worst case? In practice, constant

factors (e.g., 2x) that represent tight theoretical
lower bounds can be unacceptable overheads.
We present here a representative sample of a
simulated performance evaluation of EELRU on
real memory reference sequences. (An extensive
empirical evaluation can be found in Smaragdakis,
Kaplan, & Wilson, 2003.)

Specifically, we compare EELRU both to
LRU—the standard on-line policy—and OPT—
the provably optimal, off-line policy. In particular,
by comparing EELRU to OPT, we see the amount
of the potential improvement over LRU that
EELRU obtains. When compared to these two
policies, EELRU provides substantial fraction
of the available improvement over LRU. Just as

Table 1.

 Program name Mean potential improvement

 acrord32 -6.82%

 Applu 35.85%

 cc1 -6.12%

 compress95 78.08%

 espresso 10.61%

 gcc-2.7.2 9.44%

 Gnuplot 89.00%

 Go 16.35%

 grobner 30.96%

 gs3.33 -1.84%

 Ijpeg 40.62%

 Lindsay -1.77%

 m88ksim 37.95%

 Murphi -2.39%

 netscape -3.73%

 p2c 3.56%

 perl-etch 34.02%

 perl-wisconsin 20.81%

 photoshp -8.69%

 powerpnt -8.10%

 Trygtsl 29.31%

 Vortex 0.60%

 wave5 70.31%

 winword -7.03%

273

Adaptive Replacement Algorithm Templates and EELRU

importantly, when EELRU does not yield fewer
misses than LRU, its adaptive mechanism, in
practice, yields at worst approximately a 16%
increase in misses over LRU. That is, EELRU
commonly improves upon LRU, and when it
cannot, it does little to no harm.

First, we examine the how much of the po-
tential improvement over LRU that EELRU
obtains. This table shows the percentage of that
potential improvement for each of a group of
benchmark applications over a wide range of
memory sizes. (We filtered out memory sizes for
which few misses occur, since differences may
seem disproportionately large. We do not show

memory sizes for which the program suffers few
faults. In particular, we present statistics for all
memory sizes m, at which LRU incurs at least
m misses.)

For example, consider a program and a memory
size where, under the optimal policy, OPT, the
system would incur 100 main memory misses,
while under LRU, it would incur 200 misses. If
EELRU incurred 200 misses, then it would obtain
0% of the potential improvement. At 175 misses,
EELRU would obtain 25% of the potential im-
provement. Finally, at 225 misses, EELRU would
obtain -25% of that possible improvement.

On one hand, Table 1 shows that there are

Table 2.

 Program name Increase in number of misses

 acrord32 9.45%

 applu 5.42%

 cc1 9.96%

 compress95 0.99%

 espresso 4.57%

 gcc-2.7.2 8.26%

 gnuplot 3.55%

 go 3.85%

 grobner 3.80%

 gs3.33 10.89%

 ijpeg 5.68%

 lindsay 2.74%

 m88ksim 1.66%

 murphi 4.13%

 netscape 11.23%

 p2c 1.57%

 perl-etch -3.46%

 perl-wisconsin 7.52%

 photoshp 14.87%

 powerpnt 16.38%

 trygtsl -1.41%

 vortex 4.27%

 wave5 -8.86%

 winword 9.10%

274

Adaptive Replacement Algorithm Templates and EELRU

some programs—nine of them here—for which
EELRU, on average, provides no benefit, and
only five of those incur more than 5% detriment.
Furthermore, for those five programs, the detri-
ment is never more than 10%. In contrast, twelve
of these programs enjoy an improvement of more
than 10%, up to 89%, of the possible improve-
ment over LRU. On balance, EELRU yields a
modest detriment in some cases in exchange for
a substantial improvement for others.

Although Table 1 shows means, you may be
concerned that there are worst cases in which
EELRU performs far worse than LRU. Table
2 shows, for each program, the raw increase in
misses that occurs at the memory size for which
EELRU’s performance is worst in comparison
to LRU.

For Table 2, positive values imply more misses
for EELRU than LRU. We first see that, at worst,
the increase in the raw number of misses is only
16.38%. For most programs, the worst case is no
worse than 10%, and for a few programs, the worst
case is either a modest detriment (less than 2%) or
an improvement (up to -8.86%). Even for a poor
combination of application and memory size, the
adaptivity of EELRU avoids substantial harm.

concluSion

We presented the idea of adaptive replacement
algorithms created by instantiating general
“adaptive replacement templates” (ARTs). ARTs
are very attractive because of their generality
and theoretical guarantees regardless of which
algorithms are adapted over. Importantly, ARTs
can lead to specialized, efficient instantiations,
when the algorithm designers understand well
the properties of the component algorithms. We
demonstrated how the EELRU algorithm from
the research literature can be thought of as an
optimized multiple instantiation of an ART, and
its performance in practice. We believe that ARTs,
rather than EELRU itself, are a very promising
idea for future replacement policies, and we have

already applied them to different domains, includ-
ing hardware caching.

referenceS

Jiang, S. (2009). Swap Token: Rethink the Appli-
cation of the LRU Principle on Paging to Remove
System Thrashing. In Y. Wiseman & S. Jiang,
(Eds.), The Handbook of Advanced Operating
Systems and Kernel Applications: Techniques and
Technologies. Hershey, PA: IGI Global.

Lee, D., Choi, J., Kim, J.-H., Noh, S. H., Min, S.
L., Cho, Y., & Kim, C. S. (2001). LRFU: A spec-
trum of policies that subsumes the least recently
used and least frequently used policies . IEEE
Transactions on Computers, 50(12), 1352–1361.
doi:10.1109/TC.2001.970573

Megiddo, N., & Modha, D. S. (2003). ARC: A
self-tuning, low overhead replacement cache.
In Proc. File and Storage Technologies (FAST).
USENIX Association.

Robertson, J., & Devarakonda, M. (1990). Data
cache management using frequency-based re-
placement. In Proc. SIGMETRICS Conference on
Measurement and Modeling of computer systems.
New York: ACM Press.

Smaragdakis, Y. (2004). General Adaptive Re-
placement Policies. Proc. International Sympo-
sium on Memory Management (pp. 108-119). New
York: ACM Press.

Smaragdakis, Y., Kaplan, S., & Wilson, P. (2003).
The EELRU Adaptive Replacement Algo-
rithm. Performance Evaluation, 53(2), 93–123.
doi:10.1016/S0166-5316(02)00226-2

Subramanian, R., Smaragdakis, Y., & Loh, G.
(2006). Adaptive Caches: Effective Shaping of
Cache Behavior to Workloads. In Proc. Interna-
tional Symposium on Microarchitecture (MICRO)
(pp. 385-386). Washington, DC: IEEE Computer
Society.

275

Adaptive Replacement Algorithm Templates and EELRU

Wiseman, Y. (2009). Alleviating the Trashing by
Adding Medium-Term Scheduler. In Y. Wiseman
& S. Jiang, (Eds.), The Handbook of Advanced
Operating Systems and Kernel Applications:
Techniques and Technologies. Hershey, PA: IGI
Global.

Wood, C., Fernandez, E. B., & Lang, T. (1983).
Minimization of Demand Paging for the LRU
Stack Model of Program Behavior. Information
Processing Letters, 16, 99–104. doi:10.1016/0020-
0190(83)90034-0

276

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 14

Enhancing the Efficiency
of Memory Management

in a Super-Paging
Environment by AMSQM

Moshe Itshak
Bar-Ilan University, Israel

Yair Wiseman
Bar-Ilan University, Israel

introduction

The paging concept is very old and well-known.
Super-Paging is an augmentation for this well-
known concept. Super-Pages are larger pages that
are pointed to by the TLB (Khalidi et al., 1993).
The internal memory of modern computers has
been drastically increased during the last decades.
However, the TLB coverage (i.e. the size of the

memory that can be pointed to directly by the
TLB) has been increased by a much lower factor
during the same period (Navarro, 2004), (Navarro
et al., 2002). Therefore, several new architectures
like Itanium, MIPS R4x00, Alpha, SPARC and HP
PA RISC support multiple page size of the frames
pointed to by the TLB. In that way the memory size
pointed to directly by the TLB is higher and the
overhead of the page table access time is reduced.
There are also some particular operating systems

abStract

The concept of Super-Paging has been wandering around for more than a decade. Super-Pages are
supported by some operating systems. In addition, there are some interesting research papers that show
interesting ideas how to intelligently integrate Super-Pages into modern operating systems; however,
the page replacement algorithms used by the contemporary operating system even now use the old
Clock algorithm which does not prioritize small or large pages based on their size. In this chapter
an algorithm for page replacement in a Super-Page environment is presented. The new technique for
page replacement decisions is based on the page size and other parameters; hence is appropriate for a
Super-Paging environment.

DOI: 10.4018/978-1-60566-850-5.ch014

277

Enhancing the Efficiency of Memory Management in a Super-Paging Environment by AMSQM

that support Super-Paging e.g. (Ganapathy and
Schimmel, 1998), (Subramanian et al., 1998),
(Winwood et al., 2002).

The Super-Paging concept brings up several
questions to discuss in the operating systems com-
munity. First, when should the Operating System
upgrade some base pages into a large Super-Page?
This dilemma is even more complicated when the
processor supports several sizes of Super-Pages;
e.g. the Itanium has 10 sizes of Super-Pages.
Second, where should the location of the small
pages in the memory be? One possibility is plac-
ing them in a location that spares the need for
relocation of the base page, once the Operating
System upgrades base pages into a Super-Page
(Talluri and Hill, 1994). Another policy is plac-
ing the base page in the first vacant location in
the memory and relocating it when the Operating
System upgrades (Romer et al., 1995). Thirdly,
who handles the relocation, the hardware or the
software (Fang et al., 2001)? Some processors and
Operating Systems have addressed these questions
as was mentioned above. More about Super-pages
can be read at (Wiseman, 2005).

In this chapter a new algorithm for page replace-
ment in a Super-Paging environment is suggested
(Itshak and Wiseman, 2009). The new algorithm
is based on some parameters including the page
size. The results show better TLB miss rate for
the benchmarks used for testing.

Multimedia applications typically have large
portions of memory that are clustered in few areas.
Such applications can benefit Super-Paging enor-
mously (Abouaissa et al., 1999). Also, nowadays
computers usually have large memories (Wallace
et al., 2006), (Geppert, 2003); hence, larger pages
can be used; however using larger pages can ap-
parently cause a higher page fault rate. This is a
well-known flaw of the Super-Paging mechanism;
however the algorithm suggested in this chapter
does not suffer from this flaw and even utilizes
the usual behavior of the paging mechanism to
reduce the page fault rate. The algorithm actually
makes use of the locality principle to prefetch

base-pages that are a part of heavy used Super-
pages and the results show that this prefetching
makes the memory hit percents better.

We also aim at developing a good technique
that finds the best page to be taken out when the
page fault mechanism requires this in a Super-
Paging environment based on all the available
parameters. Here again the locality principle that
the Super-paging environment induces helps us
to select the victim page better, because if page’s
neighbors have been accessed, it can imply that
the page itself might be accessed as well and it
may not be a good choice to swap the page out
as the common base-page algorithms would have
done.

The question of which page should be taken
out also occurs in higher levels as well i.e. Which
page should be in the cache and which page
should be pointed to by the TLB. The algorithm
suggested in this chapter can be also a good al-
ternative for the well-known Clock algorithm in
these decisions.

Super-pageS of the Sun
microSyStem’S Sparc machineS

We recently got a donation of a lab from SUN
Microsystems, so our implementation is focused
on this platform. In this section we detail the
specification of the SultraSPARC CPU of SUN
Microsystems and how this processor handles
several sizes of page.

UltraSPARC CPU family is the main RISC
CPU of Sun Microsystems server line. Multiple
Page Size Support (MPSS) has been available by
UltraSPARC CPUs since its first generation, but
the support may vary between the UltraSPARC
CPU family generations and even within one gen-
eration (mainly US-III) there might be a change
in the support that this generation offers.

UltraSPARC I,II,III,IV cpu families supports
4 page sizes: 8KB, 64KB, 512KB, 4MB, whereas
UltraSPARC IV+ supports 6 page sizes: 8KB,

278

Enhancing the Efficiency of Memory Management in a Super-Paging Environment by AMSQM

64KB, 512KB, 4MB, 32MB, 256MB. UltraS-
PARC T1 cpu supports also 4 page sizes but
the sizes are slightly different than the original
one. The new sizes are: 8KB, 64KB, 4MB and
256MB.

UltraSPARC MMU which is called sfmmu
(spit-fire mmu) supports two mmu units: I-MMU
for instructions and D-MMU for data, whereas
UltraSPARC I and II have only one I-MMU
TLB and one D-MMU TLB that supports the 4
page sizes.

UltraSPARC III TLB support for MPSS is a
little bit restricted; even though the number of
I-MMU and D-MMU TLB entries has been in-
creased, there is a constraint that the bigger TLB
may only use one page size. The next generation
- UltraSPARC IV+ TLB support is better because
D-TLB and I-TLB have been increased and also
it allows more than one page size in the D-TLB.
UltraSPARC T1 TLB also supports all page sizes
simultaneously.

Solaris 2.6 through Solaris 8 have enabled
Super-Paging via a mechanism called Intimate
Shared Memory (ISM) that allowed a sharing
of a System V IPC “intimate” shared memory in
page sizes of 4MB if possible. Solaris 8 update
3 introduced Dynamic ISM allowing a dynamic
resizing of ISM areas.

The new Solaris 9 also supports MPSS without
the use of ISM (Weinand, 2006), but this support
requires the application or an administrator to
request the certain page size that he thinks useful
for this application. MPSS was also expanded
to be used in vnodes (VMPSS), means libraries
and text code can be also stored in Super-Pages.
The latest work in Solaris selects page sizes for
stack, heap and memory mapped segments, text
and data based on a simple set of policies. This
is known as MPSS out of the box (MPSS-OOB)
(Lowe, 2005).

page replacement algorithmS

Over the years many replacement algorithms have
been published e.g. (O’Neil et al., 1993), (Johnson
and Shasha, 1994), (Lee et al., 2001), (Kim et al.,
2000), (Jiang and Zhang, 2002), (Smaragdakis et
al., 2003), (Zhou et al., 2004); however over the
last decades, CLOCK (Corbato, 1968) has been
dominated page replacement algorithms.

the “clock” page
replacement algorithm

The CLOCK algorithm looks at the memory pages
as a circular linked list and moves around the pages
like a clock hand. Each page is associated with a
reference bit. This bit is set to 1 when the page is
referenced. When a page fault occurs, the page
which is pointed to by the hand is checked. If its
reference bit is unset it will be swap out; otherwise
its reference bit is unset, and the hand moves to
the subsequent page. Research and experiences
have shown that CLOCK is a close approximation
of LRU, thus suffers from the same problems of
LRU. Nevertheless, CLOCK is still dominating
the vast majority of OS including UNIX, Linux
and Windows (Friedman, 1999).

Some variant of CLOCK have been suggested
over the years. GCLOCK (Nicola et al., 1992) was
published at 1992 as an expansion to CLOCK.
This algorithm contains a counter to each page
(instead of a reference bit), which is increased
in each reference. The clock’s hand checks the
pages and decrements their counter value, until
it finds a page with a zero value. This page is
swapped out. Unlike CLOCK, GCLOCK is taking
into account the frequency, thus achieves better
performance.

CLOCK-Pro (Jiang et al., 2005) counts for
each page the number of other distinct pages ac-
cesses since its last access. This number is called
“reuse distance” and a page with a larger “reuse
distance” will be considered as a colder page and

279

Enhancing the Efficiency of Memory Management in a Super-Paging Environment by AMSQM

will be swap out before a page with a smaller
“reuse distance”.

the arc page replacement
algorithm

We focused in the above section at CLOCK, be-
cause CLOCK dominates the Operating Systems
market; however some other methods seem to
suffer from two acute problems:

(i) The need for parameters tuning (e.g 2Q
(Johnson and Shasha, 1994)) and LRFU
(Lee at. Al, 2001)) and/or

(ii) Non-constant complexity (e.g. LRU-K
(O’Neil et al., 1993),

LRFU (Lee at. al, 2001),CLOCK (Corbato,
1968) and GCLOCK (Nicola et al., 1992)).

CLOCK also has a Non-constant complexity,
so we prefer to adapt more modern algorithm to
the Super-Paging environment.

(O’Neil at el., 1993) found in their experiments
that LRU-2 (LRU-K where K=2) achieves most
of the advantages of their method. This result
motivated Johnson and Shasha to develop 2Q
(Johnson and Shasha, 1994), an algorithm which
is similar in its performance to LRU-2, and still
works in a constant time. 2Q in its simplified
version has two buffers A1 and Am, where A1
is managed as a FIFO queue, whereas Am as a
regular LRU queue. At the first reference to a
page, 2Q places the page in A1 queue. If the page
is re-referenced while it is in A1, the algorithm
will assume it is probably a hot page. So, if a page
in A1 is referenced, it will be moved to the Am
queue, and if a page is not referenced while it is
in A1, it the algorithm will assume that the page
is probably a cold page and 2Q will remove the
page from the memory. 2Q’s main disadvantage
is its offline property - 2Q requires two static
parameters tuning (Kin and Kout) before run-
ning. Tuning these parameters can be sometime
a very difficult task. Johnson and Shasha reported

that according to their experiments 2Q gives an
improvement of 5-10% in hit ratio over LRU for
a wide variety of applications and buffer sizes
and never damaging. But these results were not
convincing enough.

Recently, N. Megiddo and S. Modha took
the 2Q algorithm and make the size of A1 and
Am adaptive. They proposed a new “online”
tunable algorithm called ARC (Stands for Adap-
tive Replacement Cache) (Megiddo and Modha,
2003a), (Megiddo and Modha, 2003b), (Megiddo
and Modha, 2004). The unique capability of this
algorithm is its ability to adapt itself “online”
according to the systems properties e.g. from
the Stack Depth Distribution (SDD) model to
the Independence Reference Model (IRM) and
vice versa.

The main concept of ARC is having two lists
of active pages (one for the frequently used pages
and one for the most recent pages) and to endow
the list that is performing the best with a larger
memory space. The two lists that ARC maintains
are variably-sized lists called L1 and L2. L1 con-
tains the pages that have been accessed only once
and L2 contains the pages that have been accessed
twice or more. The algorithm always holds that
0≤L1+L2≤2C, where C is the number of pages
in the memory. L1 consists of two buffers - T1
which consists of the most recent pages in the
memory and B1 which consists of the history of
the most recent pages that were in the memory.
Similarly L2 is partitioned into T2 and B2. In ad-
dition p which always holds p≤c, is the automatic
adaptive parameter of the algorithm which sets
the target size for T1.

The algorithm in a simplify version is for any
page request:

If the requested page is in T• 1 or in T2:
Move the page to the MRU of T ◦ 2.

If the requested page is in B• 1:
If |B ◦ 1|≥|B2|

δ ▪ 1=1
Else ◦

280

Enhancing the Efficiency of Memory Management in a Super-Paging Environment by AMSQM

δ ▪ 1=|B2|/|B1|
P=Min(P+δ ◦ 1,C)
Move the page from B ◦ 1 to be the LRU
of T2 (swap out page according to P).

If the requested page is in B• 2:
If |B ◦ 2|≥|B1|

δ ▪ 2=1
Else ◦

δ ▪ 2=|B1|/|B2|
P=Max(P-δ ◦ 2,0)
Move the page from B ◦ 2 to be the LRU
of T2 (swap out page according to P).

If the requested page is not in •
T1∪T2∪B1∪B2:

o Move the new page to be the MRU of T1
(swap out page according to P).

As we mentioned above, CLOCK can move
its clock hand over many pages, until a page with
an unset bit is found. Unlike CLOCK, ARC has
a constant complexity - O(1). In addition, ARC
is tunable i.e. ARC can adapt itself according to
the characteristics of the data that the processes
use. These are the reasons why we chose to adapt
ARC to the Super-Paging mechanism.

Super-pageS and arc

When adapting ARC for super-paging environ-
ment, some considerations should be taken into
account. In this section, we would like to discuss
these considerations and to see how they can affect
the ARC algorithm.

larger pages

When using super-pages the pages that are used
by the operating system are usually larger. In
such a case the recency is less important than
the frequency. If a page is frequently accessed,
it can hint the operating system that this page is
important, even if the page is very large, whereas

the importance of the last access time to a larger
page is less weighty.

fragmentation

ARC and LRU do not take into their consider-
ations the location of the “victim” that is chosen
to be swapped out; therefore, they can leave many
holes within a super-page, because some of the
base pages that the super-page consists of can be
in the memory whereas some others can be out of
memory. When not all of the base pages are in the
memory, a promotion can be costly. A better page
replacement algorithm must check the “neighbor-
hood” of the victim page. A similar scheme was
suggest by Romer et al., 1995), but the authors of
this paper have preferred to use LRU.

thrashing

Usually supper-pages supported systems are less
thrashing-proof than the old traditional paging
systems. They cause a more extensive memory
consuming that can lead to a memory pressure
and even a thrashing (Wiseman, 2009), (Jiang,
2009). Obviously, when the memory is very large
this deficiency is not critical. However, one of the
importance advantages of the ARC over the “re-
cency” algorithms is the thrashing-proof feature;
hence the thrashing argument is clearly in favor
of the use of ARC.

coarse granularity

The use of super-pages causes all the super-page’s
base pages to be considered as important (or
unimportant) pages, whereas usually just several
base pages are important or sometimes even just
a single base page is important. In such cases, the
LRU algorithm gives poor results, because it has
no mechanism to distinguish between super-pages
containing many important base pages and super-
pages containing just a small number of important

281

Enhancing the Efficiency of Memory Management in a Super-Paging Environment by AMSQM

base pages. “Recency” algorithms cannot notice
this difference; therefore LRU will not be a good
choice in cases where just a small number of base
pages are indeed important. ARC, however, takes
into account the “frequency”; thus ARC can be a
better choice for these cases.

gathering the accesses

When the size of page is small, an access to a
specific location by the readings/writings is not
significant. However, one can think that a gather
can imply an important page, while scattered
readings/writings will mean arbitrary accesses.
However, practically this assumption is not proved
as correct.

the amSqm page
replacement algorithm

The ARC page replacement algorithm has been
utilized to develop a new algorithm - Adaptive
Multiple Super-Pages Queues Management
(AMSQM) (Itshak and Wiseman, 2008) which is
an expansion of the ARC algorithm that supports
Super-Paging. AMSQM algorithm has two levels
- the high level manages the different Super-Page
queues (sizes and allocations); whereas the low
level is the internal management of each Super-
Page’s queue. In addition, there is a special buffer
for each Super-Page size that collects fractions of
bigger Super-Pages. The purpose of these buf-
fers is in case of demotion, giving the demoted
Super-Pages a chance to get a better priority if
they are hot pages.

The suggested algorithm uses a reservation-
based scheme, in which region is reserved for a
super-page at the page fault time and the promotion
is done when the number of the super-page’s popu-
lated base pages gets to a promotion threshold.
Since we would like a partially populated super-
page to have the opportunity of being promoted,

the decision for preempting reservation of a
super-page candidate or swapping out its base-
pages is taken based on the super-page “recency”
in the page lists and not based on the number of
currently resident base-pages that the super-page
consists of. This is actually a known technique of
information filtering in order to achieve a better
decision (Wang, 2008).

Hardware maintains only a single reference
bit; thus it is difficult to decide whether all (or at
least most) of the base-pages that the super-page
consists of are actually in use. Sometimes, only
a small percentage of the base pages should be in
the memory. Therefore, AMSQM manages several
queues for each super-page size, preventing from
cold super-pages to be retained in the cache oc-
cupying the space of some potential hotter smaller
super-pages or base pages.

Finally, in order to wisely balance the different
queues length, the algorithm counts the number
of times that each page has been referenced and
checks the relative “recency” of each super-page’s
queue.

Similarly to ARC, AMSQM has B and T lists,
but AMSQM has T and B list for each super-page
size that is denoted as Ti1, Ti2, Bi1 and Bi2 where
i is the super-page size. Therefore, the pseudo-code
briefly should be:

Find the super-page that contains the re-•
quested page.
If the page is in Ti1 or Ti2, the size of lists •
is good and no need to change it.
If the page is in Bi1, the size of Li1 should •
be increased.
If the page is in Bi2, the size of Li2 should •
be increased.
If the page is not in the memory, the size of •
lists is good and no need to change it.

The detailed AMSQM algorithm in pseudo-
code is written herein below:

Let us define:

282

Enhancing the Efficiency of Memory Management in a Super-Paging Environment by AMSQM

C- The memory size.
ci - Physical size of the super (and base) pages

buffers. Σ ci≤ C.
si - Target size of each buffer.
Qi- Queue (FCFS) that saves demoted Super-

Pages (or base-pages), which are a fraction
of bigger Super-pages.

Ti1 - The most recent pages in the memory of
every Super (or base) page, which were ac-
cessed only once.

Bi1 - The most recent pages in the history of ev-
ery Super (or base) page, which were ac-
cessed only once.

Ti2 - The most recent pages in the memory of
every Super (or base) page, which were ac-
cessed more than once.

Bi2 - The most recent pages in the history of ev-
ery Super (or base page), which were ac-
cessed more than once.

Pi - Tunable parameter - the recommended size
of Ti1.

sizei - Super-Page size in base pages.
boundi=β·sizei/size1
count(x) - The number of times that Super-Page

x was referenced.
ranki - Determines which queue removes an

entry. ranki=α⋅difi+(1-α)⋅reci, where difi
is the difference between si and ci; i. e.
max(0, sizei·(ci-si)) and reci is the relative
recency of the LRU of Super-Page i among
the LRU of the other Super-Pages.

threshold - threshold for promoting a partially
occupied (candidate) super-page to a fully
occupied super-page.

SP(xj) - The superpage which the base page xj
belongs to. xj =SP(xj) iff xj does not belong
to any super-page (a solitary base page).

ω(x) - The number of occupied base pages in
super-page x.

α,β,γ - Parameters that should be set according
to the data characteristic; where 0≤α≤1,
β≥1 and 0≤γ≤½.

The algorithm AMSQM is:

AMSQM(c, Stream of base pages requests:
x1,x2,..,xn)

• c1=c2=...=ck=0
For each x• j

Call ◦ HandleSuperPage(xj,| SP(xj)|)
If ω(◦ SP(xj))≥ threshold·size|SP(xj)|
Promote ◦ SP(xj)

if the access type is “write”, recursively •
demote SP(xj) to clean base/super pages
and move them to the suitable Q lists.

HandleSuperPage(xj,i)
If • SP(xj) is in Ti

1,
If x ◦ j is valid

Move ▪ SP(xj) to be the MRU of
Ti

2
Else ◦

Fetch x ▪ j to the cache.
Move ▪ SP(xj) to be the MRU of
Ti

1
If (count(◦ SP(xj))= boundi)

count(▪ SP(xj))=γ· boundi
Else ◦

count(▪ SP(xj))= count(SP(xj))+1
If • SP(xj) is in Ti

2 or Qi
If x ◦ j is invalid

Fetch x ▪ j to the cache.
Move ◦ SP(xj) to be the MRU of Ti

2
count(◦ SP(xj))= count(SP(xj))+1

If • SP(xj) is in Bi
1

If the size of B ◦ i
1 is at least the size

of Bi
2
δ=1 ▪

Else ◦
δ=|B ▪ i

2|/|B
i
1|

 ◦ Pi=min(Pi +δ, ci)
Call ◦ Release (xj,i)
Fetch x ◦ j to the cache.
Move ◦ SP(xj) to be the MRU of Ti

2
count(◦ SP(xj))= count(SP(xj))+1

If • SP(xj) is in Bi
2

If the size of B ◦ i
2 is at least the size of Bi

1

283

Enhancing the Efficiency of Memory Management in a Super-Paging Environment by AMSQM

δ=1 ▪
Else ◦

δ=|B ▪ i
1|/|B

i
2|

 ◦ Pi=max(Pi -δ,0)
If count(◦ SP(xj))≤2·γ·boundi

Call ▪ Release (xj,i)
Fetch x ▪ j to the cache.
Move ▪ SP(xj) to be the MRU of
Ti

2
If count(◦ SP(xj))>2·γ·boundi

If 0≤ ▪ C-∑ci<sizei
Call ▪ IncreaseBuffer (xj,i)
If we couldn’t allocate a con- ▪
tinuous space of sizei
Call ▪ Release (xj,i)
Else ▪
Call ▪ Allocate (xj,i)
Count(▪ xj)=γ⋅boundi

 ▪ si=si+1
If • SP(xj) is not in Ti

1, T
i
2, B

i
1 or Bi

2
If (i>1) and (◦ SP(xj) has ever been in
lists Bi

1 or Bi
2)

Call Demote (▪ xj,i)
o Else ◦

If 0≤ ▪ C-∑ci<sizei
If (| ▪ Qi|+|Ti

1|+|Bi
1|=ci)

If (| ▪ Qi|+|Ti
1|<ci)

Remove the ▪ LRU of Bi
1

Call ▪ Release (xj,i)
Else ▪
Remove the ▪ LRU among Qi and
Ti

1.
Else ▪
If (| ▪ Qi|+|Ti

1|+|Bi
1|+|Ti

2| +|Bi
2|>ci)

If (| ▪ Qi|+|Ti
1|+|Bi

1|+|Ti
2|

+|Bi
2|=2⋅ci)

Remove the ▪ LRU of Bi
2

Call ▪ Release (xj,i)
Fetch x ▪ j to the cache.
Move ▪ SP(xj) to be the MRU of
Ti

1
Else ▪
Call ▪ Allocate (xj,i)

IncreaseBuffer (xj,i)

Do until • sizei base-pages are released:
r=max ◦ ranki
Remove ◦ LRU among Tr

1, T
r
2 and Qr

 ◦ cr=cr-1
If (◦ cr< sr)
 ▪ sr= sr-1

Call • Allocate (xj,i)
Release (xj,i)

If ((|T• i
1|>Pi) or (|Ti

1|=Pi and xj is in Bi
2)

Take the ◦ LRU page between the LRU
of Ti

1 and the LRU of Qi and put it as
the MRU of Bi

1.
Else•

Take the ◦ LRU page between the LRU
of Ti

2 and the LRU of Qi and put it as
the MRU of Bi

2.
Allocate (xn,i)

If there is a contiguous empty space of • sizei
in the cache

Fetch x ◦ j to the cache.
Move ◦ SP(xj) to be the MRU of Ti

2
 ◦ ci=ci+1

Demote (xn,i)
Cancel • SP(xj)
If(i>1)•
 ◦ Dsize=sizei-1

Else•
 ◦ Dsize=1

• free=The biggest available continuous
empty space of maximum Dsize.
if (• free>0)

o Create superpage x’ ◦ j of size free
which must contain xj
o Move x’ ◦ j to the MRU of Qfree.

Else•
Call ▪ Release(xj,1).
Fetch x ▪ j to the cache.
move x ▪ j to the MRU of Q1.

eValuation and reSultS

Actually, the best way to evaluate the AMSQM
page replacement algorithm is by considering its

284

Enhancing the Efficiency of Memory Management in a Super-Paging Environment by AMSQM

performance results. In the following subsections,
an extensive evaluation that has been made to the
medium term scheduler is described.

testbed and benchmarking

We implemented the standard CLOCK algorithm,
the ARC algorithm and the AMSQM algorithm.
We used Valgrind (Nethercote and Seward, 2007)
to capture the pages that were used by some of the
SPEC – cpu2000 (SPEC, 2000). The SPEC manual
explicitly notes that attempting to run the suite
with less than 256Mbytes of memory will cause
a measuring of the paging system speed instead
of the CPU speed. This suits us well, because our
aim is precisely to measure the paging system
speed; hence, we simulated a machine with just
128MB of RAM, although it is obviously a very
small memory.

The sizes of the Super-pages that we used were
8 KB, 16 KB, 32 KB, 64 KB, 128 KB and 256
KB. We assumed a tagged TLB of 32 entries for
instructions and 64 entries for data.

Both AMSQM and ARC outperform CLOCK
by all the parameters in our simulation, so we
found no point in presenting the results of CLOCK;
therefore, the results presented here are only the
ratio between strict ARC and AMSQM.

Let us define:

n - Number of memory requests by the
benchmark.

p - Number of pages that the benchmark
accesses.

tmARC - Number of TLB misses when ARC is
the replacement algorithm.

tmAMSQM - Number of TLB misses when
AMSQM is the replacement algorithm.

pfARC - Number of the benchmark’s page faults
when ARC is the replacement algorithm.

pfAMSQM - Number of the benchmark’s page
faults when AMSQM is the replacement
algorithm.

tm_ratio=1-((tmAMSQM-p)/(tmARC-p))

pf_ratio=1-((pfAMSQM-p)/(pfARC-p))

The TLB misses are shown as the ratio between
the TLB misses that AMSQM produces and the
TLB misses that ARC produces.When a page is
accessed at the first time, any algorithm will have
to induce a TLB miss and obviously there is no
way to eliminate this TLB miss, so we calculated
only the TLB misses of the pages just from the
second time they are accessed. The page faults are
shown also as the ratio between the page faults
that AMSQM produces and the page faults that
ARC produces counting for each page only the
second and further accesses.

tm_ratio and pf_ratio are the values that rep-
resent the calculation of the TLB miss ratio and
the page fault ratio respectively.

benchmarking using Spec-2000

Figure 1 and Figure 2 show the extra overhead of
ARC over AMSQM. Figure 1 shows the tm_ra-
tio of several selected SPEC2000 benchmarks
whereas Figure 2 shows the pf_ratio of the same
SPEC2000 benchmarks. It can be clearly seen in
Figure 1 that AMSQM achieves a higher TLB
ratio, because of the super-pages usage.

Furthermore, AMSQM memory hit ratio is
also higher than ARC memory hit ratio in most
of the benchmarks as can be noticed in Figure
2. The improvement of the memory hit ratio is
because AMSQM takes advantage of the locality
principle as is mentioned above in the introduction
section. The other SPEC benchmarks show similar
results, so we do not include these benchmarks
in this paper.

the threshold Setting
considerations

Figure 3 and Figure 4 show the influence of
threshold on the system performance. Too high
threshold harms the TLB hit ratio, whereas too
low threshold harms the page fault ratio; hence, it

285

Enhancing the Efficiency of Memory Management in a Super-Paging Environment by AMSQM

can be concluded from Figure 3 and Figure 4 that
the best balance of the TLB ratio requirements and
the page faults requirements is setting threshold to
0.5. On one hand choosing a threshold less than
0.5 will yield a good TLB miss ratio, but on the
other hand choosing a threshold more than 0.5 will
yield a good page fault ratio. Setting threshold to
exactly 0.5 will produce a reasonable result for
both the TLB ratio and the page fault ratio.

We also tested the running of both of the algo-
rithms using the subroutine “clock()” in “time.h”

of GNU C compiler. We found the results quite
similar, so we do not include these results in this
paper as well.

The βEta Setting Considerations

According to experiments, we found that AMSQM
gives the best results if its parameters are set to
the following values:

α=0.5•

Figure 1. The TLB miss reduction of AMSQM

Figure 2. The page fault reduction of AMSQM

286

Enhancing the Efficiency of Memory Management in a Super-Paging Environment by AMSQM

β=4•
γ=0.25•

Figure 5 and Figure 6 show the effect of dif-
ferent β values on the TLB miss ratio and the
number of Page faults. It can be clearly concluded
from these figures that setting β to 4 gives the best
performance in terms of TLB hit ratio and the
number of page faults. It can be noticed as well
that setting β with low values, or alternatively
with big values causes a poorer performance of
the algorithm. Similar tests were taken to deter-

mine the best value of α and γ. The conclusion
was that the best value for α is 0.5 and the best
value for γ is 0.25.

heavy memory consuming
benchmarks

As we have mentioned above, during last years
the TLB size has been increased slowly compar-
ing to the memory increasing rate; hence the TLB
coverage has been dramatically reduced. We find
it very commonsensical to assume that in the

Figure 3. The influence of threshold on TLB misses

Figure 4. influence of threshold on page faults

287

Enhancing the Efficiency of Memory Management in a Super-Paging Environment by AMSQM

coming years the ratio between the memory size
and the TLB size will be even smaller than the
current ratio.

It is very uncommon to publish nowadays a new
memory management technique or system that
is not tested by a heavy workload benchmarking
system (Hristea et al., 1997), because the future
anticipates a significant increase in the memory
usage of the applications; hence we also checked
the heavy memory workload scenario.

With the aim of simulated this scenario, we
modeled a machine with a TLB coverage that is

even smaller than the one we have simulated above.
For this purpose, we simulated a machine with
512 MB of RAM and a tagged TLB consists of 32
entries for instructions and 64 entries for data.

Consequently, we had to create new benchmarks
that will request for many pages that a machine with
512 MB of RAM cannot handle without causing
a thrashing. With the purpose of overloading the
memory, we have chosen the heaviest memory con-
suming benchmarks among the SPEC-CPU2000
benchmarks. The applications which were selected
are: apsi, crafty, bzip2 and gzip.

Figure 5. The influence of Beta on TLB miss ratio

Figure 6. The influence of Beta on Page faults

288

Enhancing the Efficiency of Memory Management in a Super-Paging Environment by AMSQM

The new traces were created by executing in-
stances of these applications in parallel and merg-
ing them into one trace by using the timestamps
which we have added to each memory access.

The benchmarks which we have built are
defined herein below:

Trace 1: Composed of four instances of the •
application bzip2 executed in parallel.
Trace 2: Composed of four instances of the •
application gzip executed in parallel.
Trace 3: Composed of four instances of the •
application apsi executed in parallel.
Trace 4: Composed of four instances of the •
application crafty executed in parallel.
Trace 5: Composed of two instances of the •
application bzip2 and two instances of the

application gzip, executed in parallel.
Trace 6: Composed of two instances of the •
application bzip2 and two instances of the
application apsi, executed in parallel.
Trace 7: Composed of two instances of the •
application bzip2 and two instances of the
application crafty, executed in parallel.
Trace 8: Composed of two instances of the •
application gzip and two instances of the
application apsi, executed in parallel.
Trace 9: Composed of two instances of the •
application crafty and two instances of the
application apsi, executed in parallel.
Trace 10: Composed of two instances of •
the application gzip and two instances of
the application crafty, executed in parallel.
Trace 11: Composed of the instances of •

Figure 7. a. First group of heavy traces TLB misses; b. Second group of heavy traces TLB misses

289

Enhancing the Efficiency of Memory Management in a Super-Paging Environment by AMSQM

apsi, crafty, bzip2 and gzip, executed in
parallel.

Figures 7a and 7b show the TLB miss ratio
of AMSQM vs. ARC. It can be easily seen that
AMSQM TLB misses are significantly fewer than
ARC TLB misses. It can be noticed that trace 2
achieves a higher TLB hit ratio comparing to strict
gzip. This can be explained as a result of the TLB
coverage in this experiment which is significantly
smaller than the TLB coverage in the previous
experiment; thus a base page replacing algorithm
such as ARC will experience enormous number of
TLB misses, whereas an algorithm such AMSQM
that utilizes wisely the Super-paging mechanism
will gain a higher TLB coverage and hence will
produce relatively less TLB misses comparing to

ARC. The significant improvement in the TLB
ratio of AMSQM comparing to ARC can be simi-
larly explained in the other traces.

Figures 8a and 8b show the page faults of
AMSQM vs. to ARC. It can be clearly seen that
AMSQM achieves a higher memory hit ratio in
all the benchmarks, because of a good utilization
of superpages and based on the locality principle.
However, the improvements vary from 0.2% for
trace 4 up to 10.4% for trace 1. We found out that
ARC performs efficiently in trace 4 (and trace 3)
i.e. does not produce many page faults, because
there is enough space in the main memory, and
therefore AMSQM’s improvement is relatively
small.

Yet, we found it very encouraging that for an
extreme heavy memory consumer benchmarks

Figure 8. a. First group of heavy traces page faults; 8b. Second group of heavy traces page faults

290

Enhancing the Efficiency of Memory Management in a Super-Paging Environment by AMSQM

(such as: trace 1, trace 2, trace 5, trace 6, trace 7,
trace 8 and trace 11), AMSQM achieves a nota-
bly higher memory hit ratio, since contemporary
applications require a big portion of the memory
and reducing the number of the page faults in
such applications can significantly improve the
overall performance.

concluSion and future worK

In conclusion, there is a need for a faster and
more suitable page replacement algorithm. AM-
SQM seems to meet this need. The speed and
super-paging suitability offered by AMSQM will
help page replacement algorithm avoid being a
performance bottleneck in computer systems for
years to come. AMSQM is an innovative adap-
tive page replacement algorithm for Super-paging
environment. It has been shown in this chapter that
AMSQM usually achieves a higher TLB coverage
than ARC and also a better page fault ratio in most
of the benchmarks that have been tested.

This chapter shows another important aspect of
the Super-Paging environment. We believe operat-
ing systems have had an improper attitude toward
the Super-Page replacement algorithm selection.
They usually just copy the old algorithms of the
traditional paging mechanism with no attention to
the new Super-Paging environment. This brings
about an improvement of the hardware support
for a smaller TLB miss ratio, but the software
support for a smaller TLB miss ratio is consider-
ably poorer.

So as to achieve an appropriate software sup-
port for Super-Paging environments, this chapter
has shown a way to adapt one of the most recent
algorithms to these Super-Paging environments
with the aim of obtaining a better TLB hit ratio.

In the future we would like to find methods to
dynamically set the AMSQM parameters (α,β,γ).
In the experiments that had been conducted in
this research, we have found that the values we
used for these parameters are the best for most
of benchmarks; however, there is a very few

benchmarks that have a preference of other values
and there are also a small number of benchmarks
that will have a preference of adaptively modi-
fied values. Therefore, we believe that adaptively
modified values can improve the performance of
several benchmarks. Another issue that should
be addressed as well is the mutual influence of
the processes scheduled together (Wiseman and
Feitelson, 2003).

In addition, we would like to find a pattern
for super-pages reoccurrence. Such a pattern can
improve the efficiency of the super-page promo-
tion decisions. The traditional threshold parameter
seems to be insufficient for taking the most ben-
eficial decision. Some applications like (Wise-
man et al., 2004), (Wiseman, 2001), (Wiseman
and Klein, 2003) have a pattern of supper-pages
reoccurrence and the Operating System can take
an advantage of it.

The current results are encouraging and they
support our belief that the new page replacement
algorithm can notably enhance the memory man-
agement mechanism in the two above mentioned
manners: better TLB hit ratio and fewer page
faults.

acKnowledgment

The authors would like to thank SUN Microsys-
tems for their donation. Specifically, the authors
would like to express their sincere thankfulness
to Mr. Yosi Harel of SUN and Mr. Haim Zadok
whose help was above and beyond.

referenceS

Abouaissa, H., Delpeyroux, E., Wack, M., & De-
schizeaux, P. (1999). Modelling and integration
of resource communication in multimedia appli-
cations with high constraints using hierarchical
Petri nets. In Proceedings of IEEE International
Conference on Systems, Man, and Cybernetics
(SMC-99), (Vol. 5, pp. 220-225), Tokyo, Japan.

291

Enhancing the Efficiency of Memory Management in a Super-Paging Environment by AMSQM

Corbato, A. (1968). Paging Experiment with
the Multics System. MIT Project MAC Report,
MAC-M-384.

Fang, Z., Zhang, L., Carter, J., McKee, S., &
Hsieh, W. (2001). Re-evaluating Online Superpage
Promotion with Hardware Support. In Proceed-
ings of the Seventh International Symposium on
High Performance Computer Architecture, (pp.
63-72).

Friedman, M. B. (1999). Windows NT Page
Replacement Policies. In Proceedings of 25th
International Computer Measurement Group
Conference, (pp. 234-244).

Geppert, L. (2003). The New Indelible Memo-
ries. IEEE Spectrum, 40(3), 48–54. doi:10.1109/
MSPEC.2003.1184436

Hristea, C., Lenoski, D., & Keen, J. (1997).
Measuring Memory Hierarchy Performance of
Cache-Coherent Multiprocessors Using Micro
Benchmarks. In Supercomputing, ACM/IEEE
1997 Conference, (p.45).

Itshak, M., & Wiseman, Y. (2008). AMSQM:
Adaptive Multiple SuperPage Queue Manage-
ment. In Proc. IEEE Conference on Information
Reuse and Integration (IEEE IRI-2008), Las
Vegas, Nevada.

Itshak, M., & Wiseman, Y. (2009). AMSQM:
Adaptive Multiple SuperPage Queue Manage-
ment. International Journal of Information and
Decision Sciences (IJIDS), (Special issue on the
best papers of IEEE Conference on Information
Reuse and Integration (IEEE IRI), 2009).

Jiang, S., Chen, F., & Zhang, X. (2005). CLOCK-
Pro: an Effective Improvement of the CLOCK
Replacement. In Proceedings of 2005 USENIX
Annual Technical Conference, (pp. 323-336),
Anaheim, CA.

Jiang, S., & Zhang, X. (2002). LIRS: An Efficient
Low Inter-reference Recency Set Replacement
Policy to Improve Buffer Cache Performance. In
Proceeding of 2002 ACM SIGMETRICS, Marina
Del Rey, California, (pp. 31-42).

Johnson, T., & Shasha, D. (1994). 2Q: a low
overhead high performance buffer management
replacement algorithm. In Proceedings of the
Twentieth International Conference on Very
Large Databases, VLDB’ 94, Santiago, Chile,
(pp. 439-450).

Khalidi, Y. A., Talluri, M., Nelson, M. N., &
Williams, D. (1993). Virtual memory support for
multiple page sizes. In Proceedings of the Fourth
IEEE Workshop on Workstation Operating Sys-
tems, Napa, CA, October.

Kim, J., Choi, J., Kim, J., Noh, S., Min, S., Cho,
Y., & Kim, C. (2000). A Low-Overhead, High-
Performance Unified Buffer Management Scheme
that Exploits Sequential and Looping References.
In 4th Symposium on Operating System Design
and Implementation, San Diego, California, (pp.
119-134).

Klein, S. T., & Wiseman, Y. (2003). Parallel
Huffman Decoding with Applications to JPEG
Files. The Computer Journal, 46(5), 487–497.
doi:10.1093/comjnl/46.5.487

Lee, D., Choi, J., Kim, J.-H., Noh, S. H., Min, S.
L., Cho, Y., & Kim, C. S. (2001). LRFU: A spec-
trum of policies that subsumes the least recently
used and least frequently used policies. IEEE
Transactions on Computers, 50(12), 1352–1360.
doi:10.1109/TC.2001.970573

Lowe, E. (2005). Automatic Large page selec-
tion policy. Retrieved from http://www.openso-
laris.org/os/project/muskoka/virtual_memory/
policy_v1.1.pdf.

292

Enhancing the Efficiency of Memory Management in a Super-Paging Environment by AMSQM

Megiddo, N., & Modha, D. S. (2003). ARC: A
Self-Tuning, Low Overhead Replacement Cache.
In Proc. of the 2nd USENIX Conference on File
and Storage Technologies (FAST’2003), San
Francisco, (pp. 115-130).

Megiddo, N., & Modha, D. S. (2003). One Up
on LRU;login. The Magazine of the USENIX
Association, 28(4), 7–11.

Megiddo, N., & Modha, D. S. (2004). Outperform-
ing LRU with an Adaptive Replacement Cache
Algorithm. IEEE Computer, (pp. 4-11).

Navarro, J. (2004). Transparent operating system
support for superpages, Ph.D. Thesis, Department
of Computer Science, Rice University.

Navarro, J., Iyer, S., Druschel, P., & Cox, A. (2002).
Practical, Transparent Operating System Support
for Superpages. Fifth Symposium on Operating
Systems Design and Implementation (OSDI ‘02),
Boston, USA. Ganapathy, N. & Schimmel, C.
(1998). General purpose operating system sup-
port for multiple page sizes. In Proceedings of
the USENIX Annual Technical Conference, New
Orleans.

Nethercote, N., & Seward, J. (2007). Valgrind: A
Framework for Heavyweight Dynamic Binary In-
strumentation. In Proceedings of ACM SIGPLAN
2007 Conference on Programming Language
Design and Implementation (PLDI 2007), San
Diego, CA.

Nicola, V. F., Dan, A., & Diaz, D. M. (1992). Analy-
sis of the generalized clock buffer replacement
scheme for database transaction processing. ACM
SIGMETRICS Performance Evaluation Review,
20(1), 35–46. doi:10.1145/149439.133084

O’Neil, E., O’Neil, P., & Weikum, G. (1993). The
LRU-K Page Replacement Algorithm for Database
Disk Buffering. Proceedings of SIGMOD `93,
Washington, DC.

Romer, T. H., Ohllrich, W. H., Karlin, A. R., &
Bershad, B. N. (1995). Reducing TLB and memory
overhead using online superpage promotion. In
Proceedings of the 22nd International Symposium
on Computer Architecture (ISCA), (pp. 87-176),
Santa Margherita Ligure, Italy.

Smaragdakis, Y., Kaplan, S., & Wilson, P. (2003).
The EELRU adaptive replacement algorithm. Per-
formance Evaluation (Elsevier), 53(2), 93–123.
doi:10.1016/S0166-5316(02)00226-2

SPEC. (2000). CPU-2000. Warrenton, VA:
Standard Performance Evaluation Corporation.
Retrieved from http://www.spec.org/.

Subramanian, M. C., Peterson, K. & Raghunath,
B. (1998). Implementation of multiple pagesize
support in HP-UX. Proceedings of the USENIX
Annual Technical Conference, New Orleans.

Talluri, M., & Hill, M. D. (1994). Surpassing
the TLB Performance of Superpages with Less
Operating System Support. Sixth International
Symposium on Architectural Support for Pro-
gramming Languages and Operating Systems
(ASPLOS), San Jose, CA, (pp. 171-182).

Wallace, R. F., Norman, R. D. & Harari, E. (2006).
Computer memory cards using flash EEPROM
integrated circuit chips and memory-controller
systems. [US Patent no. 7106609].

Wang, J. (2008). Improving Decision-Making
Practices Through Information Filtering. [IJIDS].
International Journal of Information and Decision
Sciences, 1(1), 1–4.

Weinand (2006). A survey of large page support.
Retrieved from http://www.gelato.unsw.edu.
au/~ianw/litreview/report.pdf, 2006.

Winwood, S., Shuf, Y., & Franke, H. (2002, June).
Multiple Page Size Support in the Linux Kernel,
Ottawa Linux Symposium, Ottawa, Canada.

293

Enhancing the Efficiency of Memory Management in a Super-Paging Environment by AMSQM

Wiseman, Y. (2001). A Pipeline Chip for Quasi
Arithmetic Coding. IEICE Journal - Trans. Fun-
damentals, Tokyo, Japan . E (Norwalk, Conn.),
84-A(4), 1034–1041.

Wiseman, Y. (2005). ARC Based SuperPag-
ing. Operating Systems Review, 39(2), 74–78.
doi:10.1145/1055218.1055225

Wiseman, Y., & Feitelson, D. G. (2003). Paired
Gang Scheduling. IEEE Transactions on Paral-
lel and Distributed Systems, 14(6), 581–592.
doi:10.1109/TPDS.2003.1206505

Wiseman, Y., Schwan, K., & Widener, P. (2004).
Efficient End to End Data Exchange Using Con-
figurable Compression. In Proc. The 24th IEEE
Conference on Distributed Computing Systems
(ICDCS 2004), Tokyo, Japan, (pp. 228-235).

Zhou, Y., Chen, Z., & Li, K. (2004). Second-
Level Buffer Cache Management. [TPDS]. IEEE
Transactions on Parallel and Distributed Systems,
15(7), 505–519. doi:10.1109/TPDS.2004.13

294

Compilation of References

Copyright © 2010, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Abouaissa, H., Delpeyroux, E., Wack, M., & Deschizeaux,
P. (1999). Modelling and integration of resource commu-
nication in multimedia applications with high constraints
using hierarchical Petri nets. In Proceedings of IEEE
International Conference on Systems, Man, and Cyber-
netics (SMC-99), (Vol. 5, pp. 220-225), Tokyo, Japan.

Abrossimov, V., Rozier, M., & Shapiro, M. (1989). Virtual
Memory Management for Operating System Kernels. In
Proceedings of the 12th ACM Symposium on Operating
Systems Principles, Litchfield Park, AZ, December 3-6,
(pp. 123-126). New-York: ACM SIGOPS.

Acharya, S., & Muthukrishnan, S. (1998). Scheduling
on-demand broadcasts: New metrics and algorithms. In
Proceedings of the International Conference on Mobile
Computing and Networking, Dallas, Texas, USA.

Acharya, S., Alonso, R., et al. (1995). Broadcast disks:
Data management for asymmetric communication
environments. In Proceedings of the ACM SIGMOD
International Conference on Management of Data.

Acharya, S., Franklin, M. J., et al. (1995). Dissemination-
based data delivery using broadcast disks. IEEE Personal
Communications, 2(6), 50-60.

Acharya, S., Franklin, M. J., et al. (1996). Prefetching
from broadcast disks. In Proceedings of the International
Conference on Data Engineering.

Acharya, S., Franklin, M. J., et al. (1997). Balancing
push and pull for data broadcast. In Proceedings of the
ACM SIGMOD International Conference on Manage-
ment of Data.

Aksoy, D., & Franklin, M. J. (1998). Scheduling for large-
scale on-demand data broadcasting. In Proceedings of the
IEEE Conference on Computer Communications.

Albers, S., & Mitzenmacher, M. (2000). Average-Case
Analyses of First Fit and Random Fit Bin Packing. Random
Structures Alg., 16, 240–259. doi:10.1002/(SICI)1098-
2418(200005)16:3<240::AID-RSA2>3.0.CO;2-V

Alderson, A., Lynch, W. C., & Randell, B. (1972). Thrash-
ing in a Multiprogrammed System. Operating Systems
Techniques. London: Academic Press.

Altinel, M., Aksoy, D., et al. (1999). DBIS-toolkit:
Adaptable middleware for large scale data delivery.
In Proceedings of the ACM SIGMOD International
Conference on Management of Data, Philadelphia,
Pennsylvania, USA.

Alverson, G., Kahan, S., Korry, R., McCann, C., & Smith,
B. (1995). Scheduling on the Tera MTA. In Proceedings
of the 1st Workshop on Job Scheduling Strategies for
Parallel Processing, In Conjunction with IPPS ‘95 Fess
Parker’s Red Lion Resort, Santa Barbara, California,
April 25, (pp. 19-44). Berlin: Springer-Verlag.

Analysis of the Linux kernel (2004). San Francisco, CA:
Coverity Corporation.

Anti rootkit software, news, articles and forums. (n.d.)
Retrieved fromhttp://antirootkit.com/.

Anzinger, G., & Gamble, N. (2000). Design of a Fully
Preemptable Linux Kernel. MontaVista Software.

Arnold, J. B. (2008). Ksplice: An automatic system for
rebootless linux kernel security updates. Retrieved from
http://web.mit.edu/ksplice/doc/ksplice.pdf.

 295

Compilation of References

Arnold, M., & Ryder, B. G. (2001). A framework for
reducing the cost of instrumented code. In Proceedings
of the SIGPLAN Conference on Programming Language
Design and Implementation, (pp. 168-179).

Arpaci-Dusseau, R. H., Arpaci-Dusseau, N. C., Burnett,
T. E., Denehy, T. J., Engle, H. S., Gunawi, J., & Nu-
gent, F. I. Popovici. (2003). Transforming Policies into
Mechanisms with Infokernel. 19th ACM Symposium on
Operating Systems Principles.

Artho, C., & Biere, A. (2005). Combined static and dy-
namic analysis. In Proceedings of the 1st International
Workshop on Abstract Interpretation of Object-oriented
Language (AIOOL 2005), ENTCS, Paris. Elsevier Sci-
ence Publishing.

Bacic, E. M. (n.d.). UNIX & Security. Canadian System
Security Centre, Communications Security Establish-
ment. Retrieved January 7, 2005 from http://andercheran.
aiind.upv.es/toni/unix/Unix_and_Security.ps.gz

Baliga, A. (2009). Automated Detection and Containment
of Stealth Attacks on the Operating System Kernel. Ph.
D Thesis, Department of Computer Science, Rutgers
University.

Baliga, A., Ganapathy, V., & Iftode, L. (2008). Automatic
Inference and Enforcement of Kernel Data Structure
Invariants. In Proceedings of the 2008 Annual Computer
Security and Applications Conference, Anaheim, CA.

Baliga, A., Iftode, L., & Chen, X. (2008). Automated
Containment of Rootkit Attacks. Elsevier Journal on
Computers and Security, 27(Nov), 323–334.

Baliga, A., Kamat, P., & Iftode, L. (2007). Lurking in the
shadows: Identifying systemic threats to kernel data. In
Proceedings of the 2007 IEEE Symposium on Security
and Privacy, Oakland, CA.

Baratloo, A., Tsai, T., & Singh, N. (2000). Transparent
Run-Time Defense Against Stack Smashing Attacks. In
Proceedings of the USENIX annual Technical Confer-
ence.

Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T.,
Ho, A., et al. (2003). Xen and the art of virtualization. In

Proceedings of the 19th ACM Symposium on Operating
Systems Principles.

Batat, A., & Feitelson, D. G. (2000). Gang scheduling
with memory considerations. In Proceedings of the
14th International Parallel and Distributed Processing
Symposium (IPDPS’2000), Cancun, Mexico, May 1-5,
(pp. 109-114). Los Alamitos, CA: IEEE.

Bates, R. (2004). Buffer overrun madness. ACM Queue,
2(3).

Baxter, I. (2004). DMS: Program transformations for
practical scalable software evolution. In Proceedings of
the 26th International Conference on Software Engineer-
ing, (pp. 625-634).

Beck, M., Bohme, H., Dziadzka, M., Kunitz, U., Magnus,
R., & Verworner, D. (1998). Linux Kernel Internals (2nd
Ed.). Harlow, MA: Addison Wesley, Longman

Belady, L. A. (1966). A Study of Replacement Algorithms
for Virtual Storage Computers. IBM Systems Journal,
5(2), 78–101.

Benchmark, B. E. N. C. H.-M. A. T. L. A. B. (2004).
Matlab Performance Tests. Natick, MA: The MathWorks,
Inc. Retrieved from http://www.mathworks.com/

Bershad, B. N., Chambers, C., Eggers, S., Maeda, C.,
McNamee, D., & Pardyak, P. et al (1995). SPIN - An
Extensible Microkernel for Application-specific Operat-
ing System Services. ACM Operating Systems Review,
29(1).

Bhattacharya, S., Tran, J., Sullivan, M., & Mason, C.
(2004). Linux AIO Performance and Robustness for
Enterprise Workloads. In . Proceedings of the Linux
Symposium, 1, 63–78.

Binder, W. (2005). A portable and customizable profil-
ing framework for Java based on bytecode instruction
counting. In Proceedings of the Third Asian Symposium
on Programming Languages and Systems (APLAS 2005),
(LNCS 3780, pp. 178-194).

Binder, W., & Hulaas, J. (2004, October). A portable
CPU-management framework for Java. IEEE Internet
Computing, 8(5), 74-83.

296

Compilation of References

Binder, W., Hulaas J., &Villaz A. (2001). Portable re-
source control in Java. In Proceedings of the 2001 ACM
SIGPLAN Conference on Object Oriented Programming,
Systems, Languages and Applications, (Vol. 36, No. 11,
pp. 139-155).

Black, D., Carter, J., Feinberg, G., MacDonald, R.,
Mangalat, S., Sheinbrood, E., et al. (1991). OSF/1 Virtual
Memory Improvements. USENIX Mac Symposium.

Boner, J. (2004, March). AspectWerkz—Dynamic AOP
for Java. In Proceedings of the 3rd International Confer-
ence on As pect-oriented development (AOSD 2004).
Lancaster, UK.

Borland Software Corporation. (2006). Borland Opti-
mize-it Enterprise Suite (Computer software). Retrieved
March 11, 2008, from http://www.borland.com/us/prod-
ucts/optimizeit/index.html

Bovet, D., & Cesati, M. (2003). Undersatnding the Linux
Kernel, (2nd Ed.). Sebastopol, CA: O’Reilly Press.

Broberg, M., Lundberg, L., & Grahn, H. (1999, April).
Visualization and performance prediction of multi-
threaded so laris programs by tracing kernel threads. In
Proceedings of the 13th International Parallel Processing
Symposium, (pp. 407-413).

Brose, G. (1997, September). JacORB: Implementa-
tion and design of a Java ORB. In Proceedings of IFIP
DAIS’97, (pp. 143-154).

Brown, A. D., Mowry, T. C., & Krieger, O. (2001). Com-
piler-based i/o prefetching for out-of-core applications.
ACM Transactions on Computer Systems, 19, 111–170.
doi:10.1145/377769.377774

Bruening, D. L. (2004). Efficient, transparent, and
comprehensive runtime code manipulation. Unpub-
lished doctoral dissertation, Massachusetts Institute of
Technology.

Bryant, R. E., & O’Hallaron, D. R. (2003). Computer
Systems: A Programmer’s Perspective. Prentice Hall,
pp.294.

Buck, B., & Hollingsworth, J. K. (2000). An API for
runtime code patching. International Journal of High
Per formance Computing Applications, 317-329.

Butler, J. (2005). Fu rootkit. http://www.rootkit.com/
project.php?id=12.

Butt, A. R., Gniady, C., & Hu, Y. C. (2007). The Perfor-
mance Impact of Kernel Prefetching on Buffer Cache
Replacement Algorithms. IEEE Transactions on Comput-
ers, 56(7), 889–908. doi:10.1109/TC.2007.1029

Cantrill, B., & Doeppner, T. W. (1997, January). Thread-
mon: A tool for monitoring multithreaded program
perform ance. In Proceedings of the 30th Hawaii Interna-
tional Conference on Systems Sciences, (pp. 253-265).

Cao, G. (2002). Proactive power-aware cache manage-
ment for mobile computing systems. IEEE Transactions
on Computers, 51(6), 608-621.

Cao, P., & Irani, S. (1997). Cost-Aware WWW Proxy
Caching Algorithms. USENIX Annual Technical Con-
ference.

Cao, P., Felten, E. W., Karlin, A. R., & Li, K. (1995). A
study of integrated prefetching and caching strategies.
In Proceedings of the 1995 ACM SIGMETRICS joint
international conference on Measurement and modeling
of computer systems, (pp. 188-197).

Cao, P., Felten, E. W., Karlin, A. R., & Li, K. (1996).
Implementation and performance of integrated appli-
cation-controlled file caching, prefetching, and disk
scheduling. ACM Transactions on Computer Systems,
14, 311–343. doi:10.1145/235543.235544

Card, R., Dumas, E., & Mevel, F. (1998). The Linux
Kernel Book. New York: John Wiley & Sons.

CERT1 (2004). CERT, [Data File]. Accessed on December
20, 2004 from http://www.cert.org/cert_stats.html

CERT2 (2003). Incident note IN-2001-09, Code Red II:
Another worm exploiting buffer overflow In IIS indexing
service DLL. Retrieved on December 20, 2004 from http://
www.cert.org/incident_notes/IN-2001-09.html

 297

Compilation of References

CERT3 (2005). CERT Vulnerability Note VU#596387,
Icecast vulnerable to buffer overflow via long GET
request. US-CERT Vulnerability Notes Database. Re-
trieved on January 4, 2005 from http://www.kb.cert.
org/vuls/id/596387

Chen, B. (2000). Multiprocessing with the Exokernel
Operating System. Unpublished.

Chen, H., Chen, R., Zhang, F., Zang, B., & Yew, P.-C.
(2006). Live updating operating systems using virtualiza-
tion. Proceedings of the 2nd international conference on
Virtual execution environments, Ottawa, Canada.

Chou, A., Yang, J. F., Chelf, B., Hallem, S., & Engler,
D. (2001). An Empirical Study of Operating Systems
Errors. In Proceedings of the 18th ACM, Symposium on
Operating System Principals (SOSP), (pp. 73-88), Lake
Louise, Alta. Canada.

Chow, C.-Y., Leong, H. V., et al. (2004). Group-based
cooperative cache management for mobile clients in a
mobile environment. In Proceedings of the International
Conference on Parallel Processing (ICPP).

Chow, C.-Y., Leong, H. V., et al. (2005). Distributed
group-based cooperative caching in a mobile broadcast
environment. In Proceedings of the International Con-
ference on Mobile Data Management.

Chu, Y., & Ito, M. R. (2000). The 2-way Thrashing-
Avoidance Cache (TAC): An Efficient Instruction Cache
Scheme for Object-Oriented Languages. In Proceedings
of 17th IEEE International Conference on Computer
Design (ICCD2000), Austin, Texas, September 17-20,
(pp. 93-98). Los Alamitos, CA: IEEE.

Clarke, E. M., Grumberg, O., & Peled, D. A. (2000).
Model checking. Massachusetts Institute of Technology.
Cambridge, MA: The MIT Press.

Clauss, P., Kenmei, B., & Beyler, J.C. (2005, September).
The periodic-linear model of program behavior capture.
In Proceedings of Euro-Par 2005 (LNCS 3648, pp.
325-335).

Coffman, E. G. Jr, & Ryan, T. A. (1972). A Study of
Storage Partitioning Using a Mathematical Model of

Locality. Communications of the ACM, 15(3), 185–190.
doi:10.1145/361268.361280

Coffman, E. G., Jr., Garey, M. R., & Johnson, D. S. (1997).
Approximation Algorithms for Bin Packing: A Survey. In
D. Hochbaum (ed.), Approximation Algorithms for NP-
Hard Problems, (pp. 46-93). Boston: PWS Publishing.

Collins, R. (1997, September). In-circuit emulation:
How the microprocessor evolved over time. Dr. Dobbs
Journal. Retrieved March 11, 2008, from http://www.
rcollins.org/ddj/Sep97

Corbato, A. (1968). Paging Experiment with the Multics
System. MIT Project MAC Report, MAC-M-384.

Cordy, R., Halpern C., & Promislow, E. (1991). TXL:
A rapid prototyping system for programming language
dialects. In Proceedings of the International Conference
on Computer Languages (Vol. 16, No. 1, pp. 97-107).

Corporation, H. P. (1995). HP-UX 10.0. Memory Man-
agement White Paper.

Cowan, C., Pu, C., Maier, D., Hinton, H., Walpole, J.,
Bakke, P., et al. (1998). StackGuard: Automatic Adaptive
Detection and Prevention of Buffer-Overflow Attacks.
In Proceedings of the 7th USENIX Security Conference,
San Antonio, TX.

Dandekar, H., Purtell, A., & Schwab, S. (2002). AMP:
Experiences with Building and Exokernel-based Platform
for Active Networking. In Proceedings: DARPA Active
Networks Conference and Exposition, (pp. 77-91).

Dankwardt, K. (2001). Real Time and Linux, Part 3:
Sub-Kernels and Benchmarks. Retrieved from

Davies, J., Huismans, N., Slaney, R., Whiting, S., & Web-
ster, M. (2003). An aspect-oriented performance analysis
environment. AOSD’03 Practitioner Re port, 2003.

Denning, P. (1970). Vir tual Memory. [CSUR].
ACM Comp u t ing S ur ve ys , 2 (3) , 153 –189.
doi:10.1145/356571.356573

Denning, P. J. (1968). The Working Set Model for Program
Behavior. Communications of the ACM, 11(5), 323–333.
doi:10.1145/363095.363141

298

Compilation of References

Denning, P. J. (1968). Thrashing: Its Causes and Pre-
vention. In Proceedings of AFIPS Conference, (pp.
915-922).

Denning, P. J. (1970). Virtual Memory. Computer Survey,
2(3), 153–189. doi:10.1145/356571.356573

Ding, X., Jiang, S., Chen, F., Davis, K., & Zhang, X.
(2007). DiskSeen: Exploiting Disk Layout and Access
History to Enhance I/O Prefetch. USENIX Annual
Technical Conference.

Dini, G., Lettieri, G., & Lopriore, L. (2006). Caching
and prefetching algorithms for programs with looping
reference patterns. The Computer Journal, 49, 42–61.
doi:10.1093/comjnl/bxh140

Dmitriev, M. (2001). Safe evolution of large and long-
lived Java applications. Unpublished doctoral disserta-
tion, Department of Computing Science, University of
Glasgow, Glasgow G12 8QQ, Scotland.

Dmitriev, M. (2001). Towards flexible and safe technology
for runtime evolution of Java language applications. In
Proceedings of the Workshop on Engineering Complex
Object-Oriented Systems for Evolution (pp. 14-18). In
As sociation with OOPSLA 2001 International Confer-
ence, Tampa Bay, FL, USA.

Dmitriev, M. (2002). Application of the HotSwap tech-
nology to advanced profiling. In Proceedings of the
First Workshop on Unanticipated Software Evolution,
held at ECOOP 2002 International Conference, Malaga,
Spain.

Dmitriev, M. (2004). Profiling Java applications using
code hotswapping and dynamic call graph revelation.
In Proceedings of the 4th International Workshop on
Software and Performance, Redwood Shores, CA, (pp.
139-150).

Draves, R. P., Bershad, B. N., Rashid, R. F., & Dean,
R. W. (1991). Using continuations to implement thread
management and communication in operating systems.
In Proceedings of the thirteenth ACM symposium on
Operating systems principles, Pacific Grove, CA, (pp.
122-136).

Druschel, P., Pai, V., & Zwaenepoel, W. (1997). Exten-
sible Kernels and Leading the OS Research Astray. In
Operating Systems, (pp. 38-42).

Ellard, D., & Seltzer, M. (2003). NFS Tricks and Bench-
marking Traps. In Proceedings of the FREENIX 2003
Technical Conference, (pp. 101-114).

Ellard, D., Ledlie, J., Malkani, P., & Seltzer, M. (2003).
Passive NFS Tracing of Email and Research Workloads.
In Proceedings of the Second USENIX Conference on File
and Storage Technologies (FAST’03), (pp. 203-216).

Engler, D. R., Kaashoek, M. F., & O’Toole, J. (1995). Exok-
ernel: an Operating System Architecture for Application-
level Resource Management. In 15th ACM Symposium
on Operating Systems Principles (pp. 251-266).

Ernst, M. D., Perkins, J. H., Guo, P. J., McCamant, S.,
Pacheco, C., Tschantz, M. S., & Xiao, C. (2007). The
Daikon system for dynamic detection of likely invariants.
Science of Computer Programming, 69.

Esfahbod, B. (2006). Preload - An Adaptive Prefetching
Daemon. PhD thesis. Graduate Department of Computer
Science, University of Toronto, Canada.

Etsion, Y., Tsafrir, D., & Feitelson, D. G. (2004). Desktop
Scheduling: How Can We Know What the User Wants?
In Proceedings of the 14th ACM International Workshop
on Network & Operating Systems Support for Digital
Audio & Video (NOSSDAV’2004), Cork, Ireland, June
16-18, (pp. 110-115). New York: ACM.

Fang, Z., Zhang, L., Carter, J., McKee, S., & Hsieh, W.
(2001). Re-evaluating Online Superpage Promotion with
Hardware Support. In Proceedings of the Seventh Inter-
national Symposium on High Performance Computer
Architecture, (pp. 63-72).

Feiertag, R. J., & Organick, E. I. (1971). The multics input/
output system. In Proceedings of the third ACM sympo-
sium on Operating systems principles, (pp. 35-41).

Fekete, S. P., & Schepers, J. (2001). New Classes of Fast
Lower Bounds for Bin Packing Problems. Mathematical
Programming, 91(1), 11–31.

 299

Compilation of References

Fernandez, M., & Espasa, R. (1999). Dixie: A retargetable
binary instrumentation tool. In Proceedings of the Work-
shop on Binary Translation, held in conjunction with the
International Conference on Parallel Architectures and
Compilation Techniques.

Franklin, M., & Zdonik, S. (1996). Dissemination-based
information systems. IEEE Data Engineering Bulletin,
19(3), 20-30.

Frantzen, M., & Shuey, M. (2001). StackGhost: Hardware
facilitated stack protection. In Proceedings of the 10th
conference on USENIX Security Symposium – Washing-
ton, D.C. (Vol. 10, p. 5).

Fraser, K., Hand, S., Neugebauer, R., Pratt, I., Warfield,
A., & Williamson, M. (2004). Safe hardware access
with the Xen virtual machine monitor. In Workshop on
Operating System and Architectural Support for the
On-Demand IT Infrastructure.

Freund, S. N., & Qadeer, S. (2003). Checking concise
specifications of multithreaded software. Technical Note
01-2002, Williams College.

Friedman, M. B. (1999). Windows NT Page Replacement
Policies. In Proceedings of 25th International Computer
Measurement Group Conference, (pp. 234-244).

Fuchs, P., & Pemmasani, G. (2005). NdisWrapper. Re-
trieved from http://ndiswrapper.sourceforge.net/

Galvin, P. B., & Silberschatz, A. (1998). Operating Sys-
tem Concepts (6th Ed.). Harlow, MA: Addison Wesley
Longman.

Ganger, G., & Kaashoek, F. (1997). Embedded Inodes and
Explicit Groups: Exploiting Disk Bandwidth for Small
Files. USENIX Annual Technical Conference.

Ganger, G., Engler, D., Kaashoek, M. F., Briceño, H.,
Hunt, R., & Pinckney, T. (2002). Fast and Flexible
Application-level Networking on Exokernel Systems.
ACM Transactions on Computer Science, 20(1), 49–83.
doi:10.1145/505452.505455

Garfinkel, T., & Rosenblum, M. (2003). A virtual machine
introspection based architecture for intrusion detection.

In Proceedings of the Network and Distributed Systems
Security Symposium, San Diego, CA.

Gent, I. (1998). Heuristic Solution of Open Bin Pack-
ing Problems. Journal of Heuristics, 3, 299–304.
doi:10.1023/A:1009678411503

Geppert, L. (2003). The New Indelible Memo-
ries. IEEE Spectrum, 40(3), 48–54. doi:10.1109/
MSPEC.2003.1184436

Gifford, D. K. (1990). Polychannel systems for mass
digital communications. Communications of ACM,
33(2), 141-151.

Gill, B. S., & Bathen, L. A. D. (2007). Optimal
multistream sequential prefetching in a shared
cache. ACM Transactions on Storage, 3(3), 10.
doi:10.1145/1288783.1288789

Gill, B. S., & Modha, D. S. (2005). Sarc: sequential
prefetching in adaptive replacement cache. Proceedings
of the USENIX Annual Technical Conference 2005 on
USENIX Annual Technical Conference, (pp. 33-33).

Gontla, P., Drury, H., & Stanley, K. (2003, May 2003).
An introduction to OVATION—Object viewing and
analysis tool for integrated object networks. CORBA
News Brief, Object Computing Inc. [Electronic media].
Retrieved March 11, 2008, from http://www.ociweb.com/
cnb/CORBANewsBrief-200305.html

Gonzalez, A., Valero, M., Topham, N., & Parcerisa, J.
M. (1997). Eliminating Cache Conflict Misses through
XOR-Based Placement Functions. In Proceedings of the
International Conference on Supercomputing, Vienna,
Austria, July 7-11, (pp. 76-83). New-York: ACM.

Gorman, M. (2004). Understanding The Linux Virtual
Memory Management (Bruce Peren’s Open Book Se-
ries).

Gorman, M. (2004). Understanding The Linux Virtual
Memory Manager. Upper Saddle River, NJ: Prentice
Hall, Bruce Perens’ Open Source Series.

Gosling J. (1995, January 23). Java intermediate byte-
codes. In Proceedings of the ACM SIGPLAN Workshop

300

Compilation of References

on Intermediate Representations (IR’95). (pp. 111-118),
San Francisco, CA, USA.

Grassi, V. (2000). Prefetching policies for energy saving
and latency reduction in a wireless broadcast data delivery
system. In Proceedings of the International Workshop
on Modeling Analysis and Simulation of Wireless and
Mobile Systems.

Gray, J., & Shenoy, P. J. (2000). Rules of Thumb in Data
Engineering. Proceedings of International Conference
on Data Engineering, 2000, 3–12.

Greenhouse, A. (2003). A programmer-oriented ap-
proach to safe concurrency. Unpublished doctoral
disser tation, Carnegie Mellon University School of
Computer Science.

Grehan, R. (1995). BYTEmark Native Mode Benchmark,
Release 2.0, [Computer software]. BYTE Magazine.

Griffioen, J., & Appleton, R. (1994). Reducing file sys-
tem latency using a predictive approach. Proceedings
of the USENIX Summer Conference, June 1994, pp.
197-208.

Grimm, R. (1996). Exodisk: Maximizing Application
Control Over Storage Management. Unpublished.

Guo, Y., Pinotti, M. C., et al. (2001). A new hybrid
broadcast scheduling algorithm for asymmetric com-
munication systems. SIGMOBILE Mobile Computing
and Communications Review, 5(3), 39-54.

Gutterman, Z., Pinkas, B., & Reinman, T. (2006). Analy-
sis of the linux random number generator. In Proceedings
of the 2006 IEEE Symposium on Security and Privacy,
Oakland, CA.

Hameed, S. & Vaidya, N. H. (1997). Log-time algorithms
for scheduling single and multiple channel data broad-
cast. In Proceedings of the International Conference on
Mobile Computing and Networking.

Hand, S. Warfield, A. Fraser, K. Kotsovinos E. & Ma-
genheimer, D. (2005). Are Virtual Machine Monitors
Microkernels Done Right? In Proceedings of the Tenth
Workshop on Hot Topics in Operating Systems (HotOS-
X), June 12-15, Santa-Fe, NM.

Hara, T. (2002). Cooperative caching by mobile clients
in push-based information systems. In Proceedings of
the Conference on Information and Knowledge Man-
agement.

Hartig, H. Hohmuth, M. Liedtke, J. Schonberg, & S.
Wolter, J. (1997). The Performance of µ-Kernel-Based
Systems. In Proceedings of the sixteenth ACM sym-
posium on Operating systems principles, Saint Malo,
France, (p.66-77).

Herder, J. N., Bos, H., Gras, B., Homburg, P., & Tanen-
baum, A. S. (2006). Minix 3: a highly reliable, self-
repairing operating system. ACM Operating Systems
Review, 40(3), 80–89. doi:10.1145/1151374.1151391

Herder, J. N., Bos, H., Gras, B., Homburg, P., & Tanen-
baum, A. S. (2007). Failure resilience for device drivers.
In The 37th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, (pp. 41-50).

Hill, J., Schmidt, D.C., & Slaby, J. (2007). System execu-
tion modeling tools for evaluating the quality of service of
enterprise distributed real-time and embedded systems.
In P. F. Tiako (Ed.). Designing software-intensive systems:
Methods and principles. Langston University, OK.

Hilyard, J. (2005, January). No code can hide from
the profiling API in the .NET framework 2.0.
MSDN Magazine. Retrieved March 11, 2008, from
http://msdn.microsoft.com/msdnmag/issues/05/01/
CLRProfiler/

Hollingsworth, J. K., Miller, B. P., & Cargille, J. (1994).
Dynamic program instrumentation for scalable per-
formance tools. In Proceedings of the Scalable High-
Performance Computing Conference, Knoxville, TN,
(pp. 841-850).

Howell, J. & Kotz, D. (2000). End-to-end authorization.
Proceedings of the 4th Symposium on Operating Systems
Design and Implementation (151 164). San Diego, CA.

Hristea, C., Lenoski, D., & Keen, J. (1997). Measuring
Memory Hierarchy Performance of Cache-Coherent
Multiprocessors Using Micro Benchmarks. In Super-
computing, ACM/IEEE 1997 Conference, (p.45).

 301

Compilation of References

Hsu, W. W., Young, H. C., & Smith, A. J. (2003). The
Automatic Improvement of Locality in Storage Systems.
Technical Report CSD-03-1264, UC Berkeley.

Hu, H., Xu, J., et al. (2003). Adaptive power-aware
prefetching schemes for mobile broadcast environments.
In Proceedings of the International Conference on Mobile
Data Management.

Hu, Q., Lee, W. C., et al. (1999). Indexing techniques
for wireless data broadcast under data clustering and
scheduling. In Proceedings of the Eighth International
Conference on Information and Knowledge Management,
Kansas City, Missouri, USA.

Hughes Network Systems, LLC. (2008). DIRECWAY.
Retrieved May 25, 2008, from http://www.direcway.
com/

Hunt, G., & Brubacher, D. (1999). Detours: Binary in-
terception of Win32 functions. In Proceedings of the 3rd
USENIX Windows NT Symposium, (pp. 135-144).

Hunt, G., & Larus, J. (2007). Singularity: Rethinking
the software stack. Operating Systems Review, 41(2),
37–49. doi:10.1145/1243418.1243424

IBM Corporation (1996). AIX Versions 3.2 and 4 Per-
formance Tuning Guide.

IBM Corporation. (1998). PowerPC 604e RISC micro-
processor user’s manual with supplement for PowerPC
604 micro processor (Publication No. G522-0330-00)
[Electronic media]. Retrieved March 11, 2008, from
http://www-3.ibm.com/chips/techlib/

IBM Corporation. (2000). Jikes Bytecode toolkit [Com-
puter Software]. Retrieved March 11, 2008, from http://
www-128.ibm.com/developerworks/opensource/

IBM Corporation. (2003). Develop fast, reliable code with
IBM rational PurifyPlus. Whitepaper. Retrieved March
11, 2008, from ftp://ftp.software.ibm.com/software/ratio-
nal/web/whitepapers/2003/PurifyPlusPDF.pdf

IEEE. (2001). IEEE standard test access port and
boundary-scan architecture. IEEE Std. 1149.1-2001.

IEEE-ISTO. (2003). The Nexus 5001 forum standard
for global embedded processor debug interface, version

2.0 [Electronic media]. Retrieved March 11, 2008, from
http://www.ieee-isto.org

Imielinski, T., Viswanathan, S., et al. (1994). Energy
efficient indexing on air. In Proceedings of the ACM
SIGMOD International Conference on Management
of Data.

Imielinski, T., Viswanathan, S., et al. (1997). Data on
air: Organization and access. IEEE Transactions on
Knowledge and Data Engineering, 9(3), 353-372.

Intel Corporation. (2006). Intel 64 and IA-32 architectures
software developer’s manual (Vol. 3B, System Program-
ming Guide, Part 2). Retrieved March 11, 2008, from
www.intel.com/design/processor/manuals/253669.pdf

Intel Corporation. (2006). Intel’s tera-scale research
prepares for tens, hundreds of cores. Technology@
Intel Magazine. Retrieved March 11, 2008, from http://
www.intel.com/technology/magazine/computing/tera-
scale-0606.htm

Intel Pentium Processor User’s Manual. (1993). Mt.
Prospect, IL: Intel Corporation. IA-32 Intel Architec-
ture Software Developer’s Manual, (2005). Volume 3:
System Programming Guide. Mt. Prospect, IL: Intel
Corporation.

Itshak, M., & Wiseman, Y. (2008). AMSQM: Adaptive
Multiple SuperPage Queue Management. In Proc. IEEE
Conference on Information Reuse and Integration (IEEE
IRI-2008), Las Vegas, Nevada, (pp. 52-57).

Itshak, M., & Wiseman, Y. (2008). AMSQM: Adaptive
Multiple SuperPage Queue Management. In Proc. IEEE
Conference on Information Reuse and Integration (IEEE
IRI-2008), Las Vegas, Nevada.

Iyer, S., & Druschel, P. (2001). Anticipatory Scheduling:
A Disk Scheduling Framework to Overcome Deceptive
Idleness in Synchronous I/O. 18th ACM Symposium on
Operating Systems Principles.

Jackson, D., & Rinard, M. (2000). Software analysis:
A roadmap. In Proceedings of the IEEE International
Conference on Software Engineering, (pp. 133-145).

302

Compilation of References

Jacob, B. (2002). Virtual Memory Systems and TLB
Structures. In Computer Engineering Handbook. Boca
Raton, FL: CRC Press.

Jiang, S. (2009). Swap Token: Rethink the Application
of the LRU Principle on Paging to Remove System
Thrashing. In Y. Wiseman & S. Jiang, (Eds.), The
Handbook of Advanced Operating Systems and Kernel
Applications: Techniques and Technologies. Hershey,
PA: IGI Global.

Jiang, S., & Zhang, X. (2001). Adaptive Page Replace-
ment to Protect Thrashing in Linux. In Proceedings of
the 5th USENIX Annual Linux Showcase and Conference,
(ALS’01), Oakland, California, November 5-10, (pp. 143-
151). Berkeley, CA: USENIX.

Jiang, S., & Zhang, X. (2002). LIRS: An Efficient Low
Inter-reference Recency Set Replacement Policy to
Improve Buffer Cache Performance. In Proceeding of
2002 ACM SIGMETRICS, Marina Del Rey, California,
(pp. 31-42).

Jiang, S., & Zhang, X. (2002). TPF: a System Thrashing
Protection Facility. Software, Practice & Experience,
32(3), 295–318. doi:10.1002/spe.437

Jiang, S., & Zhang, X. (2005). Token-ordered LRU: An
Effective Page Replacement Policy and Implementation
in Linux systems. Performance Evaluation, 60(1-4),
5–29. doi:10.1016/j.peva.2004.10.002

Jiang, S., Chen, F., & Zhang, X. (2005). CLOCK-Pro: an
Effective Improvement of the CLOCK Replacement. In
Proceedings of 2005 USENIX Annual Technical Confer-
ence, (pp. 323-336), Anaheim, CA.

Johnson, T., & Shasha, D. (1994). 2Q: A Low Overhead
High Performance Buffer Management Replacement
Algorithm. In International Conference on Very Large
Data Bases, (pp. 439-450).

Johnson, T., & Shasha, D. (1994). 2Q: a low overhead high
performance buffer management replacement algorithm.
In Proceedings of the Twentieth International Conference
on Very Large Databases, VLDB’ 94, Santiago, Chile,
(pp. 439-450).

Jouppi, N. P., & Wall, D. W. (1989). Available Instruction
Level Parallelism for Superscalar and Superpipelined
Machines. In Proc. Third Conf. On Architectural Sup-
port for Programming Languages and Operation System
IEEE/ACM, Boston, (pp. 82-272).

Kadrich, M. (2007). Endpoint security. New York:
Addison-Wesley Professional.

Karp, R. M. (1972). Reducibility Among Combinato-
rial Problems. In R.E. Miller & J.M. Thatcher, (Eds.)
Complexity of Computer Computations, (pp. 85-103).
New York: Plenum Press.

Karsten, W. (n.d.). Fedora Core 2, SELinux FAQ. Re-
trieved on January 5, 2005 from http://fedora.redhat.com/
docs/selinux-faq-fc2/index.html#id3176332

Kenah, L. J., & Bate, S. F. (1984). VAX/VMS Internals
and Data Structures. Digital Press.

Kerberos1 (n.d.). Kerberos: the Network Authentication
Protocol. Retrieved January 5, 2005 from http://web.mit.
edu/kerberos/www/

Khalidi, Y. A., Talluri, M., Nelson, M. N., & Williams,
D. (1993). Virtual memory support for multiple page
sizes. In Proceedings of the Fourth IEEE Workshop on
Workstation Operating Systems, Napa, CA, October.

Kiczale, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm,
J., & Griswold, W. G. (2001). An overview of As pectJ.
(LNCS, 2072, pp. 327-355).

Kim, J., Choi, J., Kim, J., Noh, S., Min, S., Cho, Y., &
Kim, C. (2000). A Low-Overhead, High-Performance
Unified Buffer Management Scheme that Exploits
Sequential and Looping References. In 4th Symposium
on Operating System Design and Implementation, San
Diego, California, (pp. 119-134).

Klein, S. T., & Wiseman, Y. (2003). Parallel Huffman
Decoding with Applications to JPEG Files. The Computer
Journal, 46(5), 487–497. doi:10.1093/comjnl/46.5.487

Koch, H.-J. (2008). The Userspace I/O HOWTO. Revision
0.5. In Linux kernel DocBook documentation.

 303

Compilation of References

Kogge, P. M. (1981). The Architecture of Pipelined
Computers. New-York: McGraw-Hill.

Komarinski, M. F., & Collett, C. (1998). Linux System
Administration Handbook. Upper Saddle River, NJ:
Prentice Hall.

Kroeger, T. M., & Long, D. D. E. (2001). Design and
implementation of a predictive file prefetching algorithm.
In Proceedings of the General Track: 2002 USENIX An-
nual Technical Conference, (pp. 105-118).

Kuhn, B. (2004). The Linux real time interrupt patch.
Retrieved from http://linuxdevices.com/articles/
AT6105045931.html.

Lampson, B. (1974). Protection. SIGOPS Operating
System Review, 8, 18-24.

Lampson, B. (2004). Computer security in the real world.
IEEE Computer, 37, 37-46.

Larus, J., & Schnarr, E. (1995). EEL: Machine-indepen-
dent executable editing. In Proceedings of the ACM SIG
PLAN Conference on Programming Language Designes
and Implementation, (pp. 291-300).

Lau, W. H. O., Kumar, M., et al. (2002). A cooperative
cache architecture in support of caching multimedia
objects in MANETs. In Proceedings of the International
Symposium on a World of Wireless, Mobile and Multi-
media Networks.

Lazowska, E. D., & Kelsey, J. M. (1978). Notes on Tuning
VAX/VMS. Technical Report 78-12-01. Dept. of Computer
Science, Univ. of Washington.

Lee, D., Choi, J., Kim, J.-H., Noh, S. H., Min, S. L., Cho,
Y., & Kim, C. S. (2001). LRFU: A spectrum of policies
that subsumes the least recently used and least frequently
used policies. IEEE Transactions on Computers, 50(12),
1352–1360. doi:10.1109/TC.2001.970573

Lee, E. A. (2006). The problem with threads. IEEE
Computer, 39(11), 33-42.

Lee, H. B. (1997, July). BIT: Bytecode instrumenting tool.
Unpublished master’s thesis, University of Colorado,
Boulder, CO.

Lee, S., Carney, D., et al. (2003). Index hint for on-demand
broadcasting. In Proceedings of the International Confer-
ence on Data Engineering.

Lemos, R. (2003). Cracking Windows passwords in sec-
onds. CNET News.com. Retrieved July 22, 2003 from
http://news.zdnet.com/2100-1009_22-5053063.html

Leschke, T. (2004). Achieving speed and flexibility by
separating management from protection: embracing the
Exokernel operating system. Operating Systems Review,
38(4), 5–19. doi:10.1145/1031154.1031155

Leschke, T. R. (2004). Achieving Speed and Flexibility
by Separating Management From Protection: Embracing
the Exokernel Operating System. Operating Systems
Review, 38(4), 5–19. doi:10.1145/1031154.1031155

Li, C., & Shen, K. (2005). Managing prefetch memory for
data-intensive online servers. In Proceedings of the 4th
conference on USENIX Conference on File and Storage
Technologies, (pp. 19).

Li, C., Shen, K., & Papathanasiou, A. E. (2007). Competi-
tive prefetching for concurrent sequential i/o. In Proceed-
ings of the ACM SIGOPS/EuroSys European Conference
on Computer Systems 2007, (pp. 189-202).

Li, J. (2002). Monitoring of component-based systems
(Tech. Rep. No. HPL-2002-25R1. HP). Laboratories,
Palo Alto, CA, USA.

Li, Z., Chen, Z., & Zhou, Y. (2005). Mining block correla-
tions to improve storage performance. ACM Transactions
on Storage, 1, 213–245. doi:10.1145/1063786.1063790

Li, Z., Chen, Z., Srinivasan, S., & Zhou, Y. (2004). C-
Miner: Mining Block Correlations in Storage Systems.
Proceedings of 3rd USENIX Conference on File and
Storage Technologies (FAST04), March 2004.

Li, Z., Lu, S., Myagmar, S., & Zhou, Y. (2004). CP-
Miner: A Tool for Finding Copy-paste and Related Bugs
in Operating System Code. In The 6th Symposium on
Operating Systems Design and Implementation (OSDI
‘04), San Francisco, CA.

Liang, S., Jiang, S., & Zhang, X. (2007). STEP: Sequen-
tiality and Thrashing Detection Based Prefetching to

304

Compilation of References

Improve Performance of Networked Storage Servers.
27th International Conference on Distributed Computing
Systems (ICDCS’07), (p. 64).

Liedtke, J. (1995). On Micro-Kernel Construction. In
Proceedings of the 15th ACM Symposium on Operating
System Principles. New York: ACM.

Liedtke, J. (1996). Toward Real Microkernels. Communi-
cations of the ACM, 39(9). doi:10.1145/234215.234473

LINUX Pentiums using BYTE UNIX Benchmarks (2005).
Winston-Salem, NC: SilkRoad, Inc.

Liu, Y., & Knightly, E. (2003). Opportunistic fair sched-
uling over multiple wireless channels. In Proceedings of
the IEEE Conference on Computer Communications.

Lo, S.-C., & Chen, A. L. P. (2000). Optimal index and
data allocation in multiple broadcast channels. In Pro-
ceedings of the 16th International Conference on Data
Engineering.

London, K., Moore, S., Mucci, P., Seymour, K., & Luczak,
R. (2001, June 18-21). The PAPI cross-platform interface
to hardware performance counters. In Proceedings of the
Department of Defense Users’ Group Conference.

Loscocco, P. A., Smalley, S. D., Mucklebauer, P. A.,
Taylor, R. C., Turner, S. J., & Farrell, J. F. (1998). The
inevitability of failure: The flawed assumption of security
in modern computing national security agency.

Love, R. (2003). Linux Kernel Development (1st Ed.).
Sams.

Lowe, E. (2005). Automatic Large page selection policy.
Retrieved from http://www.opensolaris.org/os/project/
muskoka/virtual_memory/policy_v1.1.pdf.

Lu, X., & Smith, S. F. (2006). A Microkernel Virtual
Machine: Building Security with Clear Interfaces. ACM
SIGPLAN Workshop on Programming Languages and
Analysis for Security, Ottawa, Canada, June 10, (pp.
47-56).

Luk, C., Cohn, R., Muth, R., Patil, H., Klauser, A.,
Lowney, G., et al. (2005). Pin: Building customized
program analysis tools with dynamic instrumentation.

In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation,
(pp. 190-200).

MacAfee AVERT Labs. (2006). Rootkits, part 1 of 3: A
growing threat. MacAfee AVERT Labs Whitepaper.

Maeda, T. (2002). Kernel Mode Linux: Execute user
process in kernel mode. Retrieved from http://www.
yl.is.s.u-tokyo.ac.jp/~tosh/kml/

Maeda, T. (2002). Safe Execution of User programs in
Kernel Mode Using Typed Assembly Language. Master
Thesis, The University of Tokyo, Tokyo, Japan.

Maeda, T. (2003). Kernel Mode Linux. Linux Journal,
109, 62–67.

Manber, U. (1989). Introduction to Algorithms – A Cre-
ative Approach, (pp.130-131). Harlow, MA: Addison-
Wesley.

Mantegazz, P., Bianchi, E., Dozio, L., Papacharalambous,
S., & Hughes, S. (2000). RTAI: Real-Time Application
Interface. Retrieved from http://www.linuxdevices.com/
articles/ AT6605918741.html.

Marsaglia, G. (1996). The marsaglia random number
cdrom including the diehard battery of tests of random-
ness. Retrieved from http://stat.fsu.edu/pub/diehard

Martello, S., & Toth, P. (1990). Lower Bounds and Reduc-
tion Procedures for the Bin Packing Problem. Discrete
Applied Mathematics, 28, 59–70. doi:10.1016/0166-
218X(90)90094-S

Marti, D. (2002). System Development Jump Start Class.
Linux Journal, 7.

McCalpin, J. D. (1995). Memory bandwidth and ma-
chine balance in current high performance computers.
IEEE Technical Committee on Computer Architecture
newsletter.

McKusick, M. K., Bostic, K., Karels, M. J., & Quarter-
man, J. S. (1996). The Design and Implementation of
the 4.4 BSD Operating System. Reading, MA: Addison
Wesley.

 305

Compilation of References

McKusick, M. K., Joy, W. N., Leffler, S. J., & Fabry, R.
S. (1884). A Fast File System for UNIX. Transactions on
Computer Systems, 2(3), 181–197. doi:10.1145/989.990

McMahan, S. (1998). Cyrix Corp. Branch Processing unit
with a return stack including repair using pointers from
different pipe stage. U.S. Patent No. 5,706,491.

McVoy, L., & Staelin, C. (1996). Lmbench: portable tools
for performance analysis. In Proceedings of the USENIX
Annual Technical Conference, May 1996.

Megiddo, N., & Modha, D. S. (2003). ARC: A Self-Tuning,
Low Overhead Replacement Cache. In Proc. of the 2nd
USENIX Conference on File and Storage Technologies
(FAST’2003), San Francisco, (pp. 115-130).

Megiddo, N., & Modha, D. S. (2003). One Up on
LRU;login. The Magazine of the USENIX Association,
28(4), 7–11.

Megiddo, N., & Modha, D. S. (2004). Outperforming
LRU with an Adaptive Replacement Cache Algorithm.
IEEE Computer, (pp. 4-11).

Microsoft (2006). Architecture of the user-mode driver
framework. Version 0.7. Redmond, WA: Author.

Microsoft Corporation. (2007). Windows server 2003
performance counters reference. Microsoft Tech Net
[Electronic media]. Retrieved March 11, 2008, from
http://technet2.microsoft.com/WindowsServer/en/
library/3fb01419-b1ab-4f52-a9f8-09d5ebeb9ef21033.
mspx?mfr=true

Microsoft Corporation. (2007). Using the registry
functions to consume counter data. Microsoft Devel-
oper Network [Electronic media]. Retrieved March 11,
2008, from http://msdn2.microsoft.com/en-us/library/
aa373219.aspx

Microsoft Corporation. (2007). Using the PDH functions
to consume counter data. Microsoft Developer Net work
[Electronic media]. Retrieved March 11, 2008, from http://
msdn2.microsoft.com/en-us/library/aa373214.aspx

Microsoft. (2008). MSN Direct. Retrieved May 25, 2008,
from http://www.msndirect.com/

Microsoft-1, Microsoft Security Bulletin MS03-026,
Buffer Overrun In RPC Interface Could Allow Code
Execution (823980) revised September 10, 2003, Re-
trieved on January 7, 2005 from http://www.microsoft.
com/technet/security/bulletin/MS03-026.mspx

Microsoft-2, Microsoft, Inc. (2005). Loading and Run-
ning a GINA DLL. (n.d.). Retrieved January 7, 2005
from http://whidbey.msdn.microsoft.com/library/
default.asp?url=/library/en-us/security/security/load-
ing_and_running_a_gina_dll.asp

Miller, B.P., Callaghan, M.D., Cargille, J.M., Hollings-
worth, J.K., Irvin, R.B., & Karavanic, K.L. (1995, De-
cember). The Paradyn parallel performance measurement
tool. IEEE Computer, 28(11), 37-46.

Milojicic, D. (1999). Operating Systems - Now and in
the Future. IEEE Concurrency, 7(1), 12–21. doi:10.1109/
MCC.1999.749132

Mock, M. (2003). Dynamic analysis from the bottom up.
In Proceedings of the ICSE 2003 Workshop on Dynamic
Analysis (WODA 2003).

Moore, D., Shannon, C., Brown, D. J., Voelker, G. M.,
& Savage, S. (2006). Inferring internet denial-of-service
activity. ACM Transactions on Computer Systems.

Morris, J. B. (1972). Demand Paging through Utilization
of Working Sets on the MANIAC II. Communications of
the ACM, 15(10), 867–872. doi:10.1145/355604.361592

Morris, R., & Thompson, K. (1979). Password security:
A case history. Communications of the ACM , 22, 594-
597.

MPI Forum (1997). MPI-2: Extensions to the Message-
Passing Interface, URL: http://www.mpi-forum.org/docs/
mpi-20-html/mpi2-report.html

MSDN Technical Library, Interactive Authentication
(GINA). Retrieved on December 21, 2004 from http://
msdn.microsoft.com/library/default.asp?url=/library/en-
us/secauthn/security/interactive_authentication.asp

Murayama, J. (2001, July). Performance profiling us-
ing TNF. Sun Developer Network. Retrieved March 11,

306

Compilation of References

2008, from http://developers.sun.com/solaris/articles/
tnf.html

Myricom: Pioneering high performance computing. (n.d.).
Retrieved from http://www.myri.com

Navarro, J. (2004). Transparent operating system support
for superpages, Ph.D. Thesis, Department of Computer
Science, Rice University.

Navarro, J., Iyer, S., Druschel, P., & Cox, A. (2002).
Practical, Transparent Operating System Support for
Superpages. Fifth Symposium on Operating Systems
Design and Implementation (OSDI ‘02), Boston, USA.
Ganapathy, N. & Schimmel, C. (1998). General purpose
operating system support for multiple page sizes. In
Proceedings of the USENIX Annual Technical Confer-
ence, New Orleans.

Necula, G. C., McPeak, S., Rahul, S. P., & Weimer, W.
(2002). Cil: Intermediate language and tools for analysis
and transformation of c programs. In Proceedings of the
11th International Conference on Compiler Construction,
Grenoble, France.

Nethercote, N. (2004). Dynamic binary analysis and
instrumentation. Unpublished doctoral dissertation,
University of Cambridge, UK.

Nethercote, N., & Seward, J. (2007). Valgrind: A Frame-
work for Heavyweight Dynamic Binary Instrumentation.
In Proceedings of ACM SIGPLAN 2007 Conference on
Programming Language Design and Implementation
(PLDI 2007), San Diego, CA.

Nick, J., Petroni, L., & Hicks, M. (2007). Automated
detection of persistent kernel control-flow attacks. In
Proceedings of the 14th ACM conference on Computer
and Communications Security, Alexandria, VA.

Nick, J., Petroni, L., Fraser, T., Walters, A., & Arbaugh,
W. A. (2006). An architecture for specification-based
detection of semantic integrity violations in kernel
dynamic data. In Proceedings of the USENIX Security
Symposium, Vancouver, Canada.

Nicola, V. F., Dan, A., & Diaz, D. M. (1992). Analysis
of the generalized clock buffer replacement scheme

for database transaction processing. ACM SIGMET-
RICS Performance Evaluation Review, 20(1), 35–46.
doi:10.1145/149439.133084

Nikolopoulos, D. S. (2003). Malleable Memory Mapping:
User-Level Control of Memory Bounds for Effective
Program Adaptation. In Proceedings of the 17th Interna-
tional Parallel and Distributed Processing Symposium
(IPDPS’2003), Nice, France, April 22-26, [CD-ROM].
Los Alamitos, CA: IEEE.

Nimmer, J., & Ernst, M. D. (2001). Static verification of
dynamically detected program invariants: Integrating
Daikon and ESC/Java. In Proceedings of the 1st Inter-
national Workshop on Runtime Verification.

Norcott, W. (2001). Iozone benchmark. Retrieved from
http://www.iozone.org

NT Security (2005). Network strategy report: Windows
NT security. Retrieved on January 5, 2005 from http://
www.secinf.net/windows_security/Network_Strat-
egy_Report_Windows_NT_Security.html

O’Neil, E., O’Neil, P., & Weikum, G. (1993). The LRU-K
Page Replacement Algorithm for Database Disk Buffer-
ing. Proceedings of SIGMOD `93, Washington, DC.

Object Computing Incorporated. (2006). A window
into your systems [Electronic media]. Retrieved March
11, 2008, from http://www.ociweb.com/products/OVA-
TION

OMG. (2002). Object Management Group: the common
object request broker: Architecture and specification,
revision 3.0. OMG Technical Documents, 02-06-33
[Electronic media]. Retrieved March 11, 2008, from http://
www.omg.org/cgi-bin/doc?formal/04-03-01

Ousterhout, J. (1989). Why Aren’t Operating Systems Get-
ting Faster as Fast as Hardware. Unpublished. Carver,
L., Chen, B., & Reyes, B. (1998). Practice and Technique
in Extensible Operating Systems. Manuscript submitted
for publication. Engler, D. R. (1998). The Exokernel
Operating System Architecture. Unpublished.

Packetstorm. (n.d.). Retrieved from http://packetstorm-
security.org/UNIX/penetration/rootkits/.

 307

Compilation of References

Pai, R., Pulavarty, B., & Cao, M. (2004). Linux 2.6 per-
formance improvement through readahead optimization.
In . Proceedings of the Linux Symposium, 2, 391–402.

Papadopouli, M., & Schulzrinne, H. (2001). Effects of
power conservation, wireless coverage and cooperation
on data dissemination among mobile devices. In Proceed-
ings of the International Symposium on Mobile Ad Hoc
Networking and Computing.

Papathanasiou, A. E., & Scott, M. L. (2005). Aggressive
prefetching: An idea whose time has come. In Proceed-
ings of the 10th Workshop on Hot Topics in Operating
Systems (HotOS).

Paris, J.-F. Amer, A. & Long, D. D. E. (2003). A stochastic
approach to file access prediction. In Proceedings of the
international workshop on Storage network architecture
and parallel I/Os, (pp. 36-40).

Patel, P. (2002). An Introduction to Active Network
Node Operating Systems. Crossroads, 9(2), 21–26.
doi:10.1145/904067.904072

Patterson III, Russel. H. (1997). Informed Prefetching
and Caching. PhD thesis, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA.

Patterson, D. A., & Hennessy, J. L. (1997). Computer
Organization and Design (pp. 434-536). San Francisco,
CA: Morgan Kaufmann Publishers, INC.

Patterson, R. H., Gibson, G. A., & Satyanarayanan, M.
(1993). A status report on research in transparent informed
prefetching. SIGOPS Operating Systems Review, 27(2),
21–34. doi:10.1145/155848.155855

Patterson, R. H., Gibson, G. A., Ginting, E., Stodolsky,
D., & Zelenka, J. (1995). Informed prefetching and cach-
ing. In Proceedings of the fifteenth ACM symposium on
Operating systems principles, (pp. 79-95).

Petroni, N., Jr., Fraser, T., Molina, J., & Arbaugh, W. A.
(2004). Copilot - a coprocessor-based kernel runtime
integrity monitor. In Proceedings of the USENIX Security
Symposium, San Diego, CA.

Pietrik, M. (1998, May). Under the hood. Microsoft
Systems Journal. Retrieved March 11, 2008, from http://
www.microsoft.com/msj/0598/hood0598.aspx

Red Hat-1, Red Hat Linux Reference Guide, Shadow
Passwords. Retrieved January 6, 2005 from http://www.
redhat.com/docs/manuals/linux/RHL-9-Manual/ref-
guide/s1-users-groups-shadow-utilities.html

Reiss, S. P. (2003). Visualizing Java in action. In Pro-
ceedings of the 2003 ACM Symposium on Software
Visualization, (p. 57).

Reiss, S. P. (2005). Efficient monitoring and display of
thread state in java. In Proceedings of the IEEE Inter-
national Workshop on Pro gram Comprehension (pp.
247-256). St. Louis, MO.

Reuven, M., & Wiseman, Y. (2005). Reducing the Thrash-
ing Effect Using Bin Packing, Proc. IASTED Modeling,
Simulation, and Optimization Conference, MSO-2005,
Oranjestad, Aruba, (pp. 5-10).

Reuven, M., & Wiseman, Y. (2006). Medium-Term
Scheduler as a Solution for the Thrashing Effect. The
Computer Journal, 49(3), 297–309. doi:10.1093/comjnl/
bxl001

Riechmann, T., & Kleinöder, J. (1996). User-Level
Scheduling with Kernel Threads. Unpublished.

Rinard, M. (2001). Analysis of multithreaded programs.
(LNCS 2126, pp. 1-19).

Ritchie, D. M. & Thompson, K. (1978). The UNIX time-
sharing system. The Bell System Technical Journal, 57,
1905-1920.

Ritchie, D. M. (1979). On the Security of UNIX, in UNIX
SUPPLEMENTARY DOCUMENTS, AT & T.

Robbins, A. (2004). Linux Programming by Example.
Upper Saddle River, NJ: Pearson Education Inc.

Robertson, J., & Devarakonda, M. (1990). Data cache
management using frequency-based replacement. In
Proc. SIGMETRICS Conference on Measurement
and Modeling of computer systems. New York: ACM
Press.

Romer, T. H., Ohllrich, W. H., Karlin, A. R., & Bershad,
B. N. (1995). Reducing TLB and memory overhead using
online superpage promotion. In Proceedings of the 22nd

308

Compilation of References

International Symposium on Computer Architecture
(ISCA), (pp. 87-176), Santa Margherita Ligure, Italy.

Romer, T., Voelker, G., Lee, D., Wolman, A., Wong, W.,
Levy, H., et al. (1997). Instru mentation and optimization
of Win32/Intel executables using Etch. In Proceedings
of the USENIX Windows NT Workshop.

Rutkowska, J. (2007). Defeating hardware based ram
acquisition. Blackhat Conference, Arlington, VA.

Saltzer, J. H., & Schroeder, M. D. (1975). The protection
of information in computer systems. Proceedings of the
IEEE, 63, 1278-1308.

Saltzer, J. H., Reed, D. P., & Clark, D. D. (1984). End-
to-end arguments in system design. ACM Transactions
on Computer Systems, 2 , 277-288.

Samar, V. & Schemers, R. (1995). Unified Login with
Pluggable Authentication Modules (PAM). Request For
Comments: 86.0, Open Software Foundation (October
1995).

Schindler, J., & Ganger, G. R. (2000). Automated Disk
Drive Characterization. Proceeding of 2000 ACM SIG-
METRICS Conference, June 2000.

Schindler, J., Griffin, J. L., Lumb, C. R., & Ganger, G.
R. (2002). Track-Aligned Extents: Matching Access
Patterns to Disk Drive Characteristics. Proceedings of
USENIX Conference on File and Storage Technologies,
January 2002.

Schlosser, S. W., Schindler, J., Papadomanolakis, S.,
Shao, M., Ailamaki, A., Faloutsos, C., & Ganger, G. R.
(2005). On Multidimensional Data and Modern Disks.
Proceedings of the 4th USENIX Conference on File and
Storage Technology, December 2005.

Schmid, P. (2006). 15 years of hard drive history: Capaci-
ties outran performance. Retrieved from http://www.
tomshardware.com/reviews/15-years-of-hard-drive-
history,1368.html

Schmidt, D. C., Natarajan, B., Gokhale, G., Wang, N., &
Gill, C. (2002, February). TAO: A pattern-oriented object
request broker for distributed real-time and embedded
systems. IEEE Distributed Systems Online, 3(2).

Schmidt, D. C., Stal, M., Rohnert, H., & Buschmann, F.
(2000). Pattern-oriented software architecture patterns
for concurrent and networked objects. John Wiley &
Sons.

Schmuck, F., & Haskin, R. (2002). GPFS: A Shared-Disk
File System for Large Computing Clusters. Proceedings
of USENIX Conference on File and Storage Technolo-
gies, January 2002.

Scholl, A., Klein, R., & Jurgens, C. (1997). BISON: A
Fast Hybrid Procedure for Exactly Solving the One-
Dimensional Bin Packing Problem. Computers &
Operations Research, 24, 627–645. doi:10.1016/S0305-
0548(96)00082-2

Schuba, C. L., Krsul, I. V., & Kuhn, M. G. spafford, E.
H., Sundaram, A. & Zamboni, D. (1997). Analysis of a
denial of service attack on tcp. In Proceedings of the 1997
Symposium on Security and Privacy, Oakland, CA.

Shamir, A., & van Someren, N. (1999). Playing ”hide
and seek” with stored keys. In Proceedings of the Third
International Conference on Financial Cryptography,
London, UK.

Shellcode Security Research Team. (2006). Registration
weakness in linux kernel’s binary formats. Retrieved from
http://goodfellas.shellcode.com.ar/own/binfmt-en.pdf.

Shen, H., Joseph, M. S., et al. (2005). PReCinCt: A
scheme for cooperative caching in mobile peer-to-peer
systems. In Proceedings of the International Parallel
and Distributed Processing Symposium.

Shivakumar, N., & Venkatasubramanian, S. (1996). Ef-
ficient indexing for broadcast based wireless systems.
Mobile Networks and Applications, 1(4), 433-446.

Shriver, E., Small, C., & Smith, K. A. (1999). Why does
file system prefetching work? In Proceedings of the
Annual Technical Conference on 1999 USENIX Annual
Technical Conference, (pp. 71-84).

Smaragdakis, Y. (2004). General Adaptive Replacement
Policies. Proc. International Symposium on Memory
Management (pp. 108-119). New York: ACM Press.

 309

Compilation of References

Smaragdakis, Y., Kaplan, S., & Wilson, P. (2003). The
EELRU Adaptive Replacement Algorithm. Perfor-
mance Evaluation, 53(2), 93–123. doi:10.1016/S0166-
5316(02)00226-2

Smaragdakis, Y., Kaplan, S., & Wilson, P. (2003). The
EELRU adaptive replacement algorithm. Performance
Evaluation (Elsevier), 53(2), 93–123. doi:10.1016/S0166-
5316(02)00226-2

Soloman, D. A. (1998). Inside Windows NT (2nd ed).
Redmond: Microsoft Press.

Spear, M., Roeder, T., Hodson, O., Hunt, G., & Levi,
S. (2006). Solving the starting problem: Device drivers
as self-describing artifacts. In Proceedings of the 2006
EuroSys Conference, pages 45-58.

SPEC. (2000). CPU-2000. Standard Performance Evalu-
ation Corporation, Warrenton, VA. Retrieved from http://
www.spec.org/

Spinczyk, O., Lohmann, D., & Urban, M. (2005). Aspect
C++: An AOP extension for C++. Software Developer’s
Journal, 68-76.

Srivastava, A., & Eustace A. (1994). ATOM: A system
for building customized program analysis tools (Tech.
Rep. No. 94/2). Western Research Lab, Compaq Cor-
poration.

Stallings, W. (1998). Operating Systems Internals and
Design Principles, (3rd Ed., p. 383). Upper Saddle River,
NJ: Prentice-Hall.

Staniford, S., Paxson, V., & Weaver, N. (2002). How to
own the Internet in your spare time. Proceedings of the
11th Usenix Security Symposium, 149-167.

Su, C.-J., & Tassiulas, L. (1998). Joint broadcast schedul-
ing and user’s cache management for efficient information
delivery. In Proceedings of the International Conference
on Mobile Computing and Networking.

Subramaniam, K., & Thazhuthaveetil, M. (1994). Ef-
fectiveness of sampling based software profilers. In
Proceedings of the 1st Interna tional Conference on
Reliability and Quality Assurance, (pp. 1-5).

Subramanian, M. C., Peterson, K. & Raghunath, B.
(1998). Implementation of multiple pagesize support in
HP-UX. Proceedings of the USENIX Annual Technical
Conference, New Orleans.

Subramanian, R., Smaragdakis, Y., & Loh, G. (2006).
Adaptive Caches: Effective Shaping of Cache Behavior
to Workloads. In Proc. International Symposium on
Microarchitecture (MICRO) (pp. 385-386). Washington,
DC: IEEE Computer Society.

Sun Microsystems Corporation. (2002). The Java native
interface programmer’s guide and specification [Elec-
tronic media]. Retrieved March 11, 2008, from http://
java.sun.com/docs/books/jni/html/jniTOC.html

Sun Microsystems Corporation. (2004). JVM tool inter-
face [Computer software]. Retrieved March 11, 2008, from
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/

Sutter, H. (2005). The free lunch is over: A fundamen-
tal turn towards concurrency in software. Dr. Dobb’s
Journal, 30(3).

Sutter, H., & Larus J. (2005). Software and the concur-
rency revolution. ACM Queue Magazine, 3(7).

Swift, M. M., Bershad, B. N., & Levy, H. M. (2005).
Improving the reliability of commodity operating sys-
tems. ACM Transactions on Computer Systems, 23(1).
doi:10.1145/1047915.1047919

Swift, M., Annamalau, M., Bershad, B. N., & Levy, H. M.
(2006). Recovering device drivers. ACM Transactions on
Computer Systems, 24(4). doi:10.1145/1189256.1189257

Talluri, M., & Hill, M. D. (1994). Surpassing the TLB
Performance of Superpages with Less Operating System
Support. Sixth International Symposium on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), San Jose, CA, (pp. 171-182).

Tan, K.-L., & Ooi, B. C. (2000). Data dissemination in
wireless computing environments. Norwell, MA. USA:
Kluwer Academic Publishers.

Tennenhouse, D. L., & Wetherall, D. J. (1996). Towards
an Active Network Architecture. Computer Communica-
tions Review, 26 (2).

310

Compilation of References

Tennenhouse, D. L., Smith, J. M., Sincoskie, W. D., Weth-
erall, D. J., & Minden, G. J. (1997). A Survey of Active
Network Research. IEEE Communications Magazine,
35(1), 80–86. doi:10.1109/35.568214

Thompson, K. (1984). Reflections on trusting trust.
Communication of the ACM, 27, 761-763.

Vahalia, U. (1996). UNIX Internals: The New Frontiers
(pp. 112-148). Upper Saddle River, NJ: Prentice Hall.

Vaswani, K., & Srikant, Y. N. (2003), Dynamic recom-
pilation and profile-guided optimizations for a .NET JIT
compiler. In Proceedings of the IEEE Software Special on
Rotor .NET, (Vol. 150, pp. 296-302). IEEE Publishing.

Visser, E. (2001). Stratego: A language for program
transformation based on rewriting strategies. (LNCS
2051, pp. 357).

Waddington, D. G., & Yao, B. (2005). High fidelity C++
code transformation. In Proceedings of the 5th Workshop
on Language Descriptions, Tools and Applications.

Waddington, D. G., Amduka, M., DaCosta, D., Foster, P.,
& Sprinkle, J. (2006, February). EASEL: Model centric
design tools for effective design and implementation
of multi-threaded concurrent applications (Technical
Docu ment). Lockheed Martin ATL.

Wallace, R. F., Norman, R. D. & Harari, E. (2006).
Computer memory cards using flash EEPROM integrated
circuit chips and memory-controller systems. [US Patent
no. 7106609].

Wang, H., Zhang, D., & Shin, K. (2002). Detecting
syn flooding attacks. In Proceedings of the INFOCOM
Conference, Manhattan, NY.

Wang, J. (2008). Improving Decision-Making Practices
Through Information Filtering. [IJIDS]. International
Journal of Information and Decision Sciences, 1(1),
1–4.

Wang, Y., Beck, D., Vo, B., Roussev, R., & Verbowski,
C. (2005). Detecting stealth software with strider ghost-
buster. Proceedings of the 2005 International Confer-
ence on Dependable Systems and Networks, Yokohama,
Japan.

Weinand (2006). A survey of large page support. Re-
trieved from http://www.gelato.unsw.edu.au/~ianw/
litreview/report.pdf, 2006.

Wetherall, D. (1999). Active Network Vision and Reality:
Lessons From a Capsule-based System. Operating Sys-
tems Review, 34(5), 64–79. doi:10.1145/319344.319156

Whaley, J. (2000). A portable sampling-based profiler
for Java virtual machines. In Proceedings of ACM Java
Grand (pp. 78-87).

Whittle, G. A. S., Paris, J.-F., Amer, A., Long, D. D. E.,
& Burns, R. (2003). Using multiple predictors to improve
the accuracy of file access predictions. In Proceedings
of the 20th IEEE/11th NASA Goddard Conference on
Mass Storage Systems and Technologies (MSS’03),
(pp. 230).

Wilander, J., & Kamkar, M. (2003). A Comparison of
Publicly Available Tools for Dynamic Buffer Overflow
Prevention. In Proceedings of the 10th Network and
Distributed System Security Symposium (NDSS’03), San
Diego, CA, (pp. 149-162).

Williams, C. (2002). Linux Scheduler Latency. Raleigh,
NC: Red Hat Inc.

Winwood, S. J., Shuf, Y., & Franke, H. (2002). Multiple
page size support in the Linux kernel. Proceedings of
Ottawa Linux Symposium, Ottawa, Canada. Bovet, D.
P. & Cesati, M. (2003). Understanding the Linux Kernel
(2nd Ed). Sebastol, CA: O’reilly.

Winwood, S., Shuf, Y., & Franke, H. (2002, June). Multiple
Page Size Support in the Linux Kernel, Ottawa Linux
Symposium, Ottawa, Canada.

Wiseman, Y. (2001). A Pipeline Chip for Quasi Arithmetic
Coding. IEICE Journal - Trans. Fundamentals, Tokyo,
Japan . E (Norwalk, Conn.), 84-A(4), 1034–1041.

Wiseman, Y. (2005). ARC Based SuperPag-
ing. Operating Systems Review, 39(2), 74–78.
doi:10.1145/1055218.1055225

Wiseman, Y. (2009). Alleviating the Trashing by Adding
Medium-Term Scheduler. In Y. Wiseman & S. Jiang,
(Eds.), The Handbook of Advanced Operating Systems

 311

Compilation of References

and Kernel Applications: Techniques and Technologies.
Hershey, PA: IGI Global.

Wiseman, Y., & Feitelson, D. G. (2003). Paired Gang
Scheduling. IEEE Transactions on Parallel and
Distributed Systems, 14(6), 581–592. doi:10.1109/
TPDS.2003.1206505

Wiseman, Y., Schwan, K., & Widener, P. (2004). Ef-
ficient End to End Data Exchange Using Configurable
Compression. In Proc. The 24th IEEE Conference on
Distributed Computing Systems (ICDCS 2004), Tokyo,
Japan, (pp. 228-235).

Wolf, F., & Mohr, B. (2003). Hardware-counter based
automatic performance analysis of parallel programs.
In Proceedings of the Mini-symposium on Performance
Analysis, Conference on Parallel Computing (PARCO).
Dreseden, Germany.

Wood, C., Fernandez, E. B., & Lang, T. (1983). Minimi-
zation of Demand Paging for the LRU Stack Model of
Program Behavior. Information Processing Letters, 16,
99–104. doi:10.1016/0020-0190(83)90034-0

Wright C., Cowan C., Morris J., Smalley S. & Kroah-
Hartman G. (2002). Linux security modules: General
security support for the Linux kernel. Proceedings of
Usenix 2002.

Wu, F., Xi, H., & Xu, C. (2008). On the design of a new linux
readahead framework. ACM SIGOPS Operating Systems
Review, 42(5), 75–84. doi:10.1145/1400097.1400106

Wu, F., Xi, H., Li, J., & Zou, N. (2007). Linux reada-
head: less tricks for more. In . Proceedings of the Linux
Symposium, 2, 273–284.

Wu, W., & Tan, K.-L. (2005). Cooperative prefetching
strategies for mobile peers in a broadcast wnvironment. In
Proceedings of the International Workshop on Databases,
Information Systems and Peer-to-Peer Computing.

Wu, W., & Tan, K.-L. (2006). Global cache management
in non-uniform mobile broadcast. In Proceedings of the
International Conference on Mobile Data Management,
Nara, Japan.

Wyatt, D. (1997). Shared Libraries in an Exokernel
Operating System. Unpublished.

Xu, B., & Wolfson, O. (2004). Data management in
mobile peer-to-peer networks. In Proceedings of the
International Workshop on Databases, Information
Systems and Peer-to-Peer Computing.

Xu, J., Hu, Q., et al. (2000). SAIU: An efficient cache
replacement policy for wireless on-demand broadcasts.
In Proceedings of the Conference on Information and
Knowledge Management.

Xu, J., Hu, Q., et al. (2004). Performance evaluation of
an optimal cache replacement policy for wireless data
dissemination. IEEE Transactions on Knowledge and
Data Engineering, 16(1), 125-139.

Yegneswaran, V., Barford, P. & Ullrich, J. (2003). Inter-
net intrusions: Global characteristics and prevalence,
138-147. New York: ACM Press.

Yin, L., & Cao, G. (2004). Supporting cooperative
caching in ad hoc networks. In Proceedings of the IEEE
Conference on Computer Communications.

Zahorjan, J., Lazowsk, E., & Eager, D. (1991). The
Effect of Scheduling Discipline on Spin Overhead in
Shared Memory Multiprocessors. IEEE Transactions
on Parallel and Distributed Systems, 2(2), 180–198.
doi:10.1109/71.89064

Zhang, X., van Doorn, L., Jaeger, T., Perez, R., & Sailer,
R. (2002). Secure coprocessor-based intrusion detection.
In Proceedings of the 10th workshop on ACM SIGOPS
European workshop, St-Emilion, France.

Zheng, B., & Lee, D. L. (2005). Information dissemina-
tion via wireless broadcast. Communications of ACM,
48(5), 105-110.

Zheng, B., Wu, X., et al. (2005). TOSA: A near-optimal
scheduling algorithm for multi-channel data broadcast.
In Proceedings of the 6th International Conference on
Mobile Data Management, Ayia Napa, Cyprus.

Zhou, F., Condit, J., Anderson, Z., Bagrak, I., Ennals, R.,
Harren, M., et al. (2006). SafeDrive: Safe and recover-
able extensions using language-based techniques. In

312

Compilation of References

Proceedings of the 7th USENIX Symposium on Operating
Systems Design and Implementation.

Zhou, P., Pandey, V., Sundaresan, J., Raghuraman, A.,
Zhou, Y., & Kumar, S. (2004). Dynamically Tracking
Miss-Ratio-Curve for Memory Management. In Pro-
ceedings of the Eleventh International Conference on
Architectural Support for Programming Languages and

Operating Systems (ASPLOS’04), Boston, MA, October
7-13, (pp.177-188). New York: ACM.

Zhou, Y., Chen, Z., & Li, K. (2004). Second-Level Buf-
fer Cache Management. [TPDS]. IEEE Transactions
on Parallel and Distributed Systems, 15(7), 505–519.
doi:10.1109/TPDS.2004.13

 313

About the Contributors

Copyright © 2010, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Yair Wiseman got his PhD from Bar-Ilan University and did two Post-Doc - one at the Hebrew Uni-
versity of Jerusalem and one in Georgia Institue of Technology. Dr. Wiseman is now with the Computer
Science department of Bar-Ilan University. His research interests are Process Scheduling, Hardware-
Software Codesign, Memory Management, Asymmetric Operating Systems and Computer Clusters.

Song Jiang got his PhD from the Department of Computer Science and Engineering at the Ohio State
University. He is now an assistant professor at the Department of Electrical and Computer Engineering
at Wayne State University. His research interests include operating system, file and storage system, fault
tolerance in parallel systems, and distributed systems.

* * *

Arati Baliga has completed her Ph.D degree from the department of Computer Science at Rutgers
University. Her research interests lie in the area of system security, operating systems, distributed sys-
tems, web based systems, covert systems and applied cryptography.

Feng Chen is a Ph.D student in the Department of Computer Science and Engineering at The Ohio
State University. He received his B.S. degree and M.S. degree in Computer Science from Zhejiang Uni-
versity, Hangzhou, China. His research interest is focused on improving performance and optimizing
energy efficiency for storage systems.

Vinod Ganapathy got his PhD from the Computer Science Department of University of Wisconsin-
Madison. He is now an Assistant Professor of Computer Science at Rutgers University. He is broadly
interested in computer security and reliability, particularly in techniques and tools to improve the se-
curity and robustness of system software. He also maintains an active interest in software engineering,
program analysis, formal methods, operating systems and computer architecture.

Liviu Iftode got his PhD in Computer Science from Princeton University. He is now an Associate
Professor of Computer Science and the Graduate Program Director at the Department of Computer Sci-
ence of Rutgers University. His research interests are Operating Systems, Distributed Systems, Mobile
and Pervasive Computing and Vehicular Computing and Networking.

314

About the Contributors

Joel Isaacson has worked as a independent consultant at the cutting edge of high technology for over
30 years. He concentrates his efforts on consulting and actively developing software. He has been pro-
moting open software solutions for over 15 years. For the last 20 years, he has taught various advanced
computer science courses at Bar-Ilan University and has advised tens of students in their advance degree
theses. He has a Ph.D. degree in theoretical Physics from the University of Pennsylvania.

Moshe Itshak got his MSc from Bar-Ilan University. He is a memory management expert. He is
now with Radware.

Pandurang Kamat was a Ph.D. student in the Computer Science department of Rutgers University
and a graduate researcher at WINLAB. After completing his Ph.D. he has been working at Ask.com
(IAC corp.). He is interested in security and privacy issues in computer and communication systems.

Scott Kaplan is an Associate Professor and the Chair of the Department of Computer Science at
Amherst College. Dr. Kaplan performs experimental systems research, primarily in the area of OS- and
runtime-level memory systems. Dr. Kaplan is interested in understanding the ways in which a program
can use memory, and how a system can find and then respond to patterns of memory use.

Timothy R. Leschke is a Doctoral student in Computer Science at the University of Maryland,
Baltimore County. His research interests include extensible operating systems and digital forensics
pertaining to computers, cell-phones, and GPS navigation devices.

Eliad Lubovsky got his MSc from Bar-Ilan University. He is an Operating Systems and Linux expert.
He has worked for several Hi-Tech companies like Smart Link Technologies and Sungard. Now he is
with Alcatel-Lucent at Miramar, Florida.

Moses Reuven got his MSc from Bar-Ilan University. He is an Operating Systems and Linux expert.
He has worked for several Hi-Tech companies like Seabridge Networks and Expand Networks. Now
he is with Cisco.

Yannis Smaragdakis got his PhD from the University of Texas at Austin. He was an assistant profes-
sor at Georgia Institute of Technelogy and an associate professor at university of Oregon. He is now an
associate professor at the Department of Computer Science, University of Massachusetts, Amherst. He
research interests are programming language tools, object-oriented language design and implementation
and memory management (virtual memory management, caching).

Michael M. Swift received a B.A. from Cornell University in 1992. After college, he worked at
Microsoft in the Windows group, where he implemented authentication and access control functionality
in Windows Cairo, Windows NT, and Windows 2000. From 1998 to 2005, he was a graduate student at
the University of Washington working with Professors Hank Levy and Brian Bershad. After getting his
PhD he has joint the Computer Sciences Department of University of Wisconsin where he has studied
large-scale clusters, simultaneous multithreading and operating system reliability.

 315

About the Contributors

Pinchas Weisberg got his MSc from Bar-Ilan University. He is an Operating Systems and Computer
Communication expert. He is the system administrator of the Computer Science department and the
Engineering School of Bar-Ilan University.

Fengguang Wu got his PhD from the University of Science and Technology of China (USTC). His
main focus on Linux kernel is I/O optimization, which hopefully will enable FTP servers to offer better
service for us and make desktop Linux boot faster. Dr. Wu is now with Intel Corporation.

316

Index

Copyright © 2010, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

A
access latency 238, 239, 244, 247, 252,
 255, 256
active list 113
active mode 28, 30
adaptive replacement algorithm

263, 265, 266, 267, 292
adaptive replacement template (ART) 263,
 264, 265, 266, 267, 270, 274
address resolution protocol (ARP) 148
address space 1, 2, 3, 5, 7, 8, 9, 16, 18,
 19, 20, 22, 23, 24, 51, 55
ad hoc networks 260
AIDE 47
Amdahl’s Law 140
AMSQM 276, 281, 282, 301, 283, 284,
 285, 288, 289, 290, 291
announcement-based cooperative prefetching

(ACP) 238, 240
API 6, 19, 41
architecture patterns 198
argument list 23, 31
artificial memory pressure 50, 52
aspect-oriented programming (AOP)

186, 187, 188, 194, 198, 199
AspectWerkz 187, 194
automated invariant inference 56

B
backward compatibility 26, 44
behavioral analysis 156, 158, 159, 160, 191
benchmarks 114, 119, 126, 128
best-fit approximation 130
binary format 55, 65

bin packing 118, 119, 121, 122, 130, 134,
 135, 136, 297, 298, 299, 304
bit-r 90, 91, 93, 94, 95, 97, 102, 103
BLAST 114, 115
block table 110, 111, 206, 207, 208, 209,
 210, 214
block table entry (BTE)

206, 207, 208, 209, 210
Bluetooth 238, 239
bootstrapping 144, 145
bottleneck 101, 107, 108, 109, 117
broadcast index 241, 244, 245, 248, 250
buddy allocator 51
buffer cache 205, 207, 209, 211, 214
bytecode counting 181

C
C++ 7, 40
cache memory 3, 4
caching 238, 239, 243, 244, 245, 247, 253
checksum 47, 48
CLOCK algorithm 4, 13, 112, 117, 278,
 279, 280, 284, 291
clock cycle 7
code obfuscation 48
commoditization 15
commodity kernels 16
common object request broker architecture

(CORBA) 174, 177, 179, 195, 299
complete fairness queuing (CFQ) 221
control flow 19, 21, 64
cooperative caching 238, 240, 244, 245,
 246, 247, 249, 253, 255, 258, 259,
 260, 308

 317

Index

cooperative prefetching 240, 244, 245, 246,
247, 249, 253, 255, 258

correlation buffer 110, 113
CPIX (Cooperative PIX) 238, 240, 247
C-SCAN 108

D
data blocks 201, 203, 204, 205, 206, 207,
 208, 209, 210, 211, 212, 213, 214,
 215, 216, 218, 222
deadlock 159, 161, 190, 191
deep call chain 5
default recovery manager 25, 43
deferred calls 24
device driver 15, 16, 18, 27, 28, 30, 31,
 36, 37, 40, 41, 42, 44
device drivers, connection-oriented 17, 18, 29
device drivers, request-oriented 17
Direct Memory Access (DMA)

18, 23, 41, 43, 51, 57, 66, 67
disk arm 108
disk platter 108
DiskSeen 201–217
double fault 9, 10
DUal LOcality (DULO) 107–117
dynamic analysis 156, 159, 191, 193, 194,

198, 199
dynamic size allocations 7
Dyninst 170
Dyninst API 170

E
editing executable library (EEL) 168, 196
EELRU 263–275
entropy pool 52, 53, 54
executing drivers 15, 41
exokernel 138–155
Exokernel Operating System 138–155
extensibility 138, 140, 150, 151, 152, 153,

154, 177
extension procedure call (XPC)

20, 22, 23, 24, 25, 39

F
fast file system (FFS) 116

fast Fourier transform (FFT) 90
fault tolerance 1, 15, 18, 26, 33, 40, 42, 44
FIFO 147, 210, 212, 229
firmware 57, 58, 204, 205
first-fit approximation 130
first-in-first-out (FIFO) 89, 119, 125, 129
fixed size allocations 5
fragmentation 3
free pool 51, 52
fully associative cache 4
function pointer 23, 48, 63, 64

G
gcc 90, 93, 94, 95, 96, 97, 102, 103, 104
GCC profiling 167, 168
Gibraltar 49–70
GNU gprof 167
gprof 167
group time slices 125
gzip 90, 91, 93, 94, 95, 97, 101, 102, 104

H
hardware fault 20
hypervisor 41, 42

I
IA-32 1, 2, 5, 9, 10, 13, 301
IDE disk 29, 34, 37
inactive list 113
in-circuit emulators (ICE) 189, 190
instrumentation, compiler-based

156, 168, 189, 193
instrumentation, source code 199
intellectual property (IP) 172
interposition 19
interprocess communication (IPC) 145
interrupt handler 5, 18, 41
interrupt oriented 35
interrupts 5, 16, 18, 35, 41, 43
interrupt task 10
invisible revocation 143
I/O bandwidth 101, 105
I/O blocks 23
ioctl commands 32
I/O memory management unit (IOMMU) 23

318

Index

I/O optimization 219, 220, 221
I/O performance 107, 116, 117, 218, 219,
 222, 223, 232, 234, 235
I/O ports 18
I/O prefetching 218, 219, 220
I/O regions 23, 30
I/O requests 17, 29, 40, 42

J
Java virtual machine tracing interface (JVMTI)

183, 184, 185, 186, 188, 199

K
kernel bug 8
kernel code 6, 7, 8, 16, 48, 49, 68
kernel data structure 21, 46, 57, 66, 67
kernel-driver interface 17, 24, 32
kernel memory 1, 2, 8, 16, 23, 30, 41, 51,

53, 56, 61
kernel mode 1, 2, 5, 6, 8, 9, 10, 14, 16,
 25, 35, 40
Kernel Mode Linux (KML) 8
kernel security 46
kernel stack 1, 5, 6, 7, 8, 9, 11, 12, 24
kernel threads 2, 8, 24
Komorium 181, 182, 185

L
latency 11, 63, 161, 177, 178, 179, 182,
 193, 202, 203, 300, 214, 216, 219,
 222, 234, 235
latency, rotational 202
latency, seek 202
latency, transfer 202
least recently used (LRU) 3, 4, 86, 87, 88,
 89, 90, 93, 94, 95, 96, 97, 98, 99,
 100, 101, 102, 103, 104, 105, 106,
 109, 110, 112, 113, 119, 120, 123,
 135, 263, 264, 265, 270, 271, 272,
 273, 274, 275, 278, 279, 280, 281,
 282, 283, 292
Linux 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12,
 13, 14, 15, 16, 17, 299, 21, 23, 26,

27, 29, 310, 32, 33, 34, 35, 36, 37,
38, 39, 40, 41, 42, 43, 44, 49, 50,

 52, 53, 54, 55, 58, 59, 62, 63, 66

Linux authentication 76
Linux authorization 78
Linux, comparison to Windows 71
Linux kernel 1, 5, 6, 8, 10, 12, 14, 16,
 21, 23, 26, 34, 44, 49, 50, 52, 53,
 59, 62, 66, 204, 212, 213, 214, 215,

216, 218
Linux, security modules and mandatory access

controls 78
livelock 159, 161, 191, 193
load controls 88, 99
locality principle 3, 4
local page replacements 88
logical block number (LBN) 111, 114, 205,
 206, 209, 210, 213
LXR 114

M
malware 46, 47
Massachusetts Institute of Technology (MIT)

139, 150, 195, 297
Matlab 126, 127, 128, 134
medium-term scheduler 118, 121, 122, 123,

124, 125, 126, 127, 128, 129, 131,
 132, 134
memory allocation demand (MAD) 91, 93,
 95, 96, 101, 102, 103, 104
memory management unit (MMU) 4, 12
memory usage curves 91
metadata 116
metaprogramming frameworks 164
microkernel 7, 8, 42, 43
Microsoft Windows Performance Counters 176
mobile broadcast 238, 239
mobile peer-to-peer networks 243, 260
model checking 156, 159, 192, 194
modules 1, 2, 16, 50
monitoring of component-based systems

(MCBS) 177, 178, 179
multiple page size support (MPSS) 277, 278
multi-processor, symmetric (SMP)

157, 158, 188, 190, 193
multiprogramming 86, 87, 88, 89, 105, 106
multiprogramming level (MPL) 89
multitasking environment 1

 319

Index

N
native command queuing (NCQ) 221
netfilter 49, 50, 64
network driver interface specification (NDIS) 6
Nexus debugging interface (Nexus 5001) 196
Nooks 15–45
Nooks isolation manager (NIM) 19
number of accessed pages (NAP) 91, 102
number of page faults (NPF) 91, 98

O
object tracking 19, 20, 24, 25, 29
on-chip performance counters 188, 189
operating system, as last line of defense 71
OS kernel 107, 110, 116
OVATION 179, 180, 195, 197, 299
overflow 1, 5, 6, 7, 8, 11
overlays technique 2

P
packet buffering 147
packet demultiplexing 147
page fault 3, 9, 10, 11
page tracker 23
paging mechanism 1, 2, 8
Paradyn 169, 170, 197
parallelism, effective 161, 191
passive mode 28, 29
performance application programming interface

(PAPI) 189, 197
performance degradation 10, 50, 52
Peripheral Component Interconnect (PCI)

18, 24, 30, 56, 57, 67
persistent invariants 61, 62
Pin API 171, 186
Pin program analysis system 170, 171, 172,
 173, 174, 186, 197
PIX (P Inverse X) 244
PostMark 114, 115
prefetching 201, 203, 204, 205, 207, 208,
 209, 210, 211, 212, 213, 214, 215,
 216, 218, 219, 296, 220, 221, 222,
 223, 224, 301, 303, 308, 234, 235,
 236, 237, 238, 239, 240, 243, 244,
 245, 246, 247, 249, 250, 251, 252,
 253, 255, 256, 236, 258, 259

prefetching, history-aware
210, 211, 212, 213, 214, 215

prefetching, sequence-based 210, 211, 212,
 213, 214, 215, 216
priority inversion 161
procedure calls 16, 20, 27
process oriented 35
profiling, active 159, 173
profiling, common language runtime (CLR)

180, 183, 184, 185, 188
profiling, passive 159
profiling, virtual machine (VM) 180, 188
protection domain 15, 16, 20, 21, 22, 23,
 24, 25, 42
protection mode 1
protocol hooks 50
pseudo-random number generator (PRNG)

52, 53, 54, 55, 64, 65

R
readahead 204, 218–237
readahead algorithm 218, 219, 224, 225,
 226, 227, 229, 230, 232, 235
recovery manager 20, 25, 26, 28, 30, 31,
 34, 36, 37, 43
Redhat Linux 90
reliability layer 18, 25, 33
replacement algorithms

86, 93, 105, 108, 109
resource wastage 50, 52, 64
restart recovery manager

25, 26, 30, 34, 36, 37
reverse engineering 159
rootkit 46, 47, 48, 49, 56, 63, 66, 67, 68,

69
root symbols 56, 58, 60

S
safety-critical systems 161
secure binding 143, 144
security and operating system security architec-

ture 72
segmentation 1
sequencing bank 110, 112
sequential prefetching

203, 218, 221, 235, 236

320

Index

sequential reads 218, 222, 225, 226, 228,
 230, 231, 232
set associative cache 4
shadow drivers 15, 18, 19, 20, 26, 27, 28,

29, 31, 32, 33, 34, 35, 36, 37, 38,
 39, 41, 43
shadow recovery manager 20, 25, 28, 30, 31
sharing model 148
shortest-seek-time-first (SSTF) 108
simulation experiments 253
simulation model 253
software architecture 171, 198
software fault 20
software lifecycle 160
sparse matrix multiplication (SMM) 115, 116
spatial localities 107, 109
SPEC 2000 90
stack overflow 1, 6, 7
stack starvation 9, 10
stack variables 5, 6
standard test accesses port and boundary-scan

architecture (JTAG) 189, 190
static analysis 156, 158, 159, 161, 191, 194
strided 213, 214, 215
super-paging 276, 277, 278, 279, 280, 281,

290
swapping management 123
swap token 86–106
system calls 2, 20, 48, 54, 67
system execution modeling (SEM) tool 192

T
tagged command queuing (TCQ) 221
tap 22, 27, 28, 30
thrashing 86, 87, 88, 297, 89, 90, 93, 95,
 96, 97, 98, 99, 307, 100, 102, 106,
 118, 119, 120, 121, 122, 123, 125,
 126, 127, 128, 129, 132, 134, 135,
 136
threadmon 175
threads (lightweight processes) 157, 158,
 161, 162, 164, 303, 170, 174, 175,
 176, 178, 179, 181, 184, 186, 187,
 188, 189, 190, 192, 194, 196

TLB 276, 277, 278, 284, 285, 286, 287,
 288, 289, 307, 290, 309, 292
trace normal form (TNF) 175, 176, 197, 305
trampoline functions 168, 170, 171, 199
transient invariant 61, 62
translation table 148
transparent control 19
Tripwire 47
Typed Assembly Language (TAL) 8

U
Universal Serial Bus (USB) 18, 40, 41
UNIX 4, 10, 13, 69
user mode 2, 8, 25, 39, 40, 41, 42, 43, 44
user mode driver framework (UMDF)

40, 41, 43
userspace I/O (UIO) 40, 41

V
virtual file system (VFS) 54, 218, 221, 230
virtual machine 3, 40, 41, 42, 44, 48, 49,
 56, 69, 299
virtual memory 1, 2, 3, 4, 5, 23, 43, 60
visible revocation 143
VMS 88, 106, 119
vortex 90, 93, 94, 95, 96, 97, 101, 102,
 103, 104

W
Windows and Linux, comparison 73
Windows authentication 74
Windows authorization 77
Windows, comparison to Linux 71
Windows XP 15, 16, 36, 40
working set models 88
wrappers 19, 21, 22, 25

X
x86 1, 21, 23, 39
XPC. See extension procedure call

	Title

	Editorial Advisory Board
	Table of Contents
	Detailed Table of Contents
	Preface
	Acknowledgment
	Kernel Stack Overflows
Elimination
	Device Driver Reliability
	Identifying Systemic
Threats to Kernel Data
	The Last Line of Defense
	Swap Token
	Application of both Temporal
and Spatial Localities
in the Management of
Kernel Buffer Cache
	Alleviating the Thrashing
by Adding Medium-
Term Scheduler
	The Exokernel Operating
System and Active Networks
	Dynamic Analysis and Profiling
of Multithreaded Systems
	Exploiting Disk Layout
and Block Access History
for I/O Prefetch
	Sequential File
Prefetching in Linux
	Peer-Based Collaborative
Caching and Prefetching in
Mobile Broadcast
	Adaptive Replacement
Algorithm Templates and EELRU
	Enhancing the Efficiency
of Memory Management
in a Super-Paging
Environment by AMSQM
	Compilation of References
	About the Contributors
	Index

